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WEIGHTED IRRIGATION PLANS∗

ALBERTO BRESSAN† AND QING SUN‡

Abstract. We model an irrigation network where lower branches must be thicker in order to
support the weight of the higher ones. This leads to a countable family of ODEs, one for each branch,
that must be solved by backward induction. Having introduced conditions that guarantee the existence
and uniqueness of solutions, our main result establishes the lower semicontinuity of the corresponding
cost functional, w.r.t. pointwise convergence of the irrigation plans. In turn, this yields the existence
of an optimal irrigation plan, in the presence of these additional weights.
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1. Introduction

In the classical irrigation problem with Gilbert cost [7], water is pumped out from
a well and transported to finitely many locations P1,. ..,Pn by a network of pipes. The
total cost is computed by∑

[flux of water through the pipe]α× [length of the pipe]. (1.1)

Here the sum ranges over all pipes in the network, while α∈ [0,1] is a fixed exponent.

This model is appropriate for an irrigation network built at ground level. On the
other hand, sometimes one would like to model a network as a free-standing structure.
For example, in [3] the authors considered tree branches transporting water and nu-
trients from the root to all the leaves. In this case, one should take into account that
the lower portion of each branch bears the weight of the upper part. As a result, the
thickness (and hence cost per unit length) of the lower portion should be greater, even
if the flux remains the same. This is indeed observed in nature, where the thickness of
tree branches decreases in a continuous fashion, as one moves toward the tip.

The aim of this paper is to develop a general framework to describe this situation.
As a first step, consider a single branch with length ℓ, parameterized by arc-length
s∈ [0,ℓ], oriented from the root toward the tip. To account for the variable thickness
of this branch we introduce a weight function W =W (s). Assuming that the flux is
constant along the entire branch, this will satisfy an ODE of the form

W ′(s)=−f(W (s)), (1.2)

where f is a non-negative, continuous function. A natural set of assumptions on f is

(A1) The function f :R+ 7→R+ is continuous on [0,+∞[, twice continuously differ-
entiable for s>0, and satisfies

f(0)=0, f ′(s)>0, f ′′(s)≤0 for all s>0. (1.3)
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A typical example is f(s)= csβ , for some c≥0 and 0<β≤1.

To illustrate the main idea, we describe how to construct a family of weights Wi(·)
in a network consisting of finitely many branches γi, i=1,. ..,N . This will be achieved
by induction, starting from the tip of each branch and proceeding backward toward the
root.

Let each branch γi : [0,ℓi] 7→Rd be parameterized by arc-length, oriented from the
root toward the tip. As shown in Figure 1.1, call Pi=γi(ℓi) the endpoint of the arc
γi and consider a measure µ consisting of finitely many point masses mi≥0 located
at points Pi. It is assumed that, for each node Pi, there is a unique path (i.e., a
concatenation of arcs γj) connecting Pi to the origin.

Call

O(i)=
{
j∈{1,. ..,N}; γj(0)=Pi

}
(1.4)

the set of branches originating from the node Pi=γi(ℓi), i.e., from the tip of the i-th
branch. Moreover, consider the sets of indices inductively defined by

I1
.
=
{
i∈{1,. ..,N}; O(i)=∅

}
,

Ip+1
.
=
{
i∈{1,. ..,N}; O(i)⊆I1∪···∪Ip

}
\(I1∪···∪Ip).

(1.5)

Roughly speaking, I1 is the set of outer-most branches. Branches in Ip originate from
the tips of branches in Ip+1, etc. Since the graph contains no loops, the set {1,. ..,N}
is the disjoint union of the sets Ip, p≥1.

For each branch i∈{1,. ..,N}, a weight function Wi(·) can now be defined in terms
of the following rules:

(i) The weight at the tip of the i-th branch is

Wi(ℓi)=W i
.
= mi+

∑
j∈O(i)

Wj(0+). (1.6)

(ii) Along each branch γi, the weight Wi(·) is absolutely continuous and satisfies
the ODE

W ′
i (s)=−f(Wi(s)) s∈]0,ℓi]. (1.7)

According to (i)-(ii), the solution can be computed by induction on the entire tree,
first on all branches i∈I1, then on all branches i∈I2, etc. For sake of definiteness, we
assume

mi > 0 for all i∈I1. (1.8)

This guarantees that the flux along every branch is strictly positive. In turn, by (1.3),
it implies that the backward Cauchy problem (1.6)-(1.7) on [0,ℓi] has a unique solution.

Example 1.1. When f(s)= csβ , the Cauchy problem (1.6)-(1.7) can be solved explic-
itly. Namely:

W
1−β
i −W 1−β

i (s)= c(1−β)(s−ℓi),
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Fig. 1.1. According to (1.5), the branches of this tree are partitioned according to
I1={1,2,4,5,6}, I2={3,7}, I3={8}. Weights can be constructed by induction, solving the
backward Cauchy problems (1.6)-(1.7) first along the arcs γi, i∈I1, then for i∈I2, etc.

Wi(s)=
(
W

1−β
i +c(1−β)(ℓi−s)

) 1
1−β

. (1.9)

In particular, from (1.6) we deduce the inductive rule

W i=mi+
∑
j∈O(i)

(
W

1−β
j +c(1−β)ℓj

) 1
1−β

. (1.10)

In the presence of a weight function W , for a given α∈]0,1] the total weighted
cost of the irrigation network is then defined as

EW,α
.
=
∑
i

∫ ℓi

0

[Wi(s)]
αds. (1.11)

Remark 1.1. In the case where f ≡0, the weight functions are constant along every
branch. Moreover, the boundary conditions (1.6) imply

Wi(s)=flux through γi, s∈ [0,ℓi].

Hence the total weighted cost (1.11) coincides with the Gilbert cost (1.1).

Example 1.2. In the special case where β=α, so that f(s)= csα, in view of (1.9) this
cost is computed by

EW,α
.
=
∑
i

∫ ℓi

0

(
W

1−α
i +c(1−α)(ℓi−s)

) α
1−α

ds. (1.12)

When α=1−α=1/2, the formulas (1.10) and (1.12) further simplify to

W i=mi+
∑
j∈O(i)

(
W

1/2

j +
cℓj
2

)2
, EW,α

.
=
∑
i

(
ℓiW

1/2

i +
cℓ2i
4

)
.

The aim of the present paper is to extend the theory of optimal irrigation networks
[1–3,10,11,19,20], accounting for the presence of weights in the cost function. In essence,
this requires the solution of a countable family of ODEs with measure-valued right-hand
sides, one for each branch of the network.
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In the case of a finite network, where µ consists of finitely many atoms, our definition
reduces to (1.11). For a general network, irrigating a positive Radon measure µ, the
weighted cost will be defined as a limit of an increasing sequence of approximations.
For any ε>0, these approximations are obtained by restricting the transport plan to a
finite family of paths where the flux is ≥ε.

Besides proving that this family of weights can be uniquely determined, our main
results include the lower semicontinuity of the corresponding weighted irrigation cost.
In turn, this yields the existence of optimal weighted irrigation plans.

The remainder of the paper is organized as follows. In Section 2 we review the basic
definitions of irrigation plans, and give a statement of the main results. To simplify the
discussion, we here assume that all paths are parameterized by arc-length, and that the
irrigation plan has the single-path property. Both of these assumptions will be removed
in subsequent sections.

The more technical part of the paper begins with Section 3, which collects various
results on optimal irrigation plans. For later use, we also include some lemmas on ODEs
with measure-valued right-hand side, formulated as integral equations. In Section 4 we
work out a detailed construction of the weight functions, and define the total weighted
cost of an irrigation plan. The lower semicontinuity of the weighted cost, w.r.t. pointwise
convergence of the particle paths, is stated in Theorem 5.1 and proved in the remainder
of Section 5.

In Section 6 we consider a more general model where the increase in the thickness of
each branch, as one moves from the tip toward the root, depends also on the inclination
of the branch itself. The ODE (1.2) is thus replaced by

W ′(s)=−f(γ̇(s),W (s)), (1.13)

where s 7→γ(s) is a parameterization of the branch. We here assume that f is contin-
uous in both variables, and that the map v 7→f(v,W ) is positively homogeneous and
convex w.r.t. the variable v∈Rd. We show that all previous results, including the lower
semicontinuity of the weighted irrigation cost, remain valid in this more general case.

Finally, in Section 7 we prove the existence of an optimal weighted irrigation plan
for a given measure µ, and the lower semicontinuity of the weighted irrigation cost
w.r.t. weak convergence of measures: µn⇀µ. We remark that, as a further consequence
of these results, the optimization problems for tree branches considered in [4,5] still have
solutions when the cost functional includes the presence of weights.

The problem of determining which measures have a finite or infinite weighted irri-
gation cost, depending on the dimension of their support, is discussed in the companion
paper [18]. An interesting open question is whether, in the presence of weights, an op-
timal irrigation plan can be computed using a suitable Modica-Mortola approximation
based on Γ-convergence, as in [12–14, 16]. For a general introduction to the theory of
ramified transport we refer to [1].

2. Statement of the main results
In this section we review the definition of irrigation plans, we outline the construc-

tion of the weight functions W , and provide a statement of our main results. Somewhat
more general theorems will be proved in the remaining sections.

Definition 2.1. Let µ be a positive Radon measure on Rd, with total massM
.
=µ(Rd).

An irrigation plan for µ is a function

χ : [0,M ]×R+ 7→Rd,
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measurable w.r.t. ξ and continuous w.r.t. t, with the following properties:

(i) (regularity) For a.e. ξ∈ [0,M ] the map t 7→χ(ξ,t) is 1-Lipschitz and eventually
constant. Namely, there exists τ(ξ)≥0 such that{ |χ(ξ,t)−χ(ξ,t′)| ≤ |t− t′| for all t,t′≥0,

χ(ξ,t)=χ(ξ,τ(ξ)) for every t≥ τ(ξ).
(2.1)

Throughout the paper, we denote by τ(ξ) the smallest time τ such that χ(ξ,·) is
constant for t≥ τ .

(ii) (χ irrigates the measure µ) For all ξ∈ [0,M ] one has χ(ξ,0)=0∈Rd.
Moreover, the push-forward of the Lebesgue measure on [0,M ] by the map
ξ 7→χ(ξ,τ(ξ)) coincides with µ. In other words, for every Borel set V ⊆Rd
one has

µ(V )=meas
{
ξ∈ [0,M ]; χ(ξ,τ(ξ))∈V

}
. (2.2)

One may think of the Lagrangian variable ξ∈ [0,M ] as a label for a water particle.
At time t=0, all particles are at the origin. Each particle ξ moves along the path
t 7→χ(ξ,t), until it reaches its eventual destination χ(ξ,τ(ξ)). To simplify some of the
subsequent formulas, it is convenient to make the further assumption that each path is
parameterized by arc-length. In this case, calling

χ̇(ξ,t)=
∂

∂t
χ(ξ,t)

the partial derivative w.r.t. time, one has

∣∣χ̇(ξ,t)∣∣={1 for a.e. t∈ [0,τ(ξ)],

0 for t>τ(ξ).
(2.3)

We recall here another useful property of irrigation plans.

(SPP) An irrigation plan χ satisfying (2.1)–(2.3) has the single-path property if
the following holds. If χ(ξ,τ)=χ(ξ′,τ ′) for some ξ,ξ′∈ [0,M ] and 0<τ ≤ τ ′,
then

χ(ξ,t)=χ(ξ′,t) for all t∈ [0,τ ]. (2.4)

In other words, if several particles go through the same point x∈Rd, then they travel
from the origin to x through the same path.

Given an irrigation plan χ, the amount of particles which go through a point x∈Rd
is defined as

|x|χ
.
= meas

({
ξ∈ [0,M ]; χ(ξ,t)=x for some t≥0

})
. (2.5)

One may think of |x|χ as the total flux through the point x. For a given particle
ξ∈ [0,M ], the multiplicity is then defined as

m(ξ,t)
.
=
∣∣χ(ξ,t)∣∣

χ
. (2.6)

Assuming that χ has the single-path property, it is clear that for each ξ the function
t 7→m(ξ,t) is non-increasing.

In the following, to ensure that the irrigation cost is finite, a further assumption
will be needed.
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(A2) For a.e. ξ∈ [0,M ], one has m(ξ,t)>0 for every 0≤ t<τ(ξ).
In other words, for any particle ξ and any t<τ(ξ), there is a positive amount of other
particles that travel along the same path χ(ξ, ·), up to time t.

Thinking that water particles are moving through a network of pipes, the flux |x|χ
measures how big should be the pipe going through the point x. Our present goal is
to introduce a weight W (x), which depends not only on the flux through x but also on
all further branches of the network originating from x. If these branches are long, the
weight W (x) will be large.

For this purpose, we shall use a truncation procedure. Given ε>0, for each ξ we
define the stopping time

τε(ξ)
.
= sup

{
t∈ [0,τ(ξ)]; m(ξ,t)≥ε

}
.

The truncated irrigation plan is then defined as

χε(ξ,t)=

{
χ(ξ,t) if t≤ τε(ξ),

χ(ξ,τε(ξ)) if t>τε(ξ).
(2.7)

Since the total mass of all particles is bounded, the set of all truncated paths can now
be written as the union of finitely many Lipschitz curves, say{

χ(ξ,t); ξ∈ [0,M ], t∈
[
0,τε(ξ)

]}
=

N⋃
i=1

γi. (2.8)

We parameterize each branch γi : [0,ℓi] 7→Rd by arc-length, oriented from the root toward
the tip. This finite set of branches is naturally endowed with a partial ordering. We
write

γi ≺ γj

if there exists a particle ξ and t<t′ such that

χ(ξ,t)∈γi, χ(ξ,t′)∈γj .

As in (1.4), for each i∈{1,. ..,N} the set of branches originating from the tip of the
branch γi is defined as

O(i)=
{
j; γj(0) = γi(ℓi)

}
.

We can now construct an approximate weight W ε on every branch γi, starting from the
uppermost branches (i.e., those for which O(i)=∅) and moving backwards toward the
root, by an inductive procedure. More precisely, calling

mi(s)=
∣∣γi(s)∣∣χ, s∈ [0,ℓi],

the multiplicity along the branch γi, we define W ε
i (s)=W

ε(γi(s)) to be the solution of
the ODE

d

ds
W ε
i (s)=−f(W ε

i (s))+
d

ds
mi(s) s∈ [0,ℓi], (2.9)

with terminal data

W ε
i (ℓi)=W i

.
=

∑
j∈O(i)

W ε
j (0+)+meas

{
ξ∈ [0,M ]; χ

(
ξ,τε(ξ)

)
=γi(ℓi)

}
. (2.10)

To appreciate this construction, a few remarks are in order.
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(i) The multiplicity function s 7→mi(s) along γi is non-increasing, possibly discon-
tinuous. Hence the ODE (2.9) must be interpreted in distributional sense.

(ii) In the case where this multiplicity mi is constant, the ODE (2.9) reduces to
(1.7).

(iii) In the case where f ≡0, we wish to recover the identity W ε
i (s)=mi(s). This

motivates the boundary condition (2.10). Indeed, in this case, the total amount
of particles that reach the terminal point Pi=γ(ℓi) is equal to the amount of
particles that move into one of the outgoing branches γj with j∈O(i), plus the
amount of particles that stop exactly at Pi.

(iv) In the general case where f >0, the terminal condition (2.10) is an equivalent
formulation of (1.6).

Our first main result can be stated as follows.

Theorem A. Let f satisfy (A1). Let µ be a positive, bounded measure on Rd and
let χ be an irrigation plan for µ, satisfying the single-path property as well as (A2).

(i) For any given ε>0, the relations (2.9)-(2.10) uniquely define a set of weight
functions W ε

i along finitely many branches γ1,. ..,γN .

(ii) Letting ε↓0, for a.e. ξ one obtains a unique (possibly unbounded) limit

W (ξ,t)= lim
ε↓0

W ε
(
χε(ξ,t)

)
=sup
ε>0

W ε
(
χε(ξ,t)

)
, 0<t<τ(ξ). (2.11)

When the particle paths are parameterized by arc-length as in (2.3), for a given
α∈ [0,1], the total cost of the irrigation plan χ is defined as

Eα(χ) .
=

∫
[0,M ]

(∫ τ(ξ)

0

∣∣χ(ξ,t)∣∣α−1

χ
dt

)
dξ. (2.12)

In connection with the weight function W in (2.11), we now introduce the weighted
cost

EW,α(χ) .
=

∫
[0,M ]

(∫ τ(ξ)

0

[
W (ξ,t)

]α
m(ξ,t)

dt

)
dξ. (2.13)

Remark 2.1. In the case where f =0, and hence W (ξ,t)=m(ξ,t)
.
=
∣∣χ(ξ,t)∣∣, the defi-

nition (2.13) reduces to (2.12).

More generally, given a continuous function ψ :R+ 7→R+ satisfying the same as-
sumptions (1.3) as f in (A1), we define the weighted cost of the irrigation plan χ
by setting

EW,ψ(χ) .
=

∫
[0,M ]

(∫ τ(ξ)

0

ψ
(
W (ξ,t)

)
m(ξ,t)

dt

)
dξ. (2.14)

Finally, for a given measure µ, the weighted irrigation cost of µ is defined as

IW,ψ(µ) .
= inf

χ
EW,ψ(χ), (2.15)

where the infimum is taken over all irrigation plans for the measure µ.
A major part of our analysis will be devoted to establishing the lower semicontinuity

of the weighted cost, w.r.t. pointwise convergence of the particle paths. This yields our
second main result, on the existence of optimal irrigation plans.
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Theorem B. Let µ be a positive, bounded Radon measure on Rd. Let f and ψ
be two continuous functions that both satisfy the assumptions in (A1). If µ admits an
irrigation plan whose weighted cost is finite, then there exists an irrigation plan with
minimum weighted cost.

In addition, we obtain the lower semicontinuity of the weighted irrigation cost
w.r.t. weak convergence of the irrigated measures:

Theorem C. Let f and ψ both satisfy (A1). Let (µn)n≥1 be a sequence of bounded
positive measures on Rd, with uniformly bounded supports, weakly converging to µ. Then

IW,ψ(µ) ≤ liminf
n→∞

IW,ψ(µn). (2.16)

It is well known [1] that optimal irrigation plans have the single-path property.
Moreover, every path can be re-parameterized by arc-length, as in (2.3). At first sight,
it would thus seem natural to restrict all the analysis to irrigation plans that satisfy
these two properties. Unfortunately, this approach runs into trouble as soon as we wish
to establish limit theorems. Indeed, as shown in Figure 2.1, both of these properties
can fail when we take the limit of a sequence of irrigation plans.

Example 2.1. Referring to Figure 2.1, left, assume that every path γn is parameterized
by arc-length, so that

∣∣γ̇n(s)∣∣=1 for a.e. s. Moreover, assume the uniform convergence

γn(s)→γ(s). Then the map s 7→γ(s) is 1-Lipschitz. However, the identity
∣∣γ̇(s)∣∣=1

fails.
Next, consider the sequence of irrigation plans χn shown in Figure 2.1, right, where

water particles move along two paths γn,1,γn,2. These two paths bifurcate after reaching
the point P and never touch each other again. Therefore χn satisfies the single-path
property. However, taking the limit as n→∞ we obtain an irrigation plan χ containing
two paths γ1,γ2 which bifurcate at P but join together again at Q. Particles can reach
the same point Q traveling along two distinct paths. Hence χ does not satisfy the
single-path property.

Q

γ

0

γ

0

γ
1

γ
2

γ

γn,

n,1

2

P

n

Fig. 2.1. Left: a sequence of paths γn which converge uniformly to a path γ. Every γn is
parameterized by arc-lenth, but the same is not true of the limit. Right: a sequence of irrigation
plans χn converging to a limit plan χ. Here every χn has the single-path property, but χ does
not.

For the above reasons, in the next sections we shall introduce a more general con-
struction of the weight functions W =W (ξ,t), which applies to all irrigation plans con-
sidered in Definition 2.1, without assuming any further property (see Definition 4.2).
Toward this goal, the formula (2.6) must be replaced by a somewhat different defini-
tion of multiplicity, introduced at (3.7). The difference between these two definitions
is explained in Remark 3.3. In this more general setting, Theorem B and C are then
restated as Theorem 7.1 and 7.2, and proved within Section 7.
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3. Preliminaries
This section collects various lemmas on irrigation plans and on ODEs with measure-

valued right-hand side, which will be used later on.
Throughout the following, we say that a map γ(·) is 1-Lipschitz if it is Lipschitz

continuous with Lipschitz constant 1. We denote by Γ the set of all 1-Lipschitz maps
γ :R+ 7→Rd. By Ascoli-Arzela’s theorem (see Lemma 3.4 in [1]), this is a compact metric
space with the distance

d(γ1,γ2)
.
= sup

k>1

1

k

{
max
s∈[0,k]

|γ1(s)−γ2(s)|
}
. (3.1)

Notice that (3.1) corresponds to the topology of uniform convergence on compact sets.
Let now χ : [0,M ]×R+ 7→Rd be an irrigation plan for the measure µ, as in Defini-

tion 2.1. Relying on a theorem of Scorza-Dragoni [9, 17], one can construct a partition
of the interval [0,M ] into countably many disjoint subsets

[0,M ]=

 ∞⋃
j=1

Kj

∪N , (3.2)

such that

• each Kj is compact,

• the set N has measure zero,

• the restriction of χ to each product set Kj×R+ is continuous.

Thanks to the above construction, measurability issues can be more easily resolved. For
example, we have

Lemma 3.1. Let K⊆ [0,M ] be a compact subset such that χ is continuous restricted
to K×R+. Then the map ξ 7→ τ(ξ) is lower semicontinuous restricted to K.

Proof. Indeed, consider a sequence ξn→ ξ of points in K. If liminf τ(ξn)=+∞
there is nothing to prove. Otherwise, by taking a subsequence, we can assume

lim
n→∞

τ(ξn)= τ̄ .

By assumption, the continuous functions χ(ξn, ·) converge to χ(ξ, ·) uniformly on com-
pact sets. For any ε>0, all but finitely many of these functions are constant on
[τ̄+ε,+∞[. Hence also χ(ξ,·) is constant on this same domain. Since ε>0 is arbi-
trary, we conclude that χ(ξ, ·) is constant on [τ̄ ,+∞[. Hence τ(ξ)≤ τ̄ , as claimed.

Corollary 3.1. Given any ε>0 there exists a compact set K⊆ [0,M ], with

meas
(
[0,M ]\K

)
< ε, (3.3)

and such that

(i) the map ξ 7→χ(ξ, ·) is continuous restricted to K,

(ii) the map ξ 7→ τ(ξ) is continuous restricted to K.

Proof. In connection with the decomposition (3.2), we can choose K=∪νj=1Kj

with ν large enough so that (3.3) holds. Since χ is continuous on each Kj , the statement
(i) follows immediately. By Lemma 3.1 the map ξ 7→ τ(ξ) is measurable onK. By Lusin’s
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theorem, there exists a smaller compact set K0⊆K, still with meas([0,M ]\K0) < ε,
such that the restriction of τ(·) to K0 is continuous. By replacing K with K0, the
conclusion (ii) of the Corollary is satisfied.

The usual definition of irrigation cost involves the multiplicity of a point x=χ(ξ,t),
defined as

|x|χ
.
= meas

(
{ξ∈ [0,M ]; χ(ξ,t)=x for some t≥0}

)
. (3.4)

In the present case, this must be replaced by a different concept, related to the single-
path property.

Definition 3.1. We say that two 1-Lipschitz maps γ : [0,t] 7→Rd and γ′ : [0,t′] 7→Rd
are equivalent if they are parameterizations of the same curve. That is, if there exists
an interval [0,T ] and nondecreasing, Lipschitz continuous surjective maps s 7→η(s) and
s 7→η′(s) from [0,T ] onto [0,t] and [0,t′] respectively, such that

γ(η(s))=γ′(η′(s)) for all s∈ [0,T ]. (3.5)

If this is the case, we write γ≃γ′.

Remark 3.1. Given a 1-Lipschitz map γ : [0,t] 7→Rd, its arc-length re-parameterization
is the map

σ 7→ γ(s(σ))

where, for every σ, one has ∫ s(σ)

0

|γ̇(ζ)|dζ=σ.

According to the above definition, two maps γ : [0,t] 7→Rd and γ′ : [0,t′] 7→Rd are equiv-
alent if and only if their arc-length re-parameterizations coincide.

Remark 3.2. In Definition 3.1, one can always take T = t+ t′ and assume that both
functions η,η′ are 1-Lipschitz. Indeed, let η,η′ be maps from [0,T ] onto [0,t] and [0,t′]
respectively, such that (3.5) holds.

For s∈ [0,T ], define the nondecreasing, surjective map σ : [0,T ] 7→ [0,T̃ ]
.
=[0,t+ t′] by

setting

σ(s)
.
= η(s)+η′(s).

We then define the maps η̃, η̃′ from [0,T̃ ] into [0,t] and [0,t′] implicitly, by setting

η̃(σ(s))
.
= η(s), η̃′(σ(s))

.
= η′(s) s∈ [0,T ]. (3.6)

We claim that η̃ and η̃′ are 1-Lipschitz. Indeed, let σ1=σ(s1)<σ(s2)=σ2. Then[
η̃(σ2)− η̃(σ1)

]
+[η̃′(σ2)− η̃′(σ1)]= [η(s2)+η

′(s2)]− [η(s1)+η
′(s1)]=σ2−σ1.

The identity γ(η̃(s))=γ′(η̃′(s)) now follows from (3.5) and (3.6).

Throughout the following, we denote by γ
∣∣∣
[0,t]

the restriction of a map γ to the

interval [0,t].
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Definition 3.2. Let χ : [0,M ]×R+ 7→Rd be an irrigation plan for the measure µ. We
define an equivalence relation on the set [0,M ]×R+ by setting (ξ,t)∼ (ξ′,t′) whenever

χ(ξ, ·)
∣∣∣
[0,t]

≃χ(ξ′, ·)
∣∣∣
[0,t′]

. This means that the maps

s 7→ χ(ξ,s), s∈ [0,t] and s 7→ χ(ξ′,s), s∈ [0,t′]

are equivalent in the sense of Definition 3.1.
The multiplicity of (ξ,t) is then defined as

m(ξ,t)
.
= meas

({
ξ′∈ [0,M ]; (ξ′,t′)∼ (ξ,t) for some t′>0

})
. (3.7)

Remark 3.3. The multiplicity m(ξ,t) measures the total amount of particles that
pass through the point x=χ(ξ,t) traveling along exactly the same path as the particle
ξ. If χ has the single-path property (see Chapter 7 in [1]), then m(ξ,t)= |χ(ξ,t)|χ.
However, for a general irrigation plan we only have the inequality

m(ξ,t) ≤ |χ(ξ,t)|χ. (3.8)

Notice that one may well have

χ(ξ,t) = χ(ξ′,t′) but m(ξ,t) ̸=m(ξ′,t′).

The next two lemmas establish various properties of the multiplicity function intro-
duced in Definition 3.2

Lemma 3.2. For any ε>0 there exists a compact set K⊆ [0,M ] satisfying (3.3), such
that the set-valued function

F (ξ,t)
.
= {ξ′∈K; (ξ′,t′)∼ (ξ,t) for some t′≥0} (3.9)

is upper semicontinuous on K×R+.

Proof.
(1) Given ε>0, let K⊆ [0,M ] be the compact set constructed in Corollary 3.1. We

claim that the graph of F , restricted to K×R+, is closed. In other words, assume
that

ξn→ ξ tn→ t, ξ′n→ ξ′ as n→∞,

and moreover

(ξ′n,t
′
n)∼ (ξn,tn) for all n≥1.

We need to show that there exists t′≥0 such that (ξ,t)∼ (ξ′,t′).

(2) By the assumptions, according to Remark 3.2 for every n≥1 there exists an interval
[0,Tn]= [0,tn+ t

′
n] and two nondecreasing, 1-Lipschitz, surjective maps

ηn : [0,Tn] 7→ [0,tn], η′n : [0,Tn] 7→ [0,t′n],

such that

χ(ξn,ηn(s))=χ(ξ
′
n,η

′
n(s)) for all s∈ [0,Tn]. (3.10)
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(3) We now observe that, since the map ξ 7→ τ(ξ) is continuous on the compact set K, it
is uniformly bounded. We can thus assume that the sequence (t′n)n≥1 is bounded.
Since tn→ t<+∞ and Tn= tn+ t

′
n, we have the uniform boundedness of (Tn)n≥1.

By extracting a subsequence, one can assume

lim
n→+∞

t′n= t
′, lim

n→+∞
Tn=T. (3.11)

If Tn<T , we extend the maps ηn and η′n to the interval [0,T ] by setting ηn(s)
.
=

ηn(Tn), η
′
n(s)

.
=η′n(Tn), for all s∈ (Tn,T ]. Using the Ascoli-Arzelà theorem, by

possibly extracting a subsequence we achieve the uniform convergence

ηn(·)→η(·), η′n(·)→η′(·), uniformly on [0,T ]. (3.12)

Here η and η′ are two nondecreasing, 1-Lipschitz, surjective maps from [0,T ] onto
[0,t] and [0,t′] respectively. By the continuity of χ(·, ·) on K×R+, from (3.10) we
obtain

χ(ξ,η(s))= lim
n→∞

χ(ξn,ηn(s))= lim
n→∞

χ(ξ′n,η
′
n(s))=χ(ξ

′,η′(s)) for all s∈ [0,T ].

(3.13)
Therefore, (ξ′,t′)∼ (ξ,t).

Lemma 3.3. Let χ : [0,M ]×R+ 7→Rd be an irrigation plan for the measure µ. Then
the following holds:

(i) The map (ξ,t) 7→m(ξ,t) is measurable.

(ii) For each ξ∈ [0,M ], the map t 7→m(ξ,t) is non-increasing and left-continuous.

(iii) For any fixed ε>0, the stopping time

τε(ξ)
.
= max

{
t∈ [0,τ(ξ)]; m(ξ,t)≥ε

}
(3.14)

is a measurable function of ξ∈ [0,M ].

Proof.
(1) Given ε>0, let K⊆ [0,M ] be a compact set satisfying the conditions in Lemma 3.2.

In terms of the multifunction (ξ,t) 7→F (ξ,t)⊆K defined at (3.9), this implies the
scalar function

(ξ,t) 7→ meas(F (ξ,t)) (3.15)

is upper semicontinuous restricted to K×R+ . For (ξ,t)∈K×R+ this implies

m(ξ,t)−ε ≤ meas(F (ξ,t)) ≤ m(ξ,t). (3.16)

(2) Repeating the above construction for decreasing values of ε, we can find an in-
creasing sequence of compact sets (Kn)n≥1, with meas([0,M ]\Kn)<1/n, such that

m(ξ,t)− 1

n
≤ meas(Fn(ξ,t)) ≤ m(ξ,t). (3.17)

Here Fn is the multifunction defined at (3.9), with K replaced by Kn. Notice that
the function (ξ,t) 7→ meas(Fn(ξ,t)) is upper semicontinuous restricted to Kn×R+.
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Setting

mn(ξ,t)
.
=

{
meas(Fn(ξ,t)) if ξ∈Kn,

0 if ξ /∈Kn,

by (3.17) we have the pointwise convergence mn(ξ,t)→m(ξ,t) for a.e. ξ∈ [0,M ].
Since each mn is measurable, the same holds for m. This proves (i).

(3) By the definition of the multiplicity function in (3.7), it immediately follows that the
map t 7→m(ξ,t) is non-increasing. To prove its left-continuity, fix (ξ,t)∈ [0,M ]×R+

and consider an increasing sequence tn ↑ t. By monotonicity, it follows

lim
n→∞

m(ξ,tn)= inf
n
m(ξ,tn) ≥ m(ξ,t). (3.18)

To prove that equality actually holds in (3.18), given any ε>0, let K⊆ [0,M ] be a
compact set satisfying the conditions in Lemma 3.2. By the upper semicontinuity
of the multifunction t 7→F (ξ,t) one has

m(ξ,t) ≥ meas(F (ξ,t)) ≥ limsup
n→∞

meas(F (ξ,tn)) ≥ limsup
n→∞

m(ξ,tn)−ε. (3.19)

Since ε>0 was arbitrary, this proves statement (ii) of the lemma.

(4) To prove (iii), we first observe that, by the arguments in the previous steps 1 - 2,
for each fixed t>0 the map ξ 7→m(ξ,t) is measurable. Moreover, by Corollary 3.1
it follows that ξ 7→ τ(ξ) is measurable. For every t>0 we have the identity{

ξ∈ [0,M ]; τε(ξ)≥ t
}
=
{
ξ∈ [0,M ]; m(ξ,t)≥ε

}⋂{
ξ∈ [0,M ]; τ(ξ)≥ t

}
. (3.20)

This implies that the map τε(·) is measurable.

3.1. ODE’s with measure-valued right-hand side. For future use, we now
prove some results on existence and continuous dependence, for Carathéodory solutions
to an ODE backward in time. Since in our equations the right-hand side can possibly be
a measure, it will be convenient to study directly the corresponding integral equations.

Lemma 3.4. Let f : [ε,+∞[ 7→R+ be Lipschitz continuous. For t∈ [0,T ], let t 7→m(t)
be a non-increasing function with m(T )≥ε.

(i) There exists a unique function w : [0,T ] 7→ [ε,+∞[ which satisfies the integral
equation

w(t)=

∫ T

t

f(w(s))ds+m(t) for all t∈ [0,T ]. (3.21)

(ii) If m1(t)≤m2(t) for all t∈ [0,T ], then the corresponding solutions of (3.21)
satisfy

w1(t) ≤ w2(t) for all t∈ [0,T ]. (3.22)

(iii) Consider a sequence of measurable sets Jn⊆ [0,T ] such that limn→∞meas(Jn)=
0, and define the functions

fn(t,ω)
.
=

{
f(ω) if t /∈Jn,

0 if t∈Jn.
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Let t 7→mn(t)∈ [ε,+∞[ be a sequence of non-increasing functions such that, as
n→∞,

∥mn−m∥L1([0,T ])→0. mn(0)→m(0+). (3.23)

Then the solutions to

wn(t)=

∫ T

t

fn(s,ωn(s))ds+mn(t) for all t∈ [0,T ]. (3.24)

satisfy

∥wn−w∥L1([0,T ])→0, wn(0)→w(0+). (3.25)

Proof.
(1) Consider the function

F (t,z)
.
= f(m(t)+z). (3.26)

We observe that a map t 7→w(t) satisfies the integral equation (3.21) if and only if
z(t)=w(t)−m(t) provides a Carathéodory solution to the backward Cauchy prob-
lem

ż(t)=−F (t,z(t)), z(T )=0. (3.27)

Observing that F is measurable in t and uniformly Lipschitz continuous in z, by the
standard theory of ODE [8] we conclude that (3.27) has a unique solution t 7→z(t).
In turn, w(t)=z(t)+m(t) provides the unique solution to (3.21).

(2) To prove (ii), for i=1,2 let zi be a solution to

−żi(t)=Fi(t,zi(t))
.
= f(mi(t)+zi(t)), zi(T )=0.

Since F1(t,z)≤F2(t,z) for all t,z, and both F1,F2 are Lipschitz continuous w.r.t. z,
a standard comparison argument yields z1(t)≤z2(t) for all t∈ [0,T ]. In turn this
implies

w1(t)=m1(t)+z1(t) ≤ m2(t)+z2(t)=w2(t).

(3) To prove (iii), set Fn(t,z)
.
=fn(t,m(t)+z) and let zn be the solution to

żn(t)=−Fn(t,zn(t)), zn(T )=0. (3.28)

Then the difference ηn(t)
.
= |zn(t)−z(t)| satisfies

ηn(t) ≤
∫ T

t

∣∣∣fn(s,mn(s)+zn(s))−f(m(s)+z(s))
∣∣∣ds

≤
∫ T

t

∣∣∣f(mn(s)+zn(s))−f(m(s)+z(s))
∣∣∣+χ

Jn
(s) ·

∣∣∣f(m(s)+z(s))
∣∣∣ds

≤
∫ T

t

Lηn(s)+L|mn(s)−m(s)|+χ
Jn
(s) · |f(m(s)+z(s)|ds.
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Here L is a Lipschitz constant for the function f on [ε,+∞[, while χ
Jn

denotes the

characteristic function of the set Jn. By Gronwall’s inequality one obtains

ηn(t) ≤
∫ T

t

eL(s−t)
[
L|mn(s)−m(s)|+χ

Jn
(s) · |f(m(s)+z(s))|

]
ds. (3.29)

Since multiplicity functions are non-increasing, there exists some finite constant
K>0 such that

|f(m(s)+z(s))| ≤ K, for all n≥1, s∈ [0, T ]. (3.30)

Letting n→∞, by (3.23) and (3.29)-(3.30), since limn→∞meas(Jn)=0, we thus
have the convergence ηn(t)= |zn(t)−z(t)|→0 uniformly for t∈ [0,T ]. Recalling that
wn=zn+mn and w=z+m, from (3.23) now follows (3.25).

Lemma 3.5. Let m,m1,. ..,mq : [0,ℓ] 7→ [ε0,+∞[ be non-increasing functions such that

q∑
i=1

mi(s) ≥ m(s), for all s∈ [0,ℓ]. (3.31)

Assume that f satisfies (A1) and let w,wi : [0,ℓ] 7→ [ε0,+∞[, be solutions to

w(s)=

∫ ℓ

s

f(w(t))dt+m(s), wi(s)=

∫ ℓ

s

f(wi(t))dt+mi(s), (3.32)

respectively. Then, for all s∈ [0,ℓ], one has

q∑
i=1

wi(s) ≥ w(s). (3.33)

Proof. Consider the functions

w̃(s)
.
=

q∑
i=1

wi(s), m̃(s)
.
=

q∑
i=1

mi(s).

Using the properties (1.3) of the function f and the inequality (3.31), for all s∈ [0,ℓ],

w̃(s)=

∫ ℓ

s

∑
i

f
(
wi(t)

)
dt+

∑
i

mi(s) ≥
∫ ℓ

s

f
(
w̃(t)

)
dt+m̃(s).

Since m̃(s)≥m(s), the comparison property stated in (iii) of Lemma 3.4 now implies
w̃(s)≥w(s) for all s∈ [0,ℓ].

4. Construction of the weight functions
Given an irrigation plan χ : [0,M ]×R+ 7→Rd and a function f satisfying (A1), in

this section we construct the weight function W =W (ξ,t), by taking the supremum of
a family of approximations W ε.

Recalling the equivalence relation introduced in Definition 3.1, we introduce

Definition 4.1. Given an irrigation plan χ, we say that a path γ : [0,ℓ] 7→Rd, param-
eterized by arc-length, is ε-good if

meas

({
ξ∈ [0,M ]; χ(ξ,·)

∣∣∣
[0,t]

≃ γ for some t= t(ξ)>0
})

≥ ε. (4.1)
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The family of all ε-good paths will be denoted by Gε.

In other words, γ is ε-good if there is an amount ≥ε of particles whose trajectory
contains γ as its initial portion (see Figure 4.1). A somewhat similar definition can be
found in [15].

The family of all curves parameterized by arc-length comes with a natural partial
order. Namely, given two maps γ : [0,ℓ] 7→Rd, γ′ : [0,ℓ′] 7→Rd, we write γ⪯γ′ if ℓ≤ ℓ′ and
γ′(s)=γ(s) for all s∈ [0,ℓ]. The next lemma yields a bound on the number of maximal
curves, within the family of ε-good paths.

Lemma 4.1. Given an irrigation plan χ : [0,M ]×R+ 7→Rd and ε>0, there can be at
most M/ε distinct maximal ε-good paths.

Proof. Let γ1,. ..,γν be distinct maximal ε-good paths. For each i∈{1,. ..,ν},
consider the set

Ai
.
=
{
ξ∈ [0,M ]; χ(ξ, ·)

∣∣∣
[0,t]

≃ γi for some t>0
}
. (4.2)

We claim that all sets Ai are disjoint. Indeed, if ξ∈Ai∩Aj , then

χ(ξ, ·)
∣∣∣
[0,t]

≃γi, χ(ξ,·)
∣∣∣
[0,t′]

≃γj .

To fix the ideas, assume t≤ t′. Then γi≺γj , against the maximality of γi. This contra-
diction proves our claim. In turn this implies ν≤M/ε, proving the lemma.

We now fix ε>0, and let {γ̂1,. .., γ̂ν} be the set of all maximal ε-good paths for

the irrigation plan χ. Along each path γ̂i : [0, ℓ̂i] 7→Rd we define the multiplicity m̂i :

[0, ℓ̂i] 7→R+ by setting

m̂i(t)
.
= meas

({
ξ∈ [0,M ]; there exists t′≥0 such that χ(ξ,·)

∣∣∣
[0,t′]

≃ γ̂i

∣∣∣
[0,t]

})
.

(4.3)
Otherwise stated, m̂i(t) is the amount of particles that travel along the path γ̂i, at least
up to the point γ̂i(t).

To construct the weight functions, we first need to split the maximal paths γ̂i into
elementary paths γk, to which an inductive procedure as in (1.6)-(1.7) can then be
applied. With this goal in mind, we define the bifurcation times

τij= τji
.
= max

{
t≥0; γ̂i(s)= γ̂j(s) for all s∈ [0,t]

}
. (4.4)

The elementary paths γk : [ak,bk] 7→Rd and the corresponding multiplicity functions mk

are constructed by the following Path Splitting Algorithm.

(PSA) For each i∈{1,. ..,ν}, consider the set

{τi1,. ..,τiν}={ti,1,. ..,ti,N(i)},

where the times

0< ti,1 < ti,2 < ·· ·< ti,N(i) = ℓ̂j (4.5)

provide an increasing arrangement of the set of times τij where the path γ̂i
splits apart from other maximal paths. For each k=1,. ..,N(i), let γi,k be
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the restriction of the maximal path γ̂i to the subinterval [ti,k−1,ti,k]. The
multiplicity function mi,k along this path is defined simply as

mi,k(t)= m̂i(t) t∈ [ti,k−1,ti,k]. (4.6)

If τij>0, i.e. if the two maximal paths γ̂i and γ̂j partially overlap, it is clear
that some of the elementary paths γi,k will coincide with some γj,l. To avoid
listing multiple times the same path, we thus remove from our list all paths
γj,l : [tj,l−1,tj,l] 7→Rd such that tj,l≤ τij for some i<j. After relabeling all the
remaining paths, the algorithm yields a family of elementary paths and corre-
sponding multiplicities

γi : [ai,bi] 7→Rd, mi : [ai,bi] 7→R+, i=1,. ..,N. (4.7)

For example, the tree shown in Figure 1.1 contains 5 maximal paths γ̂1,. .., γ̂5.
These can be decomposed into 8 elementary paths γ1,. ..,γ8. Each maximal path is a
concatenation of elementary paths, namely

γ̂1=γ8 ◦γ3 ◦γ1, γ̂2=γ8 ◦γ3 ◦γ2, γ̂3=γ8 ◦γ4, . ..

A set of weight functions Wi on the elementary branches γi can now be constructed
by a backward inductive procedure, similar to (1.6)-(1.7). As in (1.4), call O(i) the set
of branches originating from the node Pi=γi(bi). Moreover, consider the sets of indices
Ip inductively defined at (1.5).

(i) For p=1, on each elementary path γi : [ai,bi] 7→Rd with i∈I1, the weightW ε
i (t)

is defined to be the solution of

w(t)=

∫ bi

t

f(w(s))ds+mi(t), t∈]ai,bi]. (4.8)

(ii) Next, assume that the weight functions W ε
k (t) have already been constructed

along all paths γk : [ak,bk] 7→Rd with k∈Ip−1.
For i∈Ip, the weight W ε

i (t) along the i-th branch is then defined to be the
solution of

w(t)=

∫ bi

t

f(w(s))ds+mi(t)+wi, t∈]ai,bi]. (4.9)

where

wi
.
=

∑
k∈O(i)

W ε
k (ak+)−

∑
k∈O(i)

mk(ak+). (4.10)

Notice that (PSA) implies bi=ak for all k∈O(i). At the end-point γi(bi), the weight
is

W ε
i (bi)=

∑
k∈O(i)

W ε
k (ak+)+

mi(bi)−
∑

k∈O(i)

mk(ak+)

.
Here the term between brackets can be strictly positive. For example, this will happen
if the irrigated measure µ contains a point mass at γi(bi).
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By induction on p, after finitely many steps we obtain a weight function W ε
i :

[ai,bi] 7→ [ε,+∞[ defined on each elementary path γi.
Going back to the maximal paths γ̂j considered in (PSA), the above construction

yields a weight Ŵj,k on the restriction of γ̂j to each subinterval [tj,k−1,tj,k]. Along the

maximal path γ̂j , the weight Ŵj : [0, ℓ̂j ] 7→R+ is then defined simply by setting

Ŵj(t)=Ŵj,k(t) if t∈ [tj,k−1,tj,k]. (4.11)

Next, in order to construct an approximate weight function W ε : [0,M ]×R+ 7→R+

on the family of all paths χ(ξ, ·) of the irrigation plan, we consider the stopping time

τε(ξ)=sup
{
t≥0; m(ξ,t)≥ε

}
. (4.12)

We then define the corresponding weight function

W ε(ξ,t)
.
=

 Ŵi(s) if t≤ τε(ξ), χ(ξ, ·)
∣∣∣
[0,t]

≃ γ̂i

∣∣∣
[0,s]

,

0 if t>τε(ξ).

(4.13)

Having constructed these approximate weights W ε, the weight function W is then ob-
tained by letting ε→0.

Definition 4.2. Let χ : [0,M ]×R+ 7→Rd be an irrigation plan satisfying (A2). The
weight function W =W (ξ,t) for χ is defined as

W (ξ,t)
.
= sup

ε>0
W ε(ξ,t). (4.14)

γ

1 γ
3

0

t

tχ(ξ, )

χ (ξ, )
n

0

i

γ

2
γ

Fig. 4.1. Left: Two finite trees, showing three maximal ε-good paths (thick lines) and 8
maximal ε′-good paths (thin lines), for 0<ε′<ε. Right: proving the lower semicontinuity of
the weighted irrigation cost. Given a sequence of irrigation plans χn→χ, one can compare the
cost of χ restricted to each branch bi with multiplicity m(ξ,t)≥ε with the corresponding costs
for the approximating irrigation plans χn.

Remark 4.1. In the next section we will prove that

ε′ < ε =⇒ W ε(ξ,t) ≤ W ε′(ξ,t). (4.15)

Hence the approximations W ε depend monotonically on ε. As a consequence, we can
equivalently write

W (ξ,t)= lim
ε→0+

W ε(ξ,t). (4.16)
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One should be aware that this limit may well be +∞.

Remark 4.2. The assumption (A2), introduced below (3.8), guarantees that the
approximation is meaningful. To see what goes wrong when (A2) fails, consider the
irrigation plan χ : [0,M ]×R+ 7→R2 defined as

χ(ξ,t)=

{
(tξ,t) if t∈ [0,1],

(ξ,1) if t≥1.

In this case the multiplicity is m(ξ,t)=0 for all ξ∈ [0,M ] and t>0. Hence W ε(ξ,t)≡0
for all ε>0.

Having constructed a family of weightsW (ξ,t), we can now define the corresponding
irrigation cost. Instead of the function ψ(s)=sα with 0<α≤1, one can here consider
more general cost functions ψ :R+ 7→R+, satisfying the same assumptions imposed on
f at (1.3). As usual, an upper dot will denote a derivative w.r.t. time.

Definition 4.3. Let f,ψ :R+ 7→R+ be continuous functions, both satisfying all the
assumptions in (A1). Let χ be an irrigation plan satisfying (A2) and let W =W (ξ,t)
be the corresponding weight function, as in (4.14). If each path is parameterized by
arc-length, the weighted cost is then defined as

EW,ψ(χ) .
=

∫ M

0

∫ τ(ξ)

0

ψ(W (ξ,t))

m(ξ,t)
dtdξ. (4.17)

More generally, for an arbitrary parameterization of the paths χ(ξ,·), the weighted cost
is

EW,ψ(χ) .
=

∫ M

0

∫ τ(ξ)

0

ψ
(
W (ξ,t)

)
m(ξ,t)

|χ̇(ξ,t)|dtdξ. (4.18)

Remark 4.3. In the special case where f ≡0, the weight function coincides with the
multiplicity: W (ξ,t)=m(ξ,t). Taking ψ(s)=sα for some 0<α≤1, by (3.8), this implies
EW,ψ(χ)≥Eα(χ). Equality holds whenever χ has the single-path property and hence
m(ξ,t)= |χ(ξ,t)|.

In order to compute an approximate value of the weighted cost, fix any ε>0 and let
γ̂1,. .. γ̂ν be the maximal ε-good paths. Consider the elementary paths γi constructed
by the path splitting algorithm (PSA) at (4.7), and let W ε

i : [ai,bi] 7→ [ε,+∞[ be the
corresponding approximate weights constructed at (4.8)–(4.10). We claim that

EW
ε,ψ(χ)

.
=

∫ M

0

∫ τ(ξ)

0

ψ(W ε(ξ,t))

m(ξ,t)
|χ̇(ξ,t)|dtdξ=

N∑
i=1

∫ bi

ai

ψ(W ε
i (s))ds. (4.19)

Indeed, recalling (4.12), denote by Ωε⊆ [0,M ] the set of particles such that τε(ξ)>0.
By the definition of approximate weights W ε at (4.13), it follows∫ M

0

∫ τ(ξ)

0

ψ(W ε(ξ,t))

m(ξ,t)
|χ̇(ξ,t)|dtdξ=

∫
Ωε

∫ τε(ξ)

0

ψ(W ε(ξ,t))

m(ξ,t)
|χ̇(ξ,t)|dtdξ. (4.20)

For each ξ∈Ωε, define

sε(ξ)
.
=

∫ τε(ξ)

0

|χ̇(ξ,t)|dt.
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To fix the ideas, assume that χ(ξ, ·)
∣∣∣
[0,τε(ξ)]

≃ γ̂i
∣∣∣
[0,sε(ξ)]

for some maximal ε-good path

γ̂i. Recalling (4.13), by a standard change of variable formula we obtain∫ τε(ξ)

0

ψ(W ε(ξ,t))

m(ξ,t)
|χ̇(ξ,t)|dt=

∫ sε(ξ)

0

ψ(Ŵi(s))

m̂i(s)
ds. (4.21)

For each s>0 consider the set

Ωi,k(s)
.
=
{
ξ∈ [0,M ]; χ(ξ, ·)

∣∣∣
[0,t]

≃ γ̂i
∣∣∣
[0,s]

for some t>0, ti,k−1<s≤ ti,k
}
. (4.22)

Splitting the integral in (4.21) over the disjoint intervals ]ti,k−1,ti,k] considered at (4.5),
one obtains ∫ sε(ξ)

0

ψ(Ŵi(s))

m̂i(s)
ds=

∑
k

∫ ti,k

ti,k−1

[ψ(Ŵi(s))

m̂i(s)
IΩi,k(s)(ξ)

]
ds, (4.23)

where IΩi,k(s)(·) is the indicator function of set Ωi,k(s). Observing that∫
Ωε

[ψ(Ŵi(s))

m̂i(s)
IΩi,k(s)(ξ)

]
dξ=ψ(Ŵi(s)),

we eventually obtain (4.19).

The next lemma shows that the family of approximating weight functions W ε is
monotonically increasing as ε↓0.

Lemma 4.2. Let χ be an irrigation plan and let the approximate weights W ε be defined
as in (4.8)-(4.10). Then for any 0<ε′<ε and 0≤s<t one has

W ε(ξ,t) ≤ W ε′(ξ,t). (4.24)

Proof. To prove (4.24), let ε′<ε and let τε′(ξ)≥ τε(ξ) be the corresponding
stopping times in (4.12). By construction, it trivially follows

W ε(ξ,t)=W ε′(ξ,t)=0 for all t≥ τε′(ξ), (4.25)

W ε(ξ,t)=0 ≤ W ε′(ξ,t) for all t∈]τε(ξ), τε′(ξ)]. (4.26)

To prove the inequality in (4.24) for t≤ τε(ξ), let γ̂′1,. .., γ̂
′
ν′ be maximal ε′-good

paths, and let γ′1,. ..,γ
′
N ′ be the corresponding elementary paths, generated by the al-

gorithm (PSA). By definition, the weights W ε′ are obtained by induction, performing
the steps (i)-(ii) at (4.8)–(4.10) for the elementary paths γ′i.

Consider the functions

fεi (w,s)=

{
f(w) if mi(s)≥ε,

0 if mi(s)<ε.

Performing the same inductive construction, but with f replaced by fεi on each ele-
mentary path γ′i, i=1,. ..,N ′, we now recover exactly the weights W ε. A comparison
argument now yields (4.24), for all ξ,t.

As a consequence, we have

Corollary 4.1. Let χ be an irrigation plan which satisfies the assumption (A2).
Then the weighted irrigation cost in (4.17) is computed by

EW,ψ(χ)= lim
ε→0+

∫ M

0

∫ τε(ξ)

0

ψ(W ε(ξ,t))

m(ξ,t)
|χ̇(ξ,t)|dtdξ. (4.27)
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5. Lower semicontinuity
The goal of this section is to establish the lower semicontinuity of the weighted cost

functional EW,ψ(χ) w.r.t. pointwise convergence of the irrigation plans.
As shown in Figure 5.1, consider a sequence of irrigation plans χn : [0,M ]×R+ 7→Rd.

We say that χn→χ pointwise if, for a.e. ξ∈ [0,M ], as n→∞ one has the convergence

χn(ξ,t) → χ(ξ,t) uniformly for t in compact intervals. (5.1)

In terms of the distance (3.1), this means

lim
n→∞

d
(
χn(ξ,·), χ(ξ,·)

)
=0 for a.e. ξ∈ [0,M ].

Theorem 5.1. Consider a sequence (χn)n≥1 of irrigation plans, all satisfying the as-
sumption (A2), pointwise converging to an irrigation plan χ. Assume that the functions
f,ψ both satisfy the conditions in (A1). Then the corresponding weighted costs satisfy

EW,ψ(χ) ≤ liminf
n→∞

EW,ψ(χn). (5.2)

χ
n

χ

χ

χ
n

00

Fig. 5.1. Left: two cases where the inequality (5.2) can be strict. (i) Paths in χn may
remain separate, while in χ they all join together. (ii) Paths in χn may converge to a path
in χ with strictly smaller length. Right: two cases where the weighted irrigation costs satisfy
EW,ψ(χn)<EW,ψ(χ). (i) The paths in χn can be slightly shorter than those in χ. (ii) Paths
in χn may remain joined together for a slightly longer time than those in χ. However, these
differences vanish asymptotically, as n→∞.

Toward a proof, some preliminary results will be needed.

Lemma 5.1. Let γ : [a,b] 7→Rd be a Lipschitz path, and let ε>0. Then there exists
δ>0 such that, for any Lipschitz path γ† : [a,b] 7→Rd which satisfies

|γ†(s)−γ(s)| ≤ δ for all s∈ [a+δ, b−δ],

the length of γ† is bounded below by∫ b−δ

a+δ

|γ̇†(s)|ds ≥ (1−ε)
∫ b

a

|γ̇(s)|ds. (5.3)

Proof. This is an immediate consequence of the lower semicontinuity of the path
length.

In the forthcoming analysis, it will be convenient to use a distance between two
paths which is independent of their parameterization. For this purpose, following [6] we
introduce
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Definition 5.1 (Parameterization-free distance among paths). Given two continuous
paths φi : [0, Si] 7→Rd, i=1,2, the distance δ(φ1,φ2) is defined as

δ(φ1,φ2)
.
= inf

η1,η2
max
t∈[0,1]

∣∣∣φ1(η1(t)−φ2(η2(t))
∣∣∣, (5.4)

where the infimum is taken over all couples of continuous, nondecreasing, surjective
maps ηi : [0,1] 7→ [0, Si].

As shown in [6], one has

(i) δ(φ1,φ2)= δ(φ2,φ1) ≥ 0,

(ii) δ(φ1,φ2)=0 if and only if φ1 ≃ φ2, in the sense of Definition 3.1,

(iii) δ(φ1,φ3) ≤ δ(φ1,φ2)+δ(φ2,φ3).

The proof of the following lemma is elementary, but the conclusion turns out to be
crucial in the proof of lower semicontinuity of the irrigation cost.

Lemma 5.2. Let γi : [0, ℓi] 7→Rd, i=1,2, be two paths parametrized by arc-length.
Assume that they bifurcate at some time 0≤ τ <min{ℓ1,ℓ2}, i.e.

τ =sup
{
t≥0; γ1(s)=γ2(s) for all s∈ [0,t]

}
.

Then for any h>0, there exists σ>0 such that

δ
(
γ1

∣∣∣
[0,s]

,γ2

∣∣∣
[0,t]

)
≥ σ, for all s∈ [τ+h, ℓ1], t∈ [0, ℓ2]. (5.5)

Proof. The map (s,t) 7→ δ
(
γ1|[0,s], γ2|[0,t]

)
is continuous and strictly positive on the

compact domain [τ+h, ℓ1]× [0, ℓ2]. Hence it has a strictly positive minimum.

In Lemma 3.5 we compared the weight w(s) along a single path γ with a sum of
weights

∑
iwi(s) along a family of distinct paths γi. The next lemma extends this result

to a more general configuration where the paths γi are not necessarily disjoint, as shown
in Figure 5.2.

More precisely, consider an irrigation plan χ containing finitely many maximal paths
γ̂j : [0,T ] 7→Rd, j=1,. ..,ν, all parameterized by arc-length and all with the same length
T . Let m̂j : [0,T ] 7→Rd be the (non-increasing) multiplicity function along γ̂j , defined as
in (4.3), and consider weights

Ŵj(T ) ≥ m̂j(T ) > 0, (5.6)

arbitrarily assigned at the terminal point of each maximal path. In turn, these data
determine the weight functions along all paths. Namely, let γi : [ai,bi] 7→Rd,1≤ i≤N
be the corresponding elementary paths, constructed by the Path Splitting Algorithm
(PSA). By backward induction we can now construct the weights Wi along each ele-
mentary path, in a similar way as in (4.8)–(4.10).

• For every index i such that bi=T , the weight Wi : [ai,bi] 7→R+ along the ele-
mentary path γi is computed by solving

w(t)=

∫ bi

t

f(w(s))ds+mi(t)+
[
Ŵj(i)(T )−mi(T )

]
, t∈]ai,T ]. (5.7)

Here γ̂j(i) is the unique maximal path that contains γi as its restriction to
[ai,bi]= [ai,T ].
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• If bi<T , the weight Wi : [ai,bi] 7→R+ along the elementary path γi is then de-
fined to be the solution of

w(t)=

∫ bi

t

f(w(s))ds+mi(t)+

 ∑
k∈O(i)

Wk(ak+)−
∑

k∈O(i)

mk(ak+)

, (5.8)

for t∈]ai,bi]. As in (4.10), here the summations range over all elementary paths
γk that originate from the tip of γi.

T
0 t

1
t

2

γ
1

γ
2

γ
3

4
γ

t =
3

Fig. 5.2. The two configurations compared in Lemma 5.3. For every t∈ [0,T ], the sum of
the weight functions Wi(t) along a family of maximal paths γ̂i is compared with a single weight
W (t), satisfying the ODE (5.10).

Lemma 5.3. Let the weights Wi : [ai,bi] 7→R+ be constructed as above. Given any

constant Ŵ such that

0 < Ŵ ≤
ν∑
j=1

Ŵj(T ), (5.9)

let W : [0,T ] 7→R be the solution to the backward Cauchy problem

Ẇ (t)=−f(W (t)), W (T ) = Ŵ . (5.10)

Then for all t∈]0,T ] one has

W (t) ≤
∑
i∈I(t)

Wi(t), (5.11)

where I(t) denotes the set of indices i∈{1,. ..,N} such that ai<t≤ bi. As a consequence,

∫ T

0

ψ(W (t))dt ≤
N∑
i=1

∫ bi

ai

ψ(Wi(t))dt. (5.12)

Proof. Let 0<t1< ·· ·<tq=T be the times where two or more maximal paths
bifurcate. The proof will achieved by backward induction on p=1,2,. ..,q.

(1) For t∈]tq−1,tq]=]tq−1,T ], the above definition implies I(t)= I(T ). By (5.9) it fol-
lows ∑

i∈I(T )

Wi(T ) ≥ Ŵ . (5.13)
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For each i∈ I(T ), t∈]tq−1,T ], by (5.7) it follows

Wi(t)=

∫ tq

t

f(Wi(s))ds+Wi(T )+[mi(t)−mi(T )] (5.14)

On the other hand,

W (t)=

∫ tq

t

f(W (s))ds+Ŵ . (5.15)

Because of (5.13) we can apply Lemma 3.5 and conclude that∑
i∈I(T )

Wi(t) ≥ W (t), for all t∈]tq−1,T ]. (5.16)

(2) Next, assume that that the inequality (5.11) has been proved for all t∈]tp,T ], for
some 1≤p<q. We claim that it also holds for t∈]tp−1,tp].
Indeed, since the solution W of (5.10) is continuous while all weights Wi are non-
increasing, the inductive assumption yields∑

i∈I(tp)

Wi(tp) ≥ W (tp). (5.17)

For each i∈ I(tp), t∈]tp−1,tp], we then have

Wi(t)=

∫ tp

t

f(Wi(s))ds+Wi(tp)+[mi(t)−mi(tp)] ,W (t)=

∫ tp

t

f(W (s))ds+W (tp).

(5.18)

Because of (5.17) we can again apply Lemma 3.5 and conclude∑
i∈I(tp)

Wi(t) ≥ W (t), for all t∈ (tp−1, tp]. (5.19)

By induction on p, this yields a proof of (5.11).

(3) Since ψ satisfies the assumption (A2), from (5.11) it follows

N∑
i=1

∫ bi

ai

ψ(Wi(t))dt=

q∑
p=1

∑
i∈I(tp)

∫ tp

tp−1

ψ(Wi(t))dt≥
q∑
p=1

∫ tp

tp−1

ψ(W (t))dt=

∫ T

0

ψ(W (t))dt.

(5.20)

Hence (5.12) holds.

Remark 5.1. In Lemma 5.3 we assumed that all maximal paths γ̂j had the same length
T . The same conclusions (5.11)-(5.12) remain valid if each maximal path γ̂j : [0,Tj ] 7→Rd
is defined on an interval of length Tj≥T , replacing (5.9) with

Ŵ ≤
ν∑
j=1

Ŵj(Tj). (5.21)

To prove this, it suffices to consider the restriction of each γ̂j to the sub-interval [0,T ],
and observe that (5.21) implies (5.9), because the weight functions are non-increasing,

After these preliminaries, we are now ready to give a proof of the main result of
this section, in several steps.

Proof. (Proof of Theorem 5.1.)
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(1) Without loss of generality, we can assume that all paths χn(ξ, ·) are parameterized
by arc-length. As a consequence, for each ξ∈ [0,M ], the limit paths χ(ξ, ·) will be
1-Lipschitz, but not necessarily parameterized by arc-length.
Fix any ε0>0. Let τε0 be the corresponding stopping time as in (4.12), and define
the truncated irrigation plan

χε0(ξ,t)
.
=

 χ(ξ,t) if t≤ τε0(ξ),

χ(ξ,τε0(ξ)) if t>τε0(ξ).
(5.22)

Using Corollary 4.1, the theorem will be proved by showing that

EW,ψ(χε0) ≤ liminf
n→∞

EW,ψ(χn). (5.23)

(2) For each ξ∈ [0,M ], in order to re-parameterize the limit path χ(ξ, ·) in terms of
arc-length, let

s(ξ,t)
.
=

∫ t

0

|χ̇(ξ,r)|dr. (5.24)

A left-continuous inverse of s(ξ, ·), taking values in R+∪{+∞}, can be defined as

η(ξ,s)
.
= inf

{
t ≥ 0; s(ξ,t)=s

}
. (5.25)

The map

s 7→ χ(ξ,η(ξ,s)) (5.26)

now provides the arc-length parameterization of χ(ξ,·). We observe that, for each
s, the map ξ 7→η(ξ,s) is measurable. Moreover, since |χ̇(ξ,t)|≤1, one has

η(ξ,s2)−η(ξ,s1) ≥ s2−s1 for all 0≤s1<s2. (5.27)

(3) Next, let γ̂1,. .., γ̂ν be the maximal ε0-good paths for the irrigation plan χ. As

before, we assume that each γ̂j : [0, ℓ̂j ] 7→Rd is parameterized by arc-length. For

s∈]0, ℓ̂j ], let

Ω̂j(s)
.
=

{
ξ∈ [0,M ]; χ(ξ, ·)

∣∣∣
[0,t]

≃ γ̂j
∣∣∣
[0,s]

for some t>0

}
be the set of particles whose trajectory follows the path γ̂j , at least up to the point
γ̂j(s). Implementing the algorithm (PSA) described at (4.5)–(4.7), these maximal
paths can be split into finitely many elementary paths γ1,. ..,γN . By construction,
each γi : [ai,bi] 7→Rd, 1≤ i≤N is the restriction of some γ̂j to a subinterval [ai,bi].
We then define

Ωi(s)
.
= Ω̂j(s) for all s∈ [ai,bi]. (5.28)

The multiplicity function mi : [ai,bi] 7→R+ along the elementary path γi is then
computed by

mi(s)=meas(Ωi(s)), s∈ [ai,bi]. (5.29)
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According to (4.19), the approximate weighted irrigation cost is computed by a sum
over all elementary paths:

EW,ψ(χε0)=

N∑
i=1

∫ bi

ai

ψ(W ε0
i (s))ds, (5.30)

where the weights W ε0
i are determined as in (4.8)–(4.10).

γ

γ
i

0

s 

s
k−1

k−1
s

k

s −h
k

B

D

C
γ

2

γ
3

+h

A
1

γ

i,k

Fig. 5.3. Proving the lower semicontinuity of the weighted irrigation cost, steps 3-4. Here
γ̂1, γ̂2, γ̂3 are maximal ε0-good paths of χ, while γi : [ai,bi] 7→Rd, with endpoints 0,B, is an el-
ementary path produced by the algorithm (PSA). The path γi is further partitioned, taking
subintervals [sk−1,sk] of length ≤ δ. We then approximate the multiplicity mi(s) with a piece-
wise constant function m̃i, as in (5.32) and replace f with fh as in (5.33). By choosing the

constants δ,δ0,h>0 sufficiently small, the new weight W̃i determined by (5.35) can be kept
arbitrarily close to the original weight W ε0

i .

(4) We claim that it is possible to replace the multiplicity functions mi by strictly
smaller piecewise constant functions m̃i, producing a very small change in the
weights W ε0

i . More precisely, for each i∈{1,. ..,N}, choose δ>0 and insert the
times (see Figure 5.3)

ai = s0 < s1 < ·· ·< sn(i) = bi, (5.31)

so that sk−sk−1≤ δ for every k=1,. ..,n(i). For a given δ0>0, with δ0<ε0, we
then define the piecewise constant function

m̃i(t)=mi(sk)−δ0 for all t∈]sk−1,sk]. (5.32)

Since s 7→mi(s)∈ [ε0,+∞[ is non-increasing, we clearly have 0<m̃i(t)<m(t) for all
t∈]ai,bi]. Next, given another constant h>0, with h<<δ, we define

fh(t,ω)
.
=

{
f(ω) if t∈ [sk−1+h, sk−h], 1≤k≤n(i),

0 otherwise.
(5.33)

We claim that, for any ε>0, one can choose the above constants δ,δ0,h>0 small
enough so that, replacing the multiplicities mi with m̃i, and replacing f with fh,
the corresponding weights W̃i satisfy

∥W ε0
i −W̃i∥L1([ai,bi]) < ε, |W ε0

i (ai+)−W̃i(ai+)|< ε. (5.34)
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Indeed, recalling (1.5) consider first the case i∈I1, so that γi is one of the outer-

most branches. Then the weightW ε0
i is obtained by solving (4.8), while W̃i provides

a solution to

w(t)=

∫ bi

t

fh(s,w(s))ds+m̃i(t), t∈]ai,bi]. (5.35)

By choosing δ,δ0,h>0 sufficiently small, we can make the differences

∥mi−m̃i∥L1([ai,bi]), |mi(ai+)−m̃i(ai+)|, meas

[ai, bi]\
n(i)⋃
k=1

[sk−1+h, sk−h]


as small as we like. The estimate (5.34) thus follows from part (iii) of Lemma 3.4.
The case i∈Ip for p>1 is proved in the same way, by induction on p.

In view of (5.23) and (5.30), to prove the theorem it thus suffices to show that, for

any given δ,δ0,h>0, the corresponding weights W̃i satisfy

N∑
i=1

∫ bi

ai

ψ(W̃i(s))ds ≤ liminf
n→∞

EW,ψ(χn). (5.36)

(5) Consider again the arrival time ξ 7→ τ(ξ) introduced in Definition 2.1. For any ε>0,
by Corollary 3.1 there is a compact set Ωε⊆ [0,M ], with

meas
(
[0,M ]\Ωε

)
< ε, (5.37)

on which that map τ(·) is continuous. Hence

max
ξ∈Ωε

τ(ξ) ≤ κ (5.38)

for some constant κ. By (5.1) and Egoroff’s theorem, by slightly shrinking the
compact set Ωε, we can assume that (5.37) still holds, together with

lim
n→∞

sup
ξ∈Ωε

∥χ(ξ, ·)−χn(ξ, ·)∥L∞([0,κ])=0. (5.39)

In addition, calling τn(ξ) the smallest time τ such that χn(ξ, ·) is constant for t≥ τ ,
by further shrinking Ωε we can also assume

liminf
n→∞

inf
ξ∈Ωε

[τn(ξ)−τ(ξ)] ≥ 0. (5.40)

Indeed, since

liminf
n→∞

τn(ξ) ≥ τ(ξ), (5.41)

it follows that the non-decreasing sequence

τ̂n(ξ)
.
= inf

k≥n
τk(ξ)

converges to a limit

lim
n→∞

τ̂n(ξ)= τ∞(ξ) ≥ τ(ξ)
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for a.e. ξ∈ [0,M ]. Again by Egoroff’s theorem we can choose a large subset Ωε⊂
[0,M ] where the pointwise convergence is uniform. This yields (5.40).
Furthermore, since each χn satisfies the assumption (A2), we can choose εn>0
small enough so that the following holds. Defining the stopping time

τnεn(ξ)
.
= sup

{
t≥0; mn(ξ,t)≥εn

}
, (5.42)

by possibly further shrinking the set Ωε in (5.37) one has

τnεn(ξ) ≥ τn(ξ)− h

2
for all ξ∈Ωε, n≥1. (5.43)

(6) Let γ̂′1,. .., γ̂
′
ν′ be the maximal εn-good paths in χn, and let γ′1,. ..,γ

′
N ′ be the

elementary paths constructed by the algorithm (PSA). As in step 3, for each

γ̂′j : [0, ℓ̂
′
j ] 7→Rd we define

Ω̂′
j(s)

.
=

{
ξ∈ [0,M ]; χn(ξ,·)

∣∣∣
[0,t]

≃ γ̂′j
∣∣∣
[0,s]

for some t>0

}
=
{
ξ∈ [0,M ]; χn(ξ,t)= γ̂

′
j(t), for all t∈ [0,s]

}
.

(5.44)

This is the set of particles whose trajectory follows the maximal path γ̂′j , at least
up to time s. Notice that the last identity holds because γ̂′j and χn(ξ, ·) are both
parameterized by arc-length. By construction, each elementary path γ′i : [a

′
i,b

′
i] 7→

Rd, 1≤ i≤N ′ is the restriction of some γ̂′j to a subinterval [a′i,b
′
i]. We then define

Ω′
i(s)

.
= Ω̂′

j(s) for all s∈ [a′i,b
′
i]. (5.45)

(7) Now consider a particle ξ∈Ωi(sk)∩Ωε, so that the path t 7→χ(ξ,t) reaches the point
γi(sk) at some time t=η(ξ,sk). This implies τ(ξ)≥η(ξ,sk). Hence by (5.40) we
have

τn(ξ) > η(ξ,sk)−
h

2

for all n large enough. In turn, choosing εn>0 sufficiently small, by (5.43) it follows

τnεn(ξ) ≥ τn(ξ)− h

2
> η(ξ,sk)−h ≥ η(ξ,sk−h).

Otherwise stated, by further slightly shrinking the compact set Ωε in (5.37), for any
h>0 we can thus achieve the implication

ξ ∈ Ωi(sk)∩Ωε =⇒ η(ξ,sk−h) < τnεn(ξ), (5.46)

for all n sufficiently large.

(8) We observe that two particles ξ,ξ̃, which have the same trajectory in the irrigation
plan χ, may be sent along different paths by the irrigation plan χn. To account for
this fact, recalling (5.28) and (5.45), for a fixed n≥1 we define

Aji (sk)
.
=
{
ξ∈Ωε∩Ωi(sk); χn(ξ,t) = γ̂′j(t), for all 0≤ t≤η(ξ,sk−h)

}
. (5.47)

In other words, Aji (sk) is the set of particles ξ∈Ωε such that:
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• By the irrigation plan χ they are moved along the ε0-good elementary path
γi, at least up to the point γi(sk).

• By the irrigation plan χn they are moved along the εn-good maximal path γ̂′j ,

at least up to point γ̂′j
(
η(ξ,sk−h)

)
.

Using Lusin’s theorem and by possibly shrinking the compact domain Ωε⊆ [0,M ],
in addition to (5.37) we can assume that, restricted to each Aji (sk), the two maps

η(·,sk−h) :Aji (sk) 7→R+, η(·,sk−1+h) :A
j
i (sk) 7→R+

are continuous.

(9) The set of paths

γi,k
.
= γi

∣∣∣
[sk−1,sk]

(5.48)

comes with an obvious partial ordering. Namely, we define

(i,k) ⪯ (i†,k†) (5.49)

if the two elementary paths γi,γi† for the irrigation plan χ are both contained in
some ε0-good maximal path γ̂j , and moreover sk≤sk† .
As shown in Figure 5.4, to each portion γi,k of the elementary path γi in the

irrigation plan χ we shall associate a family {γ♯l } of paths in the irrigation plan χn,

and compare the corresponding costs. For this purpose, assuming Aji (sk) ̸=∅, we
define

si,jk+
.
= inf

ξ∈Aj
i (sk)

η(ξ,sk−h), si,jk−
.
= inf

ξ∈Aj
i (sk)

η(ξ,sk−1+h). (5.50)

Notice that, by (5.27), one has

si,jk+−si,jk− ≥ sk−sk−1−2h. (5.51)

For each i,j,k such that Aji (sk) is non-empty, we now consider all the paths γ♯l :

[a♯l , b
♯
l ] 7→Rd, obtained as follows. Consider all the εn-good elementary paths γ′p :

[a′p,b
′
p] 7→Rd of χn. which are contained in the maximal path γ̂′j . We then take γ♯l

to be the restriction of γ′p to the subinterval

[a♯l , b
♯
l ]

.
= [a′p,b

′
p]∩ [si,jk−,s

i,j
k+]. (5.52)

Call Γi,k the collection of all such paths γ♯l , as j varies among all the maximal

εn-good paths of χn, with A
j
i (sk) ̸=∅.

(10) Let m♯
l : [a

♯
l ,b

♯
l ] 7→R+ be the multiplicity of the path γ♯l in the irrigation plan χn. We

claim that, choosing δ0=ε in (5.32), for all n large enough the piecewise constant
multiplicity m̃i defined at (5.32) satisfies

m̃i(t)= m̃i(sk−h)
.
= mi(sk)−ε <

∑
γ♯
l ∈Γi,k, b

♯
l=s

i,j
k+

m♯
l (b

♯
l ) (5.53)

for all t∈]sk−1,sk]. Indeed, in view of (5.46)-(5.47), for each ξ∈Ωi(sk)∩Ωε, there
is some maximal path γ̂′j such that

χn(ξ,t)= γ̂
′
j(t), for all t∈ [0, η(ξ,sk−h)]. (5.54)
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Fig. 5.4. To compare the cost of the irrigation plans χ and χn, to the portion of the ε0-good
elementary path γi : [sk−1+h,sk−h] 7→Rd we associate a family of εn-good paths γ♯l in χn.

By (5.50) we know that η(ξ,sk−h)≥si,jk+. Hence (5.54) implies ξ∈ Ω̂′
j(s

i,j
k+). There-

fore

m̃i(sk−h)=meas(Ωi(sk))−ε < meas
(
Ωi(sk)∩Ωε

)
<

∑
γ♯
l ∈Γi,k, b

♯
l=s

i,j
k+

m♯
l (b

♯
l ).

(5.55)

(11) Toward a proof of (5.36), a key observation is the following. If two particles ξ,ξ̃ are
sent by χ along two maximal paths γ̂i, γ̂j which bifurcate at some time τij , then,
for all n large enough, the irrigation plan χn must send these two particles along
distinct paths as well. In this step we prove a precise estimate in this direction.
Let γ̂1,. .., γ̂ν be the maximal ε0-good paths for the irrigation plan χ. For any given
h>0, by Lemma 5.2 one can find σ>0 such that

δ

(
γ̂i

∣∣∣
[0,s]

, γ̂j

∣∣∣
[0,t]

)
≥ σ, for all i ̸= j, s∈ [τij+h, ℓ̂i], t∈ [0, ℓ̂j ]. (5.56)

Here τij is the time where the maximal paths γ̂i and γ̂j bifurcate, as defined at
(4.4).
On the other hand, by (5.39), for all n sufficiently large one has

sup
ξ∈Ωε

∥χ(ξ,·)−χn(ξ,·)∥L∞([0,κ]) <
σ

3
, (5.57)

where σ is the constant in (5.56).

Consider two particles ξ,ξ̃∈Ωε which are sent by χ along the two distinct maximal
paths γ̂i, γ̂j . More precisely, recalling the definition (5.44), assume that for some
h>0

ξ ∈ Ω̂i(τij+h)∩Ωε, ξ̃∈ Ω̂j(τij+h)∩Ωε,

Without loss of generality, assume

T
.
= η(ξ,τij+h) ≤ η(ξ̃,τij+h).

Recalling the notation used at (5.24), we can now find τ
.
=s(ξ̃,T )≤ ℓ̂j , such that by

(5.56) and (5.57)

σ≤ δ
(
γ̂i

∣∣∣
[0,τij+h]

, γ̂j

∣∣∣
[0,τ ]

)
= δ
(
χ(ξ,·)

∣∣∣
[0,T ]

,χ(ξ̃,·)
∣∣∣
[0,T ]

)
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≤
∥∥χ(ξ, ·)−χn(ξ, ·)∥L∞([0,T ])+δ

(
χn(ξ, ·)

∣∣∣
[0,T ]

,χn(ξ̃, ·)
∣∣∣
[0,T ]

)
+
∥∥χ(ξ̃, ·)−χn(ξ̃, ·)∥L∞([0,T ])

≤ δ
(
χn(ξ, ·)

∣∣∣
[0,T ]

,χn(ξ̃, ·)
∣∣∣
[0,T ]

)
+

2σ

3
. (5.58)

This proves that the two paths χn(ξ,·) and χn(ξ̃, ·), which are parameterized by
arc-length, cannot coincide over the entire interval [0,T ].

(12) We are finally ready to prove (5.36). Let ε>0 be given. Since the weights W̃i are
uniformly bounded, by choosing h>0 small enough for every i=1,. ..,N we achieve

∫ bi

ai

ψ(W̃i(s))ds−
n(i)∑
k=1

∫ sk−h

sk−1+h

ψ(W̃i(s))ds <
ε

N
. (5.59)

Since ε>0 is arbitrary, to prove (5.36), it thus suffices to show that

N∑
i=1

n(i)∑
k=1

∫ sk−h

sk−1+h

ψ(W̃i(s))ds ≤ liminf
n→∞

EW,ψ(χn). (5.60)

As shown in step 9, there is a map

γi,k 7→ Γi,k
.
=
{
γ♯l ; l= l(i,j,k)

}
, (5.61)

which associates to the portion of elementary path γi,k of χ a corresponding family
of εn-good paths of χn, as in Figure 5.4. Using the ordering (5.49), by induction on
(i,k) we will show that∫ sk−h

sk−1+h

ψ(W̃i(s))ds ≤
∑

γ♯
l ∈Γi,k

∫ b♯l

a♯l

ψ(W ♯
l (s))ds, (5.62)

for every (i,k). By showing that paths γ♯l belonging to distinct families Γi,k, Γi†,k†
are disjoint, we will conclude

N∑
i=1

n(i)∑
k=1

∫ sk−h

sk−1+h

ψ(W̃i(s))ds ≤
N∑
i=1

n(i)∑
k=1

∑
γ♯
l ∈Γi,k

∫ b♯l

a♯l

ψ(W ♯
l (s))ds ≤ EW,ψ(χn), (5.63)

for every n≥1 sufficiently large. This will prove (5.60), and hence (5.36).

(13) In this step we prove our claim that paths γ♯l belonging to distinct families Γi,k,
Γi†,k† are disjoint. Assume (i,k) ̸=(i†,k†). Two cases can occur.

CASE 1: The elementary paths γi,γi† are not contained in the same maximal ε0-
good path of χ.
In this case, there exist two distinct maximal paths γ̂p, γ̂q, which bifurcate at time

τpq ≤ min{sk−1, sk†−1} (5.64)

and such that

γi(t)= γ̂p(t), for all t∈ [sk−1,sk], γi†(t)= γ̂q(t), for all t∈ [sk†−1,sk† ].
(5.65)
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If now ξ∈Aji (sk) and ξ̃∈A
j†

i†
(sk†), by (5.47) there exist two εn-good maximal paths

for χn such that

χn(ξ,t)= γ̂
′
j(t), for all 0≤ t≤η(ξ,sk−h),

χn(ξ̃,t)= γ̂
′
j†(t), for all 0≤ t≤η(ξ̃,sk† −h).

(5.66)

By (5.64) and the analysis in step 11, the two paths χn(ξ,·) and χn(ξ̃, ·) must

bifurcate before time η(ξ,sk−1+h)∧η(ξ̃,sk†−1+h). Here, and in the sequel, we use
the notation a∧b .=min{a,b}. Calling τ ′jj† the time where the two maximal paths

γ̂′j and γ̂
′
j† bifurcate, by (5.66) and (5.50) one obtains

τ ′jj† ≤ η(ξ,sk−1+h)∧η(ξ̃,sk†−1+h) ≤ si,jk−∧si
†,j†

k†− . (5.67)

If now Aji (sk) is nonempty, by construction, the path γ♯l ∈Γi,k, which is contained in

the maximal path γ̂′j , is defined for s∈ [si,jk−,s
i,j
k+]. Similarly, Aj

†

i†
(sk†) is nonempty,

the path γ♯
l†
∈Γi†,k† which is contained in γ̂′j† will be defined for s∈ [si

†,j†

k†− ,s
i†,j†

k†+
].

Since the two maximal εn-good paths γ̂′j and γ̂
′
j† already bifurcate at the time (5.67),

the two paths γ♯l and γ
♯
l†
are disjoint. By the above argument, we conclude that the

two families Γi,k and Γi†,k† consist of distinct paths.

CASE 2: With the partial ordering (5.49) one has (i,k)⪯ (i†,k†).
This implies that there exists a maximal ε0-good path γ̂j in χ, such that

γi(t)= γ̂j(t), for all t∈ [sk−1,sk], γi†(t)= γ̂j(t), for all t∈ [sk†−1,sk† ],
(5.68)

and moreover sk<sk† . For each fixed maximal εn-good path γ̂′j in χn, there are
two cases:

• Aj
i†
(sk†) is nonempty. By (5.47) and (5.68) we thus have Aj

i†
(sk†)⊆A

j
i (sk).

Hence Aji (sk) is nonempty as well. By the definition (5.50) one has

si
†,j
k†−−si,jk+= inf

ξ∈Aj

i†
(s

k† )
η(ξ,sk†−1+h)− inf

ξ∈Aj
i (sk)

η(ξ,sk−h)

≥ inf
ξ∈Aj

i†
(s

k† )
[η(ξ,sk†−1+h)−η(ξ,sk−h)]

≥ inf
ξ∈Aj

i†
(s

k† )
[η(ξ,sk+h)−η(ξ,sk−h)] ≥ 2h. (5.69)

In this case, for every path s 7→γ♯
l†
(s) in Γi†,k† , which is contained in γ̂′j , the

arc-length parameter ranges in [si
†,j
k†−,s

i†,j
k†+

]. On the other hand, for every

path s 7→γ♯l (s) in Γi,k, which is contained in γ̂′j , the time parameter ranges in

[si,jk−,s
i,j
k+]. By (5.69) these two paths are disjoint.

• Aj
i†
(sk†) is empty. By construction, this implies that every path γ♯

l†
∈Γi†,k† is

not contained in the maximal path γ̂′j . Thus, if γ
♯
l ∈Γi,k is contained in γ̂′j , γ

♯
l

is disjoint from all the paths in Γi†,k† .

Since the above analysis applies to each maximal path γ̂′j in χn, we conclude that

when (i,k)⪯ (i†,k†), the two families Γi,k and Γi†,k† consist of disjoint paths.



A. BRESSAN AND Q. SUN 643

(14) As before, let γ1,. ..,γN be the elementary ε0-good paths in χ. The weights W̃i are
then constructed along each γi by the same inductive procedure as in (4.8)–(4.10),
for i∈Ip, p=1,2,. .. We recall that Ip are the sets of indices introduced at (1.5).
Toward a proof of (5.60) we claim that, for any i, 1≤k≤n(i),

∑
γ♯
l ∈Γi,k

∫ b♯l

a♯l

ψ(W ♯
l (s))ds ≥

∫ sk−h

sk−1+h

ψ(W̃i(s))ds, (5.70)

∑
γ♯
l ∈Γi,k, a

♯
l=s

i,j
k−

W ♯
l (a

♯
l ) ≥ W̃i(sk−1+h). (5.71)

The above inequalities will be proved first for i∈I1 (i.e., for the outer-most
branches), then inductively for i∈I2,I3,. ..
We begin by considering an elementary path γi with i∈I1. We compare the weight
W̃i along γi with the sum of weights along the corresponding εn-good paths γ♯l of χn.
On the last subinterval [sn(i)−1+h, sn(i)−h] of γi, by (5.51)-(5.53) the assumptions
in Lemma 5.3 are satisfied. From (5.11)-(5.12) we thus have

∑
γ♯
l ∈Γi,n(i)

∫ b♯l

a♯l

ψ(W ♯
l (s))ds ≥

∫ sn(i)−h

sn(i)−1+h

ψ(W̃i(s))ds, (5.72)

∑
γ♯
l ∈Γi,n(i), a

♯
l=s

i,j
n(i)−

W ♯
l (a

♯
l ) ≥ W̃i(sn(i)−1+h). (5.73)

Now consider the previous interval [sn(i)−2+h, sn(i)−1−h]. By (5.32)-(5.33) it fol-
lows

W̃i(sn(i)−1−h)=W̃i(sn(i)−1+h)+m̃i(sn(i)−1−h)−m̃i(sn(i)−1+h). (5.74)

Hence by (5.53) and (5.73) one has∑
γ♯
l ∈Γi,n(i)−1, b

♯
l=s

i,j
(n(i)−1)+

W ♯
l (b

♯
l )≥

∑
γ♯

l′∈Γi,n(i), a
♯

l′=s
i,j
n(i)−

W ♯
l′(a

♯
l′)

+ m̃i(sn(i)−1−h)−m̃i(sn(i)−1+h)

≥ W̃i(sn(i)−1−h). (5.75)

By (5.51) and (5.75) we can again apply Lemma 5.3 on Γi,n(i)−1 and the restriction
of γi on [sn(i)−2+h, sn(i)−1−h]. By similar arguments we prove (5.70)-(5.71) for
each i∈I1,1≤k≤n(i).

(15) Next, assume that (5.70)-(5.71) have been proved for all i∈I1∪···∪Ip−1.We claim
that these same inequalities also hold for all i∈Ip.
Indeed, consider an elementary path γi with i∈Ip. Along this path, consider the
last subinterval, with s∈ [sn(i)−1+h, sn(i)−h]. Recalling the construction of the
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weight W̃i at (4.9)-(4.10) and (5.32)-(5.33), we obtain

W̃i(sn(i)−h) = W̃i(sn(i))=
∑

k∈O(i)

W̃k(ak+)+

m̃i(sn(i))−
∑

k∈O(i)

m̃k(ak+)


=

∑
k∈O(i)

W̃k(ak+h)+

m̃i(sn(i)−h)−
∑

k∈O(i)

m̃k(ak+h)

.
(5.76)∑

γ♯
l ∈Γi,n(i), b

♯
l=s

i,j
n(i)+

W ♯
l (b

♯
l )≥

∑
k∈O(i)

∑
γ♯

l′∈Γk,1, a
♯

l′=s
k,j
1−

W ♯
l′(a

♯
l′)

+

m̃i(sn(i)−h)−
∑

k∈O(i)

m̃k(ak+h)

. (5.77)

For each k∈O(i), the inductive assumption (5.73) yields∑
γ♯

l′∈Γk,1, a
♯

l′=s
k,j
1−

W ♯
l′(a

♯
l′) ≥ W̃k(ak+h). (5.78)

Hence, by (5.76)–(5.78), ∑
γ♯
l ∈Γi,n(i), b

♯
l=s

i,j
n(i)+

W ♯
l (b

♯
l ) ≥ W̃i(sn(i)−h). (5.79)

Thanks to (5.79) and (5.51), we can use again Lemma 5.3 and conclude (5.72)-
(5.73). By backward induction on k=n(i),n(i)−1,. ..,1, we then achieve the proof
of (5.70)-(5.71) as in step 14.

(16) By induction on Ip, p=1,2,. .., we conclude that the inequalities (5.70) hold for
every i=1,. ..,N and every k=1,. ..,n(i). In turn, since the families of paths Γi,k
are all disjoint from each other, from (5.70) we obtain (5.63). As remarked in step
12, this implies the lower semicontinuity of the weighted irrigation cost.

6. Weights depending on the inclination of the branches
The aim of this section is to extend the previous results to the case where the right-

hand side of the ODE in (1.2) also depends on the inclination of the branch. More
precisely, if s 7→γ(s) is a parameterization of the branch, we replace (1.2) with

W ′(s)=−f
(
γ̇(s),W (s)

)
. (6.1)

Concerning the function f :Rd×R 7→R, we shall assume

(A3) The function f =f(v,W ) is continuous w.r.t. both variables. For each v∈Rd,
the map W 7→f(v,W ) satisfies the same conditions as in (1.3), namely

f(v,0) = 0, fW (v,W )> 0, fWW (v,W )≤ 0 for all W >0. (6.2)

For each W >0, the map v 7→f(v,W ) is convex and positively homogeneous,
namely

f(rv,W ) = rf(v,W ) for all r≥0. (6.3)
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An example of a function satisfying (A3) is

f(v,W )=

(
|v1|+

√
v21+v

2
2

)
W β ,

where 0<β≤1.
Let now χ : [0,M ]×R+ 7→Rd be an irrigation plan. When f also depends on v,

the weight functions W (ξ,t) can be constructed following exactly the same procedure
described in Section 4. The only difference is that, for each elementary path γi : [ai,bi] 7→
Rd, the formulas (4.8)-(4.9) are now replaced respectively by

w(t)=

∫ bi

t

f
(
γ̇i(s),w(s)

)
ds+mi(t), t∈]ai,bi], (6.4)

w(t)=

∫ bi

t

f
(
γ̇i(s),w(s)

)
ds+mi(t)+wi, t∈]ai,bi]. (6.5)

Here the upper dot denotes a derivative w.r.t. the parameter s along the arc. We observe
that all conclusions of Lemma 3.4 remain valid if (3.21) is replaced by

w(t)=

∫ T

t

f
(
s,w(s)

)
ds+m(t) for all t∈ [0,T ], (6.6)

assuming that f : [0,T ]× [ε,+∞[ is measurable w.r.t. t and Lipschitz continuous w.r.t. w.
Relying on the assumptions (A3), the lower semicontinuity of the weighted irriga-

tion cost proved in Theorem 5.1 can now be extended to this more general case.

Theorem 6.1. Consider a sequence (χn)n≥1 of irrigation plans, all satisfying the
assumption (A2), pointwise converging to an irrigation plan χ. Assume that the func-
tion ψ satisfies the conditions in (A1), while f satisfies (A3). Then the corresponding
weighted costs satisfy

EW,ψ(χ) ≤ liminf
n→∞

EW,ψ(χn). (6.7)

Proof. We shall follow step by step all the arguments in the proof of Theorem 5.1,
and indicate only the modifications which are needed to cover this more general case.

Steps 1–3 and 5–13 do not make any reference to the function f , and thus remain
valid without any change.

In step 4 we considered an approximate family of weights W̃i yielding almost the
same cost as the original ones. That construction must here be somewhat refined,
approximating all ε0-good paths in χ with polygonal lines. That step is now replaced
by

4′. By the properties of f , there exist constants L,κ such that

|f(v,w1)−f(v,w2)| ≤ L|w1−w2|, for all w1,w2>ε0, |v|≤1, (6.8)

|f(v,w)| ≤ κ for all w≤wmax, |v|≤1, (6.9)

Here wmax denotes the maximum weight over all ε0-good paths of χ.
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Let γ1,. ..,γN be the elementary ε0-good paths in the irrigation plan χ, determined
by the Path Splitting Algorithm (PSA), and let ε>0 be given. By choosing δ,δ0>0
sufficiently small, the following holds.

For each γi : [ai,bi] 7→Rd, consider any set of intermediate times sk as in (5.31) with

sk−sk−1 < δ0 for all k∈{1,. ..,n(i)}.

Define the piecewise constant multiplicity function m̃i(t) as in (5.32). Next, let Ji⊂
[ai,bi] by any measurable subset with meas(Ji)≤ δ0 and define

f̃i(t,ω)
.
=

{
f(γ̇i(t),ω)−δ0 if t /∈Ji,

0 if t∈Ji.
(6.10)

Then the corresponding weights W̃i still satisfy (5.34).
In the present case, an additional approximation will be useful. Namely, we refine

the partition (5.31) of the interval [ai,bi] by inserting points

ai = τ0 < τ1 < ·· · < τm(i) = bi, (6.11)

and replace γi with a path γ♢i which is affine on each sub-interval [τj−1,τj ] and satisfies

γi(τj)=γ
♢(τj) for all j.

Then we choose h>0 small enough and set

Ji
.
=
⋃
j

[τj−h,τj+h].

By choosing the partition (6.11) sufficiently fine, and h>0 sufficiently small, we can
achieve

κL ·sup
j

|τj−τj−1| <
δ0
2
. (6.12)

Setting

m♢
i (s)

.
= mi(s)−δ0, (6.13)

the weights W♢ now satisfy

d

dt

[
W♢(t)−m♢(t)

]
=−f̃(γ̇♢(t),W♢(t)). (6.14)

If δ0,h>0 are chosen small enough, then the corresponding weight functions W♢
i :

[ai,bi] 7→R+ satisfy the analogue of (5.34), namely

∥W ε0
i −W♢

i ∥L1([ai,bi]) < ε, |W ε0
i (ai+)−W♢

i (ai+)|< ε. (6.15)

Toward a proof of Theorem 6.1, the heart of the matter is to achieve the inequalities
(5.70)-(5.71) in steps 14-15. Since Lemma 5.3 no longer applies, a different argument
must now be developed. The last three steps 14–16 in the proof of Theorem 5.1 can
be replaced by the steps below.



A. BRESSAN AND Q. SUN 647

i

ζ

γ
j−1γ τ

j
τ

j−1
−h

jζ

γ

γ
l

+h
j

j−1
γ

j
γ

j−1

Fig. 6.1. Left: approximating an ε0-good path γi in the irrigation plan χ with a polygonal
γ♢. Right: the weight W♢ along the segment with endpoints γ♢(τj−1+h

′), γ♢(τj−h′) is

compared with the sum of weights along corresponding εn-good paths γ♯l of χn. Differently from
the case illustrated in Figure 5.4, we now compare weights at points having the same inner
product with the vector ζj, introduced at (6.18).

14′. We wish to compare the weights W♢
i with a sum of the weights along the

corresponding εn-good elementary paths in the approximating irrigation plans χn. This
will be done separately on each subinterval [τj−1,τj ], where the tangent vector γ̇

♢(t)=vj
is constant.

As in step 9 of the previous proof, in connection with γi

∣∣∣
[τj−1,τj ]

we can determine

a family Γi,j of εn-good paths γℓ : [aℓ,bℓ] 7→Rd in the irrigation plan χn, which approach
γi as n→∞ (see Figure 6.1, right). By construction, the corresponding weight and
multiplicity functions Wℓ,mℓ : [aℓ,bℓ] 7→R are non-increasing and satisfy

d

ds

[
Wℓ(s)−mℓ(s)

]
=−f(γ̇ℓ(s),Wℓ(s)). (6.16)

As remarked in the previous sections, each elementary path γℓ of χn is contained in
some maximal path γ̂q : [aq,bq] 7→Rd. The set of elementary paths is partially ordered
by setting

γℓ ≺ γr

if γℓ and γr are contained in the same maximal path, and bℓ≤ar. The set of paths
which bifurcate from the tip of γℓ is defined as

O(ℓ)
.
= {r; γℓ ≺ γr and bℓ=ar}.

At the endpoint of γℓ, by construction we have

Wℓ(bℓ)−mℓ(bℓ)=
∑

r∈O(ℓ)

[
Wr(ar)−mr(ar)

]
. (6.17)

Of course, the above definition here implies ar= bℓ.

15′. Throughout this step we fix an elementary path γi of the limit irrigation
plan χ. To shorten notation, we shall thus drop the index i and simply write γ♢=γ♢i ,

W♢=W♢
i , etc. To establish a comparison we observe that, by the convexity and positive

homogeneity of the map v 7→f
(
v,W♢(τj)

)
, there exists a vector ζj ∈Rd such that

f(vj ,W
♢(τj))= ⟨vj ,ζj⟩, f(v,W♢(τj)) ≥ ⟨v,ζj⟩ for all v∈Rd. (6.18)

Notice that, if f is smooth, then ζj=∇vf
(
vj ,W

♢(τj)
)
is simply the gradient of f

w.r.t. the variable v∈Rd. If f is convex but not smooth, then ζj can be any sub-
gradient.
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By construction, for t∈ [τj−1,τj ] the derivative γ̇♢(t)=vj is constant. From (6.14),
using (6.10) and then (6.8)-(6.9) and (6.12), one obtains

d

dt

[
W♢(t)−m♢(t)

]
= − f̃(vj ,W♢(t))

≥ −f
(
vj ,W

♢(τj)
)
+δ0−κL|τj− t| ≥ −⟨vj ,ζj⟩+

δ0
2
.

(6.19)

Let γℓ : [aℓ, bℓ] 7→Rd be any εn-good path in χn. For t∈ [τj−1+h,τj−h] we define

sℓ(t)
.
= inf

{
s≥aℓ; ⟨ζj ,γℓ(s)⟩ ≥

〈
ζj ,γ

♢(t)
〉}
, (6.20)

and consider the set of indices

I(t)
.
=
{
ℓ; aℓ < sℓ(t)< bℓ

}
.

By an approximation argument, we can assume that each γℓ is polygonal, with
⟨γ̇ℓ(t),ζj⟩ ≠ 0 for a.e. t∈ [aℓ,bℓ]. This implies

d

dt
sℓ(t)=

⟨vj ,ζj⟩
⟨γ̇ℓ(sℓ(t)),ζj⟩

> 0 (6.21)

for all except finitely many times t. We can now estimate

d

dt

∑
ℓ∈I(t)

[
Wℓ(sℓ(t))−mℓ(sℓ(t))

]
=−

∑
ℓ∈I(t)

⟨vj ,ζj⟩
⟨γ̇ℓ(sℓ(t)),ζj⟩

·f(γ̇ℓ(sℓ(t)),Wℓ(sℓ(t)))

≤ −
∑
ℓ∈I(t)

⟨vj ,ζj⟩
f(γ̇ℓ(sℓ(t)),W

♢(τj))

⟨γ̇ℓ(sℓ(t)),ζj⟩
·min

{
Wℓ(sℓ(t))

W♢(τj)
, 1

}

≤ −
∑
ℓ∈I(t)

⟨vj ,ζj⟩min

{
Wℓ(sℓ(t))

W♢(τj)
, 1

}
. (6.22)

Here the first identity follows from (6.4)-(6.5) and (6.21), while the second inequality
is a consequence of (6.18) and of the concavity of the map W 7→f(v,W ). The third
inequality follows from (6.18). Notice that, at points where two or more paths bifurcate,
by (6.17) the sum

∑
ℓ∈I(t)[Wℓ(t)−mℓ(t)] remains continuous. However, this sum will

have downward jumps at points where one of the maps t 7→sℓ(t) is discontinuous.

16′. We are now ready to describe the comparison argument that replaces the
estimates in step 15 of the proof of Theorem 5.1. As in the previous proof, for each
large n we can identify a finite family of εn-good paths γℓ in χn which converge to the
elementary path γi of χ. In particular, for n≥1 large enough, we can assume∑

ℓ

mℓ(sℓ(t)) ≥ m♢(t) for all t∈ [τj−1+h, τj−h], j=1,2,. ..,m(i). (6.23)

By backward induction, assume that[
W♢(τj+h)−m♢(τj+h)

]
≤

∑
ℓ∈I(τj+h)

[
Wℓ(sℓ(τj+h))−mℓ(sℓ(τj+h)

]
. (6.24)
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Since f̃ =0 for t∈ [τj−h,τj+h] while all differences Wℓ−mℓ are non-increasing, this
immediately yields[

W♢(τj−h)−m♢(τj−h)
]
=
[
W♢(τj+h)−m♢(τj+h)

]
≤

∑
ℓ∈I(τj−h)

[
Wℓ(sℓ(τj−h))−mℓ(sℓ(τj−h)

]
.

(6.25)

For t∈ [τj−1+h, τj−h], we claim that the quantity

Φ(t)
.
=
[
W♢(t)−m♢(t)

]
−
∑
ℓ∈I(t)

[
Wℓ(sℓ(t))−mℓ(sℓ(t))

]
remains non-positive. Indeed, comparing the derivatives in (6.19) and (6.22) one obtains

d

dt
Φ(t) ≥ −⟨vj ,ζj⟩+

δ0
2
+
∑
ℓ∈I(t)

⟨vj ,ζj⟩min

{
Wℓ(sℓ(t))

W♢(τj)
, 1

}
. (6.26)

Set

t∗
.
= sup

{
t≤ τj ; Φ(t)>0

}
.

If t∗>τj−1+h, to derive a contradiction we will show that

dΦ

dt

∣∣∣∣
t=t∗

> 0. (6.27)

Toward this goal we observe that, by continuity, Φ(t∗)=0. Since the map t 7→W♢(t) is
decreasing, by (6.23) we obtain

W♢(τj)−
∑
ℓ

Wℓ(sℓ(t
∗)) ≤ W♢(t∗)−

∑
ℓ

Wℓ(sℓ(t
∗))=m♢(t∗)−

∑
ℓ

mℓ(sℓ(t
∗)) ≤ 0.

(6.28)
By (6.26) this implies

dΦ

dt

∣∣∣∣
t=t∗

≥ −⟨vj ,ζj⟩+
δ0
2
+
∑

ℓ∈I(t∗)

⟨vj ,ζj⟩min

{
Wℓ(sℓ(t

∗))

W♢(τj)
, 1

}
≥ δ0

2
. (6.29)

We thus conclude that Φ(t)≤0 for all t≥ τj−1. This achieves the key inductive step,
showing that the inequality (6.24) remains valid with j replaced by j−1.

The remainder of the proof follows the same arguments used for Theorem 5.1.

Remark 6.1. By a minor modification of the previous arguments, the above results
can be further extended to the case where f =f(x,v,W ) depends continuously also on
the variable x∈Rd.

7. Optimal weighted irrigation plans
Given a positive, bounded Radon measure µ on Rd, we define

IW,ψ(µ) .
= inf

χ
EW,ψ(χ),
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where the infimum is taken over all irrigation plans for the measure µ. Relying on the
lower semicontinuity of the weighted irrigation cost, proved in Theorems 5.1 and 6.1,
we can now prove the existence of an optimal irrigation plan.

Theorem 7.1. Let µ be a positive, bounded Radon measure on Rd. Let f satisfy
the assumptions in (A3) while ψ satisfies (A1). If µ admits an irrigation plan with
bounded weighted cost, then there exists an irrigation plan with minimum weighted cost.

Proof. Let M =µ(Rd) and let (χn)n≥1 be a minimizing sequence of irrigation
plans for µ, so that

lim
n→∞

EW,ψ(χn)=IW,ψ(µ). (7.1)

Since f ≥0, by construction the weights are larger than the corresponding multiplicities.
Namely, for every ξ,t and n≥1 one has Wn(ξ,t)≥mn(ξ,t). Since the costs in (7.1) are
bounded, we deduce ∫ M

0

∫ +∞

0

|χ̇n(ξ,t)|dtdξ ≤ C

for some constant C and all n≥1.
By the sequential compactness of traffic plans (see for example Proposition 3.27

in [1]), we can extract a subsequence (χnj )j≥1 pointwise converging to an irrigation
plan χ. The lower semicontinuity result proved in Theorem 6.1 yields

EW,ψ(χ) ≤ liminf
n→∞

EW,ψ(χn)=IW,ψ(µ). (7.2)

Hence χ achieves the minimum weighted cost.

We conclude by proving the lower semicontinuity of the weighted irrigation cost,
w.r.t. weak convergence of measures.

Theorem 7.2. Let f satisfy the assumptions in (A3) while ψ satisfies (A1). Let
(µn)n≥1 be a sequence of bounded positive measures, with uniformly bounded supports,
weakly converging to µ. Then

IW,ψ(µ) ≤ liminf
n→∞

IW,ψ(µn). (7.3)

Proof. Without loss of generality, one can assume

liminf
n→∞

IW,ψ(µn)
.
= K < +∞. (7.4)

Let χn be an optimal irrigation plan of µn, so that EW,ψ(χn)=IW,ψ(µn) for every
n≥1. As in the previous proof, by sequential compactness we can extract a subsequence
(χnj

)j≥1 pointwise converging to an irrigation plan χ. A standard argument shows that
χ provides an irrigation plan for the measure µ. Using Theorem 5.1 we conclude

IW,ψ(µ) ≤ EW,ψ(χ) ≤ liminf
n→∞

EW,ψ(χn)= liminf
n→∞

IW,ψ(µn). (7.5)
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