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ENERGY CONSERVATION FOR
2D EULER WITH VORTICITY IN L(logL)α∗

GENNARO CIAMPA†

Abstract. In these notes we discuss the conservation of the energy for weak solutions of the two-
dimensional incompressible Euler equations. Weak solutions with vorticity in L∞

t Lp
x with p≥3/2 are

always conservative, while for less integrable vorticity the conservation of the energy may depend on the
approximation method used to construct the solution. Here we prove that the canonical approximations
introduced by DiPerna and Majda provide conservative solutions when the initial vorticity is in the
class L(logL)α with α>1/2.
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1. Introduction
The motion of an incompressible, homogeneous, planar fluid is described by the

system of the 2D Euler equations
∂tu+(u ·∇)u+∇p=0,

divu=0,

u(0,·)=u0,

(1.1)

where u : [0,T ]×R2→R2 is the velocity of the fluid, p : [0,T ]×R2→R is the pressure and
u0 :R2→R is a given initial configuration. The first set of equations are derived from
Newton’s second law while the divergence-free condition expresses the conservation of
mass. A peculiar fact of the 2D case is that the vorticity ω, defined as

ω=∂x1
u2−∂x2

u1,

is a scalar quantity which is advected by the velocity u. In fact, the Equations (1.1)
can be rewritten in the vorticity formulation

∂tω+u ·∇ω=0,

u=K ∗ω,
ω(0, ·)=ω0,

(1.2)

where K(x)=x⊥/(2π|x|2) is the 2D Biot-Savart kernel. Note that the Equation (1.2)
is a non-linear and non-local transport equation.

The well-posedness of (1.1) is an old and outstanding problem. For smooth initial
data, the existence and uniqueness of classical solutions was proved in [18, 28]. The
existence of weak solutions has been proved by DiPerna and Majda in [16] by assuming
that the initial datum ω0∈L1∩Lp(R2) with 1<p≤∞. Besides this result, the goal of
[16] was to develop a rigorous framework for the study of approximate solution sequences
of the two-dimensional Euler equations. In particular, the authors proved a general
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compactness theorem towards measure-valued solutions by assuming that ω0 is a vortex-
sheet, i.e. ω0∈M∩H−1

loc (R2). They described three different methods to construct
approximate solution sequences:

(ES) approximation by exact smooth solutions of (1.1);

(VV) vanishing viscosity from the two-dimensional Navier-Stokes equations;

(VB) vortex-blob approximation.

In [16] DiPerna and Majda showed the existence of weak solutions via a compactness
argument based on the methods (ES) and (VV). The counterpart for the vortex-blob
method was proved by Beale in [2]. In these results, the Lp-integrability with 1<p≤
∞ of ω0 is crucial in order to use Sobolev embeddings which guarantee the strong
compactness in L2 of a sequence of approximating velocity fields. This is enough to
deal with the non-linear term in the equations. However, in the case ω0 is just L1 or a
measure with distinguished sign, it turns out that the limit vector field is a solution of
(1.1) even though concentrations may occur in the non-linearity. This is a purely 2D
phenomenon known as concentration-cancellation, and it was studied first in [15,25].

The uniqueness of weak solutions in the class considered in [16] is still an open
problem, contrary to the case p=∞ which has been proved by Yudovich [29]. There
exist several partial results towards the non-uniqueness in the case of unbounded initial
vorticity, see [5, 6, 21,26,27].

Smooth solutions of (1.1) are known to be conservative, which means that
∥u(t)∥L2 =∥u0∥L2 for all times, while this property is not trivial when we consider
weak solutions. The problem of the energy conservation, assuming only integrability
conditions on the vorticity, has been addressed in [9]: The authors consider the 2D Euler
equations on the two-dimensional flat torus T2 and they prove that all weak solutions
satisfy the energy conservation if the vorticity ω∈L∞((0,T );Lp(T2)) with p≥3/2. The
proof is based on a mollification argument and the exponent p=3/2 is required in order
to have weak continuity of a commutator term in the energy balance. The authors
also give an example of the sharpness of the exponent p=3/2 in their argument, but
that still leaves open the question of the existence of non-conservative solutions below
this integrability threshold. Moreover, they show that if ω∈L∞((0,T );Lp(T2)), with
1<p<3/2, solutions constructed via (ES) and (VV) conserve the kinetic energy.

Here we discuss the conservation of the energy for solutions of the 2D Euler
equations when the initial vorticity is slightly more than integrable, namely ω0∈
L1∩L(logL)α(R2) with α>1/2. Existence of weak solutions of (1.1) in this setting
was proved by Chae, first in [7] in the case ω0∈L1∩L logL(R2), and then extended to
the case ω0∈L1∩L(logL)1/2(R2) in [8]. In these results, the strategy of the proof is
based on the properties of Calderón-Zygmund singular integral operators and compact
embeddings of Orlicz-Sobolev spaces into L2

loc(R2).

In a similar fashion to the framework of DiPerna and Majda, in [19] the authors
introduce the definition of H−1

loc -stability for a sequence of approximating vorticity ωε,
showing that it is a sharp criterion for the strong L2

loc-convergence of an approximate
solution sequence uε. With their approach they are able to recover previous existence
results, expanding the set of possible initial data to much more general rearrangement
invariant spaces, such as the Orlicz spaces L(logL)α, with α≥1/2, and the Lorentz
spaces L(1,q) with 1<q≤2.

Finally, in [17] it has been proven that the strong L2-compactness of a sequence of
velocity fields constructed via (VV) is equivalent to the energy conservation property.
In virtue of this result, by posing the problem in the two-dimensional torus, the authors
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obtained as a corollary that the vanishing viscosity limit produce conservative weak
solutions for initial vorticity in the rearrangement invariant spaces considered in [19],
including L(logL)α with α>1/2.

The contribution of these notes in the theory of conservative weak solutions of (1.1)
is the following: We consider an initial datum u0∈L2(R2) such that ω0∈L(logL)α(R2)
with compact support and we prove that the canonical approximations introduced in [16]
produce approximate solution sequences such that the velocity converges globally in L2

if α>1/2. This allows us to prove that the vortex-blob method yields conservative
weak solutions and, in this setting, we extend the results of [9, 17] concerning (ES)
and (VV) to the case in which the domain is the whole plane R2. In order to get the
strong convergence in C([0,T ];L2(R2)) of the approximating velocity, we will exploit the
techniques of [11,24] by adapting the Serfati identity [1,23] to this less integrable setting.
In particular, it would be crucial that the approximating vorticity converge strongly
in C([0,T ];L1(R2)), as shown recently in [10, 11], obtained as a consequence of the
Lagrangian property of the limit vorticity. See also [4,13,14] for a deeper understanding
of Lagrangian solutions of the 2D Euler equations.

The main theorem of this work can be resumed in the following.

Theorem 1.1. Let ω0∈L(logL)αc (R2), with α>1/2, with zero total mass, i.e.´
R2ω(x)dx=0. Let u be a weak solution of (1.1), with curlu0=ω0, that can be ob-
tained as a limit of a sequence un constructed via one of the methods (ES), (VV),
(VB). Then, un satisfies the following convergence

un→u in C([0,T ];L2(R2)), (1.3)

and u is conservative.

2. The two-dimensional Euler equations

The goal of this section is to provide some preliminary results on weak solutions
of the 2D Euler equations. First, we introduce the notations used in the paper. Then,
we will pay particular attention to the theory developed by DiPerna and Majda in
[16]. Finally, we will summarize some more recent results concerning conservative weak
solutions.

2.1. Notations. We will denote by Lp(Rd) the standard Lebesgue spaces and
with ∥·∥Lp their norm. Moreover, Lp

c(Rd) denotes the space of Lp functions defined
on Rd with compact support. The Sobolev space of Lp functions with distributional
derivatives of first order in Lp is denoted by W 1,p(Rd). The spaces Lp

loc(Rd),W 1,p
loc (Rd)

denote the space of functions which are locally in Lp(Rd),W 1,p(Rd) respectively. We will
denote by H1(Rd) the space W 1,2(Rd) and by H−1(Rd) its dual space. Moreover, we
will say that a function u is in H−1

loc (Rd) if ρu∈H−1(Rd) for every function ρ∈C∞
c (Rd).

We denote with L(logL)α(Rd) the space of functions f such that the following quantity
is finite

ˆ
Rd

|f(x)|(log+(|f(x)|))αdx. (2.1)

The space L(logL)α(Rd) is a Banach space if endowed with the Luxemburg norm

∥f∥L(logL)α =inf

{
k>0 :

ˆ
Rd

|f |
k

(
log+

(
|f |
k

))α

dx≤1

}
, (2.2)
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where the function log+ is defined as

log+(t)=

{
log(t) if t≥1,

0 otherwise,

and L(logL)αc (Rd) will be the space of functions in L(logL)α(Rd) with compact support.
We remark that the quantity in (2.1) does not define a norm therefore the necessity of
the definition (2.2). We refer to the classical book of Bennett and Sharpley [3] for more
details.

We denote by Lp((0,T );Lq(Rd)) the space of all measurable functions u defined on
[0,T ]×Rd such that

∥u∥Lp((0,T );Lq(Rd)) :=

(ˆ T

0

∥u(t,·)∥pLq dt

) 1
p

<∞,

for all 1≤p<∞, and

∥u∥L∞((0,T );Lq(Rd)) :=esssup
t∈[0,T ]

∥u(t,·)∥Lq <∞,

and analogously for the spaces Lp((0,T );W 1,q(Rd)). The space of continuous functions
on [0,T ] with values in Lp(Rd) is denoted by C([0,T ];Lp(Rd)) and it is endowed with
the norm ∥·∥L∞((0,T );Lp(Rd)). We denote by BR the ball of radius R>0 centered in the

origin of Rd. In the estimates we will denote with C a positive constant which may
change from line to line. Moreover, for α∈R we define the function

β(s) :=s(log(e+s))α, (2.3)

which will be used extensively in what follows. Finally, it is useful to denote with ⋆ the
following variant of the convolution

v⋆w=

2∑
i=1

vi ∗wi if v,w are vector fields in R2,

A⋆B=

2∑
i,j=1

Aij ∗Bij if A,B are matrix-valued functions in R2.

With the notations above, it is easy to check that if f :R2→R is a scalar function and
v :R2→R2 is a vector field, then

f ∗curlv=∇⊥f ⋆v,

∇⊥f ⋆div(v⊗v)=∇∇⊥f ⋆(v⊗v).

2.2. Weak solutions. We recall the definition of weak solution of the Euler
equations as in [16].

Definition 2.1. A vector valued function u∈L∞((0,T );L2
loc(R2)) is a weak solution

of (1.1) if it satisfies:
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(1) for all test functions Φ∈C∞
0 ((0,T )×R2) with divΦ=0,

ˆ T

0

ˆ
R2

(∂tΦ ·u+∇Φ:u⊗u) dxdt=0; (2.4)

(2) divu=0 in the sense of distributions;

(3) u∈Lip([0,T );H−L
loc (R2)) for some L>0 and u(0,x)=u0(x).

Remark 2.1. The choice of divergence-free test functions removes the pressure in the
weak formulation (2.4). However, it can be formally recovered by the formula

−∆p=divdiv(u⊗u),

which is obtained by applying the divergence in the momentum equation in (1.1).

In [16], DiPerna and Majda introduced the following definition of an approximate
solution sequence of the 2D Euler equations.

Definition 2.2. A sequence of smooth velocity fields un with vorticity curlun=
ωn∈C([0,T ];L1(R2)) is an approximate solution sequence for the 2D Euler equations
provided that

(i) un has uniformly bounded local kinetic energy and un is incompressible, i.e., for
each R>0 and T >0, there exists C(R)>0 such that

max
t∈[0,T ]

ˆ
BR

|un(t,x)|2dx≤C(R), divun=0;

(ii) the vorticity ωn is uniformly bounded in L1, i.e., for every T >0,

max
t∈[0,T ]

ˆ
R2

|ωn(t,x)|dx≤C;

(iii) for some L>0, the sequence un is uniformly bounded in Lip([0,T ];H−L
loc (R2));

(iv) un is weakly consistent with the 2D Euler equations, i.e.

lim
n→∞

ˆ T

0

ˆ
R2

(∂tΦ ·un+∇Φ:un⊗un) dxdt=0, (2.5)

for every Φ∈C∞
c ((0,T )×R2) with divΦ=0.

Besides the very general definition, in [16] the authors give three different exam-
ples of approximate solutions sequences, which are important for physical or numerical
reasons. They are the following.

(ES) Approximation by exact smooth solutions of (1.1). We consider a smooth
approximation of the initial datum uδ

0 such that uδ
0→u0 in L2

loc and we define
uδ as the unique solution of the approximating problem

∂tu
δ+(uδ ·∇)uδ+∇pδ =0,

divuδ =0,

uδ(0,·)=uδ
0.

(2.6)

Then, a solution u of (1.1) is constructed analyzing the limit of the sequence
uδ as δ→0.
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(VV) Vanishing viscosity from the two-dimensional Navier-Stokes equa-
tions. We consider the two-dimensional incompressible Navier-Stokes equa-
tions 

∂tu
ν+(uν ·∇)uν+∇pν =ν∆uν ,

divuν =0,

uν(0, ·)=uν
0 ,

(2.7)

where ν >0 is the viscosity of the fluid and uν
0 is smooth and converges in L2

loc

towards u0 as ν→0. Then, a solution u of (1.1) is constructed analyzing the
vanishing viscosity limit of the sequence uν .

(VB) Vortex-blob approximation. It is a numerical method which is the prototype
of several important numerical schemes. It is based on the idea of approximating
the vorticity with a finite number of cores which evolve according to the velocity
of the fluid. Without going into details, the approximating velocity uε solves
the system 

∂tu
ε+(uε ·∇)uε+∇pε=K ∗Eε,

divuε=0,

uε(0, ·)=uε
0,

(2.8)

where uε
0 is a suitable smooth approximation of the initial datum and Eε is

an error term which comes from the fact that, roughly speaking, each blob is
rigidly translated by the flow. We give the precise construction together with
its main properties in the Appendix.

By assuming only integrability hyphotesis on the initial vorticity ω0, the existence of
weak solutions constructed with the methods above has been proven in [2, 16]. For
simplicity of exposition, for the remainder of this subsection we will use n as an approx-
imation parameter for all the three methods.

Theorem 2.1. Let u0∈L2
loc(R2) be a divergence-free vector field and let ω0=

curlu0∈Lp
c(R2) for some p>1. Let un be an approximate solution sequence con-

structed via one of the methods (ES), (VV), (VB), where the associated initial da-
tum un

0 →u0 in L2
loc(R2). Then, there exists a subsequence of un and a vector field

u∈L∞((0,T );L2
loc(R2))∩Lip([0,T ];H−L

loc (R2)) with the following properties:

• u(0,·)=u0,

• un→u in L2((0,T );L2
loc(R2)),

• ωn ∗
⇀ω in L∞((0,T );Lp(R2)),

• ωn→ω in C([0,T ];H−L−1
loc (R2)).

Remark 2.2. Note that the setting of the previous theorem is for a regime where the
uniqueness of solutions of (1.1) is not known. Therefore, the three methods could have
multiple limit points which may also change depending on the approximation.

As already mentioned in the Introduction, the previous theorem has been general-
ized by Chae [7, 8]:

Theorem 2.2. Let u0∈L2
loc(R2) be a divergence-free vector field such that curlu0=

ω0∈L(logL)αc (R2) with α≥1/2. Then, there exists a weak solution u of (1.1) with
initial datum u0 satisfying

u∈C([0,T ];L2
loc(R2)). (2.9)
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The proof of Theorem 2.2 strongly relies on the fact that the operator

T :f ∈L(logL)αc (R2)→K ∗f ∈L2
loc(R2), (2.10)

is compact for α>1/2, where K is the two dimensional Biot-Savart kernel. It is worth
to note that the solutions are constructed analyzing the vanishing viscosity limit of the
corresponding Navier-Stokes equations with the same initial data. We now recall an
intriguing example from [24].

Example 2.1. Let us consider the function ω0 given by

ω0(x) :=


1

|x|2
(
log
(

1
|x|

))1+γ , if |x|<e−1,

0, otherwise.

(2.11)

It is a classical fact that, since ω0 depends only on |x|, the corresponding velocity field
is given by

u0(x)=
x⊥

|x|2

ˆ |x|

0

sω0(s)ds, (2.12)

see [16]. By using that

log(e+ω0)≤C log(1/|x|),

when ω0>0, a direct computation shows that

• for α∈ (0,1], choosing γ>α, the function ω0∈Lc(logL)
α(R2) but ω0 ̸∈Lp(R2)

for every p>1;

• for α<γ<1/2, u0 is not locally square integrable;

• for 1/2<α<γ, u0 is locally square integrable.

Moreover, as remarked in [24], an argument based on [8], shows that u0∈L2
loc(R2) when

γ>α=1/2.

We conclude this subsection by summarizing some known results about the strong
convergence in C([0,T ];Lp(R2)) of the approximating vorticity ωn. This problem has
been addressed by several authors in different settings, especially with regard to the
inviscid limit of the Navier-Stokes equations, see for example [10,12,22]. We collect the
results we need in the following theorem, see [4, 10,11].

Theorem 2.3. Let ω0∈Lp
c(R2) with p≥1 and let ωn be a sequence of approximating

vorticity constructed via one of the three methods (ES), (VV), or (VB). Then, there
exists ω∈C([0,T ];L1∩Lp(R2)) such that

ωn→ω in C([0,T ];L1∩Lp(R2)). (2.13)

Remark 2.3. Being L(logL)αc ⊂L1
c , assuming ω0∈L(logL)αc by Theorem 2.3 if ωn

is a sequence constructed via one of the aforementioned methods, then there exists
ω∈C([0,T ];L1(R2)) such that

ωn→ω in C([0,T ];L1(R2)). (2.14)
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2.3. Conservative solutions. In this subsection we discuss the conservation of
the energy for the 2D Euler equations. We recall the following definition.

Definition 2.3. Let u∈C([0,T ];L2(R2)) be a weak solution of (1.1) with initial
datum u0∈L2(R2). We say that u is a conservative weak solution if

∥u(t,·)∥L2 =∥u0∥L2 ∀t∈ [0,T ].

It is well-known that in the two-dimensional case, even if we assume that the vor-
ticity is bounded, the velocity field is in general not square integrable. In order to
define the kinetic energy, we need to require that the vorticity has zero total mass,
see [20, Proposition 3.3] for more details.

Proposition 2.1. Let u∈L2
loc(R2) be an incompressible velocity field in R2 such that

its vorticity ω=curlu∈L1
c(R2) and it has zero total mass, i.e.

ˆ
R2

ω(x)dx=0. (2.15)

Then, u is globally square integrable, i.e. u∈L2(R2).

As already explained in the Introduction, the problem of the conservation of the
energy in this low regularity setting has been addressed in [9]: they showed that ev-
ery weak solution is conservative if curlu∈L∞((0,T );Lp(T2)) with p≥3/2, while for
less integrable vorticities the conservation of the energy may depend on the approxima-
tion procedure. In particular, by collecting the results of [9–11] we have the following
theorem.

Theorem 2.4. Let u∈C([0,T ];L2(R2)) be a weak solution of (1.1) with vorticity
ω=curlu of zero total mass. Then,

• if ω∈L∞((0,T );L1∩L
3
2 (R2)), then u is conservative;

• if ω∈L∞((0,T );L1∩Lp(R2)) with p>1, and u is constructed as limit of one of
the approximations (ES), (VV), or (VB), then u is conservative.

We finish this subsection by recalling a theorem that has been proved in [17]. It
characterizes the compactness of (VV) and the energy conservation in terms of the
classical structure function

ST
2 (u;r) :=

(ˆ T

0

ˆ
T2

 
Br

|u(t,x+h)−u(t,x)|2dhdxdt

)1/2

.

The main statement from [17] is the following.

Theorem 2.5. Let uν be the unique solution of (2.7) with a smooth initial datum uν
0

such that

uν
0 →u0 in L2(T2).

Let u∈L∞((0,T );L2(T2)) be a solution of (1.1) with initial datum u0 such that, up to
a sub-sequence,

uν ⇀u in L2(T2).

Then the following are equivalent:
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(i) uν →u strongly in Lp((0,T );L2(T2)) for some 1≤p<∞,

(ii) there exists a bounded modulus of continuity ϕ(r) such that, uniformly in ν,

ST
2 (u

ν ;r)≤ϕ(r) ∀r≥0,

(iii) u is a conservative weak solution.

It is important to note that, by using the result in [19], the previous theorem implies
that solutions constructed via (VV) are conservative if ω0∈L(logL)α(T2). Then, our
Theorem 4.2 will extend the aforementioned result to the class ω0∈L(logL)αc (R2).

Remark 2.4. The Theorem 2.5 holds even if we replace the two-dimensional torus T2

with the whole plane R2, taking into account the appropriate technical considerations.

3. A priori estimates
In this section we summarize some a priori estimates for the approximating vorticity

constructed via the approximation methods introduced in Section 2.2. We will always
assume that ω0∈L(logL)αc (R2) with α>1/2. As already stressed in the Introduction,
these estimates will be crucial in order to address the strong convergence of the velocity
field in C([0,T ];L2(R2)), which will be the topic of the next section. It is worth pointing
out that we will not estimate quantities like (2.2), as the reader might expect, but we
will provide bounds (uniform with respect to the parameter in question) on the following
quantity ˆ

Rd

|f(x)|(log(e+ |f(x)|))αdx. (3.1)

This is the type of bound that we will need in Section 4. However, note that if f is
supported on a compact subset of Rd (as in the case of ω0), the following equivalence
holds

(2.1)<∞⇐⇒ (2.2)<∞⇐⇒ (3.1)<∞.

The same equivalence holds if the support of f is not compact but in addition f ∈L1(Rd).
This latter will be the case of the approximating vorticity.

3.1. Limit of exact smooth solutions. Let ρδ be a standard smooth mollifier
and consider the following Cauchy problem

∂tω
δ+uδ ·∇ωδ =0,

uδ =K ∗ωδ,

ωδ(0, ·)=ωδ
0,

(3.2)

where ωδ
0 =ω0 ∗ρδ. We have the following.

Lemma 3.1. Let ωδ be the unique smooth solution of (3.2). Then,

sup
t∈(0,T )

ˆ
R2

|ωδ(t,x)|(log(e+ |ωδ(t,x)|))αdx≤C, (3.3)

where C is a positive constant which does not depend on δ.

Proof. Let β be as in (2.3) and multiply the equations in (3.2) by β′(|ωδ|). Then,
by integrating in space and time we get that

d

dt

ˆ
R2

β(|ωδ(t,x)|)dx=0. (3.4)
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By using the convexity of β and Jensen’s inequality, it follows that
ˆ
R2

β(|ωδ
0|)dx≤

ˆ
R2

β(|ω0|)dx≤C

(
∥ω0∥L1 +

ˆ
R2

|ω0|(log+(|ω0|))αdx
)
<∞,

and then, by integrating in time in (3.4) we have the result.

3.2. The vanishing viscosity limit. We now deal with the vanishing viscosity
limit of the Navier-Stokes equations. Let ρν a standard smooth mollifier and let ων be
the solution of 

∂tω
ν+uν ·∇ων =ν∆ων ,

uν =K ∗ων ,

ων(0, ·)=ων
0 ,

(3.5)

where ων
0 =ω0 ∗ρν . We have the following.

Lemma 3.2. Let ων be the unique smooth solution of (3.5). Then,

sup
t∈(0,T )

ˆ
R2

|ων(t,x)|(log(e+ |ων(t,x)|))αdx≤C, (3.6)

where C is a positive constant which does not depend on ν.

Proof. We just sketch the proof since it is very similar to the one of Lemma 3.1.
Let β be as in (2.3) and multiply the equations in (3.5) by β′(|ων |). Then, by integrating
in space and time we get that

d

dt

ˆ
R2

β(|ων(t,x)|)dx=−ν

ˆ T

0

ˆ
R2

|∇ων(t,x)|2β′′(|ων(t,x)|)dxdt≤0, (3.7)

since β is convex. Then, integrating in time (3.7) we have the result.

3.3. The vortex-blob method. We finally deal with the vortex-blob method.
The reader can find the precise definition of the vortex-blob method and some of its
properties in the Appendix at the end of this note.

Lemma 3.3. Let ωε be the approximating vorticity constructed via the vortex-blob
method. Then,

sup
t∈(0,T )

ˆ
R2

|ωε(t,x)|(log(e+ |ωε(t,x)|))αdx≤C, (3.8)

where C is a positive constant which does not depend on ε.

Proof. We start by proving that ωε(0,·) satisfies the bound (3.8), see (A.5). Let β
be as in (2.3), ρδ(ε) be a standard mollifier, and ωε

0=ω0 ∗ρδ(ε). By Jensen’s inequality
we have that ˆ

R2

β(|ω0 ∗ρδ(ε)|)dx≤
ˆ
R2

β(|ω0|)dx.

We consider now ωε
0 ∗φε where φε is the mollifier which appears in the definition of the

approximate vorticity (A.2). Again by Jensen’s inequality we have
ˆ
R2

β(|ωε
0 ∗φε|)dx≤

ˆ
R2

β(|ω0|)dx.
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Then, by the properties of the function β we have that

ˆ
R2

β(|ωε(0,x)|)dx≤C

ˆ
R2

β(|ωε(0,x)−ωε
0 ∗φε(x)|)dx+C

ˆ
R2

β(|ωε
0 ∗φε|)dx.

We know that the second term on the right-hand side is uniformly bounded in ε, while
for the first term we have that

ˆ
R2

|ωε(0,x)−ωε
0 ∗φε(x)| log(e+ |ωε(0,x)−ωε

0 ∗φε(x)|)dx

≤
ˆ
R2

|ωε(0,x)−ωε
0 ∗φε(x)| log(e+Cε)dx

≤ log(e+Cε)∥ωε(0, ·)−ωε
0 ∗φε∥L1

≤Cε3 log(e+Cε)≤C,

where we have used Lemma A.1 with p=∞ in the second line and with p=1 in the
fourth line. As a consequence of the previous estimate we obtain

ˆ
R2

|ωε(0,x)|(log(e+ |ωε(0,x)|))αdx≤C.

Let uε be the velocity field constructed with the vortex-blob method and consider the
linear problem {

∂tω̄
ε+uε ·∇ω̄ε=0,

ω̄ε(0,·)=ωε(0,·).
(3.9)

By arguing as in the proof of Lemma 3.1 we have that

ˆ
R2

|ω̄ε|(log(e+ |ω̄ε|))αdx=
ˆ
R2

|ωε(0,x)|(log(e+ |ωε(0,x)|))αdx≤C,

from which it follows that
ˆ
R2

β(|ω̄ε ∗φε|(t,x))dx≤C.

So, in the end we get that

ˆ
R2

β(|ωε|(t,x))dx≤C

ˆ
R2

β(|ω̄ε ∗φε|(t,x))dx+C

ˆ
R2

β(|ωε− ω̄ε ∗φε|(t,x))dx

≤C+Cε3(log(e+Cε))α≤C,

which concludes the proof.

4. Strong convergence of the velocity field and conservation of the energy
In this section we will prove our main result, namely Theorem 1.1. In particular, the

uniform bound proved in Section 3 will be crucial in order to prove the global strong
convergence in C([0,T ];L2(R2)). To make the presentation easier to follow, we split
Theorem 1.1 into three theorems, one for each approximation. We start by proving the
result for (ES), then with the appropriate modifications we will describe how to prove
such a result also for (VV) and (VB).
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Theorem 4.1. Let ω0∈L(logL)αc (R2), with α>1/2, with zero total mass. Let u be a
weak solution of (1.1), with curlu0=ω0, that can be obtained as a limit of a sequence
uδ constructed via (ES). Then, uδ satisfies the following convergence

uδ →u in C([0,T ];L2(R2)), (4.1)

and u is conservative.

Proof. In order to prove the convergence stated in (4.1), we will prove that uδ

is a Cauchy sequence in C([0,T ];L2(R2)). We recall that the parameter δ is always
supposed to vary over a countable set, therefore given the sequence δn→0, we denote
with un and ωn the sequences uδn and ωδn . We divide the proof in several steps.

Step 1 A Serfati identity with fixed vorticity.

In this step we derive a formula for the approximate velocity un, in the same spirit
of the Serfati identity derived in [1, 23].

Let a∈C∞
c (R2) be a smooth function such that a(x)=1 if |x|<1 and a(x)=0 for

|x|>2. Differentiating in time the Biot-Savart formula we obtain that for i=1,2

∂su
n
i (s,x)=Ki ∗(∂sωn)(s,x)

=(aKi)∗(∂sωn)(s,x)+[(1−a)Ki]∗(∂sωn)(s,x). (4.2)

Now we use the equation for ωn obtaining

∂sω
n=−un ·∇ωn,

and substituting in (4.2) we get

∂su
n
i =(aKi)∗(∂sωn)− [(1−a)Ki]∗(un ·∇ωn). (4.3)

By using the identity

un ·∇ωn=curl(un ·∇un)=curl div(un⊗un),

we obtain that

[(1−a)Ki]∗(un ·∇ωn)=
(
∇∇⊥[(1−a)Ki]

)
⋆(un⊗un). (4.4)

Substituting the expressions (4.4) in (4.2) and integrating in time we have that un

satisfies the following formula, known as Serfati identity:

un
i (t,x)=un

i (0,x)+(aKi)∗(ωn(t,·)−ωn(0, ·))(x)

−
ˆ t

0

(
∇∇⊥[(1−a)Ki]

)
⋆(un(s,·)⊗un(s,·))(x)ds. (4.5)

We modify the Serfati identity (4.5) by introducing a new cut-off function aε: let ε∈
(0,1) and define aε to be equal to 1 on Bε and 0 outside B2ε. In this way we rewrite
(4.5) as

un
i (t,x)=un

i (0,x)+(aεKi)∗(ωn(t,·)−ωn(0,·))(x)+[(a−aε)Ki]∗(ωn(t, ·)−ωn(0, ·))(x)

−
ˆ t

0

(
∇∇⊥[(1−a)Ki]

)
⋆(un(s,·)⊗un(s,·))(x)ds.
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We can prove that un is a Cauchy sequence using the previous formula. We consider
un,um with n,m∈N. By linearity of the convolution we have that un−um satisfies the
following

un
i (t,x)−um

i (t,x)=un
i (0,x)−um

i (0,x)︸ ︷︷ ︸
(I)

+(aεKi)∗(ωn(t,·)−ωm(t,·))(x)︸ ︷︷ ︸
(II)

+(aεKi)∗(ωm
0 −ωn

0 )(x)︸ ︷︷ ︸
(III)

+((a−aε)Ki)∗(ωn(t,·)−ωm(t,·))(x)︸ ︷︷ ︸
(IV )

+((a−aε)Ki)∗(ωm
0 −ωn

0 )(x)︸ ︷︷ ︸
(V )

−
ˆ t

0

(
∇∇⊥[(1−a)Ki]

)
⋆(un(s,·)⊗un(s,·)−um(s,·)⊗um(s,·))(x)︸ ︷︷ ︸

(V I)

ds. (4.6)

In order to prove that un is a Cauchy sequence, we fix a parameter η>0 and we will
estimate all the terms in (4.6). First of all, since the initial datum un

0 converges strongly
in L2, it is obvious that there exists N1 such that ∀n,m>N1

∥un
i (0, ·)−um

i (0,·)∥L2 <η.

Step 2 Estimate on (V I).

By Young’s convolution inequality we have that

∥∇∇⊥[(1−a)K]⋆(un(s,·)⊗un(s,·)−um(s,·)⊗um(s,·)∥L2

≤∥∇∇⊥[(1−a)K]∥L2 ∥un(s,·)⊗un(s,·)−um(s,·)⊗um(s,·)∥L1︸ ︷︷ ︸
(V I∗)

. (4.7)

We add and subtract un(s,·)⊗um(s,·) in (V I∗) and by Hölder inequality we have

∥un(s,·)⊗un(s,·)−un(s,·)⊗un(s,·)∥L1

≤ (∥un(t,·)∥L2 +∥um(t,·)∥L2)∥un(s,·)−um(s,·)∥L2 .

For the first factor in (4.7) we have that

∇∇⊥[(1−a)Ki]=−(∇∇⊥a)Ki−∇⊥a∇Ki−∇a∇⊥Ki+(1−a)∇∇⊥Ki,

and it is easy to see that each term on the right-hand side has uniformly bounded L2

norm. Then we have thatˆ t

0

∥∇∇⊥[(1−a)K]⋆(un(s,·)⊗un(s,·)−um(s,·)⊗um(s,·)∥L2 ds

≤C∥u0∥L2

ˆ t

0

∥un(s,·)−um(s,·)∥L2 ds. (4.8)

Step 3 Estimate on (II) and (III).

For simplicity we will estimate only (III), but it will be clear from the proof that
by using the uniform estimates proved in Section 3 the same estimate holds true for
(II). We compute

∥(aεKi)∗ (ωn
0 −ωm

0 )∥2L2 =

ˆ
R2

∣∣∣∣∣
ˆ
B2ε(x)

aε(x−y)Ki(x−y)(ωn
0 (y)−ωm

0 (y)) dy

∣∣∣∣∣
2

dx
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≤
ˆ
R2

(ˆ
B2ε(x)

1

|x−y| |ω
n
0 (y)−ωm

0 (y)|dy

)2

dx

=

ˆ
R2

(ˆ
B2ε(x)

1

|x−y|(log(1/|x−y|))α
√

|ωn
0 (y)−ωm

0 (y)|(log(e+ |ωn
0 (y)−ωm

0 (y)|))α

×
(
log

(
1

|x−y|

))α
√

|ωn
0 (y)−ωm

0 (y)|
(log(e+ |ωn

0 (y)−ωm
0 (y)|))α dy

)2

dx

≤
ˆ
R2

ˆ
B2ε(x)

1

|x−y|2 (log(1/|x−y|))2α
|ωn

0 (y)−ωm
0 (y)|(log(e+ |ωn

0 (y)−ωm
0 (y)|))αdy

×
ˆ
B2ε(x)

(
log

(
1

|x−y|

))2α |ωn
0 (y)−ωm

0 (y)|
(log(e+ |ωn

0 (y)−ωm
0 (y)|))α dydx

≤sup
x

ˆ
B2ε(x)

(
log

(
1

|x−y|

))2α |ωn
0 (y)−ωm

0 (y)|
(log(e+ |ωn

0 (y)−ωm
0 (y)|))α dy︸ ︷︷ ︸

(I∗)

×
ˆ
R2

ˆ
B2ε(x)

1

|x−y|2(log(1/|x−y|))2α |ωn
0 (y)−ωm

0 (y)|(log(e+ |ωn
0 (y)−ωm

0 (y)|))αdydx︸ ︷︷ ︸
(II∗)

.

We estimate (I∗) and (II∗) separately. Let β be as in (2.3) and

gε(x)=χB2ε
(x)

1

|x|2(log(1/|x|)2α
,

we have that

(II∗)=∥gε ∗β(|ωn
0 −ωm

0 |)∥L1 ≤∥gε∥L1∥β(|ωn
0 −ωm

0 |)∥L1 . (4.9)

By using the convexity of β and Lemma 3.1, we have that

∥β(|ωn
0 −ωm

0 |)∥L1 ≤C,

where C is independent from n,m, while for α>1/2

∥gε∥L1 =
C

(log(1/ε))2α−1
, (4.10)

which can be made as small as we want by choosing ε properly. For (I∗) we use the
following facts on the Legendre transform. The maximum of st−β(t) occurs at a point
t where s≥ (log(e+ t))2α, that is, where t∗(s)≤es/(2α), so that, by denoting with β∗ the
Legendre transform of β, we have that β∗(s)≤ses/(2α). We apply the inequality

st≤β(t)+β∗(s)≤ses/(2α)+ t(log(e+ t))2α,

to s=
(
log
(

1
|x−y|

))2α
and t=

|ωn
0 −ωm

0 |
(log(e+|ωn

0 −ωm
0 |))α and we find that (I∗) is bounded by

(I∗)≤sup
x

{ˆ
B2ε

(log(1/|z|))2α

|z| dz

+

ˆ
B2ε(x)

|ωn
0 (y)−ωm

0 (y)|
(log(e+ |ωn

0 (y)−ωm
0 (y)|))α log2

(
e+

|ωn
0 (y)−ωm

0 (y)|
(log(e+ |ωn

0 (y)−ωm
0 (y)|))α

)
dy︸ ︷︷ ︸

(I∗∗)

 ,
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and we can estimate (I∗∗) by

(I∗∗)≤|ωn
0 −ωm

0 |(log(e+ |ωn
0 −ωm

0 |)α,

so that (I∗) is finite using the properties of the function t 7→ t(log(e+ t))α together with
Lemma 3.1. So, by decreasing ε if necessary we get that

(II)+(III)≤Cη.

Step 4 Estimates on (IV) and (V).

In the previous step we have fixed the constant ε, so by applying Young’s inequality
to

∥[(a−aε)Ki]∗(ωn
0 −ωm

0 )∥L2 ≤∥(a−aε)Ki∥L2∥ωn
0 −ωm

0 ∥L1 ≤C(ε)∥ωn
0 −ωm

0 ∥L1 ,

∥[(a−aε)Ki]∗(ωn(t,·)−ωm(t,·))∥L2 ≤∥(a−aε)Ki∥L2∥ωn(t, ·)−ωm(t,·)∥L1

≤C(ε)∥ωn(t, ·)−ωm(t,·)∥L1 ,

where C(ε) blows up as ε→0. Now, ε=ε(η) has been fixed in the previous step and
by Remark 2.3 the vorticity converges strongly in C([0,T ],L1(R2)). Then, we have that
there exists N2 such that ∀n,m>N2

∥ωn
0 −ωm

0 ∥L1 , sup
t∈(0,T )

∥ωn(t,·)−ωm(t, ·)∥L1 <η/C(ε).

Step 5 un is a Cauchy sequence in C([0,T ];L2(R2)).

By collecting all the estimates obtained in the previous steps we get that for all
n,m>N :=max{N1,N2}

∥un(t,·)−um(t,·)∥L2 ≤C

(
η+

ˆ t

0

∥un(s,·)−um(s,·)∥L2 ds

)
, (4.11)

and by Gronwall’s lemma

∥un(t,·)−um(t,·)∥L2 ≤C(T )η. (4.12)

Taking the supremum in time in (4.12) we have the result.

Step 6 Conservation of the energy.

Since un is an exact smooth solution and smooth solutions are conservative, we
have that

∥un(t,·)∥L2 =∥un
0∥L2 . (4.13)

Then, since un converges strongly to u in C([0,T ];L2(R2)), by letting n→∞ in (4.13)
we have the result.

Remark 4.1. The L(logL)α integrability of the vorticity plays a role in the proof of the
Theorem 4.1 only in Step 3, allowing us to make the quantities (II) and (III) as small
as we want. For α<1/2 this cannot be achieved: Let ω0 be the vorticity in Example
2.1 and decompose the corresponding velocity field u0 as

u0=(aεK)∗ω0+[(1−aε)K]∗ω0.
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Since (1−aε)K ∈L∞(R2) and ω0∈L1(R2), it follows that [(1−aε)K]∗ω0 is bounded,
thus in L2

loc(R2). But u0 is not locally square integrable and then necessarily (aεK)∗ω0 ̸∈
L2
loc(R2) as well.

Now we deal with the vanishing viscosity method.

Theorem 4.2. Let ω0∈L(logL)αc (R2), with α>1/2, with zero total mass. Let u be a
weak solution of (1.1), with curlu0=ω0, that can be obtained as a limit of a sequence
uν constructed via (VV). Then, uν satisfies the following convergence

uν →u in C([0,T ];L2(R2)), (4.14)

and u is conservative.

Proof. Since the parameter ν is supposed to vary over a countable set, given the
sequence νn→0, we denote with un and ωn the sequences uνn and ωνn . Thanks to
Remark 2.4, it is enough to prove that un is a Cauchy sequence in C([0,T ];L2(R2)).
We proceed as in the proof of Theorem 4.1. The only difference is that an error term
appears in the Serfati identity, which is

ˆ t

0

(∆[(1−a)Ki])∗(νnωn(s,·)−νmωm(s,·)) ds. (4.15)

By Young’s inequality we have that

∥
(
∆[(1−a)Ki]

)
∗
(
νnω

n(s,·)−νmωm(s,·)
)
∥L2

≤νn∥∆[(1−a)Ki]∥L2∥ωn(s,·)−ωm(s,·)∥L1

+ |νm−νn|∥∆[(1−a)Ki]∥L2∥ωm(s,·)∥L1 .

Since ∆Ki is in L2(Bc
1), a straightforward computation shows that ∆[(1−a)K] is

bounded in L2. So, because of Remark 2.3, there exists N3 such that for all n,m>N3

we have that

∥(∆[(1−a)K])∗(νnωn(s,·)−νmωm(s,·))∥L2 ≤Cη,

and this concludes the proof.

Finally we deal with the vortex-blob method. The theorem is the following.

Theorem 4.3. Let ω0∈L(logL)αc (R2), with α>1/2, with zero total mass. Let u be a
weak solution of (1.1), with curlu0=ω0, that can be obtained as the limit of a sequence
uε constructed via (VB). Then, uε satisfies the following convergence

uε→u in C([0,T ];L2(R2)), (4.16)

and u is conservative.

Proof. Since the parameter ε is supposed to vary over a countable set, given the
sequence εn→0, we denote with un and ωn the sequences uεn and ωεn . We divide the
proof in several steps.

Step 1 un is a Cauchy sequence in C([0,T ];L2(R2)).

We proceed as in the proof of Theorem 4.1. The only difference is that an error
term appears in the Serfati identity, which is

ˆ t

0

((∇[(1−a)Ki])⋆(Fn(s,·)−Fm(s,·))(x)ds. (4.17)
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Since ∇[(1−a)Ki]∈L2(R2), by using Young’s inequality we get that

∥((∇[(1−a)Ki])⋆(Fn(s,·)−Fm(s,·))∥L2 ≤∥∇[(1−a)Ki]∥L2∥Fn(s,·)−Fm(s,·)∥L1 ,

which can be made as small as we want because of Lemma A.2.

Step 2 Conservation of the energy.

We prove now that u is a conservative weak solution. With our notations, multi-
plying (2.8) by un and integrating in space and time we have that

ˆ
R2

|un|2(t,x)dx=
ˆ
R2

|un|2(0,x)dx−
ˆ t

0

ˆ
R2

(∇K⋆Fn) ·undx. (4.18)

For the second term on the right-hand side, by Lemma A.2 we have that∣∣∣∣ˆ t

0

ˆ
R2

(∇K⋆Fn) ·undx

∣∣∣∣≤∥∇K⋆Fn(s,·)∥L2∥un(s,·)∥L2

≤∥Fn(s,·)∥L2∥un(s,·)∥L2

≤C(δn)
− 7

3 (εn)
1
3 ,

which goes to 0 as εn→0. Then, by the convergence (4.16) letting εn→0 in (4.18) we
have that ˆ

R2

|u|2(t,x)dx=
ˆ
R2

|u0|2(x)dx,

which gives the result.

Remark 4.2. In the case of a vorticity ω0∈Lc(logL)
1/2(R2), the L2-compactness of

a sequence of approximating velocities depends on the approximation method. This is
the case of the methods examined in this work and it follows from the a priori estimates
of Section 3 and the compactness arguments of [8]. However, it does not seem possible
to find explicit quantitative rates of convergence by resorting to the Serfati identity,
because of the quantities (II) and (III) in Step 3 of Theorem 4.1. Even if that were
the case, those rates would implicitly depend on the specific choice of ω0 and not on its
norm.
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Appendix. The vortex-blob method. In this appendix we describe the vortex-
blob approximation and some of its properties. Let us consider an initial vorticity
ω0∈Lp

c(R2) with 1≤p≤∞. Let ε∈ (0,1), we consider two small parameters in (0,1),
which later will be chosen as functions of ε, denoted by δ(ε) and h(ε).

First of all, we consider the lattice

Λh :={αi∈hZ×hZ :αi=h(i1,i2),where i1,i2∈Z},
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and define Ri as the square with sides of length h parallel to the coordinate axis and
centered at αi∈Λh. Let ρδ be a standard mollifier and define

ωε
0 :=ω0 ∗ρδ(ε). (A.1)

For any δ∈ (0,1) the support of ωε
0 is contained in a fixed compact set in R2, then it

can be tiled by a finite number N(ε) of squares Ri. Define the quantities

Γε
i =

ˆ
Ri

ωε
0(x) dx, for i=1,...,N(ε).

Let φε be another mollifier, we define the approximate vorticity to be

ωε(t,x)=

N(ε)∑
i=1

Γε
iφε(x−Xε

i (t)), (A.2)

where {Xε
i (t)}

N(ε)
i=1 is a solution of the O.D.E. system{

Ẋε
i (t)=uε(t,Xε

i (t)),

Xε
i (0)=αi,

(A.3)

with uε defined as

uε(t,x)=K ∗ωε(t,x)=

N(ε)∑
i=1

Γε
iKε(x−Xε

i (t)), (A.4)

where Kε=K ∗φε. Note that, since δ and h are ε-dependent, we only use the super-
script, or subscript, ε. The ordinary differential Equations (A.3) are known as the
vortex-blob approximation. In particular, the approximation of the initial vorticity and
the initial velocity are given by

ωε(0,x)=

N(ε)∑
i=1

Γε
iφε(x−αi), uε(0,x)=

N(ε)∑
i=1

Γε
iKε(x−αi). (A.5)

It is not difficult to show the bound (see [16])

sup
t∈(0,T )

(∥uε(t, ·)∥L∞ +∥∇uε(t,·)∥L∞)≤ C

ε2
. (A.6)

From (A.6) it follows that, for every fixed ε>0, there exists a unique smooth solution

{Xε
i (t)}

N(ε)
i=1 of the O.D.E. system (A.3), which implies that uε and ωε are well-defined

smooth functions. Note that uε and ωε are not exact solutions of the Euler equations.
Precisely, the approximate vorticity ωε satisfies the following equation

∂tω
ε+uε ·∇ωε=Eε, (A.7)

where, by a direct computation the error term is given by

Eε(t,x) :=

N(ε)∑
i=1

[uε(t,x)−uε(t,Xε
i (t)] ·∇φε(x−Xε

i (t))Γ
ε
i . (A.8)
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Concerning the approximate velocity uε, consider the quantity

wε=∂tu
ε+(uε ·∇)uε.

Since wε satisfies the system{
curlwε=Eε,

divwε=divdiv(uε⊗uε) ,
(A.9)

we derive that there exists a function pε such that

−∆pε=divdiv(uε⊗uε),

and

wε=−∇pε+K ∗Eε.

Then, the velocity given by the vortex-blob approximation verifies the following equa-
tions {

∂tu
ε+(uε ·∇)uε+∇pε=K ∗Eε,

divuε=0.
(A.10)

Since uε is divergence-free, Eε can be rewritten as Eε(t,x)=divFε(t,x) where

Fε(t,x) :=

N(ε)∑
i=1

[uε(t,x)−uε(t,Xε
i (t)]φε(x−Xε

i (t))Γ
ε
i . (A.11)

Let ω̄ε be the solution of the linear transport equation with vector field uε, that is{
∂tω̄

ε+uε ·∇ω̄ε=0,

ω̄ε(0,·)=ωε
0.

(A.12)

Since uε satisfies (A.6), there exists a unique smooth solution ω̄ε, which is given by the
formula

ω̄ε(t,x)=ωε
0((X

ε)−1(t,·)(x)), (A.13)

where Xε is the flow of uε, that is,{
Ẋε(t,x)=uε(t,Xε(t,x)),

Xε(0,x)=x.
(A.14)

Moreover, since divuε=0, we have

∥ω̄ε(t,·)∥Lp =∥ωε
0∥Lp ≤∥ω0∥Lp .

The following estimates between the Lp norms of ωε and ω̄ε hold true, see [2, 11].

Lemma A.1. Let ω0∈L1(R2) and let h=h(ε) be chosen as

h(ε)=
ε4

exp(C1ε−2∥ω0∥L1T )
, (A.15)
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where C1>0 is a positive constant. Then, the estimate

sup
0≤t≤T

∥ωε−φε ∗ ω̄ε∥Lp ≤Cε1+
2
p (A.16)

holds for all 1≤p≤∞, where C>0 is a positive constant which does not depend on ε.

Moreover, with a suitable choice of the parameters in the definition of the vortex-
blob method we also have that the error term Fε goes to 0 in the limit, see [2].

Lemma A.2. Let ω0∈Lp
c(R2) with p≥1, then the quantity Fε defined in (A.11)

satisfies

sup
t∈[0,T ]

∥Fε(t,·)∥L1 →0, as ε→0. (A.17)

Moreover, choosing h(ε)=C1ε
6exp

(
−C0ε

−2
)
where C1,C0 are positive constants, we

have that Fε satisfies the following additional bound

∥Fε(t,·)∥L2 ≤Cδ−βε
7
3 ∥ω0∥L1 ,

which goes to 0 choosing δ as above and 0<σ<1/7.

Finally, by showing the equi-integrability of the sequence ωε one of the main results
in [11] is the following.

Theorem A.1. Let ω0∈L1
c(R2) and ωε

0 defined as (A.1). Then the sequence ωε

as in (A.2) is equi-integrable in L1((0,T )×R2). Moreover, there exists a function ω∈
C([0,T ];L1(R2)) such that, along a sub-sequence,

ωε→ω in C([0,T ];L1(R2)),

where ω is a renormalized and Lagrangian solution of the two-dimensional Euler equa-
tions.
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