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TRAVELING WAVES IN
A KELLER-SEGEL MODEL WITH LOGISTIC GROWTH∗

TONG LI† AND JEUNGEUN PARK‡

Abstract. Bacterial diffusion, proliferation and chemotactic aggregation play an important role
in forming a traveling wave in a model for chemotaxis. In this paper, we investigate the existence and
non-existence of traveling wave solutions of a Keller-Segel type model for chemotaxis, where logistic
cell growth is considered and chemotactic sensitivity function is a general C1 function that represents
positive or negative chemotaxis. To show the existence of traveling waves, we use techniques from
dynamical system theory. By applying the techniques, we determine the range of parameter values of
the bacterial chemotaxis and the kinetics of cell and chemical for which traveling wave solutions exist.
Furthermore, we examine the monotonicity of the traveling wave solutions. Finally, we conclude that
the traveling waves are spectrally unstable.
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1. Introduction

Some bacteria move toward favorable environments or away from noxious sub-
stances, which is called chemotaxis. To understand their chemotactic behavior at
the population level, a mathematical model, formulated by Keller and Segel in the
1970s [22], has become widely used to model bacterial chemotaxis, and various types
of the model have been developed. In particular, the interplay between bacterial dif-
fusion and aggregation in the Keller-Segel model [22,23] successfully described the for-
mation of traveling bands observed in experiments [1], and, further, the model has
been extensively studied for pattern formation from theoretical and numerical points of
view. For example, related research on traveling waves in various contexts can be found
in [3, 13, 14, 19, 21, 24, 26, 28–30, 33, 47] and references therein; see [17, 18, 42, 44] for the
literature review on traveling waves of Keller-Segel models.

Recently, as continuation of work [31, 32, 40] on traveling wave solutions to a spe-
cial case of Keller-Segel models (referred to as the minimal Keller-Segel model in [17]),
there is a growing interest in Keller-Segel type models incorporated with cell growth and
death. These models can describe more diverse biological scenarios including systems in
which the time scale of bacterial migration is similar or slower than that of cell prolifer-
ation. For instance, the initiation of angiogenesis where the cell growth and chemotaxis
play an important role in forming new blood vessels [9, 43], and some experimental re-
sults on non-equilibrium pattern formation were explained with an interplay between
cell growth and chemotaxis in [8, 41, 46]. Also, from a mathematical point of view, it
is intriguing to investigate the chemotactic effects on formulation and propagation of
traveling wave solutions by comparing to the formulation of traveling waves in Fisher’s
equation where cells’ chemotactic behavior is not considered.

The goal of this paper is to investigate the existence and stability of traveling wave
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solutions in a Keller-Segel type model with cell growth and death:{
ut=Duxx−(uχ(v)vx)x+µu(1−u)
vt=αu+βv,

(1.1)

where u(x,t)≥0 and v(x,t)≥0 represent the density of a cell population and the chem-
ical concentration, respectively, at spatial position x∈R and time t≥0. We assume
D>0, χ(v)∈C1, µ>0, and α,β∈R.

In the dynamics of cell density in system (1.1), D>0 represents the cell diffusion
coefficient and χ(v) describes the chemotactic sensitivity. Since χ(v) is determined by
interactions between their intracellular signalling pathway and the bacterial movement
in response to chemical stimuli [17, 34, 42], χ(v) depends upon bacterial species and
biological scenarios, and in turn each chemotaxis model may have different χ(v). The
prototype of χ(v) takes χ0 (linear), χ0

v (logarithmic), χ0

(k+v)2 , k>0 (receptor) forms

[17, 42]. Here, if the chemical is an attractant, then χ0≥0, i.e., the cells move along
the chemical gradient direction. If the chemical is a repellent, χ0≤0, i.e., the cells
move away from the chemical and it corresponds to negative chemotaxis. The logistic
growth (µ>0) is a standard choice of the kinetics and has been used to govern some
cells [4, 8, 17].

In the chemical kinetics in system (1.1), the choice of α and β depends on biological
systems; α<0 (resp., α>0) corresponds the consumption (resp., secretion) rate of the
chemical; β>0 (resp., β<0) represents the chemical growth (resp., degradation) rate.
Particularly, our model (1.1) with α>0 and β<0 describes bacterial chemotaxis in
which bacteria consume chemicals produced by themselves such as Escherichia coli and
Salmonella typhimurium bacteria [7, 46]; also, chemorepellent can be produced by cells
themselves [20]. On the other hand, compared to the minimal model for chemotaxis
in [17], our model (1.1) contains no chemical diffusion. In biological systems, zero
diffusion may occur when chemical signals are confined to a rigid extracellular structure
or substrate (e.g. angiogenesis), or chemicals are carried by large water molecules [17,
44]. Also, diffusion in the chemical signal can be negligible when chemical diffusion
is much smaller than other biological process; see [10, 13, 25, 34, 42] for comparison of
parameters.

Analysis of a traveling wave solution of a chemotxis model with the logistic source
and a linear chemical reaction, in terms of existence and a minimal speed, has been
established by the authors in [5,27,32,35–39]. Most of the studies considered a parabolic-
parabolic model or a parabolic-elliptic model by introducing non-zero chemical diffusion
and by taking a constant χ(v)≥0. In [32], the authors showed the existence by using
a homotopy argument; in [35–39] the authors used a sub-supersolution approach. The
model of (1.1) with zero chemical diffusion and a general sensitivity function χ(v)≥0
was studied by [5,27] for the case of α<0 and β>0, which describes biological systems
where chemoattractant such as oxygen is consumed by cells to balance the exponential
chemical growth. The authors in [27] established the existence, non-existence and a
minimal speed by using a method in [2] where a Keller-Segel type model involves a
logistic source term and χ(v)=1/v whose singularity was removed by the Hopf-Cole
transformation. The result of [27] was improved further by the author in [5] and was
also extended to the case of non-zero chemical diffusion.

Our current contribution toward existence and non-existence of traveling wave so-
lution is as follows. We consider a general case of C1 sensitivity function χ(v) as the
chemotactic term may vary depending on the biological system under consideration
(see [42] for a brief list of χ(v)). Since we consider both χ(v)>0 and χ(v)<0, our
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results can describe both chemoattractant and chemorepellent activities. In addition to
the results of [5,27], by considering the case of α,β∈R in (1.1), the model (1.1) enables
to describe more biological scenarios.

To prove the existence of traveling wave solutions of (1.1), we employ dynamical
systems theory to show the existence of a heteroclinic orbit connecting two steady states
in a system of ordinary differential equations (ODEs) derived from (1.1). Different from
the dynamical systems approach used in [2, 27] where a trapping region containing a
heteroclinic orbit was constructed; in general construction of a trapping region is not
tractable [6, 11, 44]. Thus, in this paper, to obtain a heteroclinic orbit, we construct a
certain region satisfying the conditions of the principle of Ważeski [11,12,15,45] in the
three dimensional phase space; more specifically, we apply the shooting method, based
on Ważeski’s theorem, that was introduced in [12]. According to Ważeski’s theorem,
the region contains an invariant set, and the invariant set turns out to be our desired
heteroclinic orbit. Here, the descriptive region helps to understand the interplay be-
tween the chemotaxis and the kinetics of cells and chemical in forming a traveling wave
solution. Furthermore, it helps to deduce the monotonicity of the heteroclinic orbit.

Our main theorems of existence of traveling wave solutions of Keller-Segel model
(1.1) are as follows:

Theorem 1.1 (Existence when χ(v)>0). Let D,µ,α>0 and β<0. Assume a C1-
function χ(v) satisfies

0<
Dµ

α
≤χ(v)≤ D|β|

2α
.

Then there is a minimal speed s∗>0 such that if s>s∗, the system (1.1) has a traveling
wave solution (u,v)(x,t)=(U,V )(ξ), where ξ=x−st, satisfying

(i) 0≤U(ξ)≤1 and 0≤V (ξ)≤ α
|β| for any ξ∈ (−∞,∞)

(ii) (U,V )(ξ) converges to (1, α
|β| ) and (0,0) exponentially as ξ→−∞ and ξ→∞,

respectively.

In particular, if χ(v) is a constant satisfying χ(v)≡ Dµ
α ≤1, then U and V are mono-

tonically decreasing. Namely, U ′≤0 and V ′≤0 for any ξ∈ (−∞,∞).
There is no traveling wave solution connecting (1, α

|β| ) and (0,0) whose speed s sat-

isfies s<s∗.

Theorem 1.2 (Existence when χ(v)<0). Let D,µ,α>0 and β<0. Assume χ(v)∈C1

satisfies

χ(v)<0, χ′(v)≥0 and 0< |χ(v)|≤ Dµ

2α
≤ D|β|

8α

for any 0<v≤ α
|β| . Then, there is a minimal speed s∗>0 such that if s>s∗, the system

(1.1) has a traveling wave solution (u,v)(x,t)=(U,V )(ξ), where ξ=x−st, satisfying
(i) 0≤U(ξ)≤1 and 0≤V (ξ)≤ α

|β| for any ξ∈ (−∞,∞)

(ii) (U,V )(ξ) converges to (1, α
|β| ) and (0,0) exponentially as ξ→−∞ and ξ→∞,

respectively.

(iii) V is monotonically decreasing; that is, V ′≤0 for any ξ∈ (−∞,∞).

There is no traveling wave solution connecting (1, α
|β| ) and (0,0) whose speed s sat-

isfies s<s∗∗ for some s∗∗≤s∗.

As µ>0, the system (1.1) admits infinitely many traveling wave solutions with
different wave speeds. Here, we note that µ>0 is sufficient to admit a traveling wave
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solution of (1.1) when the sensitive function χ(v) is C1 [40]. In the biological sense,
µ>0 causes a wave to keep propagating [42]; otherwise, a small diffusion of cells can
decrease the wave speed and broaden the wave profile. The exact values of s∗ and s∗∗

can be found in Theorem 2.1 and Theorem 2.2.

In the following, we present the non-existence of traveling wave solution of (1.1). To
prove the theorem, we apply dynamical systems theory in conjunction with a Lyapunov
function as in [27].

Theorem 1.3 (Non-existence). Let D,µ>0 and α,s≥0 and β∈R. Assume that a
C1-function χ(v) does not change a sign.

(1) If either α=0 and β ̸=0 or α>0 and β=0, the system (1.1) has no non-trivial
traveling wave solution of speed s≥0. For α,β>0, a non-trivial traveling wave solution
with speed s>0 does not exist.

(2) If α=β=0 or αβ ̸=0, the system (1.1) has no non-trivial traveling wave solution
of speed s=0 satisfying 0≤U ≤1.

In Theorems 1.1–1.3, only the case of s≥0 is addressed. The case of s<0 can be
examined by using a change of variable, ξ̃ :=−ξ, and the results are similar to those
from Theorems 1.1–1.3.

Lastly, we investigate the stability of the traveling wave solutions (U,V ) obtained
from Theorems 1.1-1.2. Here, the stability of a traveling wave means that if an initial
perturbation between a traveling wave solution and a solution to the Cauchy problem
(1.1) with the initial data (u0,v0) satisfying

(u0,v0)(x)=(u,v)(x,0)→

{
(U,V )(−∞) as x→−∞
(U,V )(∞) as x→∞

(1.2)

is small in some space, the solution (u,v) to the Cauchy problem converges to the
traveling wave solution (U,V ) as time evolves. We note that since our model (1.1) has
infinitely many traveling wave solutions whose speeds are not isolated, it is easy to see
the nonlinear instability of the family of traveling wave solutions in the unweighted
L2 space. In this work, we particularly verify the spectral instability of the family
of traveling wave solutions (see Theorem 1.4) by examining the location of essential
spectrum of the linearized operator of (1.1). Our spectral instability result is led by
µ>0 in the cell growth term, and is independent of the rates of chemical growth α>0
and degradation β<0.

Theorem 1.4. Let χ(v)∈C3. The traveling wave solutions of the system (1.1),
obtained in Theorem 1.1 and Theorem 1.2, are spectrally unstable in the L2 norm.

The remainder of this paper is organized as follows. In Section 2 we reformulate
the system (1.1) and restate Theorem 1.1 and Theorem 1.2 in terms of the reformulated
system. In Sections 3 and 4, the existence of traveling wave solutions are proved for
the cases of χ(v)>0 and χ(v)<0, respectively. In Section 5, we prove Theorem 1.3. In
Section 6, Theorem 1.4 is proved. We conclude with a brief summary in Section 7.

2. Reformulation of the problem

In the following, we reformulate the system (1.1) to show the existence of traveling
wave solutions (U,V ) of (1.1), which are desired in Theorem 1.1 and Theorem 1.2 for
α>0, β<0 and s>0. We state our main theorems of the existence of traveling wave
solution for the transformed system.
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In this paper, we are interested in a smooth traveling wave solution of the system
of partial differential equations (PDEs) (1.1) with the speed s of the form

(u,v)(x,t)=(U,V )(ξ), ξ :=x−st

that satisfies {
U(ξ)≥0, V (ξ)≥0, ∀ξ∈ (−∞,∞)

(U,V )(±∞)=(u±,v±), (U ′,V ′)(±∞)=(0,0).
(2.1)

To enhance the understanding of the relations of parameters, we simplify the setting of
parameters by using the following scaling:

ũ(x,t) :=u(
√
Dx,t), ṽ(x,t) :=v(

√
Dx,t), χ̃(ṽ) :=

1

D
χ(ṽ). (2.2)

Then, (1.1) is transformed into{
ũt= ũxx−(ũχ̃(ṽ)ṽx)x+µũ(1− ũ)
ṽt=αũ+βṽ,

(2.3)

and a traveling wave solution (U,V )(ξ), ξ=x−st, of (1.1) also corresponds to (Ũ ,Ṽ )(ξ̃),
where

ξ̃ :=x−ct, c :=
s√
D
. (2.4)

By substituting (Ũ ,Ṽ )(ξ̃) into the system (2.3) and using (2.4), we obtain the
following system of ODEs:{

−cŨ ′= Ũ ′′−(Ũ χ̃(Ṽ )Ṽ ′)′+µŨ(1− Ũ)

−cṼ ′=αŨ+βṼ ,
(2.5)

where ′= d
dξ̃
. It is noticed that the existence of a solution of the ODE system (2.5)

connecting (ũ−, ṽ−) and (ũ+, ṽ+) implies the existence of a traveling wave solution (1.1)
satisfying (2.1).

Note that c≥0 by the definition of c in (2.4) and s≥0. Since we are particularly
interested in α>0 and β<0 to address the existence of a traveling wave solution of the
system (1.1), we fix α=1 and define a new constant γ :=−β>0 for simplicity in the
remainder of this paper. Further, for the ease of analysis in finding a solution of (2.5),
we convert the second order ODE to a system of first order ODEs by introducing a new
variable:

W̃ (ξ) := cŨ+ Ũ ′− Ũ χ̃(Ṽ )Ṽ ′−cũ−. (2.6)

For brevity of notation, we drop the tildes. Then, we derive the ODE system
U ′=−cU+ 1

cUχ(V )(γV −U)+W

V ′= 1
c (γV −U)

W ′=µU(U−1),

(2.7)
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where

O := (0,0,0) and C := (1, 1γ ,c) (2.8)

are the equilibrium points of the system (2.7).
If there is a heteroclinic orbit of the ODE system (2.7) connecting the equilibria O

and C, the orbit is a solution of ODE system (2.5). Using the transformations (2.2),
(2.4) and (2.6), the orbit is also identified as a traveling wave solution of (1.1) satisfying
(2.1). Therefore, we aim to prove the existence of a heteroclinic orbit of the system
(2.7) connecting the two equilibria in (2.8) as follows:

Theorem 2.1. For µ>0 and γ>0, we assume that a C1 function χ(v) satisfies

µ≤χ(v)≤ γ

2
(2.9)

for 0≤v≤ 1
γ . Let

c∗ :=2
√
µ>0. (2.10)

Then, for any c>c∗ the system (2.7) has a solution (U,V,W )(ξ), ξ :=x−ct, satisfying
(i) 0≤U(ξ)≤1, 0≤V (ξ)≤ 1

γ , and 0≤W (ξ)≤ c for any ξ∈ (−∞,∞).

(ii) (U,V,W )(ξ) converges to (1, 1γ ,c) and (0,0,0) exponentially as ξ→−∞ and ξ→
∞, respectively.

In particular, if χ(v)≡µ≤1, it is satisfied that 0<W (ξ)≤ cU(ξ)<c and 0<γV (ξ)≤
U(ξ)<1. Furthermore, U ′,V ′≤0 and W ′≤0 for any ξ∈ (−∞,∞).

If c<c∗, there is no traveling wave solution connecting (1, 1γ ,c) and (0,0,0) with
speed c.

Theorem 2.2. Let χ(v)<0 be a C1 function and satisfy

χ′(v)≥0 (2.11)

for any 0≤v≤ 1
γ . Let µ>0 and γ>0 satisfy

0< |χ(v)|≤ µ

2
≤ γ

8
(2.12)

for any 0<v≤ 1
γ . For any c>c∗, where

c∗ :=
√
γ >0, (2.13)

the system (2.7) has a heteroclinic orbit (U,V,W )(ξ), ξ :=x−ct, satisfying
(i) 0≤U(ξ)≤1, 0≤V (ξ)≤ 1

γ , and 0≤W (ξ)≤ c for any ξ∈ (−∞,∞).

(ii) (U,V,W )(ξ) converges to (1, 1γ ,c) and (0,0,0) exponentially as ξ→−∞ and ξ→
∞, respectively.

(iii) V ′(ξ),W ′(ξ)≤0 for all ξ∈ (−∞,∞).

If c<2
√
µ, there is no traveling wave solution connecting (1, 1γ ,c) and (0,0,0) with

speed c.

Remark 2.1. The condition c>c∗≥2
√
µ>0 in (2.10) and (2.13) is necessary to have

non-negative U and V , and details can be found in Section 3.1. Noticing that there is
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no traveling wave solution connecting (1, 1γ ,c) and (0,0,0) for c<2
√
µ, s∗ in Theorem

1.1 and s∗∗ in Theorem 1.2 can be explicitly obtained by (2.4). In Theorem 2.1 and
Theorem 2.2, the assumptions on χ(v), µ and γ are sufficient to obtain our desired
solution of the system by applying the principle of Ważeski.

Theorem 1.1 and Theorem 1.2, our main theorems of this work, are consequences of
Theorem 2.1 and Theorem 2.2. The proofs of Theorem 2.1 and Theorem 2.2 are given
in Section 3 and in Section 4, respectively. To prove the theorems, we mainly use a
tool that was formulated by Ważeski [45]. Before giving the proofs, we introduce our
notation for the flow of (2.7) and recall some definitions and the principle of Ważeski.
We refer to [12,15,45] for more details.

Notation 2.1. We denote the flow of the system (2.7) by φξ(P ), where φ :R×R3→R3

satisfies

(i) φ0(P )=P

(ii) for all ξ and η∈R, φξ(φη(P ))=φξ+η(P )

for all P ∈R3.

Definition 2.1 ([15, p. 278]). Let A and B be sets of a topological space and A be a
subset of B. If a continuous map g :B→A satisfies g(A)=A for any A∈A, then A is
said to be a retract of B.
Definition 2.2 ([15, p. 280]). Let Ω=R3−{O,C}⊂R3, where O and C are given
in (2.8), and Ω0 an open subset in Ω. Let φξ(P ) be a flow of the system (2.7). A point
P ∈Ω∩∂Ω0 is an egress point of Ω0 with respect to (2.7) if there is an ε>0 such that
φξ(P )∈Ω0 for −ε≤ ξ <0. If an egress point P ∈Ω0 satisfies φξ(P ) ̸∈Ω0 for 0<ξ≤ε for
small ε>0, the egress point P is called a strict egress point of Ω0. We denote the set of
egress points of Ω0 by Ω0

e and the set of strict egress points by Ω0
se.

The following theorem is one of the modified versions of the principle of Ważeski,
and it was introduced by H. Fan and X.-B. Lin [12].

Theorem 2.3 ([12, Lemma 1.2]). Assume that all egress points of Ω0 are strict egress
points, i.e., Ω0

e =Ω0
se. Let S be a nonempty subset of Ω0∪Ω0

e such that S∩Ω0
e is not a

retract of S but is a retract of Ω0
e . Suppose that there are two mutually disjoint open

subsets S1 and S2 of S∩∂Ω0 such that there is a smooth curve segment P1P2⊂Ω0 when
P1 and P2 are strict egress points of S1 and S2, respectively. Then, there is a P3∈P1P2

satisfying that φξ(P3) remains in Ω0 for all positive ξ.

3. Proof of the existence of traveling wave solutions for χ(v)>0
In this section we prove Theorem 2.1. The outline of this section is as follows: We

linearize the system (2.7) at the equilibria O and C given in (2.8), and analyze the
behavior of a solution. Based on the analysis, we construct an open set Ω0 and obtain
strict egress points of Ω0 to apply Theorem 2.3. Consequently we conclude that there is
a heteroclincic orbit of (2.7) that connects O and C, and hence Theorem 2.1 is proved.

3.1. Linearized system. In the following we investigate a trajectory of the
system (2.7) in a neighborhood of the equilibrium points O and C given in (2.8).

At O=(0,0,0), the Jacobian matrix of (2.7) is−c 0 1
− 1

c
γ
c 0

−µ 0 0

 (3.1)
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Fig. 3.1. Graph of characteristic polynomial p(λ) given in (3.4) for χ(v)>0, where λc,−, λc,1

and λc,2 correspond to the roots of p(λ).

and its eigenvalues are

λo,1=
γ

c
>0, λo,2=

−c+
√
c2−4µ

2
<0, λo,3=

−c−
√
c2−4µ

2
<0.

The corresponding eigenvectors are

v⃗o,1=(0,1,0)⊤, v⃗o,i=(γ−cλo,i,1,γ(c+λo,i)+µc)⊤, i=1,2. (3.2)

At C=(1, 1γ ,c), the Jacobian matrix of the system (2.7) is−c− 1
cχ(

1
γ )

γ
cχ(

1
γ ) 1

− 1
c

γ
c 0

µ 0 0

, (3.3)

and its characteristic polynomial is

p(λ)=−λ3+
(γ
c
−
χ
(
1
γ

)
c

−c
)
λ2+(γ+µ)λ− γµ

c
. (3.4)

By (2.9), it is straightforward to show that p(λ) has one negative root λc,− and two
distinct positive roots λc,1 and λc,2; particularly, these two positive eigenvalues satisfy
(see Figure 3.1)

0<λc,1<
µ

c
<
γ

2c
<
γ−χ(1/γ)

c
<λc,2<

γ

c
(3.5)

and the corresponding eigenvectors are

v⃗c,i=
(
1,(γ−cλc,i)−1,µλ−1

c,i

)⊤
, i=1,2. (3.6)

Therefore we have the following lemma.

Lemma 3.1. Assume that conditions in Theorem 2.1 and c>c∗, where c∗ is given in
(2.10). At the equilibrium point O, the system (2.7) has a 2-dimensional local stable
manifold W s

loc(O). At the equilibrium point C, (2.7) has a 2-dimensional local unstable
manifold W u

loc(C).



TONG LI AND JEUNGEUN PARK 837

3.2. Construction of an open set containing an invariant set. To prove
the existence of a solution of the system (2.7) that connects the equilibria O and C
in (2.8), we construct an open set Ω0⊂Ω=R3−{O,C} and identify egress points and
strict egress points of Ω0. Then, the open set Ω0 contains an invariant set by Theorem
2.3; it turns out that the invariant set is our desired heteroclinic orbit connecting O and
C. The details are discussed below.

To begin with, we define an open set Ω0⊂Ω=R3−{O,C} whose boundary is sur-
rounded by the following seven faces (Figure 3.2(A)):

F1 :={(U,V,W ) | 0≤U ≤1, V =0, kU ≤W ≤ c},
F2 :={(U,V,W ) | U =1, 0≤V ≤ 1

γ , k≤W ≤ c},

F3 :={(U,V,W ) | 0≤U ≤1, V = 1
γ , k≤W ≤ c},

F4 :={(U,V,W ) | U =0, 0≤V ≤ 1
γ , kγV ≤W ≤ c},

F5 :={(U,V,W ) | 0≤U ≤1, 0≤V ≤ 1
γ , W = c},

F6 :={(U,V,W ) | 0≤γV ≤U ≤1, W =kU},
F7 :={(U,V,W ) | 0≤U ≤γV ≤1,W =kγV },

(3.7)

where k is defined as

k :=
c−
√
c2−4µ

2
>0. (3.8)

Now we investigate egress points and strict egress points of Ω0 by Definition 2.2.
More specifically, we verify that all egress points are strict egress points and the set Ω0

se

is decomposed by two disjoint sets (Figure 3.2(A)):

Ω0
e =Ω0

se=S1∪S2, (3.9)

where

S1 :=F1−
(
F2∪F4

)
,

S2 :=
(
F3−(F2∪F4∪F5∪F7)

)
∪
(
F7−F4

)
.

(3.10)

To show (3.9), we first rule out points (U,V,W )∈∂Ω0 satisfying

n⃗ ·(U ′,V ′,W ′)<0,

where n⃗ is an outward vector at each point (U,V,W ) of ∂Ω0, since these points are
not egress points by the definition of egress points in Definition 2.2. It is noticed that
a point (U,V,W )∈∂Ω0 is classified as a strict egress point if n⃗ ·(U ′,V ′,W ′)>0 holds.
Thus, for a point (U,V,W )∈∂Ω0 satisfying n⃗ ·(U ′,V ′,W ′)=0, we further analyze to
verify whether or not the point is an egress point.

In the following (F1)–(F7), we identify all possible strict egress points of the relative
interiors of faces F1, ·· · ,F7. We denote the relative interior of face F by Int(F):

(F1) The interior of F1, which is denoted by Int(F1), has an outward normal vector
n⃗F1

=(0,−1,0)⊤. At any point on Int(F1) we have n⃗F1
·(U ′,V ′,W ′)= 1

cU >0,
which implies Int(F1)⊂Ω0

se.
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Fig. 3.2. The case when µ= 1
4
,γ=1,c=1 and χ(v)= 4

(3+v)2
. (A) Sketch of Ω0 with the set of

egress points Ω0
e =S1∪S2 (S1 : blue face, S2 : red face). A collection of blue arrows represents a vector

field on Ω0 associated with the system (2.7) for χ(v)>0. Two points O and C are the equilibrium
points. (B) Sketch of Ω0 with Ω1 (blue tetrahedron) and Ω2 (red pentahedron). The dashed polygon
represents the intersection of Ω0 and the plane P (gray plane). Two blue trajectories are flows of (2.7)
initiated at P1 and P2, respectively.

(F2) At (U,V,W )∈ Int(F2), the outward normal vector n⃗F2 =(1,0,0)⊤ satisfies n⃗F2 ·
(U ′,V ′,W ′)=−cU+W + 1

cUχ(V )(γV −U)<0. Thus Int(F2) ̸⊂Ω0
e .

(F3) At (U,V,W )∈ Int(F3), since the outward normal vector n⃗F3 =(0,1,0)⊤ satisfies
n⃗F3 ·(U ′,V ′,W ′)= 1

c (1−U)>0, Int(F3)⊂Ω0
se.

(F4) At (U,V,W )∈ Int(F4), we have n⃗F4 ·(U ′,V ′,W ′)=−W <0, where n⃗F4 =
(−1,0,0)⊤ is an outward normal vector. Thus, Int(F4) ̸⊂Ω0

e .

(F5) Using an outward normal vector n⃗F5 =(0,0,1) at (U,V,W )∈ Int(F5), we obtain
n⃗F5 ·(U ′,V ′,W ′)=µU(U−1)<0, and hence Int(F5) ̸⊂Ω0

e .

(F6) Using an outward normal vector n⃗F6 =(k,0,−1), we obtain

n⃗F6
·(U ′,V ′,W ′)=U

(k
c
χ(V )(γV −U)−µU

)
<0,

where it is used that k in (3.8) satisfies k2−ck+4µ=0. Thus, Int(F6) ̸⊂Ω0
e .

(F7) The face Int(F7) has an outward normal vector n⃗F7
=(0,γk,−1). We then have

n⃗F7 ·(U ′,V ′,W ′)>0 for (U,V,W )∈ Int(F7), and hence Int(F7)⊂Ω0
se.

To this end, we examine that points on each edge of ∂Ω0 are either in Ω0
se or not in Ω0

e :

(E1) If there is a ξ0∈R satisfying (U(ξ0),V (ξ0),W (ξ0))∈F1∩F4−{O}, direct calcu-
lation yields V (ξ)= 1

2V
′′(ξ0)(ξ−ξ0)2+O(|ξ−ξ0|3) for sufficiently small |ξ−ξ0|,

and hence V ′′(ξ)<0 for sufficiently small |ξ−ξ0|. Also it is noticed that {O} is
an invariant set. Thus, by the definition of an egress point, F1∩F4 ̸⊂Ω0

e .

(E2) Any point (U,V,W )∈F1∩F2, U
′<0 and V ′<0. We deduce that F1∩F2 ̸⊂Ω0

e .

(E3) Any point in F2∩F3−{C} satisfies V ′=0 and V ′′>0. Using the approximation
to the Taylor polynomials as in (E1) and noticing that {C} is an invariant set,
we have F2∩F3 ̸⊂Ω0

e .

(E4) Since U ′>0 and V ′>0 for any point in F3∩F4−{(0, 1γ ,k),(0,
1
γ ,c)}, F3∩F4−

{(0, 1γ ,k),(0,
1
γ ,c)} ̸⊂Ω0

se. In fact, from (E8) and (E12), (0, 1γ ,k),(0,
1
γ ,c) /∈Ω0

e .
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(E5) Since V ′<0 and W ′<0 at any point in F1∩F5−{(0,0,c),(1,0,c)}, F1∩F5−
{(0,0,c),(1,0,c)}⊂Ω0

se. From (E1) and (E2), (0,0,c),(1,0,c) /∈Ω0
e .

(E6) Since U ′<0,W ′=0 and W ′′<0 at any point in F2∩F5−{C}, F2∩F5 ̸⊂Ω0
e .

(E7) At any point in F3∩F5−{(0, 1γ ,c),C}, V
′>0 and W ′<0. Thus, F3∩F5−

{(0, 1γ ,c),C} ̸⊂Ω0
e .

(E8) We have U ′>0 and W ′′<0 on F4∩F5, and hence F4∩F5 ̸⊂Ω0
e .

(E9) Since V ′<0 and W ′<0 on F1∩F6−{O,(1,0,k)}, we have F1∩F6−
{O,(1,0,k)}⊂Ω0

se. Here, (1,0,k) /∈Ω0
e by (E10).

(E10) Since U ′<0 on F2∩F6, F2∩F6 ̸⊂Ω0
e.

(E11) Noticing that V ′>0 and W ′<0 for any point in F3∩F7−{(1, 1γ ,k),(0,
1
γ ,k)},

we have F3∩F7−{(1, 1γ ,k),(0,
1
γ ,k)}⊂Ω0

se. In fact, (1, 1γ ,k) /∈Ω0
e from (E10).

(E12) Since U ′>0 and W ′′<0 on F4∩F7−{O}, we have F4∩F7 ̸⊂Ω0
e .

(E13) It is noticed that U ′<0, V ′=0, and W ′<0 along F6∩F7−{O,(1, 1γ ,k)}. We

can derive that F6∩F7−{O,(1, 1γ ,k)}⊂Ω0
se.

The following lemma sums up our analysis in (F1)–(F7) and (E1)–(E13).

Lemma 3.2. Assume that conditions in Theorem 2.1 hold. Let Ω=R3−{O,C} and
Ω0⊂Ω be an open set whose boundary is surrounded by seven faces F1, ·· · ,F7 in (3.7).
Then the set of strict egress points satisfies Ω0

e =Ω0
se=S1∪S2, where disjoint sets S1

and S2 are given in (3.10).

3.3. Existence of a heteroclinic orbit. In the previous subsection, an open
set Ω0⊂Ω=R3−{O,C}, where O and C are given in (2.8), is constructed. Also, a set
of strict egress points of Ω0, denoted by Ω0

se, is identified. In what follows, we aim to
prove Theorem 2.1 by applying Theorem 2.3 to Lemma 3.2. To do this, we need two
points P1 and P2 that satisfy the conditions in Theorem 2.3. The following two lemmas
guarantee the existence of our desired P1 and P2.

Lemma 3.3. For P ∈Ω, let φξ(P ) be a flow of the system (2.7). Let Ω1 be an open
subset of Ω0 and be surrounded by the following faces:

F1′ :={(U,V,W ) | 1
2 ≤U ≤1, V =0, cU ≤W ≤ c}⊂F1,

F8 :={(U,V,W ) | 1
2 ≤U ≤1, 0≤V ≤ 1

γ (2U−1), W = cU},

F9 :={(U,V,W ) | 1
2 ≤U ≤1, V = 1

γ (2U−1), cU ≤W ≤ c},

F5′ :={(U,V,W ) | 1
2 ≤U ≤1, 0≤V ≤ 1

γ (2U−1), W = c}⊂F5,

where F1 and F5 are given in (3.7).

(1) For each P ∈Ω1−{O,C}, there is a ξ0>0 such that φξ0(P )∈F1′ ∩S1, where S1 is
defined in (3.10).

(2) For any sufficiently small neighborhood N of C, there is a P1∈W u
loc(C)∩Ω1 such

that φξ1(P1)∈S1 for some ξ1>0, where W u
loc(C) is the local unstable manifold (relative

to N ) at C.

Proof. (1) It is noticed that there is no P ∈Ω1 such that φξ(P ) stays in Ω1 for
all ξ >0. Indeed, V ′,W ′<0 in Ω1 by (2.7) and any steady states of V and W are not
contained in Ω1, so φξ(P ) must hit Ω1 at ξ= ξ0 for some ξ0>0. Therefore, to complete
the proof, it is sufficient to show that any trajectory initiating in Ω1 transverses to only
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F1⊂S1. In other words, no trajectory starting in Ω1 passes through the faces F8, F9

and F5′ forward in time.
Using n⃗F8

=(c,0,−1)⊤ and (2.9), we derive

n⃗F8 ·(U ′,V ′,W ′)=U
(
χ(V )(γV −U)+µ(1−U)

)
<0

for any (U,V,W )∈F8−{C}. It means that no trajectory starting in Ω1 goes through
F8 forward in time. With the outward normal vector n⃗F9

=(−2,γ,0)⊤ of F9, we have

n⃗F9 ·(U ′,V ′,W ′)=−2(−cU+W )+
(
− 2

c
Uχ(V )+

γ

c

)
(γV −U)<0

for any (U,V,W )∈F9−{C}, where (2.9) is used. It concludes that no trajectory starting
in Ω1 transverses to F9 forward in time. Similarly, any trajectory initiating in Ω1

cannot transverse to F5′ forward in time according to the analysis in (F5) in Section
3.2. Therefore, we conclude that if P ∈Ω1, the flow φξ(P ) must hit F1′ ∩S1 at ξ= ξ0
for some ξ0>0, i.e., φξ0(P )∈S1.

(2) Since every trajectory starting in Ω1 transverses to S1, it is enough to show
that for any small neighborhood N of C, the local unstable manifold (relative to N )
at C satisfies W u

loc(C)∩Ω1 ̸=∅. That is, it suffices to show that the intersection of the
tangent space of W u

loc(C) and Ω1 is nonempty in N .
In fact, W u

loc(C) is tangent to the following plane P at C (Figure 3.2(B)):

P :=
{
(U,V,W )

∣∣∣ W = c+
µγ

cλc,1λc,2
(U−1)− µ(cλc,1−γ)(cλc,2−γ)

cλc,1λc,2

(
V − 1

γ

)}
. (3.11)

This plane P is the translated eigenspace with the eigenvectors v⃗c,1 and v⃗c,2 along the

vector C⃗=(1, 1γ ,c), where v⃗c,1 and v⃗c,2 are given in (3.6). Moreover, using γ
2c <λc,2<

γ
c

from (3.5), it is straightforward to show that in P there are two points

Q1=
(1
2
,0,q1

)
and Q2=

(
1,0,q2

)
such that

q1<c and q2>c.

It follows that there is a point Q=(q3,0,q4)∈P, where

1

2
≤ q3≤1 and cq3≤ q4≤ c,

which implies that QC∩P∩Ω1 ̸=∅ by the construction of Ω1 (see Figure 3.2(B)). There-
fore, we conclude thatW u

loc(C)∩Ω1 ̸=∅ for any small neighborhood of C. In other words,
for any sufficiently small neighborhoodN at C we can choose a P1∈W u

loc(C)∩Ω1; more-
over, there is a ξ1>0 such that φξ1(P1)∈F1′ ⊂S1 by (1).

In a similar way to the proof of Lemma 3.3, we can also derive the following lemma,
so we omit the proof.

Lemma 3.4. For P ∈Ω let φξ(P ) be a flow of the system (2.7). Let Ω2 be an open
subset of Ω0 and be surrounded by F10, F11, F7, F4′ and F3, where F10, F11, and F4′

are defined as

F10 :={(U,V,W ) | 0≤U ≤1, 0≤W = cγV ≤ c},



TONG LI AND JEUNGEUN PARK 841

F11 :={(U,V,W ) | 0≤U =V ≤ 1
γ , kγV ≤W ≤ cγV },

F4′ :={(U,V,W ) | U =0, 0≤γV ≤1, kγV ≤W ≤ cγV }⊂F4

and F3,F4 and F7, are given in (3.7). Here 0<k< c
2 is given in (3.8).

(1) For any P ∈Ω2−{O,C}, there is a ξ0>0 such that φξ0(P )∈F3∪F7∩S2, where S2

is defined in (3.10).

(2) For any sufficiently small neighborhood N of C, there is a P2∈W u
loc(C)∩Ω2 such

that φξ2(P2)∈S2 for some ξ2>0, where W u
loc(C) is the local unstable manifold (relative

to N ) at C.

Now we choose a sufficiently small neighborhood N of C so that we can pick P1∈
W u

loc(C)∩Ω1 and P2∈W u
loc(C)∩Ω2 satisfying Lemma 3.3 and Lemma 3.4, respectively.

See Figure 3.2(B). In fact, the neighborhood N can be sufficiently small enough to have
a smooth segment P1P2⊂W u

loc(C)∩Ω0 in the neighborhood N . Notice that S1 and S2

are disjoint subsets of the set of strict egress points, Ω0
se. Then, by Theorem 2.3 there is

a P3∈P1P2⊂W u
loc(C)∩Ω0 such that φξ(P3) remains in Ω0 for ξ >0. Furthermore, by

the structure of Ω0, the flow φξ(P3) satisfies W ′(ξ)<0 for all ξ∈ (−∞,∞), and hence
φξ(P3) converges to O as ξ→∞. Therefore, φξ(P3) is a heteroclinic orbit connecting O
and C. In particular, by (3.2) and (3.5), O and C are hyperbolic for c>c∗, where c∗

is given in (2.10). By the stable and unstable manifold theorems, we can conclude that
the flow must converge O and C exponentially as ξ→±∞. On the other hand, O has
a stable focus if c<c∗ by (3.2). It implies that there is no trajectory (U,V,W )(ξ) such
that U ≥0 and V ≥0 as ξ→∞. As a result, we have the following theorem.

Theorem 3.1.

(1) Assume that conditions in Theorem 2.1 hold and c>c∗, where c∗ is given in
(2.10). The system (2.7) has at least one solution (U,V,W )(ξ), ξ=x−ct, such that
(U,V,W )(−∞)=C and (U,V,W )(∞)=O, where O and C are given in (2.8). Moreover,
(U,V,W )(ξ) converges to O and C exponentially as ξ→−∞ and ξ→∞.

(2) If c<c∗, there is no traveling wave solution with speed c that connects O and
C.

Remark 3.1. Let (U,V,W ) be a solution that is obtained from Theorem 3.1. Then,
by the construction of Ω1 in Lemma 3.3, there is no ξ∈ (−∞,∞) such that cU(ξ)≤W (ξ)
and γV (ξ)≤2U(ξ)−1.

To complete the proof of Theorem 2.1, it remains to investigate the monotonicity
of the solutions U and V .

Corollary 3.1. Let χ(v) be a constant satisfying 0<χ(v)≡µ≤1. Then the solution
(U,V,W )(ξ) that is obtained from Theorem 3.1 satisfies

(i) 0<W (ξ)≤ cU(ξ)<c

(ii) 0<γV (ξ)≤U(ξ)<1

for all ξ∈ (−∞,∞). Moreover, U ′≤0 and V ′≤0 for any ξ∈ (−∞,∞).

Proof. For a fixed c, let (U,V,W ) be a solution obtained by Theorem 3.1. To prove
(i), according to Remark 3.1, it suffices to prove that there is no ξ∈ (−∞,∞) satisfying
both

cU(ξ)<W (ξ) and γV (ξ)>2U(ξ)−1. (3.12)
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In what follows we prove (3.12) by contradiction. To derive a contradiction, we assume
that there is ξ0∈ (−∞,∞) such that (3.12) holds. By Remark 3.1, we then have the
following two possible cases:

(C1) the assumption (3.12) holds for all ξ∈ (−∞,ξ0],

(C2) there is a ξ1<ξ0 such that W (ξ1)≤ cU(ξ1) and γV (ξ1)>2U(ξ1)−1, and (3.12)
holds for all ξ∈ (ξ1,ξ0].

If (C1) is true, using U ′ and W ′ in (2.7) and χ(v)≡µ leads to

U ′=−cU+
µ

c
U(γV −U)+W

>−cU+
1

c
W ′+W

(3.13)

for any ξ∈ (−∞,ξ0). Multiplying the above inequality by ecξ yields

c(ecξU(ξ))′> (ecξW (ξ))′.

Furthermore, integrating the above estimate with respect to ξ over (−∞,ξ0) and mul-
tiplying the result by e−cξ0 , we conclude

cU(ξ0)−W (ξ0)>0.

This is a contradiction to our assumption cU(ξ0)<W (ξ0). If (C2) is true, we derive
from (3.13) for ξ∈ (ξ1,ξ0] that

cU(ξ0)−W (ξ0)>e
c(ξ1−ξ0)(cU(ξ1)−W (ξ1)).

However, our assumption cU(ξ0)<W (ξ0) implies cU(ξ1)<W (ξ1), so this is a contra-
diction to the assumption of (C2). From the two cases (C1) and (C2), it is shown
that (3.12) cannot be possible. By Remark 3.1 we conclude that W (ξ)≤ cU(ξ) for any
ξ∈ (−∞,∞); the proof of (i) is completed.

Now we prove (ii) by contradiction. Assume to the contrary that there is a ξ1∈
(−∞,∞) such that

0<U(ξ1)<γV (ξ1)<1. (3.14)

It is noticed that for a sufficiently small ε>0

(U−γV )(ξ)=(U−γV )(ξ1)+
(
(U ′−γV ′)(ξ1)

)
(ξ−ξ1)+O(|ξ−ξ1|2) (3.15)

for |ξ−ξ1|<ε. Applying the earlier result W ≤ cU , we can derive that

U ′−γV ′=−cU+W +
1

c

(
Uχ(V )−γ

)
(γV −U)<0

at ξ= ξ1 by (2.9) and (3.14). It follows from (3.15) that U(ξ)<γV (ξ) for ξ1≤ ξ≤ ξ1+ε.
In addition, the continuation argument leads to

U(ξ)<γV (ξ), ξ≥ ξ1.

Thus, by the equation of V ′ in (2.7)

V ′(ξ)>0, ξ≥ ξ1. (3.16)
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However, since V (ξ)≥0 for any ξ∈ (−∞,∞) and V →0 as ξ→∞, (3.16) is not possible.
Therefore, (3.14) is not true and the proof of (ii) is completed.

Applying (i) and (ii) to U ′ and V ′ in (2.7), we finally conclude that U ′≤0 and
V ′≤0 for all ξ∈ (−∞,∞).

As a consequence of Theorem 3.1 and Corollary 3.1, Theorem 2.1 is proved. More-
over, by using the transformations (2.2), (2.4) and (2.6), the proof of Theorem 1.1 is
also completed only when α=1 (we fixed α=1 in Section 2). Now, define transforming
variables

v̄(x,t) :=
1

α
v(x,t), χ̄(v̄) :=αχ(v̄). (3.17)

Here, v and χ(v) are given in the system (1.1), where α=1 is assumed. Then, by (3.17),
Theorem 1.1 can be proved for any α>0.

4. Proof of the existence of traveling waves for χ(v)<0
In this section we prove Theorem 2.2. In a similar way to the proof of Theorem 2.1

in Section 3, we first investigate the local behavior of solutions of the system (2.7) at the
equilibrium pointsO and C given in (2.8). We then construct an open set Ω0 and identify
its strict egress points. In fact, since the open set Ω0 built in Section 3 is sufficient to
derive our desired result (Theorem 2.2), we use the same Ω0 for this section. However,
the behavior of trajectories in the Ω0 differs from those of the case where χ(v)>0. In
turn, with the same construction of Ω0 as in Section 3, more restrictions on γ,χ(v) and
c are required especially when we show that all egress points must be strict egress points
(e.g., see Remark 4.2). Also, (strict) egress points are different from those in Section
3. We also employ Theorem 2.3 to show the existence of a heteroclinic orbit of (2.7)
connecting O and C. Techniques and details in the following subsections are analogous
to those from Sections 3.1 and 3.2.

4.1. Linearized system. At the equilibrium points O and C of the system (2.7),
the Jacobian matrices are given in (3.1) and (3.3) respectively. In particular, at C, the
Jacobian matrix (3.3) has the characteristic polynomial p(λ) given in (3.4) and p(λ) has
the following roots: one negative eigenvalue λc,− and two positive eigenvalues λc,1 and
λc,2 satisfying

λc,−<−c<0<
µ

2c
<λc,1<

µ

c
<
γ

c
<λc,2<

γ−χ(1/γ)
c

(4.1)

(see Figure 4.1). Here, the first and fourth inequalities can be shown by (2.12) and (2.13).
The eigenvectors associated with the positive eigenvalues satisfy (3.6). In conclusion,
under the assumptions in Theorem 2.2, the system (2.7) has a 2-dimensional local stable
manifold at O and a 2-dimensional local unstable manifold at C, denoted by W s

loc(O)
and W u

loc(C), respectively.

4.2. Construction of an open set containing an invariant set. Open set
Ω0⊂Ω=R3−{O,C} is given in Section 3.2. In a similar way to identifying the sets
of egress points and strict egress points of Ω0, denoted by Ω0

e and Ω0
se, in Section 3.2,

we investigate Ω0
e and Ω0

se with respect to the system (2.7) for χ(v)<0 in the following
lemma (see Figure 4.2(A) for the sketch of Ω0 and Ωe=Ω0

se).

Lemma 4.1. Assume that the conditions in Theorem 2.2 hold. Let Ω=R−{O,C} and
Ω0⊂Ω be an open set whose boundary is surrounded by faces F1, ·· · ,F7 given in (3.7).
Then the (strict) egress point set of Ω0 satisfies

Ω0
e =Ω0

se=S1∪S2,
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Fig. 4.1. Graph of characteristic polynomial p(λ) in (3.4) for χ(v)<0

where the disjoint sets S1 and S2 are defined as

S1 :=F1∪F2−
(
(F1∩F4)∪F2′

)
S2 := (F3∪F7)−

(
(F2∩F3)∪(F3∩F4)∪(F3∩F5)∪(F4∩F7)

)
,

(4.2)

with

F2′ :={(1,V,W ) | 0≤γV ≤1, W ≤ c− χ(V )

c
(γV −1)}⊂F2. (4.3)

Proof. The construction of Ω0 is given in Section 3, where χ(v)>0 is assumed, so
the following proof is similar to that of Theorem 3.2. In fact, under the assumption of
χ(v)>0, it is enough to examine the faces F2 and F6, edges F1∩F2, F2∩F5 and F2∩
F6. Hence, only the items (F2), (F6), (E2), (E6) and (E10) in the proof of Theorem 3.2
will be changed as follows:

(F2) For any (U,V,W )∈ Int(F2′), n⃗F2′ ·(U
′,V ′,W ′)=−cU+W + 1

cUχ(V )(γV −
U)<0. On the one hand Int(F2′ )̸⊂Ω0

e . On the other hand, any (U,V,W )∈
Int(F2) satisfying W >c− χ(V )

c (γV −1) is contained in Ω0
se. In what follows,

we examine points contained in

{(1,V,W ) | 0<γV <1, W = c− χ(V )

c
(γV −1)}, (4.4)

which is contained in the boundary of the face F2′ in (4.3). To show that
any points in (4.4) are not included in Ω0, it suffices to have U ′′>0. Indeed,
by (2.11) we have U ′′= 1

c2χ
′(V )(γV −U)2+ γ

cUχ(V )(γV −1)>0 for any point
satisfying (4.4). Then, by the approximation to the Taylor polynomials, all
points satisfying (4.4) are not in Ω0

e .

(F6) Note that n⃗F6 ·(U ′,V ′,W ′)=U(kcχ(V )(γV −U)−µU). Here, by |χ(v)|<2µ in
(2.12), k|χ(V )|<µc. Therefore, n⃗F6

<0 except for U =0, and Int(F6) ̸⊂Ω0
e.

(E2) By (4.5) and 0<k< c
2 , for any point in F1∩F2 satisfies U ′<0. Thus, F1∩F2 ̸⊂

Ω0
e .

(E6) For χ(v)<0, we have W ′=0 and W ′′>0 for any points in F2∩F5−{C}.
Hence, F2∩F5 ̸⊂Ω0

e .

(E10) Using (4.5) and 0<k< c
2 , U

′<0 for any point in F2∩F6, so F2∩F6 ̸⊂Ω0
e .
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Fig. 4.2. The case when µ= 1
4
,γ=1,c=1 and χ(v)=− 1

8
. (A) Sketch of Ω0 with Ω0

e =S1∪S2

(S1 : blue face, S2 : red face) and a vector field (a collection of blue arrows) on Ω0 associated with the
system (2.7) for χ(v)<0. Two points O and C are the equilibrium points. (B) Sketch of Ω0 with
Ω1 (blue tetrahedron) and Ω2 (red tetrahedron). The dashed polygon is the intersection of Ω0 and the
plane P (gray plane). The flows of (2.7) initiated at P1 and P2 (blue trajectories) pass through Ω1

and Ω2, respectively.

Remark 4.1. For any 0≤v≤ 1
γ , (2.12) and (2.13) lead to

c2≥2|χ(v)|, (4.5)

and we have

k<c− 1

c
χ(V )(γV −1)<c, (4.6)

where k is given in (3.8). The estimate (4.6) allows S1 to be contractible. The con-
tractibility of S1 is required to apply Theorem 2.3 (the principle of Ważeski) with Ω0.

Remark 4.2. The condition χ′(v)≥0 in (2.11) is sufficient to show Ω0
e =Ω0

se, which is
not required in the case where χ(v)>0. The details can be found in (F2) given in the
proof of Lemma 4.1.

4.3. Existence of a heteroclinic orbit. Continuing the previous subsection,
it remains to choose points P1 and P2 that satisfy the conditions in Theorem 2.3, and
these points are selected in the following lemma. Applying Lemma 4.2 to Theorem 2.3
(the principle of Ważeski), Theorem 2.2 is proved.

Lemma 4.2. Assume that the conditions in Lemma 4.1 hold. Let φξ(P ) be a flow of
the system (2.7). Let Ω0=R−{O,C}, where O and C are given in (2.8).
(1) Let Ω1 be an open subset of Ω0 surrounded by four faces F1′′ , F2′′ , Fa, and Fb,
where

F1′′ :=
{
(U,0,W ) | 1

2 ≤U ≤1, c
2 ≤W ≤ cU

}
⊂F1,

F2′′ :=
{
(1,V,W ) | 0≤γV ≤1, c

2

(
γV +1

)
≤W ≤ c

}
⊂F2′ ⊂F2,

Fa :=
{
(U,V,W ) | 1

2 ≤U ≤1, 0≤V ≤ 1
γ (2U−1), W = c

2

(
γV +1

)}
,
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Fb :=
{
(U,V,W ) | 1

2 ≤U ≤1, 0≤V ≤ 1
γ (2U−1), W = cU

}
,

where F1,F2′ and F2 are defined in (3.7) and (4.3), respectively. Then, for any P ∈Ω1−
{C} there exists a ξ0>0 such that φξ0(P )∈S1, where S1 is given in (4.2). Moreover,
there is a point P1∈W u

loc(C)∩Ω1 such that φξ1(P1)∈S1 for some ξ1>0.
(2) Let Ω2 be an open subset of Ω0 surrounded by four faces F7, Fc, Fd and F3′′ such
as

Fc :={(U,V,W ) | 0≤U =γV ≤1, kU ≤W ≤ cU},
Fd :={(U,V,W ) | 0≤ cU =W ≤1, 0≤V ≤ 1

γ },

F3′′ :=
{(
U, 1γ ,W

)
| 0≤U ≤1, k≤W ≤ cU

}
⊂F3,

where F7 and F3 are given in (3.7) and 0<k< c
2 is defined in (3.8). Then, for any

P ∈Ω2−{O,C} the flow φξ(P ) hits S2 at some ξ= ξ0>0, where S2 is given in (4.2). In
addition, there exists a point P2∈Ω2∩W u

loc(C) satisfying φξ2(P2)∈S2 for some ξ2>0.

Proof. (1) In a similar way to deriving Lemma 3.3(a), we can show that any
trajectory initiating in Ω1−{C} transverses to the boundary of F1′′ ∪F2′′ , where (4.5)
and 2µ≤γ from (2.12) are used. It remains to prove the existence of P1∈W u

loc(C)
satisfying φξ1(P1)∈S1 for some ξ1>0. In an analogous manner for Lemma 3.3(b), we
aim to show that W u

loc(C)∩Ω1 ̸=∅ by using the translated eigenspace P in (3.11) with

eigenvectors v⃗c,1 and v⃗c,2 along C⃗=(1,1/γ,c). In fact, we can derive from λc,−<−c in
(4.1) and the characteristic polynomial p(λ) in (3.4) for χ(v)<0 that

0<λc,1λc,2<
γµ

c2
and c(λc,1+λc,2)<γ+µ+λc,1λc,2, (4.7)

where λc,− is a negative eigenvalue and λc,1 and λc,2 are positive eigenvalues of (3.3).
By using 2µ≤γ from (2.12) and c2≥4µ from (2.13), (4.1) and (4.7), we can show the
existence of ( 12 ,0,q1),(1,0,q2)∈P satisfying

0<q1<
c

2
and

c

2
<q2<c. (4.8)

The details in finding ( 12 ,0,q1) and (1,0,q2) are as follows. Let ( 12 ,0,q1)∈P, where

q1= c−
µγ

2cλc,1λc,2
+
µ(cλc,1−γ)(cλc,2−γ)

cγλc,1λc,2
(4.9)

by P in (3.11). We shall show that q1<
c
2 . In fact, we have

q1<
c

2
⇐⇒ µ(cλc,1−γ)(cλc,2−γ)

cγλc,1λc,2
<− c

2
+

µγ

2cλc,1λc,2
,

and

µ(cλc,1−γ)(cλc,2−γ)
cγλc,1λc,2

<0<− c
2
+

µγ

2cλc,1λc,2

holds by (4.1) and (4.7). Thus, P contains a point ( 12 ,0,q1) such that q1<
c
2 . Let

(1,0,q2)∈P, where

q2= c+
µ(cλ1−γ)(cλ2−γ)

cγλ1λ2
.
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By (4.1), q2<c. To show that q2>
c
2 , i.e.,

q2>
c

2
⇐⇒ cµγ(λ1+λ2)<µc

2λ1λ2+µγ
2+

c2

2
γλ1λ2, (4.10)

it is enough to prove the second inequality in (4.10). In fact, by (4.7)

cµγ(λ1+λ2)<µγ
2+µ2γ+µγλ1λ2,

by 4µ≤γ from (2.12) and (4.1)

µ2γ <2µc2λ1λ2≤µc2λ1λ2+
c2

4
γλ1λ2,

and by (2.13)

µγλ1λ2≤
c2

4
λ1λ2.

Therefore, the second inequality in (4.10) holds.
Since P contains two points ( 12 ,0,q1) and (1,0,q2) satisfying (4.8), the tangent space

P must intersect with F2′′ and Ω1. As a result, we can deduce that W u
loc(C)∩F2′′ ̸=∅

in a sufficiently small neighborhood of C. Therefore, W u
loc(C)∩Ω1 ̸=∅.

(2) Similarly, it is straightforward to show that any trajectory initiating in Ω2−{C}
must hit the boundary of F3′′ ∪F7. Furthermore, since W u

loc(C)∩F3′′ ̸=∅, the desired
proof is completed.

Note that two points P1 and P2 found in Lemma 4.2 satisfy the conditions of
Theorem 2.3 (see Figure 4.2(B)). It implies that there is a point P3∈W u

loc(C)∩Ω0 such
that φξ(P3)∈Ω0 for all ξ >0. According to the structure of Ω0, the flow φξ(P3) satisfies
W ′<0, φξ(P3) must converge to O as ξ→∞. Consequently, φξ(P3) is a heteroclinic
orbit connecting O and C. In particular, note that by (3.2) and (4.1), O and C are
hyperbolic for c>c∗, where c∗ is given in (2.13). By the stable and unstable manifold
theorems, we can deduce the exponential decay of U and V as ξ→±∞. However, O
has a stable focus if c<2

√
µ≤ c∗. Hence, there is no traveling wave connecting O and

C if c<2
√
µ.

Theorem 4.1. (1) Assume that conditions in Theorem 2.2 and c>c∗, where c∗

is given in (2.13). The system (2.7) has a solution (U,V,W )(ξ), ξ=x−ct, satisfy-
ing (U,V,W )(−∞)=C and (U,V,W )(∞)=O, where O and C are defined in (2.8).
Furthermore, (U,V,W )(ξ) converges to O and C exponentially as ξ→−∞ and ξ→∞,
respectively.

(2) There is no traveling wave solution connecting O and C with speed c if c<2
√
µ.

Remark 4.3. If (U,V,W ) is a solution obtained from Theorem 4.1, there is no ξ0∈
(−∞,∞) satisfying (U,V,W )(ξ0)∈Ω1∪Ω2 according to the construction of Ω1 and Ω2

and Lemma 4.2.

In the following corollary, we can further explore the monotonicity of V.

Corollary 4.1. Let (U,V,W )(ξ), ξ=x−ct, be a solution of the system (2.7) that is
obtained from Theorem 4.1. For any ξ∈ (−∞,∞), γV (ξ)≤U(ξ) and V ′(ξ)≤0 .

Proof. To begin, we note that γV (ξ)−U(ξ)>0 is equivalent to V ′(ξ)>0 by V ′

in (2.7). In the following, we use proof by contradiction. Assume to the contrary that
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V ′(ξ)>0 for some ξ. Then, since 0≤V ≤ 1
γ and V (−∞)= 1

γ by Theorem 4.1, there

is a ξ0∈ (−∞,∞) such that V ′(ξ0)=0 and V ′(ξ)>0 for ξ0≤ ξ≤ ξ0+ε for some ε>0.
Furthermore, by Remark 4.3 the solution (U,V,W ) satisfies either W (ξ0)= cU(ξ0) or
W (ξ0)>cU(ξ0).

In the case of W (ξ0)= cU(ξ0), it follows from U ′ in (2.7) that U ′(ξ0)=0, and hence
for sufficiently small |ξ−ξ0| we have

W (ξ)−cU(ξ)=W ′(ξ0)(ξ−ξ0)+O(|ξ−ξ0|2). (4.11)

Noticing that W ′(ξ0)=µU(ξ0)(U(ξ0)−1)<0 by Theorem 4.1, W (ξ)<cU(ξ) for ξ >
ξ0, where |ξ−ξ0| is sufficiently small, by (4.11). This contradicts to W (ξ)≥ cV (ξ) by
Remark 4.3. In the case of W (ξ0)>cU(ξ0), we obtain

V ′(ξ)=V ′′(ξ0)(ξ−ξ0)+O(|ξ−ξ|3)

for sufficiently small |ξ−ξ0|. Here V ′′(ξ0)=− 1
cU

′(ξ0)<0, where W (ξ0)≥ cU(ξ0), by
Remark 4.3, is used. It implies that if ε>0 is sufficiently small, V ′(ξ)<0 for all ξ0<
ξ<ξ0+ε, which is a contradiction. Therefore, V ′(ξ)≤0 for any ξ∈ (−∞,∞). In other
words, γV (ξ)≤U(ξ) for all ξ∈ (−∞,∞).

Theorem 2.2 is finally proved by Theorem 4.1 and Corollary 4.1. Furthermore,
by transforming variables (2.2), (2.4), (2.6) and (3.17), the proof of Theorem 1.2 is
completed.

5. Non-existence of traveling wave solution
In this section, we prove Theorem 1.3 by showing that there is no traveling wave

solution to the system (2.5), where transforms (2.2) and (2.4) are used. According to
Theorem 1.3 (1) and (2), we present the proof by considering the following four cases:
(i) α=0 and β ̸=0, (ii) α ̸=0 and β=0, (iii) α=β=0, and (iv) αβ ̸=0.

Proof. (Proof of Theorem 1.3.)

(i) Assuming that α=0 and c≥0, the system (2.5) has two steady states (u±,v±)∈
{(0,0),(1,0)}. It implies that traveling wave V must be a pulse connecting (0,0) and
non-negative if a traveling wave exists. However, if α=0 and c≥0, the second equation
of (2.5) implies that V must be trivial, which is a contradiction.

(ii) Let α ̸=0, β=0 and c>0. By setting a new variable W in (2.6) and using the
second equation of (2.5) for V ′ with β=0, we have

U ′=−cU− α
cU

2χ(V )+W

V ′=−α
cU

W ′=µU(U−1).

(5.1)

Here, (5.1) has a continuum of equilibria (0,v±,0) for v±≥0.
In the following, by assuming that (5.1) has a solution connecting two steady states

(0,v±,0), we derive a contradiction. If (5.1) admits a traveling wave solution connecting
(0,v±,0), then

0≤V (ξ)≤m, ∀ξ∈ (−∞,∞) (5.2)

for some m≥0 due to continuity of V . Now define a C1 function L(ξ) as

L(ξ)=L(U(ξ),W (ξ))=
1

2c
U2+

1

2cµ
W 2≥0
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for ξ∈ (−∞,∞), where L(U,V,W )=0 if and only if U =W =0. By setting

B :=
{
(U,V,W )

∣∣ ( max
0≤V≤m

|χ(V )|
)
U ≤ c2

4|α|
, 0≤V ≤m, |W |≤ c

4

}
,

where m≥0 is given in (5.2), it follows

dL

dξ
≤−1

2
U2+U2

(
− 1

2
+

|α|
c2
U |χ(V )|+ |W |

c

)
≤−1

2
U2 (5.3)

for any (U,V,W )∈B. Furthermore, noticing that U and W are non-trivial pulses con-
necting 0, there is a ξ0 satisfying

0≤
(

max
0≤V≤m

|χ(V )|
)
U(ξ)≤

(
max

0≤V≤m
|χ(V )|

)
U(ξ)<

c2

8|α|
, ∀ξ <ξ0,

0≤|W (ξ)|≤ |W (ξ0)|<
c

8
, ∀ξ <ξ0,

U(ξ0)>0 or |W (ξ0)|>0.

(5.4)

Then, for any (U,V,W )∈B and for ξ <ξ0, (5.3) and (5.4) imply that

0=L(−∞)≥L(ξ)≥L(ξ0)≥
1

2c
U2(ξ0)+

1

2cµ
W 2(ξ0)>0,

which is a contradiction.

(iii) Assume to the contrary that there is a non-trivial traveling wave solution (U,V )
whose speed is c=0 and that satisfies 0≤U ≤1. By using a variable W in (2.6), the
system (2.5) is reduced to

U ′=W, V ′=0, W ′=µU(U−1)

and W must be a pulse connecting 0. However, by the assumption 0≤U ≤1, W ′≤0 for
any ξ∈ (−∞,∞). Therefore, U must be 0 or 1, which are trivial solutions. It contradicts
our assumption.

(iv) In a similar way to showing (iii), the proof can be completed.

6. Spectral instability of the traveling wave solutions
Suppose that {ϕ⃗s := (U,V )(x−st)} is the family of traveling wave solutions of the

system (1.1) that is obtained from Theorem 1.1 and Theorem 1.2. In this section we
examine the stability of the traveling wave solutions against perturbation in a certain
space; we particularly verify the spectral instability of the family of traveling wave
solutions in the unweighted L2 space.

In fact, it is easy to see that the family of traveling wave solutions is nonlinearly
unstable in L2 norm since their speeds s are not isolated, i.e., there is a sequence
{tn} such that ∥ϕ⃗s(·−stn)− ϕ⃗s′(·−s′tn))∥≥ε0 for a given ε0>0. Here, we note that
the nonlinear and spectral instability do not guarantee the linear instability, and the
linear stability and instability are still unknown. Different from a parabolic-parabolic
system, where the linearlized operator generates an analytic semigroup, our system
(1.1) is partially parabolic as there is no chemical diffusion term; in turn, one cannot
directly apply stability or instability theories based on analytic semigroup theories as
in [16,21,26,27,33].

In what follows, we prove the spectral instability of the traveling wave solutions by
investigating the essential spectrum of linear operator of the perturbation between a
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traveling wave solution and a solution to the Cauchy problem (1.1), (1.2). More details
can be found in [16, p. 136]. By observing the loci of the essential spectrum, we confirm
that the logistic cell growth rate µ>0 determines the spectral instability regardless of
the rates of chemical growth α>0 and degradation β<0.

Consider the Cauchy problem (1.1), (1.2) in the moving coordinate ξ=(x−st,t){
ut=Duξξ+suξ−

(
uχ(v)vξ

)
ξ
+µu(1−u)

vt=svξ+αu+βv
(6.1)

with initial data

(u,v)(ξ,0)→ (u±,v±)=

{
(0,0) as ξ→∞
(1,−β

α ) as ξ→−∞.

Here (u,v)(ξ,0) can be considered to form

(u,v)(ξ,0)=(U,V )(ξ)+(ψ,η)(ξ,0), (6.2)

where (U,V )(ξ) is a traveling wave solution for any s>s∗ obtained from Theorem 1.1 and
Theorem 1.2. That is, (ψ,η)(ξ,t) is the perturbation (u−U,v−V ). Then the solution
to the Cauchy problem (1.1), (6.2) can be written as

(u,v)(ξ,t)=(U,V )(ξ)+(ψ,η)(ξ,t). (6.3)

Assume that χ(v)∈C3 satisfies conditions in Theorem 1.1 and Theorem 1.2. By
reformulating the problem (1.1), (6.2) in terms of the perturbation (ψ,η) by (6.1) and
(2.1) and linearizing the resulting problem, we obtain(

φt

ψt

)
=L

(
φ
ψ

)
, (6.4)

where L denotes(
D ∂2

∂ξ2 +A1(ξ)
∂
∂ξ +A2(ξ) −Uχ(V ) ∂2

∂ξ2 +A3(ξ)
∂
∂ξ +A4(ξ)

α s ∂
∂ξ +β

)
(6.5)

with

A1(ξ)=s−χ(V )V ′,

A2(ξ)=−χ′(V )V ′2−χ(V )V ′′+µ(1−2U),

A3(ξ)=−U ′χ(V )−2UV ′χ′(V ),

A4(ξ)=−U ′V ′χ′(V )−UV ′2χ′′(V )−UV ′′χ′(V ).

It is noticed that L :H2(R)×H2(R)→X, where L is given in (6.5) and X=L2(R)×
L2(R), is a closed operator in the space X. With

A1(±∞)=s, A2(±∞)=µ(1−2u±), A3(±∞)=A4(±∞)=0,

the asymptotic operator L± at ξ=±∞ becomes

L±=

(
D ∂2

∂ξ2 +s
∂
∂ξ +µ(1−2u±) −u±χ(v±) ∂2

∂ξ2

α s ∂
∂ξ +β

)
. (6.6)
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Letting

A±(τ) :=

(
−Dτ2+sτi+µ(1−2u±) u±χ(v±)τ

2

α sτi+β

)
, (6.7)

it follows from the spectral theory in [16] that the boundary of essential spectrum
σess(L) is described by the curves S+∪S−, where

S±={λ∈C | det(A±(τ)−λI)=0 for some τ ∈R}. (6.8)

If we particularly evaluate (u+,v+)=(0,0) into A+(τ) in (6.7), λ∈S+ are given as

λ=β+sτi, −Dτ2+µ+sτi. (6.9)

Moreover, the second λ in (6.9) satisfies Re(λ)=−Dτ2+µ>0 for some τ ∈R as µ>0.
It follows that all of the traveling wave solutions constructed from Theorems 1.1 and
1.2 have unstable essential spectrum on L2(R)×L2(R), and therefore, are spectrally
unstable.

7. Discussion
In this paper, we have investigated a traveling wave solution in a mathematical

model for chemotaxis in terms of existence, non-existence and spectral instability by
employing dynamcial system theory and spectral analysis. As a Keller-Segel type model,
our model contains logistic growth of cells, zero chemical diffusion, and a linear chemical
reaction; particularly, the sensitivity function is unspecified and can represent positive
or negative chemotaxis. Indeed, differences in species and experimental settings may
take different mathematical forms or terms in a chemotaxis model, and hence our results
can be applied to diverse biological scenarios.

In this work, it is assumed that there is no chemical diffusion. However, the chemical
diffusion can be large compared to the other chemotactic and diffusion coefficients [17,
44]; furthermore, these values can vary up to two orders of magnitude [25, 42]. In
addition to this paper, most of past studies considered zero diffusion and non-zero
diffusion separately. In terms of the existence of traveling waves, for example, Salako and
Shen in [38] established the existence of traveling wave solution of our model by adding
a positive chemical diffusion, which has a lower bound, and by using a positive constant
sensitivity function. Based on the results from this paper and [38], a sufficiently small
chemical diffusion and the chemical diffusion limit have not been studied yet. Moreover,
the non-zero chemical diffusion has been studied only for the case where the sensitivity
function is a positive constant. Our future directions include consideration of non-zero
chemical diffusion and a general class of sensitivity functions, and comparison of the
results with those of experiments in [46], and further we plan to study the chemical
diffusion limit.

When it comes to the stability of our traveling wave solutions, a question on the lin-
ear stability/instability is still remaining. Different from the diffusion-reaction systems
with all non-zero diffusion terms, the spectral stability/instability and nonlinear stabil-
ity/instability do not guarantee the linear stability/instability; moreover, our spectral
instability has been verified only in the unweighted L2 space. As recommended by one
of the anonymous referees, it will be more interesting to investigate spectral and linear
stability of the wave in some exponentially weighted spaces.

Acknowledgement. The authors would like to thank the editor and anonymous
referees who kindly reviewed this manuscript and provided valuable suggestions and
comments to improve this work.
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