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AN OPTIMAL DESIGN OF RANDOM SURFACES IN SOLAR CELLS
VIA MINI-BATCH STOCHASTIC GRADIENT APPROACH∗

DAN WANG† , QIANG LI‡ , AND JIHONG SHEN§

Abstract. A resultful way to increase the absorbing efficiency of solar cells is using random rough
textures which can trap the optical light and increase the optical path of photons. In this paper, we
consider the design problem for two-layer structure thin-film solar cells to find the optimal interface and
bottom. We formulate the design problem as a random PDE constrained optimization problem and
employ gradient-based methods for solving the problem numerically. To improve the time efficiency,
mini-batch stochastic gradient method is used. Numerical examples are shown to test the efficiency of
the proposed algorithm.
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1. Introduction

Solar cells convert light energy into electric energy through photoelectric effect.
With the increasing energy crisis, solar energy, as one of the clean and renewable energy
sources, provides a feasible solution to meet the growing energy needs. One representa-
tive solar cell is the thin-film solar cell, which is composed of hydrogenated amorphous
silicon and nano-silicon thin films. Compared with traditional crystalline silicon solar
cells, thin-film solar cells have smaller thickness, lower production cost and some other
unique optical properties. However, due to the thickness of amorphous silicon thin-film
solar cells, the absorption of light at larger wavelengths is very low since a large number
of photons escape. Generally, the efficiency of thin-film solar cells is quiet low.

There are many ways to increase the efficiency of thin-film solar cells, such as
antireflection coatings, fluorescent dyes, dielectric gratings, photonic crystals and plasma
nanoparticles [1–5]. Another method to improve the absorption efficiency of the solar cell
is using the random nano-structure to capture the light beam [6–10]. The introduction of
the random interface can reduce the reflection loss of the incident surface since the light
can be reflected back into the cell many times. The random nano-structure increases
the optical thickness of the cell without changing the physical thickness of the cell.

In this paper, we formulate the optimal design of random surface textures for both
transparent conducting oxide (TCO) layer and absorbing (Si:H) layer as a random PDE
constrained problem [11]. The mini-batch stochastic gradient descent method is applied
to solve the random optimization problem to obtain the statistical optimal parameters
of the optimal random textures. It turns out that the mini-batch stochastic gradient
descent method can find the optimal value efficiently [12]. It is demonstrated that new
random textures give rises to a significant absorption enhancement.

The rest of the paper is structured as follows. Section 2 presents the mathematical
modeling for the optimal design problem. In Section 3, the optimal design problem
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is formulated. Section 4 includes the derivation of the gradient for the cost function
and the computational algorithm for the optimal design problem. Several numerical
experiments are presented in Section 5 to demonstrate the efficiency of the algorithm.

2. Mathematical formulation
The optimal design problem seeks to enhance the absorption efficiency of cells, that

is to minimize the reflectivity by energy conservation law. The typical structure of a
p-i-n Si:H solar cell is shown in Figure 2.1. Since the index contrast between the glass
substrate and the TCO is rather low, for simplicity we don’t explicitly consider the glass
substrate and assume that the cell consists of two layers only. That is, an absorbing
layer (e.g., a-Si:H) sits at the bottom and a transparent conducting oxide (TCO) layer
lies on the top. The goal is to optimize the random textures for the TCO layer and Si:H
layer. The reflection efficiency associated with the solar cell is related to the scattered
field. To define the reflectivity, we formulate the scattered field first.

Fig. 2.1. A typical structure of solar cell.

2.1. Optical scattering problem. In order to facilitate calculation, it is
assumed that the whole structure is periodic with the period Λ [14,19]. We also assume
the cell along the x3 direction is invariant. The solar cell model we consider is the
two-dimensional model whose bottom Γ1 and interface Γ2 are in random manners, as
shown in Figure 2.2.

Fig. 2.2. Schematic plot of the unbounded geometry.
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Let Ω be the sample space. For a random sample ω∈Ω, the bottom Γ1 and the
interface Γ2 are denoted as Γi(ω) :={(x1,x2)|x2=fi(ω,x1)}, i=1,2, and εr,1 and εr,2
are the permittivities in the absorbing layer and TCO layer, respectively. The domains
for the absorbing layer and TCO layer are given by:

D1(ω) :={(x1,x2)|x1∈ (0,Λ),f1(ω;x1)<x2<f2(ω;x1)}
D2(ω) :={(x1,x2)|x1∈ (0,Λ),f2(ω;x1)<x2<∞}.

We consider the transverse electric (TE) case for the electric field E=(0,0,u). The
random structure is illuminated by an incident time–harmonic plane wave ui with in-
cident angle θ, ui=eik0q2d·x=ei(αx1−βx2), i.e. α=k0q2 sinθ, β=k0q2 cosθ where k0 is
the free-space wavenumber, q2 :=

√
εr,2 is the refractive index of the TCO layer and

d= ⟨sinθ,−cosθ⟩ is the propagation direction. The total field u after the scattering
consists of the incident wave ui and the scattered wave us.

In order to formulate the scattering problem in a bounded domain, let us introduce
the Dirichlet-to-Neumann map on the line x2= b, where b> max

0<x1<Λ
f2(ω;x1). For a

fixed sample ω, by virtue of the well-known Rayleigh expansion, the scattered field
above Γ2(ω) can be expressed as

us(ω; ·)=
∞∑

n=−∞
ûsn(ω;b)e

iαnx1+iηn(x2−b), (2.1)

where ûsn(ω;b) are the Fourier coefficients of us(ω;x1,b), αn :=α+
2πn

Λ
for n∈Z and

ηn=


√
k20εr,2−α2

n, k>αn,

i
√
α2
n−k20εr,2, k<αn,

(2.2)

where k=k0q2. It then follows that for x2= b,

∂us

∂x2
(ω;x1,b)=

∞∑
n=−∞

iηnû
s
n(ω;b)e

iαnx1 =:T [us(ω;x1,b)]. (2.3)

By noting that u=ui+us and following a direct calculation, we obtain

∂u

∂x2
(ω;x1,b)=T (u(ω;x1,b))+g(x1),

where g(x1)=−2iβeiαx1−iβb.
We define Γ(ω) :=Γ1(ω)∪Γ2(ω) as the union of the random interface and bottom

boundary. With the help of the Dirichlet-to-Neumann map on the line x2= b>maxf2,
for each sample ω, the scattering field u∈L2(D) satisfies the following boundary value
problem in the bounded domain shown in Figure 2.3. We denote D :={(x1,x2)|0<x1<
Λ,f1(ω;x1)≤x2<b} and assume fi∈L2(0,Λ), i=1,2.

∆u(ω; ·)+k20εru(ω;·)=0, inD\Γ(ω),
u(ω;Λ,x2)=e

iαΛu(ω;0,x2), f1(ω;0)<x2<b,

u(ω;x1,f1(ω;x1))=0, 0<x1<Λ,

∂u

∂x2
(ω;x1,b)=T (u(ω;x1,b))+g(x1), 0<x1<Λ,

u+(ω;x1,f2(ω;x1))=u−(ω;x1,f2(ω;x1)), 0<x1<Λ,

∂νu+(ω;x1,f2(ω;x1))=∂νu−(ω;x1,f2(ω;x1)), 0<x1<Λ,

(2.4)
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Fig. 2.3. Schematic plot of the bounded geometry.

where ν denotes the unit normal vector along Γ2(ω) pointing toward D2(ω), u± and
∂νu± denote the limits of u and ∂νu from above and below the surface respectively, and
εr=εr,i, (x1,x2)∈Di, i=1,2.

2.2. Random surface representation. We assume that the random surface
Γ(ω) :={(x1,x2)|x2=f(ω;x1)} is a random perturbation of the reference surface with
the height x2=f

a in the sense that,

f(ω,x1)=f
a+h(ω;x1),

where the deviation of the reference surface h(ω;x1) is a stationary Gaussian process
with zero mean and a continuous and bounded Gaussian-type covariance function. Con-
sider a covariance function defined by inverse exponentiated squared Euclidean distance
for the modeling of the rough surface, given by

C(x,x′)=σ2exp(−|x−x′|2

ℓ2
),

where σ is the root mean square (RMS) height of the surface and ℓ is the correlation
length.

Since h(ω;x1) is a centered mean-square continuous stochastic random process, we
can represent the texture surface h(ω;x1) using Karhunen–Loève expansion [13]. We
denote c(|x−x′|)=C(x,x′). Since c(x1) is even, it follows that

c(x1)=σ
2

[
ĉ0
2
+

∞∑
p=1

ĉpcos

(
2pπx1
Λ

)]
,

where ĉ0, ĉ1, ĉ2, ·· · are the Fourier cosine expansion coefficients of the correlation
function c(x1). It can be shown explicitly that the covariance operator Kφ(x1) :=∫ Λ

0
c(x1−y1)φ(y1)dy1, possesses the eigenvalues

λj =
σ2Λĉj

2
, j=0,1,2, ·· · ,
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and the corresponding eigenfunctions are

φj(x1)=



√
1

Λ
, j=0,√

2

Λ
cos

(
2jπx1
Λ

)
, j >1,even,√

2

Λ
sin

(
2jπx1
Λ

)
, j >1,odd.

The Karhunen–Loève representation of the random process h(ω;x1) is given by

h(ω;x1)=
√
λ0ξ0(ω)

√
1

Λ

+

∞∑
j=1

√
λj

[
ξj,s(ω)

√
2

Λ
sin

(
2jπx1
Λ

)
+ξj,c(ω)

√
2

Λ
cos

(
2jπx1
Λ

)]
, (2.5)

where ξ0, ξj,c and ξj,s are i.i.d. Gaussian random variables with zero mean and unit
covariance.

Alternatively, by letting λj =σ
2λ̄j ,λ̄j =

Λĉj
2
, we may express the profile of the ran-

dom surface by

h(ω;x1)=σ · h̄(ω;x1), (2.6)

where

h̄(ω;x1)=
√
λ̄0ξ0(ω)

√
1

Λ

+

∞∑
j=1

√
λ̄j

[
ξj,s(ω)

√
2

Λ
sin

(
2jπx1
Λ

)
+ξj,c(ω)

√
2

Λ
cos

(
2jπx1
Λ

)]
.

Therefore we can represent Γi, i=1,2 as

Γi(ωi;σi,ℓi) :={(x1,x2) |x2=fai +σi · h̄i(ωi;x1)},

where σi, ℓi are the corresponding RMS and correlation length.

3. Optimal design of random rough surface

3.1. Optimal design problem. From the conservation of energy, it is clear
that for each sample ω, we have,

R(ω)+A(ω)=1,

where R(ω) and A(ω) are the reflectivity in D2 and the absorptance in D1, respectively.
The optimal design problem seeks to lower the reflection efficiency. For each sample ω,
the reflection efficiency is defined by

R(ω;f1,f2)=
∑
n∈N

ηn
η0

|rn(ω)|2,
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where N :=
{
n∈Z |k20εr,2−α2

n>0
}
is the set of indices for all propagating modes in the

Rayleigh expansion. We adopt the Rayleigh expansion to rewrite the scattered field as

us(ω; ·)=
∞∑

n=−∞
rn(ω)e

iαnx1+iηnx2 ,

where rn(ω)= û
s
n(ω;b)e

−iηnb are the scattered field coefficients, ûsn are the Fourier co-
efficients of us. By calculation, it follows that

rn(ω)=

{
ûn(ω;b)e

−iηnb, n ̸=0,

ûn(ω;b)e
−iβb−e−2ikb, n=0,

(3.1)

where ûn(ω; ·) are the Fourier coefficients of u(ω; ·).
Denote α=(α1,α2),αi=(σi,ℓi), i=1,2 where σi is the root mean square (RMS)

height of the surface and ℓi is the correlation length corresponding to Γi. We define the
cost function

J(α1,α2) :=E [R(ω;f1,f2)],

E[R] :=

∫
Ω

∑
n∈N

ηn
η0

|rn(ω)|2 dP (ω).

Recall that Ω and P denote the random sample space and the probability measure,
respectively. Then the optimal design problem is to minimize the mean reflectivity
J(α1,α2), or equivalently, to solve the optimization problem on a suitable region Uαi

∈
R2

min
αi∈Uαi

i=1,2
J(α1,α2). (3.2)

4. Derivation of the gradient
Theorem 4.1. For a given sample ω, the gradient ∇αR=[∂α1

R,∂α2
R]T can be

expressed as

∂α1R=
2

Λ

∑
n∈N

ηn
η0

Re

[
(ûn(ω;b)−ane

−2ikb+iβb) ·
∫ Λ

0

([0,∇α1f1(x1)]
T ·ν)

[∂u
∂ν

· ∂u
∗
n

∂ν

]
dx1

]
, (4.1)

∂α2R=
2k2

0

Λ

∑
n∈N

ηn
η0

Re

[
(ûn(ω;b)−ane

−2ikb+iβb) ·(εr,1−εr,2) ·
∫ Λ

0

[ūu∗
n]|(x1,f2) ·∇α2f2dx1

]
,

(4.2)

where a0=1 and an=0 if n ̸=0. u is the solution to the forward problem (2.4), and u∗n
solves the adjoint problem

∆u∗n(ω; ·)+k20 ε̄ru∗n(ω;·)=0, in D\Γ(ω),
u∗n(ω;0,x2)=e

iαΛu∗n(ω;Λ,x2),

u∗n(ω;x1,f1(x1))=0, 0<x1<Λ,

∂x2
u∗n(ω;x1,b)=T

∗(u(ω;x1,b))+e
iαnx1 ,

(u∗n)+(ω; ·)=(u∗n)−(ω; ·), on Γ2,

∂ν(u
∗
n)+(ω; ·)=∂ν(u∗n)−(ω; ·), on Γ2,

(4.3)

and [u∗nū]|(x1,f2) is the value of u∗nū on the surface Γ2(ω), T
∗ is the adjoint operator of

T satisfying that ⟨Tu,v⟩= ⟨u,T ∗v⟩, ⟨·,·⟩ stands for the inner product over the function
space L2 (0,Λ).
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4.1. Proof of Equation (4.1).
Proof. In order to prove Equation (4.1), consider the perturbed bottom f1, the

reflectivity for sample ω is

Rδ(ω;f1, ·)=
∑
n∈N

ηn
η0

|rn+δrn|2

=
∑
n∈N

ηn
η0

{
|rn|2+2Re[rnδrn]+ |δrn|2

}
.

From the definition of (3.1), it follows that δrn=O(δu) where δu is the perturbation
of u. Due to the perturbation analysis of the boundary value problem (2.4), we have
δu=O(δf1). Then it follows that |δrn|2=O((δf1)

2). We have

Rδ(ω;f1,·)=R(ω;f1, ·)+2
∑
n∈N

ηn
η0
Re[rnδrn]+O((δf1)

2).

We denote the perturbation of the reflectivity δR :=Rδ−R and the perturbation of the
scattered field δu, which is

δR=2
∑
n∈N

ηn
η0
Re[rnδrn]+O((δf1)

2). (4.4)

For each term rnδrn, by virtue of (3.1), it follows that

rnδrn=


ûn(ω;b) ·

1

Λ

∫ Λ

0

eiαnx1 δu(ω;x1,b)dx1, n ̸=0,(
ûn(ω;b)−e−2ikb+iβb

)
· 1
Λ

∫ Λ

0

eiαnx1 δu(ω;x1,b)dx1, n=0.

(4.5)

For any continuous vector V (x) defined on Γ1 and a small number δ, Γ1 is perturbed
to be Γδ

1, i.e. Γ
δ
1=Γ1+δ ·V . The region D1 becomes Dδ

1 and denote Dδ =D2∪Dδ
1 and

Γδ =Γδ
1∪Γ2. On the new region, the total field uδ satisfies



∆uδ(ω; ·)+k20εruδ(ω;·)=0, in Dδ \Γδ(ω),
uδ(ω;Λ,x2)=e

iαΛuδ(ω;0,x2),

uδ(ω;x1,f1(x1))=0, 0<x1<Λ,

∂x2u
δ(ω;x1,b)=T (u

δ(ω;x1,b))+g,

uδ+(ω; ·)=uδ−(ω;·), on Γ2,

∂νu
δ
+(ω; ·)=∂νuδ−(ω; ·), on Γ2.

(4.6)

Denote H1
0 (D)={u∈H1(D)|u=0 on Γ1,u(Λ,x2)=e

iαΛu(0,x2)}. The bilinear form for
Equation (2.4) is

a(u,w)=

∫
D

∇u ·∇w̄−k20εruw̄dx−⟨Tu,w⟩.

The weak solution for (2.4) is u, such that

a(u,w)= ⟨g,w⟩, (4.7)
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for all w∈H1
0 (D).

The weak solution for (4.6) is aδ(uδ,wδ)= ⟨g,wδ⟩ for all wδ ∈H1
0 (D), where

aδ(uδ,wδ)=

∫
Dδ

∇uδ ·∇w̄δ−k20εruδwδdx−⟨Tuδ,wδ⟩.

By extending the definition of V (x) to the closure of D1, we can define a continuous
C2 map ψ from D1 to Dδ

1: X=ψ(Y )=Y +δ ·V (Y ),Y ∈D1, where ψ is identical on the
boundary of D1 (Denote the inverse map of ψ as ϕ(X) :Dδ

1 to D1).

Let ũδ =uδ(ψ(y)), w̃δ =wδ(ψ(y)), then ũδ, w̃δ ∈D, from the direct calculation we
have

aδ(uδ,wδ)=

∫
D

[ 2∑
m,n=1

bmn
∂ũδ

∂ym

∂w̃δ

∂yn
−k20εrũδw̃δ

]
Jdy−⟨T ũδ,w̃δ⟩,

since ∂uδ

∂x1
=
∑2

m=1
∂ũδ

∂ym

∂ϕm

∂x1
, ϕ=[ϕ1,ϕ2]

T , J =detDψ, bmn=
∑2

i=1
∂ϕm

∂xi

∂ϕn

∂xi
. Define a

new bilinear form

ãδ(ũδ,w)=

∫
D

[ 2∑
m,n=1

bmn
∂ũδ

∂ym

∂w

∂yn
−k20εrũδw

]
Jdy−⟨T ũδ,w⟩,

for ũδ,w∈H1
0 (D). Then (4.7) is equivalent to finding ũδ ∈H1

0 (D) such that

ã(ũδ,w)= ⟨g,w⟩, (4.8)

for all w∈H1
0 (D). From (4.7) and (4.8), it is easily seen that ũδ−u satisfies

a(ũδ−u,w)=−(ãδ(ũδ,w)−a(ũδ,w)).

For the right-hand side,

aδ(uδ,wδ)=

∫
D

[ 2∑
m,n=1

bmn
∂ũδ

∂ym

∂w̃δ

∂yn
−k20εrũδw̃δ

]
Jdy−⟨T ũδ,w̃δ⟩.

From direct calculation the Jacobian matrix J can be written as:

J =1+δ∇·V +O(δ2),

(bmn)J = I−δ(b̃mn)+O(δ2),

where I is the 2 × 2 identity matrix and

(b̃mn)=∇V +(∇V )T −(∇·V )I. (4.9)

Therefore we have

a(ũδ−u,w)= δ
∫
D

2∑
m,n=1

b̃mn
∂ũδ

∂ym

∂w

∂yn
+k20εr(∇·V )uwdy+O(δ2).

Denote u′= lim
δ→0

ũδ−u
δ

. Then u′ satisfies the following equations on D.

a(u′,w)=

∫
D

2∑
m,n=1

bmn
∂ũδ

∂ym

∂w

∂yn
+k20εr(∇·V )uwdy. (4.10)
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Apply u=w=0 on Γ1 to get
∫
Γ1
(V ·∇w̄)∂u∂ν −(∇u ·∇w̄)(V ·ν)ds=0. We then obtain

a(u′,w)=

∫
D

∇(V ·∇u) ·∇w̄−k20εr(V ·∇ū)w̄dy for any w∈H1
0 (D)∩H2(D).

Then u′ satisfies the following boundary value problem,
∆u′(ω;·)+k20εrδu(ω; ·)=(∆+k20εr)(V −∇u), in D\Γ(ω),
u′(ω;0,x2)=e

iαΛu′(ω;Λ,x2),

u′(ω;x1,f1(x1))=0, 0<x1<Λ,

∂x2
u′(ω;x1,b)=T (u

δ(ω;x1,b)), 0<x1<Λ.

Let u0=u′−V ·∇u, then u0=u′ on x2= b, and u0 satisfies

∆u0(ω;·)+k20εru0(ω; ·)=0, in Dδ
Λ \Γ(ω),

u0(ω;0,x2)=e
iαΛu0(ω;Λ,x2),

u0(ω;x1,h(x1))=−(V ·ν)∂u∂ν , 0<x1<Λ,

∂x2
u0(ω;x1,b)=T (u

0(ω;x1,b)),

u0+(ω; ·)=u0−(ω; ·), on Γ2,

∂νu
0
+(ω;·)=∂νu0−(ω;·), on Γ2.

(4.11)

Multiplying the solution u∗n(ω; ·) of the boundary value problem in the adjoint prob-
lem (4.3) by u0(ω; ·) and multiplying u∗n(ω; ·) by the complex conjugate for solution
u0(ω;·) of (4.11), then integrating over the domain Di,i=1,2 respectively, it follows
that∫
Di

(∆u∗n(ω;·)+k20εru∗n(ω;·))u0(ω; ·)−u∗n(ω;·)(∆u0(ω; ·)+k20εru0(ω;·))dx=0, i=1,2.

By applying Green’s formula and imposing the boundary conditions, we obtain

−
∫ Λ

0

(V ·ν)

[
∂u(ω; ·)
∂ν

· ∂u
∗
n(ω;·)
∂ν

]
dx1+

∫
Γ2

∂u∗n(ω;·)
∂ν

u0(ω; ·)−u∗n(ω; ·)
∂u0(ω;·)
∂ν

ds=0,

∫
Γ2

∂u∗n(ω; ·)
∂ν

u0(ω; ·)−u∗n(ω; ·)
∂u0(ω; ·)
∂ν

ds+

∫ Λ

0

u0(ω;·)(T ∗(u∗n(ω; ·)+eiαnx1))

−u∗n(ω; ·)T (u0(ω; ·))dx1=0.

Adding the above equations together yields∫ Λ

0

eiαnx1 u0(ω;x1,b)dx1=

∫ Λ

0

(V ·ν)∂u
∂ν

∂u∗n
∂ν

dx1,

since T ∗ is the adjoint operator of T . Due to formula (4.4), we have

δR=
2

Λ

∑
n∈N

ηn
η0
Re[(ûn(ω;b)−ane−2ikb+iβb) ·

∫ Λ

0

(V ·ν)
[
∂u

∂ν

∂u∗n
∂ν

]
dx1]+O(δ2).

By choosing V =[0,
∂f1
∂σ1

], we have

∂R

∂σ1
=

2

Λ

∑
n∈N

ηn
η0
Re[(ûn(ω;b)−ane−2ikb+iβb) ·

∫ Λ

0

([0,
∂f1
∂σ1

] ·ν)
[
∂u

∂ν

∂u∗n
∂ν

]
dx1].
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Similarly, choosing V =[0,
∂f1
∂ℓ1

], we have

∂R

∂ℓ1
=

2

Λ

∑
n∈N

ηn
η0
Re[(ûn(ω;b)−ane−2ikb+iβb) ·

∫ Λ

0

([0,
∂f1
∂ℓ1

] ·ν)
[
∂u

∂ν

∂u∗n
∂ν

]
dx1],

Therefore,

∂α1R=
2

Λ

∑
n∈N

ηn
η0
Re[(ûn(ω;b)−ane−2ikb+iβb) ·

∫ Λ

0

([0,∇α1f1(x1)]
T ·ν)

[
∂u

∂ν

∂u∗n
∂ν

]
dx1].

4.2. Proof of equation (4.2).
Proof. To prove (4.2), we first derive the shape derivative ∇f2R. To this end,

one needs to derive the perturbation of the reflectivity δR due to the perturbation of
the interface by δf2. When the interface Γ2 is perturbed to be fδ2 :=f2+δf2 so that
the permittivity in the solar cell becomes εδr :=εr+δεr. The perturbed reflectivity for
sample ω is

Rδ(ω;·,f2)=
∑
n∈N

ηn
η0

|rn+δrn|2

=
∑
n∈N

ηn
η0

{
|rn|2+2Re[rnδrn]+ |δrn|2

}
.

From the definition of (3.1), it follows that δrn=O(δu) where δu is the perturbation
of u. Due to the perturbation analysis of the boundary value problem (2.4), we have
δu=O(δεr) and δεr=(εr,1−εr,2) ·δf2. Then it follows that |δrn|2=O((δf2)

2). We have

Rδ(ω; ·,f2)=R(ω;·,f2)+2
∑
n∈N

ηn
η0
Re[rnδrn]+O((δf2)

2).

As a result of perturbation analysis, δu satisfies the following equations:

∆δu(ω; ·)+k20εrδu(ω;·)=−k20δεru(ω; ·), inD\Γ(ω),
δu(ω;Λ,x2)=e

iαΛδu(ω;0,x2),

δu(ω;x1,f1(x1))=0, 0<x1<Λ,

∂δu

∂x2
(ω;x1,b)=T (δu(ω;x1,b)), 0<x1<Λ,

(δu)+(ω;x1,f2(ω,x1))=(δu)−(ω;x1,f2(ω,x1)), 0<x1<Λ,

(∂νδu)+(ω;x1,f2(ω,x1))=(∂νδu)−(ω;x1,f2(ω,x1)), 0<x1<Λ.

(4.12)

By multiplying the PDE in the adjoint problem (4.3) by δu and the PDE in (4.12) by
u∗n, and integrating over the domain D1 and D2 respectively, it follows that∫

Dj

(∆u∗n+k
2
0εru

∗
n) δu−u∗n (∆δu+k20εrδu)dx=

∫
Dj

u∗nk
2
0δεrudx, j=1,2.

An application of the Green’s second identity for the left-hand sides and adding the
above two equations together, yields∫

Γ2(ω)

(∂νu
∗
n)−(δu)−−(u∗n)−(∂νδu)−ds+

∫
Γ2(ω)

(u∗n)+(∂νδu)+−(∂νu
∗
n)+(δu)+ds
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+

∫ Λ

0

eiαnx δu(ω;x1,b)dx1=k
2
0

∫
D1∪D2

δ̄εrūu
∗
n dx.

This can be further reduced to the following from the continuity condition along the
interface Γ2(ω): ∫ Λ

0

eiαnx δu(ω;x1,b)dx1=k
2
0

∫
D

δ̄εrūu
∗
n dx.

Consequently, in light of (4.4) and (4.5), the perturbation of the reflectivity is expressed
by

δR=
2k20
Λ

∑
n∈N

ηn
η0
Re

[
(ûn(ω;b)−ane−2ikb+iβb) ·

∫
D

δ̄εrūu
∗
n dx

]
+O(δf22 ).

It is observed that for any test function v∈L2(D), the inner product

(v,δεr) :=

∫
D

v(x) δεr(x)dx=

∫
symdiff(D1,Dδ

1)

v(x) δεr(x)dx.

Here D1 and Dδ
1 are the corresponding absorbing layers with the interfaces f2 and fδ2 ,

respectively, and the symmetric difference of two sets D1 and Dδ
1 is given by

symdiff(D1,D
δ
1)=(D1∪Dδ

1)\(D1∩Dδ
1).

Now in view of the fact that the relative permittivity of the absorbing and TCO layers
are εr,1 and εr,2 respectively, the above inner product can be simplified as

(v,δεr)=

∫ Λ

0

v(x1,f2(x1)) (εr,1−εr,2) ·δf2 dx, (4.13)

for an infinitesimal δf2. Then we get

δR=
2k20
Λ

∑
n∈N

ηn
η0
Re

[
(ûn(ω;b)−ane−2ikb+iβb) ·(εr,1−εr,2) ·

∫ Λ

0

[ūu∗n]|(x1,f2) ·δf2dx1
]

+O(δf22 ).

The desired formula (4.2) for ∇α2
R then follows by the chain rule.

4.3. The stochastic gradient descent method. We will use gradient-based
methods to solve the optimization problem (3.2), the derivation of the gradient is given
in the previous section. Stochastic gradient descent (SGD) method [15–17] is a widely
used method. In gradient descent (GD) method we need to compute the gradient ∇αJ
in every iteration, however in SGD method we only need to compute the gradient ∇αR
for the iteration. Although the SGD method can effectively improve the efficiency of
the algorithm, due to the small number of sampling, the results of the algorithm have
serious oscillations. On the part of optimization calculation, we choose to adopt the
mini-batch SGD method to reduce the oscillation. The algorithms for GD, SGD and
mini-batch SGD are given as follows.
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Algorithm 1 The algorithm for GD method

1: Initialize α and choose N large enough
2:
3: for iteration=1,2,. .. do
4:
5: for sample=1,2,. ..,N do
6:
7: choose random realization of Γ1 and Γ2
8:
9: solve the boundary value problem (2.4) and adjoint problem (4.3)

10:
11: Compute sample gradient ∇αR=∇αR(ωi)
12:
13: end for
14:

15: ∇αJ = 1
N

N∑
i=1

∇Rα(ωi)

16:
17: update α=α− l∗∇αJ , (where l is the step length)
18:
19: end for
20:
21: Return α
22:

Algorithm 2 The algorithm for SGD method

1: Initialize α
2:
3: for iteration=1,2,. .. do
4:
5: choose random realization of Γ1 and Γ2
6:
7: solve the boundary value problem (2.4) and adjoint problem (4.3)
8:
9: Compute sample gradient ∇αR=∇αR(ωi)

10:
11: update α=α− l∗∇αR, (where l is the step length)
12:
13: end for
14:
15: Return α
16:

Algorithm 3 The algorithm for mini-batch SGD method

1: Initialize α
2:
3: for iteration=1,2,. .. do
4:
5: for sample=1,2,. ..,Nm, (Nm can be much smaller than N do)
6:
7: choose random realization of Γ1 and Γ2
8:
9: solve the boundary value problem (2.4) and adjoint problem (4.3)

10:
11: Compute sample gradient ∇αR=∇αR(ωi)
12:
13: end for
14:

15: G := 1
Nm

Nm∑
i=1

∇Rα(ωi)

16:
17: update α=α− l∗G, (where l is the step length)
18:
19: end for
20:
21: Return α
22:
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5. Numerical experiments

In this section, we present several numerical examples to demonstrate the effi-
ciency of the numerical algorithms for solving the optimal design problem. Monte-Carlo
method is used for sampling the probability space. We stop the iteration steps when
the gradient is less than 0.05. The first numerical example tests the efficiency of mini-
batch stochastic gradient descent method for solving the optimal problem compared to
gradient descent method and stochastic gradient method. In the second example, we
show the result for the optimal problem when the incident wave has a larger wavelength
in which case the absorptance is much smaller.

In all examples, the height of the reference surface, or equivalently the average
thickness of the absorbing layer, is set as a=300 nm, and the size of the periodic cell
Λ=1500 nm.

Example 1. Consider the optimal design under the normal incidence, that is, the inci-
dent angle θ=0. Assume that the free space wavenlength λ0=650 nm. The refractive
index of the TCO layer is 1.915, or equivalently, its relative permittivity εr,1=3.667
[7, 9, 10]. The refractive index of the absorbing layer is set as 4.2+0.045i when
λ0=650 nm [18]. This implies that the relative permittivity εr,2=17.6380+0.3780i.
We consider the incident angle case θ=0. The initial condition is chosen to be
α1=(σ1,ℓ1)=(35nm,20nm), α2=(σ2,ℓ2)=(35nm,20nm). We apply the gradient de-
scent method, stochastic gradient method and mini-batch SGD method to solve the
optimization problem (3.2) separately. The results are shown in Figure 5.1 to Figure
5.3. The optimal parameters are listed in Table 5.1.

Fig. 5.1. The cost function J(α) for all iterations using gradient descent method.

Fig. 5.2. The cost function J(α) for all iterations using stochastic gradient descent method.
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Fig. 5.3. The cost function J(α) for all iterations using mini-batch stochastic gradient descent
method.

optimal result(nm) σ1(nm) ℓ1(nm) σ2(nm) ℓ2(nm) reflectivity
GD 55 67 40 17 0.370
SGD 49 71 38 26 0.364

mini-batch SGD 44 65 45 24 0.368

Table 5.1. The optimal parameters for Monte-Carlo method, stochastic gradient method and
mini-batch SGD method.

Table 5.1 shows that the results obtained form stochastic gradient method, mini-
batch SGD method and gradient descent method are similar to each other, which is
around 0.37. The reflectivity is diminished a lot compared to the reflectivity of the flat
structure, which is 0.76 [19]. The gradient descent method is most stable in the three
methods, however, the computational cost of the gradient descent method is much more
than the other two methods. In the above example, we choose Monte-Carlo sample size
N =1000. The iteration stops after 7 steps, then we need to solve 1000 ·7 boundary value
problems and the corresponding adjoint problems in Algorithm 1. When we employ the
stochastic gradient method, only 1 sample needs to be calculated. It is required to solve
78 boundary value problems and the corresponding adjoint problems in Algorithm 2. In
Algorithm 3, we choose the sample size Nm=20. The computational cost for the mini-
batch stochastic gradient descent method is to solve 59 ·20 boundary value problems
and the corresponding adjoint problems.

The result of the reflectivity for all iterations by the mini-batch stochastic gradi-
ent descent method has less fluctuations compare to stochastic gradient method. For
each iteration in the mini-batch stochastic gradient method, it is easy to accelerate the

computation of the average gradient 1
Nm

Nm∑
i=1

∇Rα(ωi) by using parallel computing skill.

The mini-batch method is more stable and time efficient, so the mini-batch stochastic
gradient descent method is the preferred method for our optimization problem.

Example 2. In this example, we consider the more challenging case when the in-
cident wave has a larger wavelength. Since the incident wave has a larger wave-
length, the reflectivity is relative larger and it is more difficult to find the optimal
approach. We consider the case when the wave length is 720 nm. The refractive
index of the absorbing layer is set as 4+0.0035i [18]. The refractive index of the
TCO layer is 1.915, or equivalently, its relative permittivity εr,1=3.667. The refrac-
tive index of the absorbing layer is 4+0.0035i. The initial condition is chosen to be
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α1=(σ1,ℓ1)=(35nm,20nm), α2=(σ2,ℓ2)=(35nm,20nm). We consider the normal in-
cident case θ=0. The optimal results obtained from the gradient method, the stochastic
gradient method and the mini-batch gradient method are shown in Figure 5.4 to Figure
5.6. The optimal parameters are listed in Table 5.2.

Fig. 5.4. The cost function J(α) for all iterations using gradient descent method.

Fig. 5.5. The cost function J(α) for all iterations using stochastic gradient descent method.

Fig. 5.6. The cost function J(α) for all iterations using mini-batch stochastic gradient descent
method.

optimal result(nm) σ1(nm) ℓ1(nm) σ2(nm) ℓ2(nm) reflectivity
GD 40 37 38 27 0.703
SGD 52 44 46 31 0.712

mini-batch SGD 49 38 50 32 0.705

Table 5.2. The optimal parameters for Monte-Carlo method, stochastic gradient method and
mini-batch SGD method.
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The reflectivities of the optimal structure obtained from the gradient descent
method, stochastic gradient method and the mini-batch stochastic gradient method
are around 0.7, in comparison, the reflectivity of the flat structure is 0.98 [19]. The
mini-batch stochastic gradient method and the stochastic gradient method reduce the
computational cost dramatically compared with the gradient descent method. In ad-
dition, the mini-batch stochastic gradient method is more stable than the stochastic
gradient descent method. From the second example, we can see that the mini-batch
gradient descent method is indeed a relatively stable method with less computational
cost. It is reasonable to choose the mini-batch stochastic gradient method to get the
optimal result for our problem.
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[4] J.C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S.W. Glunz, and G. Willeke,
Increasing the efficiency of fluorescent concentrator systems, Sol. Energy Mat. Sol. Cells,
93:176–182, 2009. 1

[5] C. Rockstuhl and F. Lederer, Photon management by metallic nanodiscs in thin film solar cells,
Appl. Phys. Lett., 94:213102, 2009. 1
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