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REACTION–DIFFUSION EQUATIONS DERIVED FROM KINETIC
MODELS AND THEIR TURING INSTABILITY∗

MARZIA BISI† AND ROMINA TRAVAGLINI‡

Abstract. We consider a binary mixture composed by a polyatomic (diatomic) and a monatomic
gas, diffusing in a gaseous background (typically, the atmosphere), and undergoing reversible and ir-
reversible chemical reactions. We show the derivation of proper reaction–diffusion equations for the
number densities of the constituents, starting from suitably rescaled kinetic Boltzmann equations. The
dominant process is assumed to be the elastic scattering with the host medium, while we present two
different scalings for the various chemical reactions: the first option leads to a system of three reaction–
diffusion equations, while the second regime leads to two reaction–diffusion equations similar to the
classical Brusselator system. Then, we study the Turing instability properties of such macroscopic sys-
tems, showing their dependence on particle masses, on collision frequencies of the Boltzmann operators,
and, above all, on particle internal energies.
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1. Introduction
Reaction–diffusion equations are extensively used in mathematical physics, since

they often constitute simple but reliable models able to describe time and space evolution
of physical quantities. An excursus of the basic models of this type used in mathematical
biology, with particular reference to the epidemiology (diffusion of infectious diseases),
may be found in the books [29–31,46]. Reaction–diffusion systems appear also in ecology
[8], in the physics of hot plasmas [47], in astrophysics [48], and of course in chemistry [23].

Mathematical aspects of these systems, as existence and uniqueness of solutions
for Cauchy–Dirichlet problems, stability of solutions, symmetry properties have been
extensively investigated, see for instance [22, 34, 45]. An important feature worth to be
analyzed is the Turing instability [44], occurring when a steady state which is stable in
space homogeneous conditions becomes unstable in presence of diffusion. This situation
generates the formation of patterns, namely solutions of the reaction–diffusion equations
that turn out to be heterogeneous in space (with some regular or periodic structure)
and stable in time. This kind of instability has been recovered in several problems, as
models for morphogenesis [27], prey–predator systems [26], epidemic models [14], neural
networks [50], models for metal growth [7] or for multiple sclerosis [28], just to mention
some of them.

Many of such reaction–diffusion systems have been built up starting from phe-
nomenological considerations, therefore diffusion coefficients and parameters appearing
in the reaction part are taken as arbitrary constants, and are not directly related to
microscopic interactions between cells, preys and predators, etc. Even the physical or
biological meaning of some reaction terms sometimes is not very clear, and some tools
enabling to relate them to the microscopic activities would be very welcome.

In this respect, kinetic theory, originally proposed by Boltzmann to describe rarefied
gas dynamics, may be useful. Indeed, it is based on a mesoscopic approach, providing
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the evolution of the distribution function of particles (or individuals); the Boltzmann
collision term is an integral operator taking into account the interaction mechanisms at
the microscopic level. Major macroscopic fields can be recovered as suitable moments
of the distribution function. In proper hydrodynamic regimes, a closure of macroscopic
equations may be obtained resorting to an asymptotic Chapman–Enskog procedure [10].
In fluid–dynamics, the most common hydrodynamic systems are Euler and Navier–
Stokes equations [9].

In the framework of reacting gas mixtures, the connection between reactive ki-
netic equations and reaction–diffusion systems has been explored starting from BGK or
Fokker–Planck models [41, 42], from discrete velocity models [49], and also from Boltz-
mann operators for a single bimolecular chemical reaction [5]. Rigorous results on this
kind of limit have been recently proved in [16, 33]. Under suitable assumptions on the
macroscopic fields and on the distribution functions, the diffusive asymptotic limit leads
to reaction–diffusion systems of Maxwell–Stefan type [1, 2]. Also, in different physical
frameworks, some attempts to derive reaction–diffusion equations from kinetic equations
or as mean–field limit of interacting particle systems have been performed [11,43].

This paper fits into this research line. We consider a gaseous mixture with several
species, undergoing elastic collisions, inelastic transitions and chemical reactions, and,
following the strategy suggested in the paper [5], we derive reaction–diffusion equations
from the kinetic level in two different hydrodynamic limits. Specifically, we consider two
species, one monatomic and the other polyatomic (diatomic) diffusing in a background
medium (typically, the atmosphere). The host medium is itself a mixture, constituted
by particles with different masses, and as a whole it is assumed accommodated at a
Maxwellian distribution, with fixed mean velocity and temperature. The kinetic system
is composed by three Boltzmann equations, one for the distribution of the monatomic
species and the others for the distributions of the two components of the diatomic gas,
each one with its value of internal energy. Intra–species and inter–species elastic scat-
tering is allowed, as well as elastic scattering with the background medium. Inelastic
transitions may also occur, where polyatomic particles pass from one energy state to
the other. Moreover, two bimolecular and reversible chemical reactions are taken into
account, involving the considered monatomic and polyatomic constituents and the host
medium as well. In the diffusive limit, the dominant process is assumed to be, as usual,
the elastic scattering with the background. Two different regimes are explored, corre-
sponding to different scales assumed for the chemical reactions. The first one, where all
reactions have the same order of magnitude, leads to a system of three reaction–diffusion
equations for the number densities of the monatomic gas and the two components of
the polyatomic one. The second one, where a reaction is assumed to be faster than the
other chemical and inelastic interactions, allows to explicitly get one density in terms
of the other two, so that the final reaction–diffusion system is constituted by only two
equations, similar to the classical Brusselator system [35]. This reduction resembles
the classical quasi–steady–state approximation, a standard procedure in the study of
chemical reaction kinetics in situations where certain species have a very short time of
existence and therefore their variation may be neglected, thus reducing the number of
equations. A detailed description of such kind of reductions can be found in [39, 40]
and it is applied in the particular case of the Brusselator in [12].

Diffusion coefficients and reaction terms of our macroscopic systems explicitly de-
pend on particle masses, background density, collision frequencies of all interaction
phenomena, and internal energies of the species. We investigate the occurrence of Tur-
ing instability by varying these microscopic parameters. More precisely, for the system
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of two reaction–diffusion equations we are able to find explicit conditions on the internal
energies allowing (or preventing) the pattern formation; the analytical results are also
validated by some numerical simulations. An analogous study is then performed also
for the system of three equations, that is much more involved, since the number of coef-
ficients is higher and the Turing instability conditions are more complicated. We apply,
in this case, results derived in [38], where a generalization for Turing bifurcation un-
der certain conditions in n-dimensional systems is provided. Analogies and differences
between the instability properties of our two systems are commented on.

In more detail, the paper is organized as follows. In Section 2 we present the physical
setting we are considering, and the kinetic Boltzmann equations with explicit collision
operators for elastic, inelastic, and chemical encounters for involved components are
written. Section 3 is devoted to the diffusive asymptotic limit leading from the kinetic
level to a closed set of three reaction–diffusion equations for species number densities.
Then, in Section 4 a modified hydrodynamic regime is explored, obtaining a reduced
set of only two macroscopic equations. In Section 5, the analysis of stability properties
of the systems derived in Sections 3 and 4 is shown. Finally, Section 6 contains some
concluding remarks.

2. Physical setting and Boltzmann equations
We consider a mixture of two rarefied gases diffusing in a background medium: one

species Y is supposed to have two possible energy levels, E1 and E2, thus, according
to the way of modelling proposed in [19, 21], it can be decomposed into two different
components, Y1 and Y2; the other gas Z is monatomic and has only one energy level,
EZ . Particle masses of these gases are denoted by mY and mZ , respectively.

The host medium, which from the physical point of view could be seen as the
atmosphere, is a gaseous mixture and is much denser than the considered species Y1,
Y2, Z. Specifically, in this model the background is provided by a mixture of three gas
species A, B and C, with different particle masses mA, mB , mC . These background
species are supposed to have only one possible energy level, expressed by EA, EB , EC ,
respectively. Their distributions are supposed to be fixed Maxwellians, with constant
number densities nA, nB , nC , temperature equal to one and zero mean velocity:

fJ(v)=nJMJ(v) MJ(v)=nJ

(mJ

2π

) 3
2

exp

(
−mJ |v|2

2

)
J =A,B,C.

We shall write and investigate (in different asymptotic limits) kinetic Boltzmann
equations for the evolution of distribution functions of species Y1, Y2, Z, denoted by f1,
f2, fZ , respectively. Besides on molecular velocity v, they depend also on time t and
on the space variable x. Particles, in addition to elastic collisions with the background
medium and among themselves, are subject to the following inelastic transitions or
chemical reactions

A+Y1→A+Y2, (2.1)

Z+Y2→Z+Y1, (2.2)

B+Y1⇆A+C, (2.3)

Y1+Y1⇆Z+B. (2.4)

The interactions (2.1) and (2.2) are inelastic transitions where particles of species Y ,
colliding with the background (in (2.1)) or with the other species Z (in (2.2)), pass from
one energy state to the other, namely a particle of the component Y1 transforms itself
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into a particle of the component Y2 or vice versa. The collisions (2.3) and (2.4) represent
bimolecular and reversible chemical reactions: (2.3) describes creation or disappearance
of a particle of species Y1 through interactions with the background medium; in (2.4) a
pair of particles Y1 produces a particle Z and a background particle or the other way
round. From the physical point of view, the reactions (2.1)–(2.4) represent a simple set of
bimolecular interactions (that can be easily modelled by Boltzmann operators) allowing
to recover, in a suitable hydrodynamic limit that will be detailed in Section 4, the well
known Brusselator system [35]. External production of particles is provided by chemical
interactions with the fixed background, and passages from one component to another
(with the same mass) occur through inelastic transitions. The possibility of modelling
auto–catalytic reactions of the Brusselator system introducing an intermediate unstable
state Z has also been outlined in [24], by one of the authors of the original paper [35].

The kinetic Boltzmann equations for distributions fI(t,x,v), with I=1,2,Z, may
be cast as

∂fI
∂t

+v ·∇xfI =
∑

J=A,B,C

QI
EL(fI ,nJMJ)+

∑
K=1,2,Z

QI
EL(fI ,fK)+QI

IN (f)+QI
CH(f).

(2.5)
Here QI

EL(fI ,nJMJ) denotes the collision operator for the elastic scattering between
the considered species I and one background species J =A,B,C. Then, the operator
QI

EL(fI ,fK) describes the elastic collisions between particles of the species I and parti-
cles of only one other species K=1,2,Z, including of course the case K= I. Finally, the
operator QI

IN (f) takes into account the effects on species I due to inelastic transitions
(2.1), (2.2), and QI

CH(f) takes into account the effects due to the chemical reactions
(2.3), (2.4); here f denotes the whole set of distributions, the precise dependencies will
be specified here below.

Elastic operators between a gas component I and the background are

QI
EL(fI ,nJMJ)(v)=

∫
R3×S2

σIJ(g,Ω̂ ·Ω̂′)g
[
fI(v

′)nJMJ(w
′)−fI(v)nJMJ(w)

]
dwdΩ̂′

(2.6)
for I=1,2,Z and J =A,B,C, while elastic operators between a gas component I and
another component K are

QI
EL(fI ,fK)(v)=

∫
R3×S2

σIK(g,Ω̂ ·Ω̂′)g
[
fI(v

′)fK(w′)−fI(v)fK(w)
]
dwdΩ̂′. (2.7)

Here, (v,w) stand for the pre–collision velocities and (v′,w′) for the post–collision ones;
in addition, g=gΩ̂=v−w is the relative velocity vector, where g is its modulus and

Ω̂ its direction, and Ω̂
′
is thus the direction of the post–collision relative velocity. The

functions σIJ(g,Ω̂ ·Ω̂′) and σIK(g,Ω̂ ·Ω̂′) denote the so–called differential cross sections,
depending on the relative speed and on the impact parameter of the collision. More
details on such operators may be found in classical kinetic theory books [9, 10]. A
Maxwell molecule assumption will be adopted throughout the paper, implying that∫

S2

σIJ(g,Ω̂ ·Ω̂′)gdΩ̂′ :=νIJ ,

∫
S2

σIK(g,Ω̂ ·Ω̂′)gdΩ̂′ :=νIK , (2.8)

where νIJ and νIK are constant collision frequencies.
As concerns inelastic transitions, components Y1 and Y2 are involved in both inter-

actions (2.1) and (2.2), therefore their inelastic operators may be split into two parts

QI
IN (f)=QI

IN (f1,f2,nAMA)+QI
IN (f1,f2,fZ), I=1,2.
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Inelastic collision operator for Y1 related to the collision (2.1) is simply provided by a
loss term as

Q1
IN (f1,f2,nAMA)(v)=−

∫
R3×S2

H
(
g2−δA2

A1

)
σA2
A1(g,Ω̂ ·Ω̂′)gf1(v)nAMA(w)dwdΩ̂′.

(2.9)
Here and below the notation δHK

IJ stands for

δHK
IJ =

2∆EHK
IJ

µIJ
, (2.10)

where µIJ =mImJ/(mI +mJ) is the reduced mass and ∆EHK
IJ =EH +EK−EI −EJ .

Moreover, in (2.9) the symbol H(·) is the unit step Heaviside function, taking into
account the fact that an inelastic transition AI +AJ →AH +AK occurs only if the
ingoing kinetic energy 1

2 µIJ g
2 overcomes the potential barrier ∆EHK

IJ . Again σHK
IJ (g,Ω̂ ·

Ω̂′) denotes the differential cross section of the considered transition.
On the other hand, collision (2.1) produces a gain term for component Y2, that,

according to the derivation of reacting operators presented in [36], may be cast as

Q2
IN (f1,f2,nAMA)(v)=

∫
R3×S2

H
(
g2−δA1

A2

)
σA2
A1(g

′,Ω̂ ·Ω̂′)
(g′)2

g
f1(v

′)nAMA(w
′)dwdΩ̂′.

(2.11)
Analogous operators are in order for transition (2.2), with a gain term for Y1 and a loss
term for Y2:

Q1
IN (f1,f2,fZ)(v)=

∫
R3×S2

H
(
g2−δZ2

Z1

)
σZ1
Z2(g

′,Ω̂ ·Ω̂′)
(g′)2

g
f2(v

′)fZ(w
′)dwdΩ̂′, (2.12)

Q2
IN (f1,f2,fZ)(v)=−

∫
R3×S2

H
(
g2−δZ1

Z2

)
σZ1
Z2(g,Ω̂ ·Ω̂′)gf2(v)fZ(w)dwdΩ̂′. (2.13)

The species Z is involved only in the inelastic transition (2.2), and its inelastic Boltz-
mann operator may be cast as

QZ
IN (f)=QZ

IN (f1,f2,fZ)(v)=

∫
R3×S2

[
H
(
g2−δZ2

Z1

)
σZ1
Z2(g

′,Ω̂ ·Ω̂′)
(g′)2

g
fZ(v

′)f2(w
′)

−H
(
g2−δZ1

Z2

)
σZ1
Z2(g,Ω̂ ·Ω̂′)gfZ(v)f2(w)

]
dwdΩ̂′. (2.14)

More details on the construction of the Boltzmann gain and loss terms for non–
conservative interactions may be found, for instance, in [19, 36]. In this paper we shall
need only the computations of contributions appearing in number density equations,
that, for Maxwell molecules, become manageable resorting to the Jacobian of the trans-
formation between pre- and post–collision velocities:

H
(
(g′)2−δIJHK

)
dv′dw′dΩ̂=

g′

g
H
(
g2−δHK

IJ

)
dvdwdΩ̂′. (2.15)

Boltzmann collision operators relevant to chemical reactions (2.3) and (2.4) are
more standard, since bimolecular reversible reactions have been extensively studied in
kinetic theory [5, 6, 21]. Component Y1 is involved in both reactions (2.3) and (2.4),
therefore the relevant operator is the sum of two terms

Q1
CH(f)=Q1

CH(f1,nAMA,nBMB ,nCMC)+Q1
CH(f1,fZ ,nBMB),
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where the first one, taking into account the reaction (2.3), is provided by

Q1
CH(f1,nAMA,nBMB ,nCMC)(v)=

∫
R3×S2

H
(
g2−δAC

B1

)
σAC
B1 (g,Ω̂ ·Ω̂′)g

×

[(
mBmY

mAmC

)3

nCMC(v
′)nAMA(w

′)−f1(v)nBMB(w)

]
dwdΩ̂′, (2.16)

and the second one, accounting for the effects of (2.4), reads as

Q1
CH(f1,fZ ,nBMB)(v)=

∫
R3×S2

H
(
g2−δZB

11

)
σZB
11 (g,Ω̂ ·Ω̂′)g

×

[(
m2

Y

mZmB

)3

fZ(v
′)nBMB(w

′)−f1(v)f1(w)

]
dwdΩ̂′. (2.17)

In the construction of such operators [36], use has been made of the microreversibil-
ity condition relating the cross sections of the direct and of the reverse reaction. The
ratio between the reduced masses of reactants and of products appearing in front of the
gain term is due to the Jacobian of the transformation between pre- and post–collision
velocities, that is explicitly reported for a generic encounter in the Appendix, as well as
the expressions of post–collision velocities.

The other component Y2 of the polyatomic gas is not involved in reactions (2.3)
and (2.4), therefore Q2

CH(f)=0. The monatomic gas Z appears only in reaction (2.4),
and we have

QZ
CH(f)=QZ

CH(f1,fZ ,nBMB)(v)=

∫
R3×S2

H
(
g2−δ11ZB

)
σ11
ZB(g,Ω̂ ·Ω̂′)g

×

[(
mZmB

m2
Y

)3

f1(v
′)f1(w

′)−fZ(v)nBMB(w)

]
dwdΩ̂′. (2.18)

Even for inelastic transitions (2.1), (2.2) and for the direct reactions in (2.3), (2.4),
cross sections will be assumed of Maxwell molecule type as∫

S2

σHK
IJ (g,Ω̂ ·Ω̂′)gdΩ̂′ :=νHK

IJ , (2.19)

with νHK
IJ denoting constant collision frequencies.

3. Derivation of a three–component reaction–diffusion system
In this section we derive a reaction–diffusion system for the number densities of the

two components Y1 and Y2 of the polyatomic gas, and of the monatomic constituent Z
as well, in a suitable hydrodynamic limit. To this aim, we rescale the set of Boltzmann
equations (2.5) in terms of a small parameter ϵ, standing for the Knudsen number (ratio
of the particle mean free path to a macroscopic length). We assume different time scales
for collisions among particles, as follows: The dominant phenomenon is provided by the
elastic collisions with the much denser background medium, that are taken of order 1/ϵ;
binary elastic collisions between particles of the species Y1, Y2, Z are less frequent, of
order ϵp with p≥0; inelastic and chemical encounters (2.1), (2.2), (2.3) and (2.4) are
assumed to be slow processes of order ϵ. Since we are interested also in the effects on
species number densities of inelastic or chemical interactions, we take the same O(ϵ)
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scaling in front of the temporal derivatives. Thus, the rescaled Boltzmann equations for
distribution functions of Y1, Y2 and Z read as

ϵ
∂f ϵ

1

∂t
+v ·∇xf

ϵ
1

=
1

ϵ

∑
J=A,B,C

Q1
EL(f

ϵ
1 ,nJMJ)+ϵp

∑
I=1,2,Z

Q1
EL(f

ϵ
1 ,f

ϵ
I )+ϵQ1

IN (f)+ϵQ1
CH (f), (3.1)

ϵ
∂f ϵ

2

∂t
+v ·∇xf

ϵ
2

=
1

ϵ

∑
J=A,B,C

Q2
EL(f

ϵ
2 ,nJMJ)+ϵp

∑
I=1,2,Z

Q2
EL(f

ϵ
2 ,f

ϵ
I )+ϵQ2

IN (f) , (3.2)

ϵ
∂f ϵ

Z

∂t
+v ·∇xf

ϵ
Z

=
1

ϵ

∑
J=A,B,C

QZ
EL(f

ϵ
Z ,nJMJ)+ϵp

∑
I=1,2,Z

QZ
EL(f

ϵ
Z ,f

ϵ
I )+ϵQZ

IN (f)+ϵQZ
CH (f). (3.3)

In order to stress the fact that the solution of this system depends on the scaling
parameter ϵ, distribution functions are denoted by f ϵ

I , I=1,2,Z, and the corresponding
number densities will be given by nϵ

1, nϵ
2, nϵ

Z , respectively. We have skipped here
the rigorous dimensional analysis leading to the rescaled system (3.1), (3.2), (3.3). A
detailed derivation of dimensionless Boltzmann–like or BGK kinetic equations may be
found in several references, as for instance [3, 4, 9, 32,37].

We immediately note that in the kinetic Equations (3.1), (3.2) and (3.3) the Boltz-
mann operators describing collisions with the background play the dominant role,
namely ∑

J=A,B,C

QI
EL(f

ϵ
I ,nJMJ)=O(ϵ), I=1,2,Z.

Consequently, taking into account the well known mathematical properties of the lin-
ear Boltzmann operator (boundedness, self–adjointness, and validity of the Fredholm
alternative) [5,9], distributions f ϵ

I , for I=1,2,Z, may be seen as perturbations of their
collision equilibrium:

f ϵ
I (t,x,v)=nϵ

I(t,x)MI(v)+ϵhϵ
I(t,x,v), I=1,2,Z, (3.4)

with

MI(v)=
(mI

2π

) 3
2

exp

(
−mI |v|2

2

)
being a Maxwellian distribution sharing the same zero mean velocity and unit tem-
perature as the host medium. The function hϵ

I is of order O(1) and, without loss of
generality, we may assume that it fulfills the constraint∫

R3

hϵ
I(v)dv=0.

Indeed, as already noted in [5], if we suppose f ϵ
I (v)= ñϵ

IMI(v)+ϵh̃ϵ
I(v) such that

ϵ
∫
R3 h̃

ϵ
I(v)dv=nϵ

I − ñϵ
I , we may recover (3.4) setting hϵ

I(v)= h̃ϵ
I(v)+

1
ϵ (ñ

ϵ
I −nϵ

I)MI(v).
Therefore, in this hydrodynamic regime, in order to describe the evolution of dis-

tribution functions f ϵ
I at leading order accuracy, it is enough to build up consistent

evolution equations for number densities nϵ
1, n

ϵ
2, n

ϵ
Z .
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3.1. Equation for nϵ
1. By integrating (3.1) with respect to the kinetic vari-

able v, we get

ϵ
∂

∂t

∫
R3

f ϵ
1dv+∇x ·

∫
R3

vf ϵ
1dv= ϵ

∫
R3

(
Q1

IN (f)+Q1
CH (f)

)
dv, (3.5)

since elastic contributions obviously vanish [9] (the nature of particles does not change
in elastic collisions):∫

R3

Q1
EL(f

ϵ
1 ,nJMJ)dv=0, J =A,B,C, and

∫
R3

Q1
EL(f

ϵ
1 ,f

ϵ
I )dv=0, I=1,2,Z.

Bearing in mind the expression of the distribution functions provided in (3.4), the
Equation (3.5) becomes

ϵ
∂

∂t
nϵ
1+ϵ∇x ·

∫
R3

vhϵ
1dv= ϵ

∫
R3

(
Q1

IN (nM)+Q1
CH (nM)

)
dv+O(ϵ2), (3.6)

with nM the whole set of Maxwellian distributions nϵ
IMI (I=1,2,Z) and nJMJ (J =

A,B,C).
Inelastic and chemical collision contributions may be explicitly computed (for

Maxwell molecules interactions) when distributions are accommodated at a Maxwellian
shape [6,19,21]. Detailed calculations for a general bimolecular and reactive encounter
are reported in the Appendix, here we summarize the results relevant to species Y1.
Contributions due to inelastic transitions (2.1) and (2.2) read as∫

R3

Q1
IN (nϵ

1M1,n
ϵ
2M2,nAMA)(v)dv=−νA2

A1

2√
π
Γ

(
3

2
,Θ(∆EA2

A1)

)
nAn

ϵ
1, (3.7)

∫
R3

Q1
IN (nϵ

1M1,n
ϵ
2M2,n

ϵ
ZMZ)(v)dv=νZ1

Z2

2√
π
Γ

(
3

2
,Θ(∆EZ1

Z2)

)
nϵ
Zn

ϵ
2, (3.8)

respectively. As expected, contribution (3.7) is negative, since transitions (2.1) produce
a loss of particles Y1, while term (3.8) is positive, since in encounters (2.2) one gains
a particle Y1. Reactive source terms due to collisions (2.3) and (2.4) are provided,
respectively, by∫

R3

Q1
CH(nϵ

1M1,nAMA,nBMB ,nCMC)(v)dv

=νAC
B1

2√
π
Γ

(
3

2
,Θ(∆EAC

B1 )

)[(
mBmY

mAmC

)3
2

exp(∆EAC
B1 )nAnC−nBn

ϵ
1

]
, (3.9)

∫
R3

Q1
CH(nϵ

1M1,n
ϵ
ZMZ ,nBMB)(v)dv

=νZB
11

2√
π
Γ

(
3

2
,Θ(∆EZB

11 )

)[(
m2

Y

mBmZ

) 3
2

exp(∆EZB
11 )nϵ

ZnB−(nϵ
1)

2

]
, (3.10)

and they turn out to be a balance between a gain and a loss term, since reactions
(2.3) and (2.4) are reversible. In (3.7)–(3.10), symbols νHK

IJ denote collision frequencies
defined in (2.19), while Γ is the incomplete Euler gamma function

Γ(α,y)=

∫ +∞

y

τα−1e−τdτ, (3.11)
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and Θ(y)=max{y,0}. The presence of these functions is due to the fact that if a reaction
is endothermic (namely with a positive internal energy gap ∆EHK

IJ >0), it occurs only if
the kinetic energy of the ingoing particles is enough, as already explained in Section 2.

By inserting results (3.7)–(3.10) into Equation (3.6), we get

∂

∂t
nϵ
1+∇x ·

∫
R3

vhϵ
1dv

=−νA2
A1

2√
π
Γ

(
3

2
,Θ(∆EA2

A1)

)
nAn

ϵ
1+νZ1

Z2

2√
π
Γ

(
3

2
,Θ(∆EZ1

Z2)

)
nϵ
Zn

ϵ
2

+νAC
B1

2√
π
Γ

(
3

2
,Θ(∆EAC

B1 )

)[(
mBmY

mAmC

) 3
2

exp(∆EAC
B1 )nAnC−nBn

ϵ
1

]

+νZB
11

2√
π
Γ

(
3

2
,Θ(∆EZB

11 )

)[(
m2

Y

mBmZ

) 3
2

exp(∆EZB
11 )nϵ

ZnB−(nϵ
1)

2

]
+O(ϵ). (3.12)

We would like to express even the integral
∫
R3 vh

ϵ
1dv in terms of our unknown

macroscopic fields (number densities); to this aim we resort to the momentum equation
for species Y1. More precisely, we multiply (3.1) by the weight function v and integrate
in dv:

ϵ
∂

∂t

∫
R3

vf ϵ
1dv+∇x ·

∫
R3

(v⊗v)f ϵ
1dv

=
1

ϵ

∑
J=A,B,C

∫
R3

vQ1
EL(f

ϵ
1 ,nJMJ)dv+ ϵp

∑
I=1,2,Z

∫
R3

vQ1
EL(f

ϵ
1 ,f

ϵ
I )dv

+ ϵ

∫
R3

vQ1
IN (f)dv+ϵ

∫
R3

vQ1
CH (f)dv. (3.13)

By substituting the expansions (3.4) for I=1,2,Z, we obtain

∇x ·
nϵ
1

mY
I+ϵ∇x ·

∫
R3

(v⊗v)hϵ
1dv

=
∑

J=A,B,C

∫
R3

vQ1
EL(h

ϵ
1,nJMJ)dv+ ϵp+1

∑
I=1,2,Z

∫
R3

vQ1
EL(h

ϵ
1,n

ϵ
IMI)dv

+ ϵp+1
∑

I=1,2,Z

∫
R3

vQ1
EL(n

ϵ
1M1,h

ϵ
I)dv+ ϵ

∫
R3

v
(
Q1

IN (nM)+Q1
CH (nM)

)
dv+O(ϵ2). (3.14)

Here it has been taken into account that, since all Maxwellians share the same zero
mean velocity, it clearly holds∑

J=A,B,C

∫
R3

vQ1
EL(n

ϵ
1M1,nJMJ)dv=

∑
I=1,2,Z

∫
R3

vQ1
EL(n

ϵ
1M1,n

ϵ
IMI)dv=0,

(3.15)
and use has been made also of the trivial results∫

R3

vnϵ
1M1dv=0,

∫
R3

(v⊗v)nϵ
1M1dv=

nϵ
1

mY
I. (3.16)

Neglecting O(ϵ) terms, (3.14) may be cast as

∇x ·
nϵ
1

mY
I=

∑
J=A,B,C

∫
R3

vQ1
EL(h

ϵ
1,nJMJ)dv+O(ϵ). (3.17)
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We aim now at computing the elastic contribution on the right-hand side of (3.17),
bearing in mind that the weak form of the bi–species elastic Boltzmann operator reads
as [9]∫

R3

φ(v)QEL(fI ,fJ)dv=

∫
S2

∫
R3×R3

[
φ(v′)−φ(v)

]
σIJ(g,Ω̂ ·Ω̂′)gfI(v)fJ(w)dvdwdΩ̂′,

(3.18)

where v′ is the post–collision velocity provided by v′=αIJ v+αJIw+αJI gΩ̂
′, with

αIJ being the mass ratio αIJ =mI/(mI +mJ). In our case we have∫
R3

vQ1
EL(h

ϵ
1,nJMJ)dv=

∫
S2

∫
R3×R3

(v′−v)σ1J(g,Ω̂ ·Ω̂′)ghϵ
1(v)nJMJ(w)dvdwdΩ̂′,

(3.19)
where v′=αY J v+αJY w+αJY gΩ̂′, therefore we have to compute∫

S2

∫
R3×R3

σ1J(g,Ω̂ ·Ω̂′)gαJY (gΩ̂
′−v+w)hϵ

1(v)nJMJ(w)dvdwdΩ̂′.

With Maxwell molecules assumption we have that the following quantity is constant∫
S2

σ1J(g,Ω̂ ·Ω̂′)gdΩ̂′ :=ν1J ,

and by parity arguments ∫
S2

σ1J(g,Ω̂ ·Ω̂′)gΩ̂′dΩ̂′=0.

Consequently, in the integral (3.19) we have to compute

−ν1JαJY

∫
R3

vhϵ
1(v)dv

∫
R3

nJMJ(w)dw+ν1JαJY

∫
R3

hϵ
1(v)dv

∫
R3

wnJMJ(w)dw;

last term obviously vanishes, and in conclusion we get∫
R3

vQ1
EL(h

ϵ
1,nJMJ)dv=−ν1JnJαJY

∫
R3

vhϵ
1(v)dv. (3.20)

By inserting this result into (3.17) we obtain

∇x ·
nϵ
1

mY
I=−

 ∑
J=A,B,C

ν1JnJαJY

∫
R3

vhϵ
1(v)dv+O(ϵ). (3.21)

In this way we have expressed the sought streaming contribution appearing in (3.12) in
terms of masses, collision frequencies and number densities; more precisely, by substi-
tuting (3.21) into (3.12), we get the reaction–diffusion equation

∂

∂t
nϵ
1−

∆xn
ϵ
1

mY

∑
J=A,B,C

ν1JnJαJY

=−νA2
A1

2√
π
Γ

(
3

2
,Θ(∆EA2

A1)

)
nAn

ϵ
1+νZ1

Z2
2√
π
Γ

(
3

2
,Θ(∆EZ1

Z2)

)
nϵ
Zn

ϵ
2
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+νAC
B1

2√
π
Γ

(
3

2
,Θ(∆EAC

B1 )

)[(
mBmY

mAmC

) 3
2

exp(∆EAC
B1 )nAnC −nBn

ϵ
1

]

+νZB
11

2√
π
Γ

(
3

2
,Θ(∆EZB

11 )

)[(
m2

Y

mBmZ

) 3
2

exp(∆EZB
11 )nϵ

ZnB−(nϵ
1)

2

]
+O(ϵ). (3.22)

It’s important to remark that an evolution equation of this kind could be obtained
also without Maxwell molecule assumptions on collision kernels. At first, even for hard
potentials or for hard spheres with cutoff, the spectral properties of the linear Boltz-
mann operator [9] allow to conclude that distributions functions in the present scaling
take the form (3.4). Moreover, looking at the detailed computations of inelastic and re-
active contributions outlined in the Appendix, we note that their dependence on species
number densities may be recovered without any assumption on cross sections σHK

IJ (see
formula (A.9)); the Maxwellian potential allows only to explicitly compute the coeffi-
cient in front of the classical Arrhenius term, vanishing at chemical equilibrium. The
major additional difficulty arising for non–Maxwell collisions concerns the computation
of the integral

∫
R3 vh

ϵ
1dv, since in general it is not directly amenable to the moment of

the linear operator
∫
R3 vQ

1
EL(h

ϵ
1,nJMJ)dv as in (3.20). By inserting expansions (3.4)

into the rescaled Boltzmann Equation (3.1), we get that hϵ
1 should be a solution to the

linear problem ∑
J=A,B,C

Q1
EL(h

ϵ
1,nJMJ)(v)=vM1(v) ·∇xn

ϵ
1+O(ϵ).

It can be proved [5, 13] that the problem Q1
EL(k1J ,nJMJ)(v)=vM1(v) has a unique

solution that may be cast as k1J(v)=− k̃1J(|v|)v, where k̃1J(|v|) depends only on
the modulus of v. Consequently, the sought perturbation takes the form hϵ

1=

−
(∑

J=A,B,C k̃1J(|v|)
)
v ·∇xn

ϵ
1+O(ϵ), and the streaming term of the macroscopic

equation for nϵ
1 becomes

∇x ·
∫
R3

vhϵ
1dv=−

 ∑
J=A,B,C

∫
R3

k̃1J(|v|)
|v|2

3
dv

∆xn
ϵ
1,

therefore it is again a diffusion operator, but with a non-explicit diffusion coefficient.
Since the final aim of our work is to investigate the stability properties of reaction–
diffusion systems derived from the kinetic level, in this paper we consider only the case
of Maxwell molecule interactions, in order to have diffusion and reaction coefficients
completely explicit in terms of the microscopic parameters of the gas mixture.

3.2. Equation for nϵ
2. Now we perform the same procedure in order to obtain

an equation for density nϵ
2. By integrating (3.2) in dv we get

ϵ
∂

∂t

∫
R3

f2dv+∇x ·
∫
R3

f2dv= ϵ

∫
R3

Q2
IN (f)dv, (3.23)

since∫
R3

Q2
EL(f

ϵ
2 ,nJMJ)dv=0, J =A,B,C and

∫
R3

Q2
EL(f

ϵ
2 ,fI)dv=0, I=1,2,Z.

Substituting again for I=1,2,Z the asymptotic expansions (3.4) we have

ϵ
∂

∂t
nϵ
2+ϵ∇x ·

∫
R3

vhϵ
2dv= ϵ

∫
R3

Q2
IN (nM)dv+O(ϵ2). (3.24)
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Inelastic collision contributions may be computed as described in the Appendix, giving

∂

∂t
nϵ
2+∇x ·

∫
R3

vhϵ
2dv

=νA2
A1

2√
π
Γ

(
3

2
,Θ(∆EA2

A1)

)
nAn

ϵ
1−νZ1

Z2

2√
π
Γ

(
3

2
,Θ(∆EZ1

Z2)

)
nϵ
Zn

ϵ
2+O(ϵ), (3.25)

where the first term appearing on the right side is due to encounters (2.1) and the
second one due to interactions (2.2). In order to have an explicit expression for the
streaming term, similarly to previous subsection we multiply (3.2) by v and integrate
in dv, getting

ϵ
∂

∂t

∫
R3

vf ϵ
2dv+∇x ·

∫
R3

(v⊗v)f2dv

=
1

ϵ

∑
J=A,B,C

∫
R3

vQ2
EL(f

ϵ
2 ,nJMJ)dv+ϵp

∑
I=1,2,Z

∫
R3

vQ2
EL(f

ϵ
2 ,fI)dv+

∫
R3

vQ2
IN (f)dv. (3.26)

We again substitute, for I=1,2,Z, the expansions (3.4) for the distribution functions
obtaining, as above,

∇x ·
∫
R3

(v⊗v)nϵ
2M2dv=

∑
J=A,B,C

∫
R3

vQ2
EL(h

ϵ
2,nJMJ)dv+O(ϵ),

since all elastic contributions vanish to the leading order accuracy. This leads, as for
the component Y1, to

∇x ·
nϵ
2

mY
I=−

 ∑
J=A,B,C

ν2JnJαJY

∫
R3

vhϵ
2(v)dv+O(ϵ). (3.27)

Finally, inserting (3.27) into Equation (3.25) we have the reaction–diffusion equation

∂

∂t
nϵ
2−

∆xn
ϵ
2

mY

∑
J=A,B,C

ν2JnJαJY

=νA2
A1

2√
π
Γ

(
3

2
,Θ(∆EA2

A1)

)
nAn

ϵ
1−νZ1

Z2

2√
π
Γ

(
3

2
,Θ(∆EZ1

Z2)

)
nϵ
Zn

ϵ
2+O(ϵ). (3.28)

3.3. Equation for nϵ
Z . Once again, we start from the rescaled kinetic equation

(3.3) and integrate in dv, obtaining

ϵ
∂

∂t

∫
R3

f ϵ
Zdv+∇x ·

∫
R3

vf ϵ
Zdv= ϵ

∫
R3

(
QZ

IN (f)+QZ
CH (f)

)
dv, (3.29)

being∫
R3

QZ
EL(f

ϵ
Z ,nJMJ)dv=0, J =A,B,C and

∫
R3

QZ
EL(f

ϵ
Z ,fI)dv=0, I=1,2,Z.

Substituting the asymptotic expansions (3.4) we have

ϵ
∂

∂t
nϵ
Z+ϵ∇x ·

∫
R3

vhϵ
Zdv= ϵ

∫
R3

(
QZ

IN (nM)+QZ
CH (nM)

)
dv+O(ϵ2). (3.30)
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We note that the contribution given by the inelastic encounter (2.2) is null, since there
is no net production of particles of species Z; we compute the chemical integral due to
the bimolecular and reversible reaction (2.4) and we get

∂

∂t
nϵ
Z+∇x ·

∫
R3

vhϵ
Zdv

=−νZB
11

2√
π
Γ

(
3

2
,Θ(∆EZB

11 )

)[(
m2

Y

mBmZ

) 3
2

exp(∆EZB
11 )nϵ

ZnB−(nϵ
1)

2

]
+O(ϵ). (3.31)

By multiplying (3.3) by v and integrating in dv we have

ϵ
∂

∂t

∫
R3

vf ϵ
Zdv+∇x ·

∫
R3

(v⊗v)f ϵ
Zdv

=
1

ϵ

∑
J=A,B,C

∫
R3

vQZ
EL(f

ϵ
Z ,nJMJ)dv+ϵp

∑
I=1,2,Z

∫
R3

vQZ
EL(f

ϵ
Z ,f

ϵ
I )dv

+ϵ

∫
R3

v
(
QZ

IN (f)+QZ
CH (f)

)
dv, (3.32)

and use of expansions (3.4) now gives

∇x ·
∫
R3

(v⊗v)nϵ
ZMZdv

=
1

ϵ

∑
J=A,B,C

∫
R3

vQZ
EL(n

ϵ
ZMZ ,nJMJ)dv+

∑
J=A,B,C

∫
R3

vQZ
EL(h

ϵ
Z ,nJMJ)dv

+ϵ

∫
R3

(
QZ

IN (nM)+QZ
CH (nM)

)
dv+O(ϵ2), (3.33)

leading again to the equality

∇x ·
nϵ
Z

mZ
I=−

 ∑
J=A,B,C

νZJnJαJZ

∫
R3

vhϵ
Z(v)dv+O(ϵ). (3.34)

We have now obtained the third reaction-diffusion equation for the density of species Z

∂

∂t
nϵ
Z− ∆xn

ϵ
Z

mZ

∑
J=A,B,C

νZJnJαJZ

=−νZB
11

2√
π
Γ

(
3

2
,Θ(∆EZB

11 )

)[(
m2

Y

mBmZ

) 3
2

exp(∆EZB
11 )nϵ

ZnB−(nϵ
1)

2

]
+O(ϵ). (3.35)

3.4. Reaction–diffusion system. By passing to the limit ϵ→0 in Equations
(3.22), (3.28), and (3.35), and denoting by (n1,n2,nZ) the limit of the sequence of
density functions (nϵ

1,n
ϵ
2,n

ϵ
Z), we have that (n1,n2,nZ) is a solution of the system of

reaction–diffusion equations:

∂

∂t
n1−

1

mY

∑
J=A,B,C

ν1JnJαJY

∆xn1= ã−(b̃+ c̃)n1+ η̃nZn2+ ẽnZ− f̃n2
1
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∂

∂t
n2−

1

mY

∑
J=A,B,C

ν2JnJαJY

∆xn2= b̃n1− η̃nZn2

∂

∂t
nZ− 1

mZ

∑
J=A,B,C

νZJnJαJZ

∆xnZ = f̃n2
1− ẽnZ , (3.36)

with

ã=νAC
B1

2√
π
Γ

(
3

2
,Θ(∆EAC

B1 )

)(
mBmY

mAmC

) 3
2

exp(∆EAC
B1 )nAnC (3.37)

b̃=νA2
A1

2√
π
Γ

(
3

2
,Θ(∆EA2

A1)

)
nA (3.38)

c̃=νAC
B1

2√
π
Γ

(
3

2
,Θ(∆EAC

B1 )

)
nB (3.39)

η̃=νZ1
Z2

2√
π
Γ

(
3

2
,Θ(∆EZ1

Z2)

)
(3.40)

ẽ=νZB
11

2√
π
Γ

(
3

2
,Θ(∆EZB

11 )

)(
m2

Y

mZmB

) 3
2

exp(∆EZB
11 )nB (3.41)

f̃ =νZB
11

2√
π
Γ

(
3

2
,Θ(∆EZB

11 )

)
. (3.42)

In Section 5, the stability properties of system (3.36) will be investigated in a
regular open space domain Ω. If we suppose that the rescaled distribution functions f ϵ

I ,
I=1,2,Z, satisfy the initial conditions

f ϵ
I (0,x,v)=f0

I (x,v), I=1,2,Z, (3.43)

and the specular reflection boundary conditions

f ϵ
I (t,x,v)=f ϵ

I (t,x,Rv) ∀t>0, x∈∂Ω, v∈R3, I=1,2,Z, (3.44)

with Rv=v−2(v · n̂)n̂, with n̂(x) being the outward normal vector to ∂Ω at a point
x, then, as proved in [5], by integrating the rescaled kinetic system (3.1)–(3.3) over
(t,x,v)∈ (0,+∞)×Ω×R3 and passing to the limit ϵ→0, we get exactly the weak form
of the reaction–diffusion system (3.36), with initial data

nI(0,x)=

∫
R3

f0
I (x,v)dv, I=1,2,Z, (3.45)

and homogeneous Neumann boundary conditions

n̂ ·∇xnI =0 on (0,+∞)×∂Ω, I=1,2,Z, (3.46)

that will be assumed valid in Section 5.
Changing the time variable t̃= c̃t and defining

a=
ã

c̃
, b=

b̃

c̃
, η=

η̃

c̃
, e=

ẽ

c̃
, f =

f̃

c̃
, (3.47)
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D1=

c̃mY

∑
J=A,B,C

ν1JnJαJY

−1

, D2=

c̃mY

∑
J=A,B,C

ν2JnJαJY

−1

,

DZ =

c̃mZ

∑
J=A,B,C

νZJnJαJZ

−1

,

(3.48)

we have that the system (3.36) for n1, n2 and nZ may be rewritten as

∂n1

∂t
−D1∆xn1=a−(b+1)n1+ηnZn2+enZ−fn2

1

∂n2

∂t
−D2∆xn2= bn1−ηnZn2

∂nZ

∂t
−DZ∆xnZ =fn2

1−enZ .

(3.49)

Diffusion coefficients D1, D2, DZ are essentially due to the very frequent inter-
actions with the host medium; indeed, they depend on collision frequencies of such
dominant collisions, on number densities of background species, and on masses of the
colliding particles. The terms on the right-hand sides are due to inelastic transitions
and chemical reactions (2.1)–(2.4). Notice that, besides quadratic contributions due
to binary reactions involving a pair of the considered components Y1, Y2, Z, there are
linear terms caused by non–conservative interactions with background particles, and in
the equation for n1 there appears also a constant source term, taking into account the
production of particles Y1 due to the background only (see the reverse reaction in (2.3)).
As we will show in Section 5, the occurrence of this “external” particle source allows
the system to have a unique homogeneous state, independent of initial data. A great
advantage of the present derivation from the kinetic level is that diffusion and reac-
tion coefficients are explicitly provided in terms of the microscopic parameters of the
colliding system, namely particle masses, collision frequencies and internal energy.

4. Derivation of a reduced two–component reaction–diffusion system
In this section we present a derivation from our kinetic model of a closed system

of reaction–diffusion equations for the two components Y1, Y2 of the polyatomic gas
only. In this hydrodynamic regime, the other gas Z will play the role of a very unstable
particle state, quickly disappearing through proper interactions. The final macroscopic
system will turn out to be similar to the classical Brusselator system; the presence of
an intermediate unstable state Z in the Brusselator–type reaction has been already
explored in [12], where such intermediate gas is assumed non–diffusive and at an almost
steady configuration, namely with the reaction term vanishing at leading order accuracy.

We show that it is possible to derive such a reduction for system (3.49) assuming
faster time scales for elastic collisions between the background and the species Z, and
for the reaction (2.4). In particular, we prove that in the considered scaling the number
density nϵ

Z is completely determined in terms of the number density nϵ
1 and other fixed

parameters (masses, internal energies, and background density), therefore it will suffice
to derive a system of two coupled reaction–diffusion equations for nϵ

1, n
ϵ
2.

In the present scaling, elastic scattering with the host medium is again the dominant
process: Collisions of the two components of the gas Y with the background are taken of
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order 1/ϵ as in the previous section, while scattering between the monatomic gas Z and
the background is assumed faster, of order 1/ϵ2. All other bi–species elastic collisions
are of order ϵp, p≥0, as above. Inelastic encounters (2.1), (2.2) and chemical reaction
(2.3) are of order ϵ (slow as above), while the bimolecular reaction (2.4), involving the
unstable state Z, is faster, of order 1. This means that a pair of particles Y1 easily
recombines to give rise to a particle Z, and then such particle Z, colliding with the
host medium, very quickly dissociates again into a pair (Y1,Y1). We use here a separate
notation for the chemical collision operator for reactions (2.3) and (2.4), respectively:

Q1∗

CH (f)=Q1
CH(f ϵ

1 ,nAMA,nBMB ,nCMC), Q1∗∗

CH (f)=Q1
CH(f ϵ

1 ,f
ϵ
Z ,nBMB),

QZ∗∗

CH (f)=QZ
CH(f ϵ

1 ,f
ϵ
Z ,nBMB). (4.1)

Thus, rescaled Boltzmann equations for Y1, Y2 and Z read as:

ϵ
∂f ϵ

1

∂t
+v ·∇xf

ϵ
1

=
1

ϵ

∑
J=A,B,C

Q1
EL(f

ϵ
1 ,nJMJ)+ϵp

∑
I=1,2,Z

Q1
EL(f

ϵ
1 ,f

ϵ
I )+ϵQ1

IN (f)+ϵQ1∗

CH (f)+Q1∗∗

CH (f) ,

(4.2)

ϵ
∂f ϵ

2

∂t
+v ·∇xf

ϵ
2

=
1

ϵ

∑
J=A,B,C

Q2
EL(f

ϵ
2 ,nJMJ)+ϵp

∑
I=1,2,Z

Q2
EL(f

ϵ
2 ,f

ϵ
I )+ϵQ2

IN (f) , (4.3)

ϵ
∂f ϵ

Z

∂t
+v ·∇xf

ϵ
Z

=
1

ϵ2

∑
J=A,B,C

QZ
EL(f

ϵ
Z ,nJMJ)+ϵp

∑
I=1,2,Z

QZ
EL(f

ϵ
Z ,f

ϵ
I )+ϵQZ

IN (f)+QZ∗∗

CH (f) . (4.4)

Also in this case the dynamics is dominated by collisions with the background, and
specifically it means that∑

J=A,B,C

QI
EL(f

ϵ
I ,nJMJ)=O(ϵ) I=1,2,

∑
J=A,B,C

QI
EL(f

ϵ
I ,nJMJ)=O(ϵ2) I=Z.

Consequently, the perturbed expressions of distributions are

f ϵ
I (t,x,v)=nϵ

I(t,x)MI(v)+ϵhϵ
I(t,x,v), I=1,2, (4.5)

f ϵ
I (t,x,v)=nϵ

I(t,x)MI(v)+ϵ2hϵ
I(t,x,v), I=Z, (4.6)

where we may assume ∫
R3

hϵ
I(v)dv=0, I=1,2,Z. (4.7)

4.1. Equation for nϵ
1. By integrating the Boltzmann equation (4.2) with

respect to the velocity variable v, and substituting the expressions (4.5) and (4.6) for
distributions we get, eliminating vanishing terms,

ϵ
∂

∂t
nϵ
1+ϵ∇x ·

∫
R3

vhϵ
1dv=ϵ

∫
R3

(
Q1

IN (nM)+Q1∗

CH (nM)
)
dv+

∫
R3

Q1∗∗

CH (nM)dv
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+ϵ

∫
R3

Q̃1∗∗

CH(hϵ
1,n

ϵ
1M1)dv+O(ϵ2), (4.8)

where Q̃1∗∗

CH(hϵ
1,n

ϵ
1M1) is the first order (O(ϵ)) correction of the dominant chemical term

Q1∗∗

CH(f) given in (2.17), that turns out to be

Q̃1∗∗

CH(hϵ
1,n

ϵ
1M1)=−2

∫
R3

∫
S2

H
(
g2−δZB

11

)
σZB
11 (g,Ω̂ ·Ω̂′)ghϵ

1(v)n
ϵ
1M1(w)dwdΩ̂′. (4.9)

Leading order of Equation (4.8) provides∫
R3

Q1∗∗

CH (nM)dv=O(ϵ), (4.10)

which after the explicit computation of collision contribution, following the lines outlined
in the Appendix, becomes

νZB
11

2√
π
Γ

(
3

2
,Θ(∆EZB

11 )

)[(
m2

Y

mZmB

) 3
2

exp(∆EZB
11 )nϵ

ZnB−(nϵ
1)

2

]
=O(ϵ). (4.11)

We note that this provides an explicit expression for number density nϵ
Z , to the leading

order accuracy, as function of nϵ
1:

nϵ
Z =(nϵ

1)
2

[(
m2

Y

mZmB

) 3
2

exp(∆EZB
11 )nB

]−1

+O(ϵ). (4.12)

With this result at hand, by writing explicitly next order (O(ϵ)) of Equation (4.8) we
get

∂

∂t
nϵ
1+∇x ·

∫
R3

vhϵ
1dv

=

∫
R3

(
Q1

IN (nM)+Q1∗

CH (nM)
)
dv+

∫
R3

Q̃1∗∗

CH(hϵ
1,n

ϵ
1M1)dv+O(ϵ). (4.13)

Under a Maxwell molecule assumption for the direct reaction in (2.4), the last integral
in (4.13) is explicitly provided by∫

R3

Q̃1∗∗

CH(hϵ
1,n

ϵ
1M1)dv

=− 2νZB
11 nϵ

1

∫
R3

∫
R3

H
(
g2−δZB

11

)
hϵ
1(v)M1(w)dvdw. (4.14)

If we suppose that the quantity ∆EZB
11 =EB+EZ−2E1<0, we have H

(
g2−δZB

11

)
≡1

and thus the whole integral is zero, owing to (4.7). In the opposite case, the contribu-
tion cannot be made explicit without further assumptions on the perturbation hϵ

1(v).
Anyway, we expect that such contribution would be very small (bearing in mind (4.7)),
and therefore negligible in the final macroscopic equation; moreover, we will see in next
section that the assumption ∆EZB

11 <0 is almost not restrictive in determining the con-
figurations of masses and energy values allowing pattern formation, therefore it may be
reasonably adopted.
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Also in Equation (4.13) we need an expression for
∫
R3 vh

ϵ
Idv in terms of number

densities; we multiply (4.2) by v and integrate in dv. Substituting again expansions
(4.5) and (4.6) and taking only the leading order terms, we obtain

∇x ·
∫
R3

(v⊗v)nϵ
1M1dv=

∑
J=A,B,C

∫
R3

vQ1
EL(h

ϵ
1,nJMJ)dv+

∫
R3

vQ1∗∗

CH (nM)dv+O(ϵ).

(4.15)
But for ∆EZB

11 <0 we easily get∫
R3

vQ1∗∗

CH (nM)dv=0, (4.16)

since it is enough to perform the change of variables (v,w)→ (g,G) expressed in the
Appendix and to observe that∫

R3

Gexp
(
−mY G2

)
dG=

∫
R3

gexp

(
−1

4
mY g2

)
dg=0.

Thus the following relation holds again

∇x ·
nϵ
1

mY
I=−

 ∑
J=A,B,C

ν1JnJαJY

∫
R3

vhϵ
1(v)dv+O(ϵ). (4.17)

It is now sufficient to insert this into the Equation (4.13) and to compute inelastic and
chemical collision integrals in order to obtain the reaction–diffusion equation

∂

∂t
nϵ
1−

∆xn
ϵ
1

mY

∑
J=A,B,C ν1JnJαJY

=−νA2
A1

2√
π
Γ

(
3

2
,Θ(∆EA2

A1)

)
nAn

ϵ
1+νZ1

Z2

2√
π
Γ

(
3

2
,Θ(∆EZ1

Z2)

)
nϵ
Zn

ϵ
2

+νAC
B1

2√
π
Γ

(
3

2
,Θ(∆EAC

B1 )

)[(
mBmY

mAmC

) 3
2

exp(∆EAC
B1 )nAnC−nBn

ϵ
1

]
+O(ϵ). (4.18)

Substituting on the right-hand side the expression (4.12) for the density of the unstable
state nϵ

Z , it becomes

∂

∂t
nϵ
1−

∆xn
ϵ
1

mY

∑
J=A,B,C ν1JnJαJY

=−νA2
A1

2√
π
Γ

(
3

2
,Θ(∆EA2

A1)

)
nAn

ϵ
1

+νZ1
Z2

2√
π
Γ

(
3

2
,Θ(∆EZ1

Z2)

)[(
m2

Y

mZmB

) 3
2

exp(∆EZB
11 )nB

]−1

(nϵ
1)

2nϵ
2

+νAC
B1

2√
π
Γ

(
3

2
,Θ(∆EAC

B1 )

)[(
mBmY

mAmC

) 3
2

exp(∆EAC
B1 )nAnC−nBn

ϵ
1

]
+O(ϵ). (4.19)

4.2. Equation for nϵ
2. Since the component Y2 is not involved in reaction

(2.4), that is the only one with a modified scaling with respect to previous section, the
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derivation of the reaction–diffusion equation for density nϵ
2 is really analogous to the

one performed in Section 3, thus we skip the details here. With the usual asymptotic
procedure we derive the equation

∂

∂t
nϵ
2−

∆xn
ϵ
2

mY

∑
J=A,B,C ν2JnJαJY

=νA2
A1

2√
π
Γ

(
3

2
,Θ(∆EA2

A1)

)
nAn

ϵ
1−νZ1

Z2

2√
π
Γ

(
3

2
,Θ(∆EZ1

Z2)

)
nϵ
Zn

ϵ
2+O(ϵ). (4.20)

Again we substitute the expression for nϵ
Z provided by (4.12), obtaining

∂

∂t
nϵ
2−

∆xn
ϵ
2

mY

∑
J=A,B,C ν2JnJαJY

=νA2
A1

2√
π
Γ

(
3

2
,Θ(∆EA2

A1)

)
nAn

ϵ
1

−νZ1
Z2

2√
π
Γ

(
3

2
,Θ(∆EZ1

Z2)

)[(
m2

Y

mZmB

) 3
2

exp(∆EZB
11 )nB

]−1

(nϵ
1)

2nϵ
2+O(ϵ).

(4.21)

4.3. Reaction-diffusion system. We pass to the limit ϵ→0 in (4.19) and (4.21)
obtaining the following reaction–diffusion system for the unknown number densities n1,
n2, which denote the limiting values of the sequences nϵ

1, n
ϵ
2:

∂n1

∂t
− 1

mY

∑
J=A,B,C

ν1JnJαJY

∆xn1= ã−(b̃+ c̃)n1+ d̃n2
1n2

∂n2

∂t
− 1

mY

∑
J=A,B,C

ν2JnJαJY

∆xn2= b̃n1− d̃n2
1n2,

(4.22)

with

ã=νAC
B1

2√
π
Γ

(
3

2
,Θ(∆EAC

B1 )

)(
mBmY

mAmC

) 3
2

exp(∆EAC
B1 )nAnC (4.23)

b̃=νA2
A1

2√
π
Γ

(
3

2
,Θ(∆EA2

A1)

)
nA (4.24)

c̃=νAC
B1

2√
π
Γ

(
3

2
,Θ(∆EAC

B1 )

)
nB (4.25)

d̃=νZ1
Z2

2√
π
Γ

(
3

2
,Θ(∆EZ1

Z2)

)[(
m2

Y

mZmB

) 3
2

exp(∆EZB
11 )nB

]−1

. (4.26)

Notice that coefficients ã, b̃, c̃ coincide with the ones obtained in the previous section
for the system of three equations (see formulas (3.37), (3.38), (3.39)). The coefficient d̃
may be instead recovered from (3.40), (3.41), (3.42) as d̃= η̃ f̃/ẽ. Indeed, system (4.22)
could also be formally obtained from the macroscopic system (3.36) in a suitable scaling.
In order to do this, one has to carefully check the implications at the macroscopic
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level of the additional assumption ∆EZB
11 <0 introduced in this section. Specifically,

this requirement makes the chemical contribution (4.14) vanish, implying that nϵ
Z =

f̃(nϵ
1)

2/ẽ+O(ϵ2). For this reason, the right scaling allowing to derive (4.22) from (3.36)
consists in putting 1/ϵ2 in front of the right-hand side of equation for nϵ

Z in (3.36) and
in the analogous contribution appearing in the equation for nϵ

1. The derivation of a
system of type (4.22) as a reduction of a system of three equations may be found also
in [12], where one of the species (Z) is assumed non–diffusing and unstable, so that
it may be considered accommodated at an equilibrium configuration, with its number
density related to the ones of other constituents as in (4.12).

We will investigate Turing instability of system (4.22) in a bounded domain Ω, and
to this aim, as already motivated in Subsection 3.4, we set an initial datum

nI(0,x)=

∫
R3

f0
I (x,v)dv, I=1,2, (4.27)

and we assume Neumann boundary conditions

n̂ ·∇xnI =0 on (0,∞)×∂Ω, I=1,2. (4.28)

For convenience, we perform again the change of time variable t̃= c̃t and define

a=
ã

c̃
, b=

b̃

c̃
, d=

d̃

c̃
, (4.29)

D1=

c̃mY

∑
J=A,B,C

ν1JnJαJY

−1

, D2=

c̃mY

∑
J=A,B,C

ν2JnJαJY

−1

; (4.30)

in this way, the evolution system for n1 and n2 reads as

∂n1

∂t
−D1∆xn1=a−(b+1)n1+dn1

2n2,

∂n2

∂t
−D2∆xn2= bn1−dn1

2n2.

(4.31)

The system (4.31) is similar to the classical Brusselator model, whose stability
properties were investigated for the first time in [35] and [24] (the only difference is the
presence of our coefficient d instead of 1). In that context, coefficients of the system
were expressed in terms of the kinetic constants of the individual reaction steps of
the auto–catalytic process and of concentrations of constant reactants involved. Here,
coefficients of the system play a similar role; indeed, their dependence is on microscopic
quantities that, besides masses and energy levels, are collision frequencies (determining
the interaction rates between elements of the mixture) and densities of the background
species.

5. Discussion of Turing instability of reaction–diffusion systems
The classical Brusselator was introduced in order to model the behavior of cross–

activator–inhibitor chemical reactions for which pattern formation predicted by Tur-
ing [44] could be observed. One example is the chloriteiodide–malonic acid (CIMA)
reaction [25] and other analogous models, and results can be found in [20]. Analytical
conditions on the parameters involved in the equations leading to Turing instability
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were originally given in [35]. The target was to find a homogeneous stationary state
that in presence of diffusion turns into spatially non–homogeneous structures.

In this section, we want to proceed in the same direction with systems (3.49)
and (4.31), that have been consistently derived from kinetic equations. We start from the
reduced system of two equations, that allows us to derive completely explicit conditions
on internal energies and other microscopic parameters giving rise to Turing instabil-
ity. Then we take into account the more complicated system of three equations (3.49),
involving a higher number of parameters, and both an analytical investigation and a
numerical study are performed in order to deduce its stability properties.

5.1. Turing instability for the reduced two–component system. Consid-
ering system (4.31), we first look for conditions on the coefficients a, b, d and on diffusion
coefficients D1, D2 in order to have Turing instability, then we discuss the fulfillment
of such conditions for varying microscopic quantities, energy levels in particular. The
first step consists in imposing the stability of a space homogeneous steady state, and to
this aim we consider the system in absence of diffusion:

∂n1

∂t
=a−(b+1)n1+dn1

2n2

∂n2

∂t
= bn1−dn1

2n2.

(5.1)

We note that this set of ODEs admits a unique stationary state, provided by

(n̄1,n̄2)=

(
a,

b

ad

)
.

Uniqueness of the equilibrium is due to the presence of a source term a, related to
chemical interactions with the host medium. Indeed, in self–contained reacting systems,
involving for instance four gases undergoing only a bimolecular and reversible chemical
reaction, one has that the collision contribution in equations for number densities is
provided by an Arrhenius–type law, having a manifold of steady equilibria (of the form
n1n2=Kn3n4) [5, 36].

In order to study the equilibrium stability in spatially homogeneous conditions, we
linearize the system (5.1) getting

∂W

∂t
=AW, (5.2)

withW=

(
n1− n̄1

n2− n̄2

)
and A=

(
b−1 a2d
−b −a2d

)
. Conditions to have the stability of the

stationary state are trA<0 and detA>0. Since in our model coefficients of the system
are all positive quantities, the determinant is trivially positive while for the sign of the
trace we get the constraint

b<1+a2d. (5.3)

The linearized system including diffusive terms in a space domain Ω∈RN with
zero–flux boundary conditions reads as

∂W

∂t
=D∆xW+AW on (0,∞)×Ω

n̂ ·∇xW=0 on (0,∞)×∂Ω

(5.4)
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with diffusion matrix D=

(
D1 0
0 D2

)
. We look for solutions of this system represented

in Fourier series as

W(x,t)=
∑
k

cke
λktW̃k(x), (5.5)

with k∈N and the eigenfunction W̃k(x) denoting a solution of the time–independent
problem ∆xW̃+k2W̃=0 on (0,∞)×Ω

n̂ ·∇xW̃=0 on (0,∞)×∂Ω.

(5.6)

In our numerical simulations we will consider as domain Ω a one-dimensional segment
Ω=[0,L], and solutions of (5.6) in this case are

W̃kn
(x)=Cncos(knx) (5.7)

with wavenumbers kn given by

kn=
nπ

L
, n∈N. (5.8)

Going back to (5.4), the linear PDE provides∑
k

λkcke
λktW̃k(x)=D

∑
k

(−k2)cke
λktW̃k(x)+A

∑
k

cke
λktW̃k(x), (5.9)

and this means that, for each k, λk is an eigenvalue of the matrix A−k2D. Imposing
det(A−k2D−λkI)=0, we find

λk1,2=
1

2

[
trA−k2(D1+D2)±

√
[trA−k2(D1+D2)]2−4h(k2)

]
, (5.10)

being the function

h(k2)=k4D1D2+k2[D2(1−b)+D1a
2d]+a2d. (5.11)

Turing instability occurs if there exists at least one wavenumber k̄ such that the cor-
responding solution Wk̄(x,t) has Reλk̄>0 [30]. This implies that h(k2) is needed to
attain a negative value for some k ̸=0. To this aim, we have to require firstly that

D2(1−b)+D1a
2d<0. (5.12)

If we introduce the quantity δ := D1

D2
, conditions (5.3) and (5.12) may be recast as

δ<
b−1

a2d
<1, (5.13)

and consequently it must be δ<1 and b>1. Compared to the classical theory of Turing
systems [31,44], this result states that the component Y2 of gas species Y corresponding
to the energy level E2 plays the role of “inhibitor”, while the component Y1 plays the
role of “activator” in the reaction–diffusion dynamics, being known that Turing patterns
may appear only below a critical value for the parameter δ, representing the ratio of the
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diffusion constants of the activator to the inhibitor. A second condition to be satisfied
in order to have h(k2)<0 is that hmin<0, and being

hmin=− [D2(1−b)+D1a
2d]2−4D1D2a

2d

4D1D2
, (5.14)

it becomes

δ2a4d2−2δ(1+b)a2d+(1−b)2>0. (5.15)

By solving this algebraic equation with respect to the parameter δ, we get

δ<
(
√
b−1)2

a2d
∨ δ>

(
√
b+1)2

a2d
, (5.16)

but, bearing in mind (5.13), only the first of the two inequalities above provides admis-
sible values for δ.

In conclusion, necessary conditions to have unstable modes can be summed up as
follows

0<
b−1

a2d
<1,

δ <
(
√
b−1)2

a2d
.

(5.17)

The range of possible wavenumbers k̄ such that Reλk̄>0 is then k1<k̄<k2, where k21,
k22 are the solutions of the equation h(k2)=0, reading as

k21,2=
b−1−δa2d±

√
(1−b+δa2d)2−4a2d

2D1
. (5.18)

We should bear in mind that for finite domains the relevant wavenumbers are discrete
(see (5.8) for a one–dimensional problem), therefore Turing instability occurs only if at
least one of them belongs to the interval (k1,k2).

We investigate now conditions (5.17) in terms of the parameters of the mixture. Be-
fore proceeding in this direction, we introduce some assumptions, especially concerning
the fixed parameters of the host medium. Indeed, since the background may be consid-
ered as a unique external medium, we may suppose that collision frequencies relevant to
elastic scattering of species Y1 with the background take a unique value, independently
of the species A, B, C of the colliding molecule: ν1A=ν1B =ν1C = ν̄1, and analogously
for scattering involving species Y2 and the background: ν2A=ν2B =ν2C = ν̄2. Also, for
background number densities we assume for simplicity nA=nB =nC = n̄. We fix par-
ticle masses of background species and of gases Y and Z, bearing in mind the obvious
conservations of masses prescribed by encounters (2.1)–(2.4). We fix also background
energies, and for convenience we pick a value for E1 in such a way that ∆EAC

B1 ≤0. This

implies Γ
(
3
2 ,Θ(∆EAC

B1 )
)
=

√
π
2 , but the presence of a different value would not change

the main results of the investigation below.
With these assumptions, the analysis of Turing instability depends only on the

difference E2−E1 and on EZ , which has to be chosen such that ∆EZB
11 ≤0 in order to

have an exact (not approximated) computation of integral (4.14). Reaction coefficients
of system (4.31) may be recast as

a=

(
mBmY

mAmC

) 3
2

exp(∆EAC
B1 )n̄ (5.19)
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b=
νA2
A1

νAC
B1

Γ

(
3

2
,Θ(∆EA2

A1)

)
2√
π

(5.20)

d=
νZ1
Z2

νAC
B1

Γ

(
3

2
,Θ(∆EZ1

Z2)

)[√
π

2

(
m2

Y

mZmB

) 3
2

exp(∆EZB
11 )n̄2

]−1

, (5.21)

while the ratio between diffusion coefficients is simply provided by

δ=
D1

D2
=

ν̄2
ν̄1

. (5.22)

By defining the following functions

G(E2−E1) :=Γ

(
3

2
,Θ(∆EA2

A1)

)
− νAC

B1

νA2
A1

√
π

2
(5.23)

H(E2−E1) :=

[√
Γ

(
3

2
,Θ(∆EA2

A1)

)
−

√
νAC
B1

νA2
A1

√
π

2

]2

(5.24)

N (E2−E1) := γ Γ

(
3

2
,Θ(∆EZ1

Z2)

)
(5.25)

with

γ=

(
m3

BmZ

m2
Cm

2
A

) 3
2

exp
(
2(EA+EC)−3EB

) νZ1
Z2

νAC
B1

, (5.26)

conditions (5.17) can be written as

0<
G(E2−E1)

N (E2−E1)
eEZ <1 (5.27)

δ<
H(E2−E1)

N (E2−E1)
eEZ . (5.28)

We observe that H(E2−E1)≥0 and N (E2−E1)>0, thus the first requirement to have
Turing instability is

G(E2−E1)>0. (5.29)

This is possible only if the ratio
νAC
B1

νA2
A1

is less than one. More precisely, for E2−E1≤0

we have G≡
√
π
2

(
1− νAC

B1

νA2
A1

)
, while in the range E2−E1>0 the function G is decreasing

and lim
E2−E1→+∞

G=−
√
π

2

νAC
B1

νA2
A1

<0. Therefore, if
νAC
B1

νA2
A1

<1, there exists a unique value E∗

such that G>0 for every E2−E1<E∗ and G is negative after this threshold.
In this admissible range, conditions (5.27) and (5.28) can be summarized as

δ
N (E2−E1)

H(E2−E1)
<eEZ <

N (E2−E1)

G(E2−E1)
. (5.30)

At this point, we notice that there could be admissible values for EZ only if the inequality

δ
G(E2−E1)

H(E2−E1)
<1 (5.31)
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holds. It’s easy to check that the function δ G
H is increasing where G is posi-

tive, and its limit for E2−E1→E∗ is +∞. Since for E2−E1≤0 we have δ G
H ≡

δ

(
1+

√
νAC
B1

νA2
A1

)(
1−

√
νAC
B1

νA2
A1

)−1

, only if collision frequencies are chosen in such a way

that this quantity is less than one we can find a nonnegative value E (less than E∗)
such that δ G

H <1 for every E2−E1<E. Another condition for the existence of values
for the energy EZ fulfilling (5.30) is that the right-hand side has to be greater than one
(since energy EZ is positive):

N (E2−E1)

G(E2−E1)
>1. (5.32)

But, the function N
G being increasing where G is positive and ranging from zero (for

E2−E1→−∞) to +∞ (for E2−E1→E∗), we get that there exists a unique Ẽ such that
N
G (Ẽ)=1, and N

G >1 for E2−E1>Ẽ. Thus, we can conclude that Turing instability

may occur only if Ẽ <E and we take values for E2−E1 in the interval
(
Ẽ,E

)
. With

E2−E1 in this range, inequalities (5.30) are fulfilled for EZ such that

log(δ)+log(N (E2−E1))− log(H(E2−E1))<EZ

<log(N (E2−E1))− log(G(E2−E1)). (5.33)

As test case, we choose the following set of masses and background energies for the
mixture:

mA=2 mB =3.5 mC =4 mY =2.5 mZ =1.5, (5.34)

EA=4.5 EB =3.6 EC =4 (5.35)

and we fix E1=7.2. We remark that masses fulfill conservations prescribed by chemi-
cal reactions (2.3)–(2.4), namely mB+mY =mA+mC and 2mY =mZ+mB . Collision
frequencies are the ones listed below

νA2
A1 =0.004, νZ1

Z2 =0.3, νAC
B1 =0.0001, νZB

11 =1, ν̄1=150, ν̄2=20. (5.36)

Elastic collisions frequencies ν̄1, ν̄2 are much higher than the others in order to take
into account that scattering with the host medium is the dominant process; concerning
the other collision rates, νZB

11 =1 is the highest (recall the assumption that the chemical
reaction (2.4) is faster).

The region of energy parameters allowing Turing instability is depicted in Figure
5.1. The first value that we highlight is E∗≈4.77, for which G(E∗)=0. Then we plot
the critical curve given by

C1 :EZ =log(N (E2−E1))− log(G(E2−E1)), (5.37)

whose intersection with the E2−E1 axis is at the point Ẽ≈−9.03. For points (E2−
E1,EZ) in the region under this curve we have linear stability of the stationary state.
Moreover, we have the other critical curve

C2 :EZ =log(δ)+log(N (E2−E1))− log(H(E2−E1)), (5.38)



788 REACTION–DIFFUSION EQUATIONS FROM KINETIC MODELS

Fig. 5.1. Values for EZ and E2−E1 satisfying requirements for Turing instability in system
(4.31). Values for masses as in (5.34), background energies as in (5.35), frequencies as in (5.36) and
E1=7.2. The region allowing Turing instability is depicted in black. The meaning of the plotted curves
is explained in the text.

and the intersection of curves C1 and C2 occurs at E≈4.36. For (E2−E1,EZ) in the
region between curves C2 and C1, conditions (5.17) for Turing instability hold. We
should recall that we have to take EZ <2E1−EB =10.8 to have the computation of
(4.14) explicit, therefore, in conclusion, energy levels for which pattern formation can
be expected are the ones in the black area of the picture. It is worth noticing that Turing
instability may occur both if E2−E1 is positive, namely with the inelastic transition
(2.1) endothermic and (2.2) exothermic, and also if E2−E1 is negative, thus with (2.1)
exothermic and (2.2) endothermic.

We perform some numerical simulations for the system (4.31) in a one-dimensional
domain Ω=[0,L], taking values for masses, background energies and collision frequencies
as in (5.34), (5.35) and (5.36), and fixing energy of component Y1 as E1=7.2. Initial
data are random perturbations of the space homogeneous equilibrium state. We take
values for the difference of energy values E2−E1 and for EZ in the region where Turing
instability is expected. It is important to remark that pattern formation occurs only
if at least a squared wavenumber k2n=(nπ/L)2 belongs to the interval individuated by
the roots (5.18); in our simulations we fix L=30.

Firstly, we choose E2−E1=1 and take three possible values for EZ . The results of
this case are shown in Figure 5.2. In the panels (a), (b), (c), we plot the configuration at
time t=30 of number densities n1, n2, compared with the relevant space homogeneous
equilibrium value. We see that the density of the two components is considerably het-
erogeneous and we notice that the two distributions oscillate around the homogeneous
equilibrium values. As EZ increases, we observe for the quantity n1 a bigger fluctuation
from the equilibrium, giving rise to regions where n1 is nearly zero alternated to regions
with higher density. For n2, instead, oscillations are not equally sharp and for higher
values of EZ its plot remains mostly under the equilibrium value. In the other plots
of Figure 5.2 we show the time and space behaviour of number densities (panels (d),
(e), (f) for n1 and panels (g), (h), (i) for n2): in the trend from the initial data to the
oscillating configurations at t=30 one can appreciate the formation of space periodic
patterns.

Analogous behaviours appear in different tests, we show here two of them focusing
the attention mainly on density n1, which shows higher oscillations. In Figure 5.3 we
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Fig. 5.2. Panels (a), (b), (c): Configuration at time t=30 of the densities compared to their
equilibrium state n1 (dotted line) and n2 (solid line) taking E2−E1=1 and EZ =9.3,9.8,10.3, respec-
tively. Panels (d), (e), (f): behaviour of density n1 in space and time for the energy levels taken
above. Panels (g), (h), (i): behaviour of density n2 in space and time. Values for masses as in (5.34),
background energies as in (5.35), frequencies as in (5.36) and E1=7.2.

Fig. 5.3. Panels (a), (b), (c): Configuration at time t=30 of the densities compared to their
equilibrium state n1 (dotted line) and n2 (solid line) taking EZ =10.3 and E2−E1=1,1.6,2.2, respec-
tively. Panels (d), (e), (f): behaviour of density n1 in space and time for the energy levels taken
above. Values for masses as in (5.34), background energies as in (5.35), frequencies as in (5.36) and
E1=7.2.

Fig. 5.4. Panels (a), (b), (c): Configuration at time t=30 of the densities compared to their
equilibrium state n1 (dotted line) and n2 (solid line) taking E2−E1=−2 and EZ =8.2,8.9,9.6, re-
spectively. Panels (d), (e), (f): behavior of density n1 in space and time for the energy levels taken
above. Values for masses as in (5.34), background energies as in (5.35), frequencies as in (5.36) and
E1=7.2.
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fix EZ =10.3 and we increase E2−E1 starting from 1 to a value close to the highest
one allowing Turing instability. We note that for higher values of E2−E1, the number
of space oscillations for n1 decreases, but the space amplitude of the peaks increases.
Fixing, instead, in Figure 5.4, a negative value for E2−E1=−2, when EZ is higher we
observe that the number of oscillations for n1 is lower, but peaks are high and narrow,
thus the component Y1 is highly concentrated in few points.

5.2. Turing instability for the complete three–components system. This
subsection is devoted to the investigation of stability properties and pattern formation
for system (3.49). First of all, we look for stationary states for our model in absence of
diffusion, given by the system

∂n1

∂t
=a−(b+1)n1+ηnZn2+enZ−fn2

1

∂n2

∂t
= bn1−ηnZn2

∂nZ

∂t
=fn2

1−enZ .

(5.39)

By imposing in the system above ∂n1

∂t = ∂n2

∂t = ∂nZ

∂t =0, we get a unique steady state

(n̄1,n̄2,n̄Z)=

(
a,

be

aηf
,
fa2

e

)
.

The state (n̄1,n̄2,n̄Z) is Turing unstable if it is locally stable for the homogeneous system
(5.39), but unstable for the system with diffusion (3.49). We linearize at first the system
in spatially homogeneous conditions, writing it in the following form

∂W

∂t
=BW, (5.40)

with W=

 n1− n̄1

n2− n̄2

nZ− n̄Z

 and

B=


−b−1−2af

a2ηf

e
e

(
b

af
+1

)
b −a2ηf

e
− be

af
2af 0 −e

 . (5.41)

The stability of the stationary state is achieved if all the eigenvalues of B have negative
real part. They are provided by the roots of the characteristic polynomial

−λ3+λ2trB−λΛ̃+detB, (5.42)

with

trB=−b−1−2af− a2ηf

e
−e<0,

Λ̃=2
a3ηf2

e
+a2ηf+

a2ηf

e
−eb+e
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and detB=−a2ηf <0. Applying the Routh–Hurwitz criterion [18], all roots have neg-
ative real part if the condition

Λ̃trB<detB (5.43)

is satisfied. Of course this is possible only if the term Λ̃ is positive; more precisely, since
in this case we would have Λ̃trB=detB+Γ̃ with Γ̃ a negative quantity, the condition
Λ̃>0, that we rewrite as [

2af+1

e2
+

1

e

]
a2ηf >b−1, (5.44)

is also sufficient for the equilibrium stability.
Now we consider the linearized system including diffusive terms in Ω with zero–flux

boundary conditions 
∂W

∂t
=D∆xW+BW on (0,∞)×Ω

n̂ ·∇xW=0 on (0,∞)×∂Ω

(5.45)

with diffusion matrix

D=

D1 0 0
0 D2 0
0 0 DZ

 .

As in the subsection above, we look for solutions in the form

W(x,t)=
∑
k

cke
λktW̃k(x), (5.46)

with W̃k(x) being a solution of the time–independent problem. Choosing as domain Ω
a one–dimensional segment of length L it can be checked that wavenumbers allowing
the existence of a solution to the time–independent problem are again kn=πn/L, with
n∈N. Concerning the global problem (5.45), for each k, the exponent λk has to be an
eigenvalue of the matrix B−k2D, hence a root of the characteristic polynomial

−λ3+λ2tr
(
B−k2D

)
−λΛ+det

(
B−k2D

)
, (5.47)

with tr
(
B−k2D

)
= trB−k2(D1+D2+DZ)<0,

Λ=(D1D2+D1DZ+D2DZ)k
4

+

(
D2+2afD2+D1

a2ηf

e
+2DZaf+DZb+DZ+2D1DZ

a2ηf

e
+D2e

)
k2

+
a2ηf

e
+2

a3ηf2

e
+a2ηf−eb+e (5.48)

and

β(k2) :=det(B−k2D)=−D1D2DZk
6

−
(
D1DZ

a2ηf

e
+2D2DZaf+eD1D2+bD2DZ+D2DZ

)
k4
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−
(
2DZ

a3ηf2

e
+D1a

2ηf+DZ
a2ηf

e
−D2eb+eD2

)
k2−a2ηf. (5.49)

Turing instability may occur only if for some k the characteristic polynomial (5.47) has
roots with positive real part. Again for the Routh–Hurwitz criterion, this happens if
there exists k such that

det(B−k2D)>0 (5.50)

or

Λtr(B−k2D)>det(B−k2D). (5.51)

We notice that last five terms of Λ in (5.48) are exactly the quantity Λ̃ that we have
supposed to be positive in (5.44) for the stability in the homogeneous problem, and
consequently we have Λ>0. Since we have

Λtr(B−k2D)=det(B−k2D)+Γ, (5.52)

Γ being a negative quantity, we see that (5.51) can never be satisfied. It means that the
matrix B−k2D has eigenvalues with positive real part only if condition (5.50) holds.

We aim at finding more specific conditions on the parameters of the system (3.49).
As in Subsection 5.1, we suppose that collision frequencies for the elastic scattering
with the background take a unique value for each species: ν1A=ν1B =ν1C = ν̄1, ν2A=
ν2B =ν2C = ν̄2, νZA=νZB =νZC = ν̄Z , and also background number densities have the
common value nA=nB =nC = n̄. We fix energies EA, EB , EC , and E1 in such a way

that ∆EAC
B1 ≤0, so that Γ

(
3
2 ,Θ(∆EAC

B1 )
)
=

√
π
2 . The analysis of conditions allowing

pattern formation still depends on the difference E2−E1 and on EZ : We restrict our
investigation to EZ such that ∆EZB

11 ≤0 (just for convenience, in order to be able to
compare results with the ones obtained for the two–component system in the previous
subsection). Moreover, as usual in kinetic models dealing with energy levels [19,21], we

assume E2>E1, then also Γ
(
3
2 ,Θ(∆EZ1

Z2)
)
=

√
π
2 . With these assumptions at hand, the

parameters appearing in the reaction–diffusion system (3.49) read as

a=

(
mBmY

mAmC

) 3
2

exp(∆EAC
B1 )n̄ (5.53)

b=
νA2
A1

νAC
B1

Γ

(
3

2
,Θ(∆EA2

A1)

)
2√
π

(5.54)

η=
νZ1
Z2

νAC
B1

1

n̄
(5.55)

e=
νZB
11

νAC
B1

(
m2

Y

mZmB

) 3
2

exp(∆EZB
11 ) (5.56)

f =
νZB
11

νAC
B1

1

n̄
, (5.57)

D1=

νAC
B1 mY n̄ν̄1

∑
J=A,B,C

nJαJY

−1

, D2=
ν̄1
ν̄2

D1,
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DZ =

νAC
B1 mZ n̄ν̄Z

∑
J=A,B,C

nJαJZ

−1

. (5.58)

Our first purpose is to find suitable values for energies E2−E1 and EZ in order to
have condition (5.44) for the linear stability in the space homogeneous problem satisfied.
We find convenient rewriting condition (5.44) as

(1−b)e2+ea2ηf+(2af+1)a2ηf >0. (5.59)

If b<1 this inequality is obviously fulfilled, while the case b>1 is much more in-
volved. The condition b>1 means

L(E2−E1) :=
νA2
A1

νAC
B1

2√
π
Γ

(
3

2
,Θ(∆EA2

A1)

)
−1>0; (5.60)

the function L has the same behavior as that of the function G introduced in the previous
subsection, thus also in this case there exists a unique value E∗ such that L>0 for every
E2−E1<E∗. Notice that in the inequality (5.59) the dependence on EZ is included
only in the parameter e. Therefore, by defining a second function

T (E2−E1) :=
γ

2

[
1+

√
1+4χ

(
νA2
A1

νAC
B1

2√
π
Γ

(
3

2
,Θ(∆EA2

A1)

)
−1

)]
, (5.61)

with γ as in (5.26) and

χ=2

[(
mBmY

mAmC

) 3
2

exp(∆EAC
B1 )

νZ1
Z2

νAC
B1

]−1

+

[(
mBmY

mAmC

)3

exp
(
2∆EAC

B1

) νZ1
Z2ν

ZB
11

(νAC
B1 )

2

]−1

,

(5.62)
condition (5.59) leads to the explicit constraint:

eEZ <
T (E2−E1)

L(E2−E1)
. (5.63)

Since we are dealing with positive energies, we have eEZ >1, so we must require that
the right-hand side of (5.63) is greater than one. But, being L′>0 and(

T
L

)′

=
γ

2

(
−
√
1+4χL−1−2χL
L2

√
1+4χL

)
L′, (5.64)

the function T
L is increasing where L is positive, and its limit for E2−E1→E∗ is +∞,

while for E2−E1=0 we have

T
L

≡
γ

[
1+

√
1+4χ

(
νA2
A1

νAC
B1

−1
)]

2
(

νA2
A1

νAC
B1

−1
) . (5.65)

Consequently, if masses, background energies and collision frequencies are chosen in
such a way that the quantity above is less than one, then there exists a unique Ẽ <E∗

for which T /L>1 is satisfied for every E2−E1>Ẽ; otherwise, if the same quantity
is greater than one, then T /L>1 holds for every E2−E1>0. In conclusion, for E2−
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E1∈ (max{Ẽ,0},E∗), condition (5.59) guaranteeing stability of the steady state of the
homogeneous problem is fulfilled for

EZ < log(T (E2−E1))− log(L(E2−E1)).

As concerns Turing instability, it has been proved in [38] that it is prevented if all
minors of order q of the matrix B given in (5.41) have a determinant with the same
sign as (−1)q (with 1≤ q≤3, in our three equations system). Consequently, it’s easy
to check that in our problem a bifurcation leading to Turing instability is possible only
when the determinant of the submatrix extracted from B by eliminating the second row
and second column, given by−b−1−2af e

(
b

af
+1

)
2af −e

, (5.66)

is negative. This implies the condition b>1, namely E2−E1<E∗, analogously to the
result obtained in previous subsection for the reduced two–component system. In this
region, we are able to find a necessary condition on parameters EZ and E2−E1 for
Turing instability, recalling that unstable modes are possible only if the determinant of
the matrix B−k2D, given by (5.49), is positive for some k. According to the Descartes
rule, the cubic function β(k2) may have two positive roots (and consequently it may
assume positive values) only if the coefficient of k2 in (5.49) is positive, which means

(1−b)e2+
D1

D2
a2ηfe+

DZ

D2
a2ηf(2af+1)<0. (5.67)

Keeping in mind (5.44) (that has to be valid for the stability of the homogeneous
equilibrium), the above relation implies that at least one of coefficients D1 and DZ

must be smaller than D2. Defining the function

S(E2−E1) :=
γ

2

D1

D2

[
1+

√
1+4

DZ

D1
χ

(
νA2
A1

νAC
B1

2√
π
Γ

(
3

2
,Θ(∆EA2

A1)

)
−1

)]
, (5.68)

condition (5.67) becomes

eEZ >
S(E2−E1)

L(E2−E1)
. (5.69)

The behaviour of the ratio S
L is analogous to that of T

L discussed above. We point out
that condition (5.69) is compatible with (5.63) only if

T (E2−E1)

S(E2−E1)
>1, (5.70)

but this is ensured if we take also D1>DZ .
One should also check that the cubic β assumes a positive value in correspondence

of its positive stationary point, but with this analysis we are not provided with any
information about the sign of det(B−k2D) as function of k. Nevertheless, as proved
in [38], a wider range of k for which det(B−k2D)>0 can be obtained taking the diffusion
coefficients D1 and DZ sufficiently smaller than D2. More precisely, taking D1=αDZ ≈
ω, with ω small positive quantity, we have

det(B−k2D)=D2e(b−1)k2−a2ηf−O(ω). (5.71)
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Fig. 5.5. Values for EZ and E2−E1 satisfying (5.63) and (5.69). Values for masses as in (5.34),
background energies as in (5.35), frequencies as in (5.72), (5.73) and E1=7.2.

In this case, the component Y2 can be seen as inhibitor and component Y1 and gas
species Z as activators.

Just for illustrative purpose, we report the conditions established in this subsection
in Figure 5.5, choosing as particle masses and background energies the same as in
(5.34) and (5.35), fixing E1=7.2, taking as collision frequencies for the inelastic and the
chemical collisions the ones below

νA2
A1 =0.004, νZ1

Z2 =0.3, νAC
B1 =0.0001, νZB

11 =0.1, (5.72)

and adopting the following choice for collision frequencies with the background

ν̄1=1.5×103, ν̄2=2, ν̄Z =3×103, (5.73)

in order to have diffusion coefficients given in (5.58) such that D1>DZ and D1≪D2.
With these data we have again E∗≈4.77 such that L(E∗)=0, and Turing instability is
prevented for E2−E1>E∗. In Figure 5.5 we show the critical curve given by

C3 :EZ =log(T (E2−E1))− log(L(E2−E1)), (5.74)

under which we have linear stability of the stationary state, and also the second curve

C4 :EZ =log(S(E2−E1))− log(L(E2−E1)), (5.75)

above of which the determinant of the matrix B−k2D might have positive roots. We
also plot the line EZ =2E1−EB , below of which the assumption ∆EZB

11 ≤0 is satisfied,
and the region where Turing instability might occur is thus the black one.

We may compute det(B−k2D) numerically: In Figure 5.6 we plot it versus k for
some values of EZ and E2−E1, and in Table 5.1 we show its maximal value in the right
half–plane.

We notice that for EZ =10 and E2−E1=2.5 there is a particularly wide range in
which there could exist wavenumbers k leading to unstable modes. For these values we
perform a simulation of the behaviour in time and space for functions n1, n2, nZ in
a one–dimensional domain of size L=0.15 and we report the result in Figure 5.7. We
see that for a time t=50 the component Y1 and the gas species Z, characterized by a
very low diffusion coefficient, turn out to be concentrated in one point of the domain,
while we have a low but nearly uniform concentration of component Y2, due to the much
higher diffusion coefficient.
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EZ E2−E1 Max det(B−k2D)
7.5 1 1.16×106

10 2.5 5×107

6.4 2.5 6.27×105

8 3.5 −3.1×104

Table 5.1. Maximal values of determinant det(B−k2D) as function of k picking some values for
EZ and E2−E1 when values for masses are as in (5.34), background energies as in (5.35), frequencies
as in (5.72), (5.73) and E1=7.2.
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Fig. 5.6. Panel (a): Behavior of the quantity in (5.49) as function of wavenumbers k, taking
values of EZ and E2−E1 as in Table 5.1 (the graph corresponding to the values EZ =10,E2−E1=2.5
is reduced by a factor 5). Panel (b): Zoom of the area close to k=0 of panel (a).
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Fig. 5.7. Panels (a), (b), (c): Configuration at time t=300 of the densities n1, n2 and nZ (solid
lines) compared to their equilibrium state (dotted lines), respectively, taking EZ =10 and E2−E1=2.5.
Values for masses as in (5.34), background energies as in (5.35), frequencies as in (5.72), (5.73) and
E1=7.2.

6. Conclusions

We have derived reaction–diffusion equations from the kinetic level for a mixture
of two gas species in a dense background medium in two different hydrodynamic limits.
The mixture is assumed to be composed of a monatomic and a polyatomic gas, this last
one having two possible internal energy levels, thus it is considered to be separated into
two different components. Different interactions between particles have been taken into
account. In particular, apart from elastic scattering with the background (the dominant
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process), intra–species or inter–species elastic collisions (both less frequent), also two
inelastic transitions and two reversible chemical reactions have been supposed to take
place among particles at different time scales. In the first scenario, all inelastic and
chemical transitions have been assumed of the same order. This has allowed to derive
from the rescaled Boltzmann equations suitable macroscopic equations for the number
densities of the monatomic gas and of the two components of the polyatomic one. In
the system of reaction–diffusion equations obtained, coefficients of both the diffusive
and the reactive part are actually functions of microscopic quantities such as particle
masses, background densities, collision frequencies and internal energy amounts. The
same asymptotic procedure has been repeated in a second case in which one of the
two chemical reactions has been considered faster. In this case, in the derivation of
the reaction-diffusion system the number density of the monatomic component can be
expressed in terms of the other two concentrations. This has led to a system similar to
the classical Brusselator, known to exhibit Turing instability for particular choices of
the coefficients.

In this framework, a natural step has been the investigation of Turing instability for
our reaction–diffusion systems and its discussion upon the dependence of the coefficients
on microscopic quantities. We started from the two equations system and we focused
our analysis on collision frequencies and energy levels. First of all, we pointed out that,
as in any system showing formation of Turing patterns, the diffusion coefficient of the
inhibitor species has to be bigger than the one of the activator, and in our case this
means that collision frequencies of the inhibitor component with the background have
to be less than the ones relevant to the activator. We have explicitly individuated a
region that provides values for the internal energy of the monatomic gas and for the
difference of the two energy levels of the polyatomic species leading to spatial oscillations
in the equilibrium configuration. We have also verified the appearance of a spatial non–
homogeneous solution owing to some numerical simulations, and we have discussed the
dependence of the number of oscillations on the values of the energy levels. Moreover
we noted, as expected, that the component with the higher diffusion coefficient shows
a more homogeneous profile at equilibrium. Concerning the complete system of three
equations, we have been able to derive necessary conditions on microscopic parameters
allowing Turing instability, but, the number of parameters involved being higher than
those in the two–component Brusselator–type system, it has not been possible to verify
analytically when such conditions really lead to unstable modes. To this aim we have
numerically simulated a test case, obtaining as final state a configuration in which the
polyatomic component having the lower energy is concentrated in a small region, as
well as the monatomic species, while the density of the second polyatomic component,
characterized by a much higher diffusion coefficient, is basically constant in space.

The derivation performed in this paper, based on a diffusive asymptotic limit of
a system of kinetic equations, has provided reaction–diffusion systems in which the
diffusion matrix is diagonal and constant. Actually, in many physical situations the
Brusselator–type dynamics is better described if the diffusive part is nonlinear, as for
instance in [17], or if there is also a cross diffusion term, as in [15]. In these cases the
discussion of Turing instability requires a deeper analysis of parameters appearing in
the diffusion part. Our future aim is to look for a different set of possible interactions
among particles of the mixture and also to investigate different hydrodynamic limits of
the kinetic equations, that may lead to the appearance of nonlinear diffusion or cross
diffusion terms, in order to study their dependence on microscopic quantities.
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Appendix. Computation of chemical collision contributions. We consider
here a generic chemical encounter

C1+C2⇆C3+C4. (A.1)

For the purposes of this paper (see Sections 3 and 4), we may suppose to have Maxwellian
distributions, that are

fI(v)=nIMI(v), MI(v)=nI

(mI

2π

) 3
2

exp

(
−mI |v|2

2

)
, I=1,2,3,4. (A.2)

We want to calculate the net production of particles of species C1, provided by∫
R3

Q1(nM)(v)dv. (A.3)

It’s easy to check [21, 36] that the following relations are in order for the source terms
of the four gases:∫

R3

Q1(nM)(v)dv =

∫
R3

Q2(nM)(v)dv=−
∫
R3

Q3(nM)(v)dv=−
∫
R3

Q4(nM)(v)dv,

(A.4)
since in each direct reaction in (A.1), to the disappearance of a pair of particles (C1,C2)
there corresponds the creation of a pair of particles (C3,C4), and vice versa in the reverse
reaction.

The reactive Boltzmann operator Q1 is provided by [36]

Q1(nM)(v)=

∫
R3

∫
S2

H(g2−δ3412)σ
34
12(g,Ω̂ ·Ω̂′)g

×

[(
m1m2

m3m4

)3

n3M3(v
′)n4M4(w

′)−n1M1(v)n2M2(w)

]
dwdΩ̂′, (A.5)

where, as already explained in Section 2, H(·) is the unit step function, σ34
12 is the

differential cross section of the direct reaction, and δ3412 =2∆E34
12/µ12, being ∆E34

12 =
E3+E4−E1−E2 and µ12=m1m2/(m1+m2).

We denote by g the relative velocity, by G the velocity of the center of mass, and
by g′, G′ the corresponding post–collision quantities, defined as{

g=v−w
G=α12v+α21w

{
g′=v′−w′

G′=α34v
′+α43w

′,
(A.6)

with αij =
mi

mi+mj
. From the conservations of global momentum and energy, one deduces

that G=G′ and

g′=

[
m1m2

m3m4
(g2−δ3412)

] 1
2

H(g2−δ3412), g=

[
m3m4

m1m2
(g′

2−δ1234)

] 1
2

H(g′
2−δ1234), (A.7)
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and consequently one has the relations allowing to pass from pre–collision to post–
collision quantities and vice versa{

v′ = α12v+α21w+α43g
′Ω̂′

w′ = α12v+α21w−α34g
′Ω̂′.

(A.8)

Using the conservation of total energy:

1

2
m1v

2+E1+
1

2
m2w

2+E2=
1

2
m3(v

′)2+E3+
1

2
m4(w

′)2+E4,

the integral of the Boltzmann operator Q1 can be expressed as∫
R3

Q1(nM)(v)dv

=
(m1m2)

3
2

(2π)3

∫
R3×R3

∫
S2

H(g2−δ3412)σ
34
12(g,Ω̂ ·Ω̂′)gexp

(
−1

2
m1v

2− 1

2
m2w

2

)
dwdvdΩ̂′

×

[(
m1m2

m3m4

) 3
2

exp(∆E34
12)n3n4−n1n2

]
. (A.9)

We adopt a Maxwell molecules assumption on the differential cross section of the direct
reaction, setting ∫

S2

σ34
12(g,Ω̂ ·Ω̂′)gdΩ̂′ :=ν3412 constant. (A.10)

Inside the six–folds remaining integral∫
R3×R3

H(g2−δ3412)exp

(
−1

2
m1v

2− 1

2
m2w

2

)
dwdv (A.11)

we perform the change of variables (v,w)→ (g,G), obtaining∫
R3

exp

(
−1

2
G2(m1+m2)

)
dG

∫
g2>δ3412

exp

(
−1

2
g2

m1m2

m1+m2

)
dg

=16π
5
2

1

(m1m2)
3
2

Γ

(
3

2
,Θ(∆E34

12)

)
, (A.12)

with Γ(α,y) being the incomplete Euler gamma function defined in (3.11) and
Θ(∆E34

12)=max{∆E34
12 ,0}. In conclusion we get∫

R3

Q1(nM)(v)dv

=ν3412
2√
π
Γ

(
3

2
,Θ(∆E34

12)

)[(
m1m2

m3m4

) 3
2

exp(∆E34
12)n3n4−n1n2

]
. (A.13)

In case of an irreversible reaction of the type

C1+C2→C3+C4, (A.14)

in the production rate for Q1 only the loss term remains∫
R3

Q1(nM)(v)dv =−ν3412
2√
π
Γ

(
3

2
,Θ(∆E34

12)

)
n1n2, (A.15)

and relations (A.4) are still in order for the other species.



800 REACTION–DIFFUSION EQUATIONS FROM KINETIC MODELS

REFERENCES

[1] B. Anwasia, M. Bisi, F. Salvarani, and A.J. Soares, On the Maxwell–Stefan diffusion limit for
a reactive mixture of polyatomic gases in non–isothermal setting, Kinet. Relat. Models,
13:63–95, 2020. 1

[2] B. Anwasia, P. Goncalves, and A.J. Soares, On the formal derivation of the reactive Maxwell–
Stefan equations from the kinetic theory, Europhys. Lett., 129:40005, 2020. 1

[3] K. Aoki, M. Bisi, M. Groppi, and S. Kosuge, Two-temperature Navier-Stokes equations for a
polyatomic gas derived from kinetic theory, Phys. Rev. E, 102:023104, 2020. 3

[4] C. Bardos, F. Golse, and C.D. Levermore, Fluid dynamic limits of kinetic equations II-
Convergence proofs for the Boltzmann equation, Commun. Pure Appl. Math., 46:667–753,
1993. 3

[5] M. Bisi and L. Desvillettes, From reactive Boltzmann equations to reaction–diffusion systems, J.
Stat. Phys., 124:881–912, 2006. 1, 2, 3, 3, 3.1, 3.4, 5.1

[6] M. Bisi, M. Groppi, and G. Spiga, Grad’s distribution functions in the kinetic equations for a
chemical reaction, Contin. Mech. Thermodyn., 14:207–222, 2002. 2, 3.1

[7] B. Bozzini, G. Gambino, D. Lacitignola, S. Lupo, M. Sammartino, and I. Sgura, Weakly nonlinear
analysis of Turing patterns in a morphochemical model for metal growth, Comput. Math.
Appl., 70:1948–1969, 2015. 1

[8] R.S. Cantrell and C. Cosner, Spatial Ecology via Reaction–Diffusion Equations, John Wiley &
Sons, Ltd., 2003. 1

[9] C. Cercignani, The Boltzmann Equation and its Applications, Springer, New York, 1988. 1, 2, 3,
3.1, 3.1, 3.1

[10] S. Chapman and T.G. Cowling, The Mathematical Theory of Non–Uniform Gases, Cambridge
University Press, Cambridge, 1970. 1, 2

[11] A. Chauviere, L. Preziosi, and H. Byrne, A model of cell migration within the extracellular matrix
based on a phenotypic switching mechanism, Math. Med. Biol., 27:255–281, 2010. 1

[12] N. Dalchau and S. Smith, Model reduction enables Turing instability analysis of large reaction-
diffusion models, J.R. Soc. Interface, 15:20170805, 2018. 1, 4, 4.3

[13] L. Desvillettes and F. Golse, A remark concerning the Chapman-Enskog asymptotics, Ser. Adv.
Math. Appl. Sci., 22:191–203, 1992. 3.1

[14] M. Duan, L. Chang, and Z. Jin, Turing patterns of an SI epidemic model with cross–diffusion on
complex networks, Phys. A: Stat. Mech. Appl., 533:122023, 2019. 1

[15] D. Fanelli, C. Cianci, and F. Di Patti, Turing instabilities in reaction-diffusion systems with cross
diffusion, Eur. Phys. J. B, 86:142, 2013. 6

[16] G. Favre and C. Schmeiser, Hypocoercivity and fast reaction limit for linear reaction networks
with kinetic transport, J. Stat. Phys., 178:1319–1335, 2020. 1

[17] G. Gambino, M.C. Lombardo, M. Sammartino, and V. Sciacca, Turing pattern formation in the
Brusselator system with nonlinear diffusion, Phys. Rev. E, 88:042925, 2013. 6

[18] F.R. Gantmacher and J.L. Brenner, Applications of the Theory of Matrices, Interscience Publish-
ers, New York, 1959. 5.2

[19] V. Giovangigli, Multicomponent Flow Modeling, Series on Modeling and Simulation in Science,
Engineering and Technology, Birkhäuser, Boston, 1999. 2, 2, 3.1, 5.2
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