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THE CAHN-HILLIARD-BOUSSINESQ SYSTEM WITH
SINGULAR POTENTIAL∗

MAURIZIO GRASSELLI† AND ANDREA POIATTI‡

Abstract. We consider a Cahn-Hilliard-Boussinesq system with positive heat diffusivity and
singular potential on a two-dimensional bounded domain with suitable boundary conditions. For the
corresponding initial and boundary value problem we prove the existence of strong solutions and the
well-posedness for weak solutions. Then we set the diffusivity equal to zero. In this case, the model
can be viewed as an approximation of the two-dimensional compressible Navier-Stokes-Cahn-Hilliard
system proposed in [J. Lowengrub, L. Truskinovsky, Proc. R. Soc. Lond. A., 454:2617–2654, 1998]. In
particular, the heat equation turns out to be the continuity equation for the fluid density. In the case of
zero diffusivity, existence and uniqueness of weak and strong solutions are established. In addition, we
show that the solution to the diffusive problem does converge to the solution to the diffusionless when
the diffusion coefficient goes to zero. In particular, we provide an error estimate for strong solutions.
The validity of the uniform separation property from the pure states is finally proven for both the cases.

Keywords. Boussinesq equations; Cahn-Hilliard equation; logarithmic potential; weak and strong
solutions; uniqueness; strict separation property.
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1. Introduction

One of the oldest approaches to multi-phase problems is the phase-field method
characterized by the notion of diffuse interface. This means that the transition layer
between the phases has a finite size. Thus there is no tracking mechanism for the
interface, but the phase state is incorporated into the governing equations. The (diffuse)
interface is associated with a smooth, but highly localized variation of the so-called
phase-field variable. In the diffuse interface theory, the motion of a mixture of two
incompressible viscous fluids and the evolution of the interface that separates them are
described by the Model H (see, e.g., [4,30,31]). Although it is assumed that the fluids are
macroscopically immiscible, the model accounts for a partial mixing on a small length
scale measured by a parameter α>0, called capillary coefficient. Therefore the classical
sharp interface between both fluids is replaced by an interfacial region and an order
parameter related to the concentration difference of both fluids is introduced, leading
to the coupling with the Cahn-Hilliard equation.

A compressible version of the model H is obtained in [40] with a rigorous physical
derivation. Consider a mixture of two immiscible substances A and B, which is ho-
mogeneously distributed and isothermal. Let Ω be a bounded domain in RN , N =2,3,
filled with a binary solution consisting of A and B atoms. We define their relative mass
fraction (assumed to be non-uniform) as φA(x) and φB(x), with φk :Ω→ [0,1], k=A, B
and φA(x)+φB(x)≡1. The order parameter is then defined as φ(x) :=φA(x)−φB(x)
so that φ :Ω→ [−1,1]. The model H is thus expressed through the following compressible
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Navier-Stokes-Cahn-Hilliard (NSCH) system
ρ∂tu+ρ(u ·∇)u+∇π−div(ν(φ)Du)−∇(div u)=−α div(ρ∇φ⊗∇φ)+ρg
ρ∂tφ+ρu ·∇φ=∆

(
−α

ρ div(ρ∇φ)+Ψ′(φ)
)

∂tρ+u ·∇ρ+ρdiv(u)=0,

(1.1)

in Ω×(0,T ), for some given T >0, with suitable boundary and initial conditions. Here
u represents the (volume averaged) velocity, Du is the strain rate tensor, π denotes the
pressure, ν(φ)>0 is the viscosity of the mixture (possibly depending on φ), g=−γen
is the gravitational force and Ψ is the double-well potential defined by

Ψ(s)=
α

2
((1+s)ln(1+s)+(1−s)ln(1−s))− α0

2
s2 ∀s∈ [−1,1], (1.2)

with α such that 0<α<α0, constants related to the temperature of the mixture. The
potential defined in this way is called singular. However, many authors (see, e.g., [18,42]
and references therein) considered a proper approximation, which avoids the fact that Ψ′

is unbounded at the pure phases −1 and 1. The most common choice is a polynomial of
fourth degree, typically Ψ(s)= 1

4 (s
2−1)2 and usually called regular potential. However,

the polynomial approximation does not ensure the existence of physical solutions, that
is, solutions whose values are in [−1,1], due to the lack of comparison principles for the
Cahn-Hilliard equation.

As shown in the Appendix, performing a (formal) perturbation argument [26], we
can obtain the following approximating system, which is the main subject of our analysis


∂tu+(u ·∇)u+ 1

ρ∗∇π−div
(

ν(φ)
ρ∗ ∇u

)
=−α div(∇φ⊗∇φ)− ρ

ρ∗ γen

div u=0

∂tφ+u ·∇φ=∆
(
− α

ρ∗∆φ+
1
ρ∗Ψ

′(φ)
)

∂tρ+u ·∇ρ=0.

(1.3)

Assuming now ρ∗=1 and γ=−1, setting θ=ρ, and imposing suitable boundary and
initial conditions, we thus have the following problem for (u,φ,θ)

∂tu+(u ·∇)u+∇π−div(ν(φ)∇u)=µ∇φ+θe2
div u=0

∂tφ+u ·∇φ=∆µ

∂tθ+u ·∇θ=0

µ= −α∆φ+Ψ′(φ)

u(0)=u0, φ(0)=φ0, θ(0)=θ0 in Ω

∂nφ=0, ∂nµ=0, u=0 on ∂Ω, t∈ (0,T ),

(1.4)

where µ is the so-called chemical potential. Observe that the so-called Korteweg force
−α div(∇φ⊗∇φ) can be equivalently rewritten as µ∇φ. Indeed we have

µ∇φ=∇
(α
2
|∇φ|2+Ψ(φ)

)
−α div(∇φ⊗∇φ),

so that the first term on the right-hand side can be viewed as an extra-pressure. Note
that the fluid density ρ is here denoted by θ, and it is interpreted as the temperature
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of the mixture. Indeed, in the Boussinesq approximation the two quantities are linearly
dependent: ρ=ρ0− α̃ρ0(θ−θ0), where ρ0>0 and α̃>0 are a given density and the
coefficient of thermal expansion, respectively. System (1.4) is also known as Cahn-
Hilliard-Boussinesq system without diffusivity. We recall that the mere coupling of
Navier-Stokes system with the convection-diffusion equation for θ, named Boussinesq
equations, has been widely studied in the literature. We refer the reader, for instance,
to [6,11,33,34,36–38,54] for the case without diffusivity and to [7,10,12,33,51] for the
diffusive case.

Problem (1.4) with diffusion reads

∂tu+(u ·∇)u+∇π−div(ν(φ)∇u)=µ∇φ+θe2
div u=0

∂tφ+u ·∇φ=∆µ

∂tθ+u ·∇θ−κ∆θ=0

µ= −α∆φ+Ψ′(φ)

u(0)=u0, φ(0)=φ0, θ(0)=θ0 in Ω

∂nφ=0, ∂nµ=0, u=0, θ=g on ∂Ω, t∈ (0,T ).

(1.5)

Here κ>0 and g is a given boundary datum.
Problems like and (1.4) and (1.5) have been considered in the literature, as far as we

know, for regular potentials only. Problem (1.5) in the inviscid case has been analyzed
in [52,53] in a two-dimensional bounded domain. The first contribution contains global
existence and uniqueness of smooth solutions with smooth initial data. The latter is
concerned with large-time behavior of solutions. The inviscid case is also considered
in [15]. Here, some blow-up criteria for smooth solutions in three dimensional bounded
domains are shown. In [41] the viscous case with no diffusivity and the inviscid case with
diffusivity are analyzed. Global well-posedness results in a two-dimensional bounded
domain are obtained. The viscous case with no diffusivity is also considered in [14].
The existence of a strong solution is proven, passing through the strong solutions to the
system with diffusion, letting the thermal conductivity vanish.

On the other hand, it is worth recalling that the theoretical literature on NSCH
systems is much richer. We just mention some contributions. The incompressible NSCH
system was firstly considered in [46] and [8] (see also [5, 21–23] and the references
therein). The case of singular potential and constant mobility was analyzed in [1]
and, more recently, in [28]. Concerning the non-homogeneous case (i.e. non-constant
density), in [29] the reader can find a detailed analysis of the literature on this subject.
Model (1.1) has been studied in [3] where the existence of a global weak solution was
obtained (see also [13]). Then the existence of local (in time) strong solutions have been
proven in [2].

The main goal of this work is the analysis of problems (1.4) and (1.5) in a two-
dimensional bounded domain with the physically relevant potential Ψ. Some basic
ideas originated from the techniques devised in [28]. From now on, for the sake of
simplicity, problems (1.4) and (1.5) will be called CHB0 and CHBκ, respectively. Our
results are the following:

(1) existence (and uniqueness) of a strong solution to CHBκ;

(2) existence of a weak solution to CHBκ;

(3) continuous dependence on data and uniqueness of weak solutions to CHBκ;
(4) existence and uniqueness of weak and strong solutions to CHB0;
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(5) error estimate for the difference of strong solutions to CHBκ and CHB0;

(6) regularization in finite time for any weak solution to CHBκ;

(7) validity of the instantaneous separation property for any weak solution to CHBκ,
namely,

∀τ >0 ∃ δ= δ(τ)>0 :∥φ(t)∥C(Ω)≤1−δ ∀t≥ τ ;

(8) any strong solution to CHB0 is strictly separated in [0,T ], T ∈ (0,∞).
It would be challenging to extend our analysis of (1.5) to the case of non-constant

viscosity (see [28] for NSCH). Indeed, even though the existence of weak solutions can be
shown using a suitable Galerkin approximation scheme (see Remark 4.3), the existence
of more regular solutions is not at all straightforward. A further issue could be the long-
time behavior of the solutions, namely, the existence of global and exponential attractors
as well as the convergence of a given (weak) solution to a single equilibrium. It would
also be very interesting to study the behavior of solutions to (1.5) when the viscosity
ν vanishes (see, e.g., [12] for the Boussinesq equations and [16] for the incompressible
NSCH).

Plan of the paper. In Section 2 we introduce the main assumptions and the
functional framework as well as we report some basic tools from functional analysis. In
Section 3 we give the notions of weak and strong solutions to problems CHBκ, CHB0,
together with the main results of the paper. The other sections are devoted to the proofs
of our main results. More precisely, Section 4 contains the proofs related to problem
CHBκ (see (1)-(3)). In Section 5, the proofs of (4)-(5) are given, while regularization and
strict separation property (see (6)-(8)) are demonstrated in Section 6. The Appendix
contains a derivation of (1.4) from (1.1) through a formal perturbation argument.

2. Preliminaries

2.1. Assumptions on the potential and its approximation. We take a
slight generalization of the logarithmic potential Ψ, namely a quadratic perturbation
of a singular (strictly) convex function in the closed interval [-1, 1]. More precisely, we
consider

Ψ(s)=F (s)− α0

2
s2 (2.1)

where F ∈C([−1,1])∩C3(−1,1) is convex and fulfills

lim
s→−1

F ′(s)=−∞ lim
s→1

F ′(s)=+∞ F ′′(s)≥α ∀ s∈ (−1,1),

namely we consider a double well potential, assuming α̃=α0−α>0.

This means that

Ψ′′(s)≥−α̃ ∀s∈ (−1,1). (2.2)

We also extend F (s)=+∞ for any s /∈ [−1,1]. Notice that the above assumptions imply
that there exists s0∈ (−1,1) such that F ′(s0)=0. Without loss of generality, we assume
that s0=0 and that F (s0)=0 as well. In particular, this entails that F (s)≥0 for any
s∈ [−1,1]. Moreover we require that F ′′ is convex and

F ′′(s)≤CeC|F ′(s)| ∀s∈ (−1,1) (2.3)
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for some positive constant C. Also, we assume that there exists γ∈ (0,1) such that F ′′

is nondecreasing in [1−γ,1) and nonincreasing in (−1,−1+γ]. These hypotheses are
fulfilled by the logarithmic potential defined by (1.2) and extended by continuity at −1
and 1.

In the first existence result we need to introduce a suitable approximation Ψλ of
Ψ. Let us recall the existence of a sequence of regular functions Fλ which approximate
the singular function F . For any λ>0 we introduce Ψλ(s)=Fλ(s)− α0

2 s
2, where Fλ

(see [19, (3.7)] and [28, Thm.4.1]) and we recall that Fλ enjoys the following properties:
There exist 0<λ<γ≤1 and Ĉ >0 such that

(1) Ψλ(s)≥ α0

2 s
2− Ĉ≥−Ĉ, ∀λ∈ (0,λ],∀s∈R;

(2) Ψλ∈C2(R) for every 0<λ≤λ;
(3) as λ→0, Fλ(s)→F (s) for all s∈R, |F ′

λ(s)|→ |F ′(s)| for s∈ (−1,1) and F ′
λ converges

uniformly to F ′ on any compact subset of (−1,1). Furthermore, |F ′
λ(s)|→+∞ for

every |s|≥1. Moreover, we have, for λ∈ (0,λ], Fλ(s)≤F (s), for every s∈ [−1,1] and
|F ′

λ(s)|≤ |F ′(s)|, for every s∈ (−1,1);

(4) F ′′
λ (s)≥0 ∀s∈R for 0<λ≤λ, entailing

Ψ′′
λ(s)≥−α0 ∀s∈R; (2.4)

(5) there exists a positive constant C=C(φ0) (see [19] and [24]) such that, for 0<λ≤λ,

∫
Ω

|F ′
λ(φ)|dx≤C

∣∣∣∣∫
Ω

F ′
λ(φ)(φ−φ)dx

∣∣∣∣+C, (2.5)

provided that φ0∈ (−1,1), where we denote by f the integral mean of f over Ω.

2.2. Notation and function spaces. Let Ω be a smooth bounded domain of
R2. For the velocity field we set

Hσ ={u∈ [C∞
0 (Ω)]2 : div u=0}

[L2(Ω)]2

Vσ ={u∈ [C∞
0 (Ω)]2 : div u=0}

[H1(Ω)]2

Wσ =[H2(Ω)]2∩Vσ.

For the order parameter we define

V =H1(Ω), V2={v∈H2(Ω) : ∂nv=0 on ∂Ω}.

For the temperature field we set

H=L2(Ω), Vθ=H
1
0 (Ω) V 2

θ =Vθ∩H2(Ω).

We denote by (·, ·) the standard inner product in Hσ (or in H) and by ∥·∥ the
induced norm. In Vσ, owing to Poincaré’s inequality, we can define the inner product
(u,v)Vσ

=(∇u,∇v) and the induced norm ∥v∥Vσ
=∥∇v∥. We then indicate by (·, ·)1

the canonical inner product in V , while ∥·∥1 stands for its induced norm (we define as
∥·∥1 the canonical norm of [H1(Ω)]2 as well). Moreover, we consider the Stokes operator
A=−P∆, with domain D(A)=Wσ, where P is the Leray orthogonal projector onto
Hσ and we define ∥v∥2Wσ

:= (Av,Av).
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We also recall that the trilinear form defined by

b(u,v,w)=

2∑
i,j=1

∫
Ω

uj
∂vi
∂xj

wi dx,

for any u, v, w ∈ [H1(Ω)]2, satisfies

|b(u,v,w)|≤C∥∇u∥ 1
2 ∥u∥ 1

2 ∥∇v∥ ∥w∥ 1
2 ∥∇w∥ 1

2 (2.6)

for any u, v, w ∈Vσ. Moreover, due to its antisymmetry, for any v, w∈H1(Ω) and u∈
Vσ, we have that

|b(u,v,w)|≤∥u∥ 1
2 ∥u∥

1
2
1 ∥v∥

1
2 ∥v∥

1
2
1 ∥w∥1. (2.7)

2.3. Basic inequalities and tools. We now recall some classical inequalities
used in the proofs, valid for Ω⊂R2 being any bounded domain with smooth boundary
∂Ω.

- Trudinger-Moser inequality (see, e.g., [43])∫
Ω

e|u|dx≤CeC∥u∥2
V , ∀u∈V. (2.8)

We also recall the following density result. Let X and Y be two Hilbert spaces such that
Y is continuously and densely embedded into X. Let T >0 and p,q satisfy 1≤p,q<∞.
Applying [17, Thm.5.0.27] to Lq(0,T ;X), together with the representation formula of [9,
Prop.II.5.11], we infer

Lemma 2.1. C∞([0,T ];Y ) is dense in

Ep,q :=

{
u∈Lp(0,T ;X) :

d

dt
u∈Lq(0,T ;X)

}
.

Referring, for instance, to [28, Appendix B], we denote by A−1 the inverse map of the
Stokes operator so that ∥f∥♭ :=∥∇A−1f∥ is an equivalent norm on V′

σ. We then have,
due to regularity results, that

∃C>0 s.t. ∥u∥H2(Ω)≤C∥u∥Wσ ∀u∈Wσ. (2.9)

Furthermore, we introduce the Riesz isomorphism A0 :Vθ→V ′
θ by setting <A0u,v>=

(∇u,∇v) for every v∈Vθ. Then, denoting by A−1
0 its inverse map, we have that ∥f∥♯ :=

∥∇A−1
0 f∥ is a norm on V ′

θ equivalent to the natural one and (see, e.g., [48, Ch.2])

∥A−1
0 f∥H2(Ω)≤C∥f∥ ∀f ∈H. (2.10)

Finally, recalling [28, Appendix A], we set V0={v∈V :v=0} and its dual V ′
0 . The

restriction Ā0 to V0 of B0 :V →V ′ defined by <B0u,v>=(∇u,∇v) for all v∈V , is an

isomorphism from V0 onto V ′
0 . Thus we denote by Ā0

−1
its inverse map and we set

∥f∥∗ :=∥∇Ā0
−1
f∥, which is a norm on V ′

0 equivalent to the canonical one.

2.4. The lift operator. We analyze the case of nonhomogeneous Dirichlet
boundary conditions for θ and we introduce the lift operator θg presented, e.g., in [7,
Sec.2]: It is the harmonic extension of the boundary datum g in Ω for any t∈ [0,T ].
Since Ω is smooth, from [39], if g belongs to Lp(0,T ;Hm−1/2(∂Ω)) for some m≥−1 and
some p∈ [1,∞], and ∂tg∈Lq(0,T ;Hk−1/2(∂Ω)) for some k≥−1 and some q∈ [1,∞], then
θg ∈Lp(0,T ;Hm(Ω)) and ∂tθg ∈Lq(0,T ;Hk(Ω)).
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3. Main results
In this section, the generic constants C>0 (and in some cases C̃ >0) appearing in

the estimates, unless otherwise indicated, depend on T , the norms of the initial data,
the domain Ω, the potential F , the parameters and the coefficients of the problem, but
are independent of t.

3.1. Weak and strong solutions.

CHBκ system. The basic assumptions are

(1) κ,ν >0;

(2) g∈H1(0,T ;H1/2(∂Ω));

(3) φ0∈V ∩L∞(Ω) with ∥φ0∥L∞(Ω)≤1, |φ0|<1;

(4) u0∈Hσ;

(5) θ0∈H.

Here f stands for the spatial average of f .
Let us introduce the notion of weak solution to CHBκ.

Definition 3.1. Let hypotheses (1)-(5) be satisfied. Given T >0, a triple (u, φ, θ) is
a weak solution to CHBκ on [0,T ] if

• u∈L∞(0,T ;Hσ)∩L2(0,T ;Vσ)∩H1(0,T ;V′
σ);

• π∈W−1,∞(0,T ;H);

• φ∈L∞(0,T ;V )∩L4(0,T ;V2)∩L2(0,T ;W 2,p(Ω))∩H1(0,T ;V ′), 2≤p<∞;

• φ∈L∞(Ω×(0,T )) and |φ(x,t)|<1 for a.a. (x,t)∈Ω×(0,T );

• θ∈L∞(0,T ;H)∩L2(0,T ;V )∩H1(0,T ;V ′
θ ) and θ=g a.e. on ∂Ω×(0,T ) in the

sense of traces;

<∂tu,w>+b(u,u,w)+(ν∇u,∇w)=−(φ∇µ,w)+(θ,e2 ·w) ∀w∈Vσ (3.1)

<∂tφ,v>+(∇µ,∇v)+(u ·∇φ,v)=0 ∀v∈V (3.2)

<∂tθ,ξ >+(κ∇θ,∇ξ)+(u ·∇θ,ξ)=0 ∀ξ∈Vθ (3.3)

for almost every t∈ (0,T );

• µ=−α∆φ+Ψ′(φ) a.e. in Ω×(0,T ) with µ∈L2(0,T ;V );

• u(0)=u0, φ(0)=φ0, θ(0)=θ0.

Remark 3.1. Notice that any φ0 in the class of admissible initial conditions has finite
energy E(φ0)<∞, where

E(φ)=
∫
Ω

(α
2
|∇φ|2+Ψ(φ)

)
dx. (3.4)

Indeed, by ∥φ0∥L∞(Ω)≤1, we easily infer that Ψ(φ0)∈L1(Ω). The assumption on
the total mass |φ0|<1, however, prevents the existence of the pure phases (i.e.
φ0≡1 or φ0≡−1). Besides, we notice that any solution satisfies the mass conserva-
tion property, namely

φ(t)=φ0(t) ∀t≥0.

Remark 3.2. Note that u∈C([0,T ],Hσ), φ∈C([0,T ],H) and θ∈C([0,T ],H) by
standard results. Thus the initial conditions make sense in L2. Moreover, it can be
shown (see Remark 3.13 or [1]) that ϕ∈C([0,T ];V ).
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Remark 3.3. As is customary, the pressure term π is dropped in the weak formulation.
The pressure can be recovered (up to a constant) thanks to the classical de Rham’s
theorem (see [9, Sec.V.1.5] or [47]): There exists, up to an additive constant, the pressure
π in W−1,∞(0,T ;H).

Remark 3.4. Due to regularity estimates, since µ∈L2(0,T ;V ) we immediately deduce
from the definition of µ itself and from [28, Thm.A.2] that φ∈L2(0,T ;W 2,p(Ω)), 2≤
p<∞.

Let us now introduce the definition of strong solution.

Definition 3.2. A weak solution to CHBκ is a strong solution if

• u∈L∞(0,T ;Vσ)∩L2(0,T ;Wσ)∩H1(0,T ;Hσ);

• π∈L2(0,T ;V );

• φ∈L∞(0,T ;W 2,p(Ω)∩V2)∩H1(0,T ;V ), with 2≤p<∞;

• µ∈L∞(0,T ;V )∩L2(0,T ;H3(Ω)∩V2)∩H1(0,T ;V ′);

• θ∈L∞(0,T ;V )∩L2(0,T ;H2(Ω))∩H1(0,T ;H) and θ=g almost everywhere on
∂Ω×(0,T ) in the sense of traces.

Therefore this solution satisfies (1.5) almost everywhere in Ω×(0,T ).

Remark 3.5. Again we can recover the pressure as in Remark 3.3, but in this case,
arguing as in [47], we can obtain higher regularity. Indeed, we have

f=µ∇φ−∂tu−(u ·∇)u+θe2∈L2(0,T ;[L2(Ω)]2),

where θ∈L2(0,T ;H). Then we deduce that the pressure π satisfies∫ T

0

∥π∥2W 1,2 ≤C
∫ T

0

∥f∥2<∞,

therefore π∈L2(0,T ;V ) and −ν∆u+∇π= f almost everywhere in Ω×(0,T ) .

Remark 3.6. Since we have that µ∈L∞(0,T ;V )∩L2(0,T ;H3(Ω))∩H1(0,T ;V ′), we
also get ∂nµ=0 almost everywhere on ∂Ω×(0,T ).

CHB0 system. We now introduce the notions of weak and strong solutions to
CHB0 or, equivalently, to the incompressible approximation of compressible NSCH sys-
tem (see (1.3)). Concerning the weak solution, we have

Definition 3.3. Let ν >0. Given T >0, a triple (u, φ, θ) is a weak solution to CHB0

on [0,T ] if

• u∈L∞(0,T ;Hσ)∩L2(0,T ;Vσ)∩H1(0,T ;V′
σ);

• π∈W−1,∞(0,T ;H);

• φ∈L∞(0,T ;V )∩L4(0,T ;V2)∩L2(0,T ;W 2,p(Ω))∩H1(0,T ;V ′), where 2≤p<
∞;

• φ∈L∞(Ω×(0,T )) and |φ(x,t)|<1 for a.a. (x,t)∈Ω×(0,T );

• θ∈L∞(0,T ;H)∩L∞(Ω×(0,T ))∩H1(0,T ;V ′
θ );

<∂tu,w>+b(u,u,w)+(ν∇u,∇w)=−(φ∇µ,w)+(θ,e2 ·w) ∀w∈Vσ (3.5)

<∂tφ,v>+(∇µ,∇v)+(u ·∇φ,v)=0 ∀v∈V, (3.6)

<∂tθ,ξ >−(uθ,∇ξ)=0 ∀ξ∈Vθ, (3.7)

for almost every t∈ (0,T );
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• µ=−α∆φ+Ψ′(φ) a.e. in Ω×(0,T ) with µ∈L2(0,T ;V );

• u(0)=u0, φ(0)=φ0 θ(0)=θ0,

Remark 3.7. The initial condition θ(0)=θ0 is still meant in the strong sense. In-
deed, thanks to the DiPerna-Lions theory of renormalized solutions for the transport
equation, it can be shown that any weak solution to the transport equation satisfies
θ∈C([0,T ];Lp(Ω)), for any 1≤p<∞ (see, e.g., [9, Thm.VI.1.3]).

The notion of strong solution reads as follows.

Definition 3.4. A weak solution to CHB0 (see Definition 3.3) is a strong solution if

• u∈L∞(0,T ;Vσ)∩L2(0,T ;Wσ)∩L2(0,T ;[W 2,p(Ω)]2)∩H1(0,T ;[Lp(Ω)]2), for
any 2≤p<∞;

• π∈L2(0,T ;V );

• φ∈L∞(0,T ;W 2,q(Ω)∩V2)∩H1(0,T ;V ), for any 2≤ q<∞;

• |φ(x,t)|<1 a.e. (x,t)∈Ω×(0,T );

• µ∈L∞(0,T ;V )∩L2(0,T ;H3(Ω)∩V2)∩H1(0,T ;V ′);

• θ∈L∞(Ω×(0,T ))∩L∞(0,T ;H2(Ω))∩W 1,∞(0,T ;H).

Thus the solution satisfies (1.4) almost everywhere in Ω×(0,T ).

Remark 3.8. The pressure π can be recovered as above (see Remarks 3.3 and 3.5).

We can now state our main results.

3.2. Well-posedness of CHBκ. Let us begin with the existence (and unique-
ness) of strong solutions to CHBκ.

The additional hypotheses to (1)-(5) are the following:

(6) φ0∈V2;
(7) µ0=−α∆φ0+Ψ′(φ0)∈V ;

(8) u0∈Vσ;

(9) g∈L2(0,T ;H3/2(∂Ω))∩H1(0,T ;H1/2(∂Ω));

(10) θ0∈V and θ0=g(0) on ∂Ω in the sense of traces.

Remark 3.9. On account of [49], since µ0∈V , we notice, from [28, Thm.A.2], with
f =µ0+α0φ0∈V , that φ0∈W 2,p(Ω) for every p≥2 and F ′(φ0)∈Lp(Ω) for every p≥2.
Moreover, from property (2.3) of F and again by [28, Thm.A.2] (see also [27, Lemma
5.1]), since f ∈V , we deduce that F ′′(φ0)∈Lp(Ω) for every p≥2. Since φ0 belongs to
V and F ′∈C2((−1,1)), we can apply the chain rule to obtain

∇F ′(φ0)=F
′′(φ0)∇φ0,

but then ∥∇F ′(φ0)∥Lp(Ω)≤∥F ′′(φ0)∥L2p(Ω)∥∇φ0∥L2p(Ω)<∞, since ∇φ0∈W 1,q(Ω) for
every q≥2. Therefore we get F ′(φ0)∈W 1,p(Ω) for every p≥2, implying that F ′(φ0)∈
L∞(Ω) and thus we obtain that the initial field φ0 is strictly separated. Indeed, there
exists δ̃ >0 such that

∥φ0∥C(Ω)≤1− δ̃.

The existence of a strong solution is given by
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Theorem 3.1. Let hypotheses (1)-(5) and (6)-(10) be fulfilled. For any given T >0,
there exists a triple (u, φ, θ) which is a strong solution to CHBκ according to Definition
3.2. Moreover, if θ0∈L∞(Ω)∩Vθ and u0∈Wσ, then we have the additional regularity:

• u∈L∞(0,T ;Vσ)∩L2(0,T ;[W 2,q(Ω)]2) with ∂tu∈L2(0,T ;[Lq(Ω)]2), for every
q≥2,

• θ∈L∞(Ω×(0,T )),
and

∥θ∥L∞(Ω×(0,T ))≤C, ∥∂tu∥L2(0,T ;[Lq(Ω)]2)+∥u∥L2(0,T ;[W 2,q(Ω)]2)≤C, (3.8)

independently of κ.

Remark 3.10. If θ0∈L∞(Ω), for a strong solution we infer that

∥θ∥L∞(Ω×(0,T ))≤C(∥θ0∥L∞(Ω),∥g∥L∞(∂Ω×(0,T )),

also in the case g ̸=0, as long as g∈L∞(∂Ω×(0,T )), which is ensured by assumption
(I4). This can be deduced from [35, Ch.III, Thm. 7.2] or more simply by the following
argument. Let us define χ=∥θ∥L∞(ΓT ), where ΓT =∂Ω× [0,T ]∪Ω×{0} and set ξ=
(θ−χ)+ in (3.3). Note that, by construction, ξ(0)=0 and ξ=0 on ∂Ω for almost any
t∈ [0,T ]. Therefore we can integrate by parts without considering the boundary terms,
and, recalling that (u ·∇θ,(θ−χ)+)=0 due to the zero-divergence property of u, we
obtain, owing to the regularity of θ and u,

1

2

d

dt
∥(θ−χ)+∥2+κ∥∇(θ−χ)+∥2=0,

which implies that θ≤∥θ∥L∞(ΓT ) almost everywhere in Ω×(0,T ). Applying the same
argument using ξ=(θ+χ)−, we eventually reach the desired conclusion. If θ0∈L∞(Ω)
and g≡0, we easily infer that, also for a weak solution, ∥θ∥Lq(Ω)≤∥θ0∥Lq(Ω) for almost
any t∈ (0,T ) and for every q≥2, implying that ∥θ∥L∞(Ω×(0,T ))≤∥θ0∥L∞(Ω).

Remark 3.11. Given a strong solution, there exists T0>0 sufficiently small such that
the solution is strictly separated on [0,T0]. Indeed, φ∈L2(0,T ;H2(Ω))∩H1(0,T ;V )
for any T >0. Then, by [9, Thm.II.5.14], we get φ∈C([0,T ];[H2(Ω),V ] 1

2
), but

[H2(Ω),V ] 1
2
=H3/2(Ω) (with equivalent norms) and H3/2(Ω) ↪→C(Ω). Thus we infer

φ∈C([0,T ];C(Ω)) and, by Remark 3.9, there exists T0>0 such that ∥φ∥C(Ω)<1− δ̃ for
every t∈ [0,T0].

We now state a stability estimate for the strong solutions, which entails uniqueness.

Theorem 3.2. Consider two sets of initial data (u01,φ01,θ01) and (u02,φ02,θ02)
satisfying the assumptions (1)-(5) and (6)-(10), with the same Dirichlet boundary datum
g, and denote by (u1,φ1,θ1) and (u2,φ2,θ2) the corresponding strong solutions. Then
the following continuous dependence estimate holds.

∥u1(t)−u2(t)∥+∥φ1(t)−φ2(t)∥+∥θ1(t)−θ2(t)∥
≤C(∥u01−u02∥+∥φ01−φ02∥+∥θ01−θ02∥) ∀t∈ [0,T ]. (3.9)

Let us introduce the total energy E of the Cahn-Hilliard-Boussinesq system (3.4)

E(u,φ,θ) :=
1

2
∥u∥2+E(φ)+ 1

2
∥θ−θg∥2. (3.10)
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Remark 3.12. We notice that (3.10) does not take into account the energy coming
from an external source, which is here represented by the boundary datum g.

As we shall see, the existence of a weak solution can be deduced by constructing a
suitable sequence of strong solutions. More precisely, we have

Theorem 3.3. Let hypotheses (1)-(5) be satisfied. For any given T >0, there exists a
triple (u, φ, θ) which is a weak solution to CHBκ according to Definition 3.1. Moreover,
the following energy identity holds

d

dt
E(u,φ,θ)+ν∥∇u∥2+κ∥∇Θ∥2+∥∇µ∥2

=(θ,u ·e2)−(∂tθg,Θ)−κ(∇θg,∇Θ)−(u ·∇θg,Θ) a.e. in (0,T ), (3.11)

where Θ=θ−θg.

Remark 3.13. From the energy identity (3.11), we deduce the regularity φ∈
C([0,T ];V ) (see, e.g., [1]). Actually, the energy identity entails φ∈AC([0,T ];V ). More-
over, we have that the function t 7→

∫
Ω
F (φ(t))dx is bounded for all t≥0. Therefore we

also have

sup
t≥0

∥φ(t)∥L∞(Ω)≤1.

The weak solution is also unique. Indeed, we have

Theorem 3.4. Let (ui,φi,θi), i=1,2 be weak solutions given by Theorem 3.3 cor-
responding to initial data (u0i,φ0i,θ0i) and boundary datum g. If φ01=φ02, then we
obtain the estimate

∥u1(t)−u2(t)∥V′
σ
+∥φ1(t)−φ2(t)∥H′ +∥θ1(t)−θ2(t)∥V′

θ

≤C(∥u01−u02∥V′
σ
+∥φ01−φ02∥H′ +∥θ01−θ02∥V′

θ
) ∀t∈ [0,T ], (3.12)

for some positive constant C. If also the initial data coincide, we have (u1,φ1,θ1)=
(u2,φ2,θ2) almost everywhere on [0,T ].

Let us now state the corresponding results for CHB0.

3.3. Well-posedness of CHB0. Our assumptions are:

(11) ν >0;

(12) φ0∈V ∩L∞(Ω) with ∥φ0∥L∞(Ω)≤1 and |φ0|<1;

(13) u0∈Hσ;

(14) θ0∈H∩L∞(Ω).

The existence and uniqueness of a weak solution is given by

Theorem 3.5. Let (11)-(14) hold. For any given T >0, there exists a unique triple
(u, φ, θ), which is a weak solution to CHB0 according to Definition 3.3. Moreover, we
have the following additional regularity:

∥u∥L2(0,T ;[L∞(Ω)]2)+sup
p≥2

∫ T

0

∥∇u∥[Lp(Ω)]2

p
ds≤C, (3.13)

for some positive constant C.

The existence of a strong solution requires assumptions (11)-(12) and
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(15) φ0∈V2;
(16) µ0=−α∆φ0+Ψ′(φ0)∈V ;

(17) u0∈Wσ;

(18) θ0∈H2(Ω).

Theorem 3.6. Let (11)-(12) and (15)-(18) hold. For any given T >0, there exists
a triple (u, φ, θ) which is the unique strong solution to CHB0 according to Definition
3.4.

Uniqueness of a strong solution comes directly from Theorem 3.5. In addition we
can prove a weak-strong continuous dependence estimate.

Theorem 3.7. Let (u1,φ1,θ1) be a strong solution given by Theorem 3.6 and corre-
sponding to the initial data (φ01,u01,θ01). Then let (u2,φ2,θ2) be a weak solution given
by Theorem 3.5 and corresponding to the initial data (φ02,u02,θ02). If φ01=φ02 then

∥u1(t)−u2(t)∥V′
σ
+∥φ1(t)−φ2(t)∥H′ +∥θ1(t)−θ2(t)∥V ′

θ

≤C(∥u01−u02∥V′
σ
+∥φ01−φ02∥H′ +∥θ01−θ02∥V ′

θ
) ∀t∈ [0,T ], (3.14)

for some positive constant C.

We can also prove an error estimate which quantifies the velocity of convergence of
the strong solutions to CHBκ to the (unique) strong solution to CHB0 as κ→0.

Theorem 3.8. Consider the initial data (u0,φ0,θ0) satisfying the assumptions (11)-
(12) and (15)-(18). For any κ>0, let moreover g≡θ0|∂Ω. Denote by (uκ,φκ,θκ) and
(u,φ,θ) the corresponding (unique) strong solutions to CHBκ and to CHB0. Then the
following estimate holds

sup
t∈[0,T ]

∥u(t)−uκ(t)∥+ sup
t∈[0,T ]

∥φ(t)−φκ(t)∥+ sup
t∈[0,T ]

∥θ(t)−θκ(t)∥≤C(
√
κ+κ), (3.15)

with C=C(T ) independent of κ.

Finally we state some regularization properties of the weak solutions as well as the
strict separation property.

3.4. Regularization and strict separation property. The following result
shows that a weak solution to CHBκ regularizes instantaneously, that is, a weak solution
gets strong in finite time. It also deals with the strict separation property. We have

Theorem 3.9. Let R>0, m=φ0∈ (−1,1) and τ >0 be given. Suppose g≡0 (and thus
θg ≡0) and assume that (u0,φ0,θ0) satisfies (1)-(5) with E(u0,φ0,θ0)≤R. If (u,φ,θ) is
the corresponding weak solution to CHBκ then there exist two positive constants M1=
M1(R,m,τ) and M2=M2(R,m,τ), independent of the initial datum, such that

sup
t≥τ

∥u(t)∥Vσ
+sup

t≥τ
∥µ(t)∥V +sup

t≥τ
∥θ(t)∥Vθ

≤M1, (3.16)

and

∥u∥L2(t,t+1;Wσ)+∥∂tu∥L2(t,t+1;Hσ)+∥∂tφ∥L2(t,t+1;V )

+∥θ∥L2(t,t+1;V 2
θ )+∥∂tθ∥L2(t,t+1;H)≤M2 ∀t≥ τ. (3.17)

In addition, for any p≥2, there exists a positive constant M3=M3(R,m,τ,p) such that

∥φ∥L∞(τ,∞,W 2,p(Ω))+∥F ′′(φ)∥L∞(τ,∞,Lp(Ω))≤M3, (3.18)
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and there exists δ= δ(R,m,τ)>0 and M4=M4(R,m,τ) such that

sup
t≥τ

∥φ∥C(Ω)≤1−δ. (3.19)

Further regularity estimates are given by

Theorem 3.10. Under the same assumptions of Theorem 3.9, there exist two positive
constants M4=M4(R,m,τ) and M5=M5(R,m,τ), independent of the initial datum,
such that

∥∂tu∥L∞(τ,∞,Hσ)+∥∂tφ∥L∞(τ,∞,H)+∥∂tθ∥L∞(τ,∞,H)≤M4, (3.20)

∥∂tu∥L2(t,t+1;Vσ)+∥∂tφ∥L2(t,t+1;H2(Ω))+∥∂tθ∥L2(t,t+1;Vθ)≤M5 ∀t≥ τ , (3.21)

∥u∥L∞(τ,∞,Wσ)+∥φ∥L∞(τ,∞,H4(Ω))≤M6. (3.22)

Remark 3.14. If we consider (u0,φ0,θ0) as an initial datum satisfying (6)-(10), since
the solution is strong from t=0, we know (Remark 3.11) that there exists T0>0 such
that, for δ̃ in Remark 3.9, ∥φ∥C(Ω)<1− δ̃ for every t∈ [0,T0]. Holding (3.19) for any

τ >0, we choose τ =T0: defining δ=min{δ̃,δ(T0)}, we obtain

sup
t≥0

∥φ(t)∥C(Ω)≤1−δ,

noticing that δ depends only on the initial data and T0: any strong solution is strictly
separated from the initial time t=0.

Concerning CHB0, due to its non-dissipative nature, we can establish the separation
property for strong solutions only and on a finite time interval [0,T ].

Theorem 3.11. Assume that (u0,φ0,θ0) satisfies the assumptions of Theorem 3.6. If
(u,φ,θ) is the corresponding (unique) strong solution then, for every T >0, there exists
δ= δ(T )>0 such that

sup
0≤t≤T

∥φ∥C(Ω)≤1−δ, (3.23)

meaning that, for any fixed T >0, any strong solution is strictly separated on [0,T ].

Remark 3.15. We point out that, for both CHB0 and CHBκ, further results about the
existence of solutions with corresponding stability estimates can be proven. In particular
the existence of solutions such that (1.4)1-(1.4)3 and (1.5)1-(1.5)3, respectively, are
satisfied almost everywhere in Ω×(0,T ), whereas (1.4)4 and (1.5)4, respectively, are
satisfied only in the weak formulation can be shown.

4. Proofs of Section 3.2
Proof. (Proof of Theorem 3.1.) The proof is based on a Galerkin approximation

for the problem combined with the regularized potential Ψλ, provided that the initial
datum φ0 is suitably regularized. Within this proof, C>0 stands for a constant inde-
pendent of t,n,λ,r which may vary from line to line. Following [28], we introduce the
globally Lipschitz function hr :R→R, r∈N such that

hr(z)=


−r, z <−r,
z, z∈ [−r,r],
r, z >r.
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Then we define µ̃0,r=hr ◦ µ̃0, where µ̃0=−α∆φ0+F
′(φ0)=µ0+α0φ0. Since µ̃0∈V ,

on account of, e.g., [45], we have µ̃0,r ∈V , for any r>0, and ∇µ̃0,r=∇µ̃0 ·χ[−r,r](µ̃0).
This in turn gives

∥µ̃0,r∥1≤∥µ̃0∥1. (4.1)

For r∈N we consider the Neumann problem{
−α∆φ0,r+F

′(φ0,r)= µ̃0,r in Ω

∂nφ0,r=0 on ∂Ω.
(4.2)

Recalling [28, Lemma A.1], we know that there exists a unique (strong) solution to (4.2)
such that φ0,r ∈V2, F ′(φ0,r)∈H. In addition, by [28, Thm.A.2] and (4.1) we get

∥φ0,r∥V2
≤C(1+∥µ̃0∥). (4.3)

Since µ̃0,r→ µ̃0 in H then φ0,r→φ0 in V (see [28, Lemma A.1]). As a consequence,

there exists an m̃∈ (0,1), independent of r, and k̃ sufficiently large such that

∥φ0,r∥1≤1+∥φ0∥1, |φ0,r|≤ m̃<1 ∀r> k̃. (4.4)

In addition, from [28, Thm.A.2], with f = µ̃0,r, we obtain

∥F ′(φ0,r)∥L∞(Ω)≤∥µ̃0,r∥L∞(Ω)≤ r.

In conclusion, since φ0,r ∈C(Ω), we can say that there exists δ= δ(r)>0 such that

∥φ0,r∥L∞(Ω)≤1−δ. (4.5)

Observe now that F ′′ is continuous on (−1,1), thus bounded on compact sets, so that

∇F ′(φ0,r)=F
′′(φ0,r)∇φ0,r ∈H.

Then, being F ′(φ0,r)∈H, we deduce that F ′(φ0,r)∈V . Thus ∆φ0,r ∈V and φ0,r ∈
H3(Ω). Finally, for any λ∈ (0,λ∗), where λ∗=min

{
1
2δ(r),λ

}
, since F (z)=Fλ(z) for all

z∈ [−1+λ,1−λ] (see [20]), we infer from (4.5) that −α∆φ0,r+F
′
λ(φ0,r)= µ̃0,r, which

entails

∥−α∆φ0,r+F
′
λ(φ0,r)∥1≤∥µ̃0∥1.

Before introducing the Galerkin approximation, we need to lift the Dirichlet boundary
datum of the temperature. We set Θ=θ−θg (so Θ0=θ0−θg(0)∈Vθ). We know that g∈
L2(0,T ;H3/2(∂Ω))∩C([0,T ];H1/2(∂Ω)) (see, e.g., [9, Prop.II.5.11]). Thus, on account
of Section 2.4, we have θg ∈L∞(0,T ;V )∩L2(0,T ;H2(Ω)), ∂tθg ∈L2(0,T ;V ).

We now consider the family {wj}j⩾1 of the eigenfunctions of the Stokes operator A
(see, e.g., [47]) as a Galerkin base in Vσ and the family {ψj}j⩾1 of the eigenfunctions of
the Laplace operator with homogeneous Neumann boundary conditions as a Galerkin
base in V . Also, we consider the family {vj}j⩾1 of the eigenfunctions of the Laplace
operator with homogeneous Dirichlet boundary conditions as a Galerkin base in Vθ.
Then we define the n-dimensional subspaces

Wn :=Span(w1,. ..,wn), Zn :=Span(ψ1,. ..,ψn), Vn :=Span(v1,. ..,vn)
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where ψ1≡1/
√
|Ω| and the related orthogonal projectors on these subspaces in Hσ and

H, respectively, that is, Pn :=PWn
, P̃n :=PZn

and P̂n :=PVn
. We then look for four

functions of the form

un
r,λ(t)=

n∑
i=1

α̂i(t)wi∈Wn φn
r,λ(t)=

n∑
i=1

βi(t)ψi∈Zn

µn
r,λ(t)=

n∑
i=1

γi(t)ψi∈Zn Θn
r,λ(t)=

n∑
i=1

δi(t)vi∈Vn,

where α̂i,βi,γi,δi are real-valued functions and θn=Θn+θg, which solve the following
problem

(∂tu
n
r,λ,w)+b(u,un

r,λ,w)+ν(∇un
r,λ,∇w)

=−(φn
r,λ∇µn

r,λ,w)+(Θn
r,λ,e2 ·w)+(θg,e2 ·w) ∀w∈Wn (4.6)

(∂tφ
n
r,λ,v)+(∇µn

r,λ,∇v)+(un
r,λ ·∇φn

r,λ,v)=0 ∀v∈Zn (4.7)

(∂tΘ
n
r,λ,ξ)+κ(∇Θn

r,λ,∇ξ)+(un
r,λ ·∇Θn

r,λ,ξ)

=−<∂tθg,ξ >−κ(∇θg,∇ξ)−(un
r,λ ·∇θg,ξ) ∀ξ∈Vn (4.8)

un
r,λ(0)=Pn(u0), φ

n
r,λ(0)= P̃n(φ0,r), Θ

n
r,λ(0)= P̂n(Θ0) (4.9)

µn
r,λ= P̃n(−α∆φn

r,λ+Ψ′
λ(φ

n
r,λ))=−α∆φn

r,λ+ P̃n(Ψ
′
λ(φ

n
r,λ)) (4.10)

for every t∈ (0,T ).

We notice that P̃n(−α∆φn)=−α∆φn because the linear operator −∆ commutes
with the orthogonal projector P̃n. Moreover, the basis chosen for V is still a complete
family in

{
u∈H3(Ω) :∂nu=0 on ∂Ω

}
, then we have that

φn
r,λ(0)→φ0,r in H3(Ω).

In turn, by the embedding H3(Ω) ↪→L∞(Ω), we get

φn
r,λ(0)→φ0,r in L∞(Ω).

Hence there exists n=n(r) such that

∥φn
r,λ(0)∥∞≤ 1

2
δ(r)+∥φ0,r∥∞≤1− 1

2
δ(r) ∀n>n. (4.11)

For any r> k̃ (k̃ independent of n and λ) we fix λ∈ (0,λ∗(r)) and n>n(r). Since the
function Ψ′

λ(s) is locally Lipschitz, we can locally solve the Cauchy problem for the sys-
tem in the unknowns α̂i, βi, δi and find a unique maximal solution α̂(n)∈C1([0,tn),Rn),
β(n)∈C1([0,tn),Rn), δ(n)∈C1([0,tn),Rn). Then, from Equation (4.10) we deduce
γ(n)∈C1([0,tn),Rn).

We can now derive some uniform estimates in order to guarantee that tn=+∞.
First of all, we have the mass conservation property: From Equation (4.7), considering
v≡1 as test function (v∈Zn ∀n≥1) and integrating by parts the third term we get∫

Ω

∂tφ
n
r,λ= |Ω|

dφn
r,λ

dt
=0
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thus φn
r,λ=φ0.

Consider Equation (4.7) first. We can use µn
r,λ∈Zn as a test function. Integrating

by parts and using the boundary conditions we get

(∂tφ
n
r,λ,µ

n
r,λ)+(∇µn

r,λ,∇µn
r,λ)−(un

r,λ ·∇µn
r,λ,φ

n
r,λ)=0, (4.12)

which gives (see (4.10))

d

dt

(
α

2
∥∇φn

r,λ∥2+
∫
Ω

Ψλ(φ
n
r,λ)

)
+∥∇µn

r,λ∥2−(un
r,λ ·∇µn

r,λ,φ
n
r,λ)=0. (4.13)

Let us now test equation (4.8) with ξ=Θn
r,λ. We find

d

dt

1

2
∥Θn

r,λ∥2+κ∥∇Θn
r,λ∥2≤−<∂tθg,Θn

r,λ>−κ(∇θg,∇Θn
r,λ)−(un

r,λ ·∇θg,Θn
r,λ). (4.14)

Recalling that ∥∂tθg∥≤∥∂tθg∥1≤C∥∂tg∥1/2,∂Ω and using Young’s inequality, we have

−<∂tθg,Θn
r,λ>≤∥∂tθg∥ ∥Θn

r,λ∥≤C∥Θn
r,λ∥2+C∥∂tg∥21/2,∂Ω.

Similarly, we get

−(κ∇θg,∇Θn
r,λ)≤

κ

8
∥∇Θn

r,λ∥2+C∥∇θg∥2≤
κ

4
∥∇Θn

r,λ∥2+C∥g∥21/2,∂Ω. (4.15)

Ladyzhenskaya’s inequality, together with the Sobolev embedding Vθ ↪→L4(Ω) and
Young’s inequality, yield

−(un
r,λ ·∇θg,Θn

r,λ)≤∥un
r,λ∥L4(Ω)∥∇θg∥ ∥Θn

r,λ∥L4(Ω)

≤∥un
r,λ∥1/2∥∇un

r,λ∥1/2∥∇θg∥ ∥∇Θn
r,λ∥

≤ ν∗
2
∥∇un

r,λ∥2+
κ

4
∥∇Θn

r,λ∥2+C∥un
r,λ∥2∥g∥41/2,∂Ω. (4.16)

Then we test Equation (4.6) with un
r,λ. This gives

d

dt

1

2
∥un

r,λ∥2+ν∥∇un
r,λ∥2+(un

r,λ ·∇µn
r,λ,φ

n
r,λ)≤ (Θn

r,λ,e2 ·un
r,λ)+(θg,e2 ·un

r,λ). (4.17)

Observe that, thanks to standard inequalities, we get

(θg,e2 ·un
r,λ)≤∥θg∥ ∥un

r,λ∥≤
1

2
∥θg∥21+

1

2
∥un

r,λ∥2≤
1

2
∥g∥21/2,∂Ω+

1

2
∥un

r,λ∥2

and

(Θn
r,λ,e2 ·un

r,λ)≤
1

2
∥Θn

r,λ∥2+
1

2
∥un

r,λ∥2.

We can now add up (4.13), (4.14), and (4.17). Setting

En
r,λ=

1

2
∥un

r,λ∥2+
1

2
∥Θn

r,λ∥2+
α

2
∥∇φn

r,λ∥2+
∫
Ω

(Ψλ(φ
n
r,λ)+ Ĉ), (4.18)

for some Ĉ >0 suitably large in order to have En
r,λ(t)≥0, and

Dn
r,λ=∥∇µn

r,λ∥2+
ν

2
∥∇un

r,λ∥2+
κ

2
∥∇Θn

r,λ∥2,
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we then infer

d

dt
En

r,λ+Dn
r,λ

≤ 1

2
∥g∥21/2,∂Ω+C(∥Θn

r,λ∥2+∥un
r,λ∥2+∥∂tg∥21/2,∂Ω+∥g∥21/2,∂Ω+∥un

r,λ∥2∥g∥41/2,∂Ω).

Thus we have

d

dt
En

r,λ+Dn
r,λ≤C(1+∥g∥41/2,∂Ω) E

n
r,λ+C(∥g∥21/2,∂Ω+∥∂tg∥21/2,∂Ω). (4.19)

Observe now that

Q :=C(1+∥g∥41/2,∂Ω)∈L
1(0,tn), R :=C(∥g∥21/2,∂Ω+∥∂tg∥21/2,∂Ω)∈L

1(0,tn).

Therefore we can apply Gronwall’s lemma and find

En
r,λ≤En

r,λ(0)e
∫ t
0
Q(r)dr+

∫ t

0

e
∫ t
s
Q(r)drR(s)ds. (4.20)

Remembering that Θ0=θ0−θg(0), we obtain

En
r,λ(0)=

1

2
∥Pn(u0)∥2+

1

2
∥P̂n(Θ0)∥2+

α

2
∥∇P̃n(φ0)∥2+

∫
Ω

(Ψλ(P̃n(φ0))+ Ĉ).

Recall that Ψλ(z)≤Ψ(z) ∀z∈ [−1,1]. From (4.11) we deduce Ψλ(φ
n
r,λ(0))≤

Ψ(φn
r,λ(0))≤K=maxs∈[−1,1]Ψ(s). Hence, using the properties of the orthogonal pro-

jectors and owing to (4.4), we deduce

En
r,λ(u

n
r,λ(0),φ

n
r,λ(0),Θ

n
r,λ(0))=

1

2
∥Pn(u0)∥2+

α

2
∥∇P̃n(φ0,r)∥2

+
1

2
∥P̂n(Θ0)∥2+

∫
Ω

Ψλ(φ
n
r,λ(0))

≤1

2
∥u0∥2+

α

2
∥φ0∥21+

1

2
∥Θ0∥2+(K+ Ĉ)|Ω|, (4.21)

so that

1

2
∥un

r,λ∥2+
1

2
∥Θn

r,λ∥2+
α

2
∥∇φn

r,λ∥2≤C.

Using now Poincaré’s inequality (C0 being the Poincaré’s constant) and the conservation
of mass, we get

∥φn
r,λ∥≤∥φn

r,λ−φn
r,λ∥+∥φn

r,λ∥≤C0∥∇φn
r,λ∥+∥φ0∥≤C(1+ |φ0|). (4.22)

Therefore we have

∥φn
r,λ∥+∥unr,λ∥+∥Θn

r,λ∥≤C

and this entails tn=+∞ for every n≥1, i.e., problem (4.6)-(4.9) has a unique global-in-
time solution, and (4.20) is satisfied for every t≥0. In particular, for every 0<T <+∞,
we have

∥Θn
r,λ∥L∞(0,T ;H)≤C, ∥un

r,λ∥L∞(0,T ;Hσ)≤C. (4.23)
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Also, from (4.19), integrating in time over (0,T), applying inequality (4.21) and recalling
that En

r,λ≥0, we obtain that∫ T

0

∥∇µn
r,λ∥2+

ν

2

∫ T

0

∥∇un
r,λ∥2+

k

2

∫ T

0

∥∇Θn
r,λ∥2≤C(1+T ).

Hence we have

∥un
r,λ∥L2(0,T ;Vσ)≤C(1+

√
T ),

√
κ∥Θn

r,λ∥L2(0,T ;Vθ)≤C(1+
√
T ) (4.24)

for any 0<T <+∞.
On account of (4.22), we also have

∥φn
r,λ∥L∞(0,T ;V )≤C. (4.25)

A higher-order estimate for φn
r,λ can be obtained by multiplying (4.10) by −∆φn

r,λ and
integrating over Ω. This gives

(∇µn
r,λ,∇φn

r,λ)=α∥∆φn
r,λ∥2+(Ψ′′

λ(φ
n
r,λ)∇φn

r,λ,∇φn
r,λ).

Then, on account of (2.4) of Ψλ, we deduce

α∥∆φn
r,λ∥2≤α0∥∇φn

r,λ∥2+∥∇µn
r,λ∥ ∥∇φn

r,λ∥≤C
(
1+∥∇µn

r,λ∥
)
,

which yields

α2

∫ T

0

∥φn
r,λ−φn

r,λ∥4H2(Ω)≤C
4α2

∫ T

0

∥∆φn
r,λ∥4≤CT +C

∫ T

0

∥∇µn
r,λ∥2≤CT.

Thus we eventually get

∥φn
r,λ∥L4(0,T ;V2)≤∥φn

r,λ−φn
r,λ∥L4(0,T ;V2)+∥φ0∥L4(0,T ;V2)≤C(1+

√
T ). (4.26)

Let us now find an estimate for µn
r,λ. We multiply (4.10) by φn

r,λ−φn
r,λ and integrate

over Ω, finding

(µn
r,λ,φ

n
r,λ−φn

r,λ)=α∥∇φn
r,λ∥2+(F ′

λ(φ
n
r,λ),φ

n
r,λ−φn

r,λ)−α0(φ
n
r,λ,φ

n
r,λ−φn

r,λ).

Observing that (µn
r,λ,φ

n
r,λ−φn

r,λ)=0 and applying standard inequalities, we deduce

(F ′
λ(φ

n
r,λ),φ

n
r,λ−φn

r,λ)=(µn
r,λ−µn

r,λ,φ
n
r,λ−φn

r,λ)−α∥∇φn
r,λ∥2+α0(φ

n
r,λ,φ

n
r,λ−φn

r,λ)

≤C2
0

(
∥∇µn

r,λ∥ ∥∇φn
r,λ∥

)
−α∥∇φn

r,λ∥2

+2α0

(
∥φn

r,λ∥2+∥φn
r,λ−φn

r,λ∥2
)
≤C(1+∥∇µn

r,λ∥).

Therefore we have (cf. (2.5)

|µn
r,λ|=

1

|Ω|

∫
Ω

|Ψ′
λ(φ

n
r,λ)|≤

1

|Ω|

(∫
Ω

|F ′
λ(φ

n
r,λ)|+α0

∫
Ω

|φn
r,λ|
)

≤ 1

|Ω|

(∫
Ω

|F ′
λ(φ

n
r,λ)|+α0

√
|Ω| ∥φn

r,λ∥
)
≤ C

|Ω|

(∣∣∣∣∫
Ω

F ′
λ(φ

n
r,λ)(φ

n
r,λ−φn

r,λ)

∣∣∣∣+1

)
≤C

(
1+∥∇µn

r,λ∥
)
.
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Hence we infer

∥µn
r,λ∥L2(0,T ;V )≤C(1+

√
T ). (4.27)

Let us now find the bounds for the time derivatives. Equation (4.8) can be rewritten in
the form

dΘn
r,λ

dt
+ P̂ ∗

n(un ·∇Θn
r,λ+Ā(Θn

r,λ)+
dθg
dt

+un
r,λ ·∇θg+Ā(θg))=0 in V ′

θ (4.28)

where P̂ ∗
n :V′

n→V ′
θ is the adjoint of the orthogonal projector P̂n. Hence ∥P̂ ∗

n∥L(V′
n,V

′
θ )
≤

1 for every n≥1. The linear operator Ā :Vn→V′
n is defined by < Ā(Θn

r,λ),ξ >=
(κ∇Θn

r,λ,∇ξ) for every ξ∈Vn.
Observe first that

∥P̂ ∗
n(Ā(Θn

r,λ))∥V ′
θ
≤∥Ā(Θn

r,λ)∥V′
n
≤κ∥∇Θn

r,λ∥

∥P̂ ∗
n(Ā(θg))∥V ′

θ
≤∥Ā(θg)∥V′

n
≤κ∥∇θg∥≤C∥g∥1/2,∂Ω.

Concerning the transport terms, we have

|<un
r,λ ·∇Θn

r,λ,ξ > |= |(un
r,λ ·∇Θn

r,λ,ξ)|≤∥un
r,λ∥[L4(Ω)]2∥Θn

r,λ∥L4(Ω)∥∇ξ∥,

for every ξ∈Vn. Thus we find (see (4.23)

∥P̂ ∗
n(u

n
r,λ ·∇Θn

r,λ)∥V ′
θ
≤∥un

r,λ∥[L4(Ω)]2∥Θn
r,λ∥L4(Ω)≤

1

2
(∥un

r,λ∥2[L4(Ω)]2 +∥Θn
r,λ∥2L4(Ω))

≤C
2

(
∥un

r,λ∥ ∥∇un
r,λ∥+∥un

r,λ∥2+∥Θn
r,λ∥ ∥∇Θn

r,λ∥+∥Θn
r,λ∥2

)
≤C(1+∥∇un

r,λ∥+∥∇Θn
r,λ∥).

Arguing similarly, we get

|<un
r,λ ·∇θg,ξ > |= |(un

r,λ ·∇θg,ξ)|≤∥un
r,λ∥[L4(Ω)]2 ∥∇θg∥ ∥ξ∥L4(Ω)

≤C∥un
r,λ∥[L4(Ω)]2 ∥∇θg∥ ∥∇ξ∥,

which yields

∥P̂ ∗
n(u

n
r,λ ·∇θg)∥V ′

θ
≤∥un

r,λ∥[L4(Ω)]2∥∇θg∥≤∥un
r,λ∥1/2∥∇un

r,λ∥1/2∥∇θg∥
≤C

(
∥∇un

r,λ∥+∥∇θg∥2∥un
r,λ∥

)
≤C

(
∥∇un

r,λ∥+∥∇θg∥2
)
.

On the other hand, we also have

∥P̂ ∗
n(∂tθg)∥V ′

θ
≤∥∂tθg∥V′

n
≤C0∥∂tθg∥≤C∥∂tg∥1/2,∂Ω.

Summing up, we deduce ∥∥∥∥dΘn
r,λ

dt

∥∥∥∥
L2(0,T,V ′

θ )

≤C(1+
√
T ). (4.29)

Let us rewrite Equation (4.7) as follows

dφn
r,λ

dt
+ P̃ ∗

n(u
n
r,λ ·∇φn

r,λ+Ã(µn
r,λ))=0 in V ′, (4.30)
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where Ã(µn
r,λ) :Zn→Z′

n is defined by < Ã(µn
r,λ),ψ>=(∇µn

r,λ,∇ψ) for any ψ∈Zn. Ob-
serve that

∥P̃ ∗
n(Ã(µn

r,λ))∥V ′ ≤∥Ã(µn
r,λ)∥Z′

n
≤∥∇µn

r,λ∥.

On the other hand, we have

|<un
r,λ ·∇φn

r,λ,ψ> |= |(un
r,λ ·∇φn

r,λ,ψ)|≤∥un
r,λ∥[L4(Ω)]2∥φn

r,λ∥L4(Ω)∥∇ψ∥

≤C2∥un
r,λ∥V ∥φn

r,λ∥V ∥ψ∥V ≤C2
√
C2

0 +1∥∇un
r,λ∥ ∥φn

r,λ∥V ∥ψ∥V ,

so that

∥P̃ ∗
n(u

n
r,λ ·∇φn

r,λ)∥V ′ ≤∥un
r,λ ·∇φn

r,λ∥Z′
n
≤C∥∇un

r,λ∥.

Therefore we find ∥∥∥∥dφn
r,λ

dt

∥∥∥∥
V ′

≤C(∥∇un
r,λ∥+∥∇µn

r,λ∥)

that implies ∥∥∥∥dφn
r,λ

dt

∥∥∥∥
L2(0,T ;V ′)

≤C
√
T . (4.31)

Let us now estimate the time derivative of the approximated velocity field. Equation
(4.6) can be rewritten in the form

dun
r,λ

dt
+P ∗

n(B(un
r,λ,u

n
r,λ)+A(un

r,λ)+φ
n
r,λ∇µn

r,λ−Θn
r,λe2−θge2)=0 in V′

σ, (4.32)

where A :Wn⊂Vσ →W′
n is defined by <A(un

r,λ),w>=(ν∇un
r,λ,∇w) for every w∈Wn

and B :Wn×Wn→W′
n is defined by <B(un

r,λ,u
n
r,λ),w>= b(un

r,λ,u
n
r,λ,w) for every w∈

Wn. It is easy to check that

∥P ∗
nA(un

r,λ)∥V′
σ
≤∥A(un

r,λ)∥W′
n
≤ν∥∇un

r,λ∥.

Concerning B we have (see (2.6)), for any w∈Wn,

|<B(un
r,λ,u

n
r,λ),w> |≤∥un

r,λ∥
1
2 ∥un

r,λ∥
1
2
1 ∥un

r,λ∥
1
2 ∥un

r,λ∥
1
2
1 ∥w∥1

≤C (C2
0 +1) ∥∇un

r,λ∥ ∥un
r,λ∥ ∥∇w∥

and this yields

∥P ∗
n(B(un

r,λ,u
n
r,λ))∥V′

σ
≤∥B(un

r,λ,u
n
r,λ)∥W′

n
≤C (C2

0 +1) ∥un
r,λ∥ ∥∇un

r,λ∥≤C ∥∇un
r,λ∥.

Consider now the Korteweg force. For any w∈Wn, using a Sobolev embedding and
Poincaré’s inequality we find

|<φn
r,λ∇µn

r,λ,w> |≤∥φn
r,λ∥L4(Ω)∥∇µn

r,λ∥ ∥w∥L4(Ω)≤C∥φn
r,λ∥V ∥∇µn

r,λ∥ ∥∇w∥,

which entails

∥P ∗
n(φ

n
r,λ∇µn

r,λ)∥V′
σ
≤∥φn

r,λ∇µn
r,λ∥W′

n
≤C∥φn

r,λ∥V ∥∇µn
r,λ∥≤C∥∇µn

r,λ∥.



M. GRASSELLI AND A. POIATTI 917

Concerning the temperature terms in (4.32), for every w∈Wn, using Poincaré’s inequal-
ity we find

|<Θn
r,λe2,w> |≤∥Θn

r,λ∥ ∥w∥≤C0 ∥Θn
r,λ∥ ∥∇w∥.

This gives

∥P ∗
n(Θ

n
r,λe2)∥V′

σ
≤∥Θn

r,λe2∥W′
n
≤C0∥Θn

r,λ∥≤C.

Moreover, we easily obtain

∥P ∗
n(θge2)∥V′

σ
≤∥θge2∥W′

n
≤C0∥θg∥≤C∥θg∥1≤C∥g∥1/2,∂Ω.

Collecting the previous bounds, we deduce∥∥∥∥dun
r,λ

dt

∥∥∥∥
V′

σ

≤C
[
(ν+1)∥∇un

r,λ∥+∥∇µn
r,λ∥+∥g∥1/2,∂Ω+1

]
.

We thus infer ∥∥∥∥dun
r,λ

dt

∥∥∥∥
L2(0,T ;V′

σ)

≤C(1+
√
T ). (4.33)

Let us now find higher-order bounds. Multiplying Equation (4.10) by ∂tµ
n
r,λ, we obtain

1

2

d

dt
∥∇µn

r,λ∥2+(∂tµ
n
r,λ,∂tφ

n
r,λ)+(∂tµ

n
r,λ,u

n
r,λ ·∇φn

r,λ)=0. (4.34)

Observe that

α0∥∂tφn
r,λ∥2=α0(∇∂tφn

r,λ,∇Ā0
−1
∂tφ

n
r,λ)≤α0∥∇∂tφn

r,λ∥ ∥∇Ā0
−1
∂tφ

n
r,λ∥

≤ α

2
∥∇∂tφn

r,λ∥2+
α2
0

2α
∥∇Ā0

−1
∂tφ

n
r,λ∥2

=
α

2
∥∇∂tφn

r,λ∥2+
α2
0

2α
∥∂tφn

r,λ∥2∗.

Then we deduce (see (2.4))

(∂tµ
n
r,λ,∂tφ

n
r,λ)=α∥∇∂tφn

r,λ∥2+(Ψ′′
λ(φ

n
r,λ)∂tφ

n
r,λ,∂tφ

n
r,λ)

≥α∥∇∂tφn
r,λ∥2−α0∥∂tφn

r,λ∥2

≥ α

2
∥∇∂tφn

r,λ∥2−C∥∂tφn
r,λ∥2∗.

Moreover, we have

(∂tµ
n
r,λ,u

n
r,λ ·∇φn

r,λ)=
d

dt
[(un

r,λ ·∇φn
r,λ,µ

n
r,λ)]

−(∂tu
n
r,λ ·∇φn

r,λ,µ
n
r,λ)−(un

r,λ ·∇∂tφn
r,λ,µ

n
r,λ). (4.35)

Observe now that

(µn
r,λ,u

n
r,λ ·∇∂tφn

r,λ)≤∥µn
r,λ∥L6(Ω) ∥un

r,λ∥[L3(Ω)]2 ∥∇∂tφn
r,λ∥
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≤ α

4
∥∇∂tφn

r,λ∥2+C∥µn
r,λ∥2L6(Ω) ∥u

n
r,λ∥2[L3(Ω)]2

≤ α

4
∥∇∂tφn

r,λ∥2+C
(
1+∥∇µn

r,λ∥2
)
∥un

r,λ∥2[L3(Ω)]2 .

Also, recall that in V ′
0 the norm ∥·∥∗ is equivalent to the canonical one and ∥·∥V ′

0
≤

∥·∥V ′ . This gives

∥∂tφn
r,λ∥∗≤C

(
∥∇un

r,λ∥+∥∇µn
r,λ∥

)
. (4.36)

Adding then (4.34) and (4.35) together, we find

d

dt

{
(µn

r,λ,u
n
r,λ ·∇φn

r,λ)+
1

2
∥∇µn

r,λ∥2
}
=(∂tu

n
r,λ ·∇φn

r,λ,µ
n
r,λ)

+(un
r,λ ·∇∂tφn

r,λ,µ
n
r,λ)−(∂tµ

n
r,λ,∂tφ

n
r,λ)

≤α
4
∥∇∂tφn

r,λ∥2+C(1+∥∇µn
r,λ∥2)∥un

r,λ∥2[L3(Ω)]2

− α

2
∥∇∂tφn

r,λ∥2+C∥∂tφn
r,λ∥2∗+(∂tu

n
r,λ ·∇φn

r,λ,µ
n
r,λ).

Hence we obtain (see (4.36))

d

dt

{
(µn

r,λ,u
n
r,λ ·∇φn

r,λ)+
1

2
∥∇µn

r,λ∥2
}
+
α

4
∥∇∂tφn

r,λ∥2

≤C
(
1+∥un

r,λ∥2[L3(Ω)]2

)(
1+∥∇µn

r,λ∥2+∥∇un
r,λ∥2

)
+(∂tu

n
r,λ ·∇φn

r,λ,µ
n
r,λ). (4.37)

Let us take w=∂tu
n
r,λ in Equation (4.6). This gives

∥∂tun
r,λ∥2+b(un

r,λ,u
n
r,λ,∂tu

n
r,λ)+ν(∇un

r,λ,∇∂tun
r,λ)

=(µn
r,λ∇φn

r,λ,∂tu
n
r,λ)+(Θn

r,λ,e2 ·∂tun
r,λ)+(θg,e2 ·∂tun

r,λ). (4.38)

Using Ladyzhenskaya’s inequality, the Sobolev embedding Vσ ↪→ [L4(Ω)]2, (2.9), and
Young’s inequality, we deduce

|b(un
r,λ,u

n
r,λ,∂tu

n
r,λ)|≤∥un

r,λ∥[L4(Ω)]2∥∇un
r,λ∥[L4(Ω)]4 ∥∂tun

r,λ∥

≤C∥un
r,λ∥1/2∥∇un

r,λ∥1/2∥∇un
r,λ∥1/2∥∇un

r,λ∥
1/2
1 ∥∂tun

r,λ∥

≤C∥un
r,λ∥1/2∥∇un

r,λ∥ ∥Aun
r,λ∥1/2∥∂tun

r,λ∥

≤C∥∇un
r,λ∥ ∥Aun

r,λ∥1/2∥∂tun
r,λ∥

≤ 1

6
∥∂tun

r,λ∥2+C
(
∥∇un

r,λ∥4+∥Aun
r,λ∥2

)
.

Then clearly

ν(∇un
r,λ,∇∂tun

r,λ)=
d

dt

ν

2
∥∇un

r,λ∥2.

Moreover, thanks to Hölder’s inequality and the Sobolev embeddings V ↪→L6(Ω) and
V2 ↪→W 1,3(Ω), we have

(µn
r,λ∇φn

r,λ,∂tu
n
r,λ)≤∥µn

r,λ∥L6(Ω)∥∇φ∥[L3(Ω)]2∥∂tun
r,λ∥
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≤C∥µn
r,λ∥1 ∥φn

r,λ∥H2(Ω)∥∂tun
r,λ∥

≤C(1+∥∇µn
r,λ∥) ∥φn

r,λ∥H2(Ω)∥∂tun
r,λ∥

≤ 1

6
∥∂tun

r,λ∥2+C∥φn
r,λ∥2H2(Ω)

(
1+∥∇µn

r,λ∥2
)
. (4.39)

Moreover, it is easy to check that

|(Θn
r,λ,e2 ·∂tun

r,λ)|≤
1

6
∥∂tun

r,λ∥2+C (4.40)

|(θg,e2 ·∂tun
r,λ)|≤

1

6
∥∂tun

r,λ∥2+C∥θg∥2≤
1

6
∥∂tun

r,λ∥2+C∥g∥21/2,∂Ω. (4.41)

Collecting the above estimates we find

d

dt

ν

2
∥∇un

r,λ∥2+∥∂tun
r,λ∥2

≤C
[
∥∇un

r,λ∥4+∥Aun
r,λ∥2+∥φn

r,λ∥2H2(Ω)(1+∥∇µn
r,λ∥2)+∥g∥21/2,∂Ω+1

]
. (4.42)

Take now w=Aun
r,λ in Equation (4.6). Observe that Aun

r,λ∈L2(0,T,Hσ) and

there exists pnr,λ∈L2(0,T ;V ) such that −∆un
r,λ+∇pnr,λ=Aun

r,λ almost everywhere in
Ω×(0,T ) (see, e.g., [47]). Also, observe that (∂tu

n
r,λ,∇pnr,λ)=0. Hence we get

1

2

d

dt
∥∇un

r,λ∥2+b(un
r,λ,u

n
r,λ,Aun

r,λ)+ν∥Aun
r,λ∥2

=(µn
r,λ∇φn

r,λ,Aun
r,λ)+(Θn

r,λ,e2 ·Aun
r,λ)+(θg,e2 ·Aun

r,λ),

recalling that

(−ν∆un
r,λ,Aun

r,λ)=ν∥Aun
r,λ∥2.

Arguing as above (see (4.42) and (4.39)), we obtain

|b(un
r,λ,u

n
r,λ,Aun

r,λ)|≤∥un
r,λ∥[L4(Ω)]2∥∇un

r,λ∥[L4(Ω)]4 ∥Aun
r,λ∥

≤C∥un
r,λ∥1/2∥∇un

r,λ∥1/2∥∇un
r,λ∥1/2∥∇un

r,λ∥
1/2
1 ∥Aun

r,λ∥

≤C∥un
r,λ∥1/2∥∇un

r,λ∥ ∥Aun
r,λ∥3/2

≤C∥∇un
r,λ∥ ∥Aun

r,λ∥3/2≤
ν

8
∥Aun

r,λ∥2+C∥∇un
r,λ∥4

(µn
r,λ∇φn

r,λ,Aun
r,λ)≤∥µn

r,λ∥L6(Ω)∥∇φ∥[L3(Ω)]2∥Aun
r,λ∥

≤C∥µn
r,λ∥1 ∥φn

r,λ∥H2(Ω)∥Aun
r,λ∥

≤C(1+∥∇µn
r,λ∥) ∥φn

r,λ∥H2(Ω)∥Aun
r,λ∥

≤ ν

8
∥Aun

r,λ∥2+C∥φn
r,λ∥2H2(Ω)

(
1+∥∇µn

r,λ∥2
)
.

Recalling (4.40) and (4.41), we deduce

|(Θn
r,λ,e2 ·Aun

r,λ)|≤
ν

8
∥Aun

r,λ∥2+C (4.43)

and

|(θg,e2 ·Aun
r,λ)|≤

ν

8
∥Aun

r,λ∥2+C∥θg∥2≤
ν

8
∥Aun

r,λ∥2+C∥g∥21/2,∂Ω.
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Collecting the above estimates, we infer

1

2

d

dt
∥∇un

r,λ∥2+
ν

2
∥Aun

r,λ∥2≤C(∥∇un
r,λ∥4+∥φn

r,λ∥2H2(Ω)

(
1+∥∇µn

r,λ∥2
)
+∥g∥21/2,∂Ω+1).

(4.44)
If we multiply (4.42) by ω= ν

4C and then add it to (4.44), we obtain

1+ων

2

d

dt
∥∇un

r,λ∥2+
ν

4
∥Aun

r,λ∥2+ω∥∂tun
r,λ∥2

≤C(∥∇un
r,λ∥4+∥φn

r,λ∥2H2(Ω)(1+∥∇µn
r,λ∥2)+∥g∥21/2,∂Ω+1).

This inequality, added to (4.37), gives

dΛ

dt
+
ν

4
∥Aun

r,λ∥2+ω∥∂tun
r,λ∥2+

α

4
∥∇∂tφn

r,λ∥2

≤C
(
1+∥un

r,λ∥2[L3(Ω)]2

)(
1+∥∇µn

r,λ∥2+∥∇un
r,λ∥2

)
+(∂tu

n
r,λ ·∇φn

r,λ,µ
n
r,λ)+C(∥∇un

r,λ∥4+∥φn
r,λ∥2H2(Ω)(1+∥∇µn

r,λ∥2)

+∥g∥21/2,∂Ω+1), (4.45)

where

Λ :=(µn
r,λ,u

n
r,λ ·∇φn

r,λ)+
1

2
∥∇µn

r,λ∥2+
1+ων

2
∥∇un

r,λ∥2. (4.46)

Using Hölder’s inequality, the Sobolev embeddings V ↪→L6(Ω) and V2 ↪→W 1,3(Ω), we
get

(∂tu
n
r,λ ·∇φn

r,λ,µ
n
r,λ)≤∥∂tun

r,λ∥ ∥∇φn
r,λ∥[L3(Ω)]2∥µn

r,λ∥L6(Ω)

≤ ω

2
∥∂tun

r,λ∥2+C∥φn
r,λ∥2H2(Ω)∥µ

n
r,λ∥21

≤ ω

2
∥∂tun

r,λ∥2+C∥φn
r,λ∥2H2(Ω)(1+∥∇µn

r,λ∥2).

Thus, we infer from (4.45) that

dΛ

dt
+
ν

4
∥Aun

r,λ∥2+
ω

2
∥∂tun

r,λ∥2+
α

4
∥∇∂tφn

r,λ∥2

≤C
(
1+∥un

r,λ∥2[L3(Ω)]2

)(
1+∥∇µn

r,λ∥2+∥∇un
r,λ∥2

)
+C(∥∇un

r,λ∥4+∥φn
r,λ∥2H2(Ω)(1+∥∇µn

r,λ∥2)+∥g∥21/2,∂Ω+1). (4.47)

Let us show that Λ is bounded from below. Indeed, we have

(un
r,λ ·∇φn

r,λ,µ
n
r,λ)≤∥un

r,λ∥L4(Ω)∥∇φn
r,λ∥ ∥µn

r,λ∥L4(Ω)

≤C∥un
r,λ∥1/2∥∇un

r,λ∥1/2∥µn
r,λ∥1

≤C∥un
r,λ∥1/2∥∇un

r,λ∥1/2(1+∥∇µn
r,λ∥)

≤ 1

4
∥∇un

r,λ∥2+
1

4
∥∇µn

r,λ∥2+C.

Thus we deduce

Λ≥ 1

4
∥∇un

r,λ∥2+
1

4
∥∇µn

r,λ∥2−C ′
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for some C ′>0. Then, setting Λ̃=Λ+C ′, we also have

Λ̃≤C
(
1+∥∇µn

r,λ∥2+∥∇un
r,λ∥2

)
.

Recalling now that

∥φn
r,λ∥2H2(Ω)≤C(1+∥∇µn

r,λ∥)

we infer from (4.47) the following

d

dt
Λ̃≤C

(
1+∥g∥21/2,∂Ω+Λ̃2

)
, (4.48)

and we know that Λ̃∈L1(0,T ). Thus Gronwall’s lemma yields, for every t∈ [0,T ],

Λ̃(t)≤ Λ̃(0)eC
∫ t
0
Λ̃(s)ds+

∫ t

0

eC
∫ t
s
Λ̃(τ)dτC

(
1+∥g(s)∥21/2,∂Ω

)
ds

≤eC(T )
[
Λ̃(0)+C(T )

]
. (4.49)

Here C(T )>0 is independent of n,λ,κ but it depends on T . Let us estimate Λ̃(0).
Thanks to Hölder’s inequality and using Sobolev embeddings Vσ ↪→ [L3(Ω)]2 and V ↪→
L6(Ω), we find

Λ̃(0)=(µn
r,λ(0),u

n
r,λ(0) ·∇φn

r,λ(0))+
1

2
∥∇µn

r,λ(0)∥2+
1+ων

2
∥∇un

r,λ(0)∥2+C ′

≤ (µn
r,λ(0),Pn(u0) ·∇P̃n(φ0,r))+

1

2
∥∇µn

r,λ(0)∥2+
1+ων

2
∥∇Pn(u0)∥2+C ′

≤∥Pn(u0)∥[L3(Ω)]2∥µn
r,λ(0)∥L6(Ω)∥∇P̃n(φ0,r)∥

+
1

2
∥∇µn

r,λ(0)∥2+
1+ων

2
∥∇u0∥2+C ′

≤∥∇Pn(u0)∥ ∥µn
r,λ(0)∥1 ∥∇φ0,r∥+

1

2
∥∇µn

r,λ(0)∥2+
1+ων

2
∥∇u0∥2+C ′

≤∥∇u0∥ ∥µn
r,λ(0)∥1 ∥∇φ0,r∥+

1

2
∥∇µn

r,λ(0)∥2+
1+ων

2
∥∇u0∥2+C ′.

Observe now that (see (4.4))

∥∇u0∥ ∥µn
r,λ(0)∥1 ∥∇φ0,r∥≤∥∇u0∥ ∥µn

r,λ(0)∥1(1+∥φ0∥1)

≤ 1

2
∥∇u0∥2+C ∥µn

r,λ(0)∥21
(
1+∥φ0∥21

)
.

We are left to control ∥µn
r,λ(0)∥1.

Recalling the orthogonality of the projector P̃n, the definition of Ψλ and µ̃0,r=
−α∆φ0,r+F

′
λ(φ0,r) with ∥µ̃0,r∥1≤∥µ̃0∥1 (see (4.1)), we get

∥µn
r,λ(0)∥1=∥P̃n(−α∆φn

r,λ(0)+Ψ′
λ(φ

n
r,λ(0)))∥1

≤∥−α∆φn
r,λ(0)+Ψ′

λ(φ
n
r,λ(0))∥1

≤∥−α∆φn
r,λ(0)+F ′

λ(φ
n
r,λ(0))∥1+α0∥φn

r,λ(0)∥1
≤∥−α∆φn

r,λ(0)+F ′
λ(φ

n
r,λ(0))+α∆φ0,r−F ′

λ(φ0,r)∥1+∥µ̃0,r∥1+α0∥φn
r,λ(0)∥1

≤∥φn
r,λ(0)−φ0,r∥H3(Ω)+∥F ′

λ(φ
n
r,λ(0))−F ′

λ(φ0,r)∥1+C (∥µ̃0∥1+∥φ0∥1).
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We know that φn
r,λ(0)= P̃n(φ0,r)→φ0,r in H3(Ω) as n→∞. Thus the first term on the

right-hand side is bounded and ∥φn
r,λ(0)∥H3(Ω)≤C for n sufficiently large. On the other

hand, exploiting the fact that Fλ and its first and second derivatives coincide with the
corresponding ones of F on [−1+λ∗,1−λ∗], we have

∥∇(F ′
λ(φ

n
r,λ(0))−F ′

λ(φ0,r))∥≤∥F ′′
λ (φ

n
r,λ(0))∇φn

r,λ(0)−F ′′
λ (φ0,r)∇φ0,r∥

≤∥F ′′
λ (φ0,r)∇(φn

r,λ(0)−φ0,r)∥+∥(F ′′
λ (φ

n
r,λ(0))−F ′′

λ (φ0,r))∇φ0,r∥

≤C
(

max
z∈[−1+λ∗,1−λ∗]

|F ′′(z)|+ max
z∈[−1+λ∗,1−λ∗]

|F ′′′(z)|
)
∥φn

r,λ(0)−φ0,r∥1.

The maxima are finite, being F ∈C3(−1,1), but they depend on λ∗ and thus on r.
However, the norm ∥φn

r,λ(0)−φ0,r∥1 goes to zero as n→+∞. Therefore we can al-
ways choose, for any given r, a sufficiently large n so that the estimated difference
∥∇(F ′

λ(φ
n
r,λ(0))−F ′

λ(φ0,r))∥ is eventually arbitrarily small. We can thus infer that, for
any fixed r>r0, λ∈ (0,λ∗(r0)) and n>n(r0,λ

∗(r0)):

Λ̃(0)≤C.

In view of (4.49) we deduce that

sup
t∈[0,T ]

∥∇un
r,λ(t)∥+ sup

t∈[0,T ]

∥∇µn
r,λ(t)∥≤C(T ). (4.50)

We also obtain∫ T

0

(
∥Aun

r,λ(t)∥2+∥∂tun
r,λ(t)∥2+∥∇∂tφn

r,λ(t)∥2
)
dt≤C(T ). (4.51)

The above estimates allow us to find higher-order bounds for the temperature approxi-
mation. Take ∂tΘ

n
r,λ as a test function in Equation (4.8). This gives

k

2

d

dt
∥∇Θn

r,λ∥2+∥∂tΘn
r,λ∥2=−(un

r,λ ·∇Θn
r,λ,∂tΘ

n
r,λ)−(un

r,λ ·∇θg,∂tΘn
r,λ)

+κ(∆θg,∂tΘ
n
r,λ)−(∂tθg,∂tΘ

n
r,λ). (4.52)

Also we can take ∆Θn
r,λ∈Vn as a test function and obtain

(∂tΘ
n
r,λ,∆Θn

r,λ)+κ(∇Θn
r,λ,∇∆Θn

r,λ)+(un
r,λ ·∇Θn

r,λ,∆Θn
r,λ)

=−(un
r,λ ·∇θg,∆Θn

r,λ)+κ(∆θg,∆Θn
r,λ)−(∂tθg,∆Θn

r,λ), (4.53)

which can be rewritten as follows

1

2

d

dt
∥∇Θn

r,λ∥2+κ∥∆Θn
r,λ∥2

=(un
r,λ ·∇Θn

r,λ,∆Θn
r,λ)+(un

r,λ ·∇θg,∆Θn
r,λ)−κ(∆θg,∆Θn

r,λ)+(∂tθg,∆Θn
r,λ).

Observe that (cf. (4.50))

∥un
r,λ ·∇Θn

r,λ∥2≤∥un
r,λ∥2[L4(Ω)]2∥∇Θn

r,λ∥2[L4(Ω)]2 ≤C(T )∥∇Θn
r,λ∥2[L4(Ω)]2 . (4.54)

and

∥un
r,λ ·∇θg∥2≤∥un

r,λ∥2[L4(Ω)]2∥∇θg∥
2
[L4(Ω)]2 ≤∥∇un

r,λ∥2∥θg∥2H2(Ω)≤C(T )∥θg∥
2
H2(Ω).
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We can thus obtain, recalling that ∥∆θg∥≤∥θg∥H2(Ω)≤C∥g∥H3/2(∂Ω),

1

2

d

dt
∥∇Θn

r,λ∥2+κ∥∆Θn
r,λ∥2

≤∥un
r,λ ·∇Θn

r,λ∥∥∆Θn
r,λ∥+∥un

r,λ ·∇θg∥∥∆Θn
r,λ∥+κ∥∆θg∥∥∆Θn

r,λ∥+∥∂tθg∥∥∆Θn
r,λ∥

≤C(T )
(
∥∇Θn

r,λ∥2[L4(Ω)]2 +κ
2∥g∥2H3/2(∂Ω)

)
+

3κ

8
∥∆Θn

r,λ∥2+C∥∂tg∥2H1/2(∂Ω). (4.55)

Similar arguments applied to (4.52) entail

k

2

d

dt
∥∇Θn

r,λ∥2+∥∂tΘn
r,λ∥2

≤∥un
r,λ ·∇Θn

r,λ∥ ∥∂tΘn
r,λ∥+∥un

r,λ ·∇θg∥ ∥∂tΘn
r,λ∥

+∥∂tθg∥ ∥∂tΘn
r,λ∥+κ∥∆θg∥ ∥∂tΘn

r,λ∥

≤1

2
∥∂tΘn

r,λ∥2+C(∥un
r,λ ·∇θg∥2+∥∇Θn

r,λ∥2[L4(Ω)]2 +∥∂tθg∥2+κ2∥∆θg∥2)

≤1

2
∥∂tΘn

r,λ∥2+C
(
∥∇Θn

r,λ∥2[L4(Ω)]2 +∥∂tg∥2H1/2(∂Ω)

)
+C(T )κ2∥g∥2H3/2(∂Ω). (4.56)

Using now Young’s inequality, for a given δ>0, we find (see [52,53])

∥∇Θn
r,λ∥2[L4(Ω)]2 ≤C

(
∥∇Θn

r,λ∥ ∥Θn
r,λ∥H2(Ω)+∥∇Θn

r,λ∥2
)
≤ δ∥∆Θn

r,λ∥2+C∥∇Θn
r,λ∥2.
(4.57)

Then, choosing δ= κ
8C(T ) for (4.55) and δ= κ

4C for (4.56), we get

1

2

d

dt
∥∇Θn

r,λ∥2+
κ

2
∥∆Θn

r,λ∥2

≤C(T )
(
∥∇Θn

r,λ∥2+κ2∥g∥2H3/2(∂Ω)

)
+C∥∂tg∥2H1/2(∂Ω), (4.58)

and

k

2

d

dt
∥∇Θn

r,λ∥2+
1

2
∥∂tΘn

r,λ∥2

≤κ
4
∥∆Θn

r,λ∥2+C
(
∥∇Θn

r,λ∥2+∥∂tg∥2H1/2(∂Ω)

)
+C(T )κ2∥g∥2H3/2(∂Ω). (4.59)

Adding (4.58) and (4.59) together, we obtain(
1

2
+
κ

2

)
d

dt
∥∇Θn

r,λ∥2+
1

2
∥∂tΘn

r,λ∥2+
κ

4
∥∆Θn

r,λ∥2

≤C(T )
(
∥∇Θn

r,λ∥2+κ2∥g∥2H3/2(∂Ω)

)
+C∥∂tg∥2H1/2(∂Ω) (4.60)

and Gronwall’s lemma yields

∥Θn
r,λ∥L∞(0,T ;Vθ)≤C(T ). (4.61)

Then, integrating (4.60) in time over (0,T ) we also find∫ T

0

∥∂tΘn
r,λ(s)∥2ds+

∫ T

0

∥Θn
r,λ(s)∥2V 2

θ
ds≤C(T ). (4.62)

Summing up, we have obtained the following bounds which are uniform with respect
to n, r, and λ (see (4.23)-(4.27), (4.29), (4.31), (4.33), (4.50), (4.51), (4.61) and (4.62)):
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• un
r,λ is uniformly bounded in L∞(0,T ;Vσ)∩L2(0,T ;Wσ)∩H1(0,T ;Hσ)

• φn
r,λ is uniformly bounded in L∞(0,T ;V )∩L4(0,T ;V2)∩H1(0,T ;V )

• Θn
r,λ is uniformly bounded in L∞(0,T ;Vθ)∩L2(0,T ;V 2

θ )∩H1(0,T ;H)

• µn
r,λ is uniformly bounded in L∞(0,T ;V ).

Using weak and weak∗ compactness, and working first on n, then on λ and finally on r,
we can extract a subsequence

{(unh

rh,λh
,φnh

rh,λh
,Θnh

rh,λh
)}h∈N

which suitably converges as h→∞ to a triple (u,φ,Θ) such that

u∈L∞(0,T ;Vσ)∩L2(0,T ;Wσ)∩H1(0,T ;Hσ)

φ∈L∞(0,T ;V )∩L4(0,T ;V2)∩H1(0,T ;V )

θ=Θ+θg ∈L∞(0,T ;V )∩L2(0,T ;H2(Ω))∩H1(0,T ;H).

Also, using a standard strong compactness argument, we can suppose that the above
sequence is such that {(unh

rh,λh
,φnh

rh,λh
,Θnh

rh,λh
)}h∈N converges strongly in L2(0,T ;Hσ)×

(L2(0,T ;H))2 to (u, φ, Θ). The above convergences are enough to prove that (u, φ, θ)
is a weak solution. In particular, we recall that (see [20,24,28]), we have

|Eη|≤
C

min{F ′(1−η),|F ′(η−1)|}
, (4.63)

where Eη ={(x,t)∈Ω× [0,T ] : |φ(x,t)|>1−η}. Then, as η→0+, we deduce that the set
{(x,t)∈Ω× [0,T ] : |φ(x,t)|≥1} has zero measure as needed. Then, on account of the
properties of F ′

λ, we infer µ=−α∆φ+Ψ′(φ) almost everywhere in Ω×(0,T ). More-
over, the obtained regularities suffice to show that (u, φ, θ) satisfies the equations
of CHBκ almost everywhere. We are left to prove the additional regularity prop-
erties stated in Definition 3.2. Observe that ∂tφ+u ·∇φ∈L2(0,T ;V ). Thus we in-
fer µ∈L2(0,T ;H3(Ω)) and ∂nµ=0 almost everywhere on ∂Ω×(0,T ). On the other
hand, recalling [27, Cor.4.1], µ∈L∞(0,T ;V ) implies that φ∈L∞(0,T ;W 2,p(Ω)) and
F ′(φ)∈L∞(0,T ;Lp(Ω)) for any 2≤p<∞. Also, thanks to condition (2.3) and to (2.8),
we deduce F ′′(φ)∈L∞(0,T ;Lp(Ω)) for any p∈ [2,∞) (see [27, Lemma 5.1]). Finally,
arguing as in [28, Sec. 4, step 7], we obtain ∂tµ∈L2(0,T ;V ′) so that µ∈C([0,T ];V ).

Observe now that actually we can prove that estimates (4.23)-(4.27), (4.31), (4.33),
(4.50), (4.51) and (4.63) still hold with C independent of κ, thanks to

g∈L2(0,T ;H3/2(∂Ω))∩H1(0,T ;H1/2(∂Ω)) ↪→C([0,T ];H1(∂Ω)) ↪→L∞(∂Ω×(0,T )).

Indeed, the only two estimates depending on κ which need to be modified are (4.15)
and (4.16), but by a simple integration by parts we have, supposing, e.g., κ≤1,

−(κ∇θg,∇Θn
r,λ)=(κ∆θg,Θ

n
r,λ)≤C∥Θn

r,λ∥2+C∥∆θg∥2≤C∥Θn
r,λ∥2+C∥g∥23/2,∂Ω.

Concerning (4.16) we have, by Sobolev embeddings,

−(un
r,λ ·∇θg,Θn

r,λ)≤∥un
r,λ∥L4(Ω)∥∇θg∥[L4(Ω)]2 ∥Θn

r,λ∥

≤∥un
r,λ∥1/2∥∇un

r,λ∥1/2∥θg∥H2(Ω) ∥Θn
r,λ∥

≤ν∗
2
∥∇un

r,λ∥2+C∥g∥23/2,∂Ω∥Θ
n
r,λ∥2+C∥un

r,λ∥2.



M. GRASSELLI AND A. POIATTI 925

In addition, for g with the same regularity, θ0∈L∞(Ω)∩Vθ and u0∈Wσ we can deduce
a higher-order regularity for θ and u independent of κ as well. As above, let us argue
formally. From now on C>0 does not depend on κ. We first observe that, due to
Remark 3.10, since g∈L∞(∂Ω×(0,T )), we have

∥θ∥L∞(Ω×(0,T ))≤C(∥θ0∥L∞ ,∥g∥L∞(∂Ω×(0,T ))≤C. (4.64)

If u is a strong solution and u0∈Wσ, then we can write
∂tu+∇p−ν∆u=h :=−(u ·∇)u+µ∇φ+θe2
div u=0

u(0)=u0 a.e. in Ω

u=0 on ∂Ω×(0,T ).

Let us show a higher-order regularity estimate for u: We start proving that h∈
L2(0,T ;[Lp(Ω)]2. Observe first that, owing to (4.64),

∥θe2∥L2(0,T ;[Lp(Ω)]2)≤C. (4.65)

Also, we have

∥(u ·∇)u∥L2(0,T ;[Lp(Ω)]2)≤∥u∥L∞(0,T ;[L2p(Ω)]2)∥∇u∥L2(0,T ;[L2p(Ω)]4).

By the Sobolev embedding Vσ ↪→L2p(Ω) for all p∈ [1,∞) (see also (4.50)), we obtain

∥u∥L∞(0,T ;[L2p(Ω)]2)≤C∥∇u∥L∞(0,T ;[L2(Ω)]4)≤C.

Moreover, due to Sobolev embedding Wσ ↪→ [W 1,2p(Ω)]2 and to (4.51), we get

∥∇u∥L2(0,T ;[L2p(Ω)]4)≤C∥Au∥L2(0,T ;[L2(Ω)]2)≤C.

Thus we conclude that

∥(u ·∇)u∥L2(0,T ;[Lp(Ω)]2)≤C. (4.66)

Consider now the Korteweg force. We have

∥µ∇φ∥L2(0,T ;[Lp(Ω)]2)≤∥µ∥L∞(0,T ;L2p(Ω))∥∇φ∥L2(0,T ;[L2p(Ω)]2).

Recalling (4.50) we deduce

∥µ∥L∞(0,T ;L2p(Ω))≤C∥µ∥L∞(0,T ;V )≤C.

Moreover, due to Sobolev embedding V2 ↪→W 1,2p(Ω) for all p∈ [1,∞) and to (4.26), we
get

∥∇φ∥L2(0,T ;[L2p(Ω)]2)≤C∥φ∥L2(0,T ;V2)≤C.

Thus we conclude that

∥µ∇φ∥L2(0,T ;[Lp(Ω)]2)≤C. (4.67)

From (4.65), (4.66), (4.67) we can conclude that h∈L2(0,T ;[Lp(Ω)]2). Then, by the
maximal regularity theory of the Stokes system (see, e.g., [25] and [44]), since u0∈Wσ
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(actually, considering Besov spaces, the initial datum u0 can be even less regular, see,
e.g., [54, Lemma 2.6]), we have that, for any p∈ (2,∞),

∥∂tu∥L2(0,T ;[Lp(Ω)]2)+∥u∥L2(0,T ;[W 2,p(Ω)]2)≤C
(
∥h∥L2(0,T ;[Lp(Ω)]2)+∥u0∥Wσ

)
.

The proof is finished.

Remark 4.1. In the case g≡0 the Galerkin scheme is simpler. Indeed, arguing
formally, we have

d

dt
∥θ∥2+β0∥θ∥2≤0 (4.68)

where β0=2 κ
C0

and C0 is the Poincaré’s constant. Hence Gronwall’s inequality gives

∥θ∥2≤∥θ0∥2e−β0t. (4.69)

Moreover, we get (see (3.10))

d

dt
E(t)+∥∇µ∥2+ ν

2
∥∇u∥2+κ∥∇θ∥2≤ C2

0

2ν
∥θ∥2. (4.70)

Therefore the following energy estimate holds

E(t)+

∫ t

0

∥∇µ∥2ds+
∫ t

0

ν

2
∥∇u∥2ds+

∫ t

0

k∥∇θ∥2ds≤E(0)+
C2

0

2νβ0
∥θ0∥2(1−e−β0t),

(4.71)
for every t∈ [0,T ]. This implies that estimates (4.23)-(4.27), (4.31), (4.33), (4.50), (4.51)
and (4.63) still hold with C independent of κ.

Proof. (Proof of Theorem 3.2.) Let us set u=u1−u2, φ=φ1−φ2 and θ=
θ1−θ2. We also define µ=−α∆φ+Ψ′(φ1)−Ψ′(φ2). Recalling the weak formulation,
we can write

<∂tu,w>+b(u1,u,w)+b(u,u2,w)+ν(∇u,∇w)

=α(∇φ1⊗∇φ,∇w)+α(∇φ⊗∇φ2,∇w)+(θ,e2 ·w) ∀w∈Vσ (4.72)

<∂tφ,v>+(∇µ,∇v)+(u1 ·∇φ,v)+(u ·∇φ2,v)=0 ∀v∈V (4.73)

<∂tθ,ξ >+κ(∇θ,∇ξ)−(u1θ,∇ξ)−(uθ2,∇ξ)=0 ∀ξ∈Vθ. (4.74)

Here we have used an alternative expression of the Korteweg force (see the Introduction).
We take w=u, v=φ and ξ=θ. Then we add together the resulting identities. This
gives

d

dt
H1+ν∥∇u∥2+κ∥∇θ∥2+(∇µ,∇φ)=

6∑
j=1

Ij ,

where H1=
1
2∥u∥

2+ 1
2∥φ∥

2+ 1
2∥θ∥

2 and

I1=−b(u,u2,u), I2=α(∇φ1⊗∇φ,∇u), I3=α(∇φ⊗∇φ2,∇u),

I4=(uφ2,∇φ), I5=(θ,e2 ·u), I6=(uθ2,∇θ),
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observing that (u1φ,∇φ)=0. Recalling then the proof of Theorem 3.1 and [28,
Thm.A.2], we have that

∥ui∥L∞(0,T ;Vσ)+∥φi∥L∞(0,T ;W 2,3(Ω))+∥Ψ′′(φi)∥L∞(0,T ;L3(Ω))≤C, i=1,2 (4.75)

for some constant C>0 also depending on T . On the other hand, observe that

∥φ∥21≤∥∆φ∥∥φ∥+∥φ∥2. (4.76)

Also, integrating by parts, we get

(∇µ,∇φ)=α∥∆φ∥2−(Ψ′(φ1),∆φ)+(Ψ′(φ2),∆φ).

Using now (4.75) and classical embeddings we deduce

(Ψ′(φ1)−Ψ′(φ2),∆φ)=

(
φ

∫ 1

0

{sΨ′′(φ1)+(1−s)Ψ′′(φ2)}ds,∆φ
)

≤ (∥Ψ′′(φ1)∥L3(Ω)+∥Ψ′′(φ2)∥L3(Ω))∥φ∥L6(Ω)∥∆φ∥≤C∥φ∥1∥∆φ∥

Therefore, using (4.76) and Young’s inequality twice, we find

(∇µ,∇φ)≥α∥∆φ∥2−C∥φ∥1∥∆φ∥≥
α

2
∥∆φ∥2−C∥φ∥2.

On account of Sobolev embedding Vσ ↪→ [L6(Ω)]2, from (4.75) we deduce

I1≤∥u∥ ∥∇u2∥[L3(Ω)]4∥u∥[L6(Ω)]2 ≤
ν

4
∥∇u∥2+C∥u∥2∥∇u2∥2[L3(Ω)]4 .

By (4.75), the embedding W 2,3(Ω) ↪→W 1,∞(Ω) and (4.76), we infer

I2+I3≤α(∥∇φ1∥∞+∥∇φ2∥∞)∥∇φ∥ ∥∇u∥≤ ν

4
∥∇u∥2+ α

8
∥∆φ∥2+C∥φ∥2.

By standard embeddings, (4.75) and (4.76), we get

I4≤∥φ2∥∞∥u∥ ∥∇φ∥≤ α

8
∥∆φ∥2+C

(
∥φ∥2+∥φ2∥2∞∥u∥2

)
,

I5≤∥θ∥ ∥u∥≤ 1

2
∥θ∥2+ 1

2
∥u∥2.

Furthermore, since H2(Ω) ↪→W 1,4(Ω), by Young’s inequality:

I6=(u ·∇θ2,θ)≤∥∇θ2∥[L4(Ω)]2 ∥u∥[L4(Ω)]2 ∥θ∥

≤ ν

4
∥∇u∥2+C∥θ∥2∥θ2∥2H2(Ω).

Adding up all the terms, we obtain

d

dt
H1+

ν

4
∥∇u∥2+κ∥∇θ∥2+ α

4
∥∆φ∥2≤CR1H1, (4.77)

where R1 :=1+∥∇u2∥2[L3(Ω)]4 +∥φ2∥2∞+∥θ2∥2H2(Ω)∈L
1(0,T ). Thus Gronwall’s lemma

yields (3.9). The proof is finished.
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Proof. (Proof of Theorem 3.3.) The proof is divided into two steps.

Approximating the initial data. We need to approximate the initial data to apply
the existence result of Theorem 3.1 and then find suitable estimates which allow to
recover a weak solution. First of all, by the density of Vσ in Hσ, we can find a sequence
{u0,m}m⊂Vσ such that u0,m→u0 in Hσ as m→∞ so that u0,m is uniformly bounded
in Hσ. Concerning φ0, we consider the following two-step approximation.

(1) We introduce the Lipschitz function hm :R→R, m∈N0, such that

hm(z)=


1− 1

m if z>1− 1
m

z if −1+ 1
m ≤z≤1− 1

m

−1+ 1
m if z<−1+ 1

m

and define φm :=hm(φ0)∈V . By the properties of the composition, we have
∇φm=∇φ0χ[−1+ 1

m ,1− 1
m ](φ0). Then

∥∇φm∥≤∥∇φ0∥, (4.78)

for every m∈N0. Moreover, by Lebesgue’s dominated convergence theorem, we
have, as m→∞,

φm→φ0 in H. (4.79)

By the cutoff properties, we get ∥φm∥L∞(Ω)≤1− 1
m , for every m∈N0. Observe

that |φm|→ |φ0|. We know that there exists δ>0 such that |φ0|<1−δ. Then
there exists m>0 such that |φm|<1−δ for every m>m.

(2) Let us now introduce the sequence {φ0,m}m∈N0
which approximates φ0. The

function φ0,m is the unique solution to the problem{
− 1

m∆φ0,m+φ0,m=φm in Ω

∂nφ0,m=0 on ∂Ω.
(4.80)

From the elliptic regularity (see, e.g., [39]) we obtain

∥φ0,m∥H3(Ω)≤C(m)∥φm∥V .

Exploiting this regularity we can take the gradient of (4.80), multiply by
∇φ0,m∈H2(Ω) and integrate by parts. This gives

1

m
∥∆φ0,m∥2+∥∇φ0,m∥2=(∇φm,∇φ0,m)≤ 1

2
∥∇φ0,m∥2+ 1

2
∥∇φm∥2.

We then deduce

∥∇φ0,m∥≤∥∇φm∥≤∥∇φ0∥, (4.81)

for every m∈N0, where in the last estimate we exploited (4.78). If we now test
(4.80) against φ0,m−φm and integrate by parts, we obtain

∥φm−φ0,m∥2= 1

m
(∇φ0,m,∇(φ0,m−φm)),
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but, from (4.78) and (4.81), (∇φ0,m,∇(φ0,m−φm))≤2∥∇φ0∥2, independently
of m, and thus we deduce

∥φ0,m−φ0∥≤∥φm−φ0∥+∥φm−φ0,m∥≤∥φm−φ0∥+
2

m
∥∇φ0∥2,

which implies, since φ0∈V and by (4.79), that φ0,m→φ0 strongly inH. Thanks
to this result and from (4.81), we immediately have ∇φ0,m⇀∇φ0, which, to-
gether with (4.81) and V being a Hilbert space, implies also ∇φ0,m→∇φ0 and
thus we get φ0,m→φ0 in V . For what concerns the mean value, integrating
Equation (4.80) over Ω and using the boundary condition, we get φ0,m=φm,
thus there exists m>0 such that

|φ0,m|= |φm|<1−δ, (4.82)

for every m>m, with δ independent of m. We now show that φ0,m en-
joys the separation property for every m∈N0. We know that −1+ 1

m ≤
φm≤1− 1

m almost everywhere in Ω by the cutoff properties. We consider

v=
(
φ0,m−

(
1− 1

m

))+∈V and we rewrite system (4.80) as follows{
− 1

m∆
(
φ0,m−

(
1− 1

m

))
+φ0,m−

(
1− 1

m

)
=φm−

(
1− 1

m

)
in Ω

∂n
(
φ0,m−

(
1− 1

m

))
=0 on ∂Ω.

Multiplying the above equation by v and integrating by parts, we deduce

1

m

∫
{x∈Ω: φ0,m(x)−(1− 1

m
)≥0}

∣∣∣∣∇(
φ0,m−

(
1− 1

m

))∣∣∣∣2dx+
∥∥∥∥∥
(
φ0,m−

(
1− 1

m

))+
∥∥∥∥∥
2

=

∫
Ω

(
φm−

(
1− 1

m

))(
φ0,m−

(
1− 1

m

))+

dx≤0,

implying that φ0,m≤1− 1
m almost everywhere in Ω.

Consider now w=
(
φ0,m−

(
−1+ 1

m

))−∈V . A similar argument entails φ0,m≥
−1+ 1

m almost everywhere in Ω. Therefore, we have ∥φ0,m∥L∞(Ω)≤1− 1
m .

From this property and from the H3(Ω)-regularity of φ0,m, we conclude that
µ0,m=−α∆φ0,m+Ψ′(φ0,m)∈V . Therefore φ0,m satisfies the assumptions of
Theorem 3.1.

Regarding θ, we first approximate the boundary datum. Using Lemma 2.1, there exists a
sequence of functions gm∈C∞([0,T ];H3/2(∂Ω)) such that gm→g in H1(0,T ;H1/2(∂Ω))
and, in particular, gm→g in L∞(0,T ;H1/2(∂Ω)). Consider now the lift operator θg,m
with gm as boundary datum. Then we have that θg,m∈H1(0,T ;V ). Moreover θg,m→
θg in L∞(0,T ;V ) and ∂tθg,m→∂tθg in L2(0,T ;V ), where θg is the lift operator with
boundary datum g. Hence we also have θg,m→θg in C([0,T ];H) so that θg,m(0)→θg(0)
in H. We then exploit the density of D(A0)=V

2
θ in H to find a sequence {Θ0,m}m∈N0

⊂
V 2
θ such that Θ0,m→θ0−θg(0) in H. Thus the approximating initial datum θ0,m=

Θ0,m+θg,m(0)∈V respects the compatibility condition θ0,m=gm(0) on ∂Ω, satisfies
the assumptions of Theorem 3.1, and θ0,m→θ0 in H.

Existence of a weak solution. Let us consider CHBκ, with initial conditions
(u0,m,φ0,m,θ0,m) and gm as Dirichlet boundary condition for the temperature, suppos-
ing m>m previously defined. By Theorems 3.1 and 3.2, there exists a unique strong
solution to CHBκ, say, (um,φm.θm). Set Θm=θm−θg,m∈Vθ for almost any t∈ (0,T )
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and observe that, by construction, Θm(0)=Θ0,m. Consider the weak formulation of the
problem. Exploiting the regularity of the strong solution, we repeat verbatim the first
part of the proof of Theorem 3.1. From now on, C>0 stands for a constant independent
of m and t, which may vary from line to line.

Setting Em := 1
2∥um∥2+ 1

2∥Θm∥2+ α
2 ∥∇φm∥2+

∫
Ω
(Ψ(φm)+ Ĉ), we obtain

d

dt
Em+Dm≤C(1+∥gm∥41/2,∂Ω) Em+C(∥gm∥21/2,∂Ω+∥∂tgm∥21/2,∂Ω),

where Dm :=∥∇µm∥2+ ν
2∥∇um∥2+ κ

2 ∥∇Θm∥2. Thus, on account of the properties
of gm, we have that Q :=C(1+∥gm∥41/2,∂Ω) and R=C(∥gm∥21/2,∂Ω+∥∂tgm∥21/2,∂Ω)
are bounded in L1(0,T ) uniformly with respect to m. In addition, we know that
||φ0,m||L∞(Ω)≤1− 1

m for every m∈N0. Thus Ψ(φ0,m)≤K=maxs∈[−1,1]Ψ(s), indepen-
dently on m. Hence we have

Em(0)=
1

2
∥u0,m∥2+ α

2
∥∇φ0,m∥2+ 1

2
∥Θ0,m∥2+

∫
Ω

(
Ψ(φ0,m)+ Ĉ

)
dx≤C.

We also recall that there exists C>0 such that (see [24] for a proof),∫
Ω

|F ′(φm)|dx≤C
∣∣∣∣∫

Ω

F ′(φm)(φm−φm)dx

∣∣∣∣+C. (4.83)

Indeed, C could depend only on φ0,m=φm, but, since we have |φm|≤1−δ indepen-
dently of m, for m>m, we can choose C in such a way that it is independent of m.
Summing up, the above inequalities and Gronwall’s lemma allow us to find the following
uniform bounds (see the proof of Theorem 3.1)

∥Θm∥L∞(0,T ;H)∩L2(0,T ;Vθ)≤C, ∥um∥L∞(0,T ;Hσ)∩L2(0,T ;Vσ)≤C (4.84)

∥φm∥L∞(0,T ;V )∩L4(0,T ;V2)≤C, ∥µm∥L2(0,T ;V )≤C, (4.85)∫ T

0

∥F ′(φm)∥2≤C,
∥∥∥∥(dum

dt
,
dφm

dt
,
dΘm

dt

)∥∥∥∥
L2(0,T ;V′

σ×V ′×V ′
θ )

≤C, (4.86)

for any given T >0. Thanks to a standard compactness argument (see the proof of
Theorem 3.1), we find (u,φ,Θ), such that

u∈L∞(0,T ;Hσ)∩L2(0,T ;Vσ)∩H1(0,T ;V′
σ) (4.87)

φ∈L∞(0,T ;V )∩L4(0,T ;V2)∩H1(0,T ;V ′) (4.88)

θ=Θ+θg ∈L∞(0,T ;H)∩L2(0,T ;V )∩H1(0,T ;V ′
θ +V

′), (4.89)

which is a suitable limit, up to a subsequence, of the sequence of the strong solutions.
The convergences, including the ones of the approximating data, are enough to prove
that (u,φ,Θ) is a weak solution to our problem according to Definition 3.1 (see again
the proof of Theorem 3.1). We are left to prove the energy identity (3.11). Consider
again the lift operator θg and test Equations (3.1)-(3.3) with w=u, v=µ, ξ=θ−θg,
respectively. This gives, for almost any t∈ (0,T ),

d

dt
E(φ)+∥∇µ∥2−(u ·∇µ,φ)=0,

d

dt

1

2
∥u∥2+ν∥∇u∥2+(u ·∇µ,φ)=(θ,e2 ·u),
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d

dt

1

2
∥θ−θg∥2+κ∥∇(θ−θg)∥2=−(∂tθg,θ−θg)−κ(∇θg,∇(θ−θg))−(u ·∇θg,θ−θg).

Adding up the above identities we get (3.11). The proof is finished.

Remark 4.2. In the case g≡0, recalling Remark 4.1, it is not difficult to realize that
energy estimate (4.71) also holds for weak solutions with a constant independent of κ
(it can be deduced also from (3.11)). This is true also for estimates (4.84)-(4.86).

Remark 4.3. Suppose that ν :R2→R and κ :R→R are globally Lipschitz functions
such that 0<ν∗≤ν(z1,z2)≤ν∗ for every (z1,z2)∈R2 and 0<k∗≤κ(z)≤k∗ for every
z∈R for some positive values ν∗, ν

∗, k∗ and k∗. Then the existence of a weak solution
can be extended to the case where ν depends on φ and θ, while κ depends on θ.
However, in this case, we can no longer take advantage of strong solutions but we need
to apply directly a Galerkin scheme. This scheme, if suitably adapted, can also yield
the existence of a weak solution in dimension three.

Proof. (Proof of Theorem 3.4.) Let us set u=u1−u2, φ=φ1−φ2, θ=θ1−θ2
and µ=−α∆φ+Ψ′(φ1)−Ψ′(φ2). Then consider again equations (4.72)-(4.74). From
now on, C>0 stands for a constant, depending on T , which may vary from line to line.
We know that, for i=1,2,

∥ui(t)∥≤C, ∥φi(t)∥V ≤C, ∥φi(t)∥L∞(Ω)≤1, ∥θi(t)∥≤C (4.90)

for almost any t∈ (0,T ). Let us rewrite Equation (4.73) as follows

<∂tφ,v>+(∇µ,∇v)−(u1φ,∇v)−(uφ2,∇v)=0 ∀v∈V.

We have φ(t)=φ(0)=0 for all t∈ [0,T ]. Take v= Ā−1
0 φ. This gives

1

2

d

dt
∥φ∥2∗+(µ,φ)=I1+I2, (4.91)

where

I1=(u1φ,∇Ā−1
0 φ), I2=(uφ2,∇Ā−1

0 φ).

From (2.2) we get, almost everywhere in Ω×(0,T ),

Ψ′(φ1)−Ψ′(φ2)≥−α̃(φ1−φ2)=−α̃φ.

Hence, we have

(µ,φ)=−α(∆φ,φ)+(Ψ′(φ1)−Ψ′(φ2),φ)≥α∥∇φ∥2− α̃∥φ∥2

and also

α̃∥φ∥2= α̃(∇φ,∇Ā−1
0 φ)≤ α

2
∥∇φ∥2+C∥φ∥2∗,

so that

(µ,φ)≥ α

2
∥∇φ∥2−C∥φ∥2∗. (4.92)

Then, from (4.91) we infer

1

2

d

dt
∥φ∥2∗+

α

2
∥∇φ∥2≤C∥φ∥2∗+I1+I2.
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Using Cauchy-Schwartz’s and Young’s inequalities, Sobolev embeddings and (4.90), we
find

I1≤∥φ∥L6(Ω)∥u1∥[L3(Ω)]2∥φ∥∗≤
α

8
∥∇φ∥2+C∥∇u1∥2∥φ∥2∗,

I2≤∥φ2∥L∞(Ω)∥u∥ ∥φ∥∗≤
ν

8
∥u∥2+C∥φ∥2∗.

Taking now v=A−1u in (4.72), A being the Stokes operator, we get

1

2

d

dt
∥u∥2♭ +ν∥u∥

2=I3+I4+I5,

where

I3=−b(u1,u,A
−1u)−b(u,u2,A

−1u),

I4=α(∇φ1⊗∇φ,∇A−1u)+α(∇φ⊗∇φ2,∇A−1u),

I5=(θ,e2 ·A−1u).

Thanks to (4.90) and to standard inequalities and embeddings, we deduce

I3≤ (∥u1∥[L4(Ω)]2 +∥u2∥[L4(Ω)]2) ∥u∥ ∥∇A−1u∥[L4(Ω)]4

≤C
(
∥u1∥1/2∥∇u1∥1/2+∥u2∥1/2∥∇u2∥1/2

)
∥u∥ 3

2 ∥∇A−1u∥1/2

≤ ν

8
∥u∥2+C∥u∥2♭

(
∥∇u1∥1/2+∥∇u2∥1/2

)4
≤ ν

8
∥u∥2+C∥u∥2♭

(
∥∇u1∥2+∥∇u2∥2

)
.

Arguing similarly, we get

I4≤C
(
∥φ1∥H2(Ω)+∥φ2∥H2(Ω)

)
∥∇φ∥ ∥∇A−1u∥1/2∥u∥1/2

≤ α

4
∥∇φ∥2+ ν

8
∥u∥2+C

(
∥φ1∥4H2(Ω)+∥φ2∥4H2(Ω)

)
∥u∥2♭ .

Moreover, we have

I5≤
κ

6
∥θ∥2+C∥u∥2♭ .

Consider now Equation (4.74) and take ξ=A−1
0 θ. We obtain

1

2

d

dt
∥θ∥2∗+κ∥θ∥2=I6+I7, (4.93)

where

I6=(u1θ,∇A−1
0 θ), I7=(uθ2,∇A−1

0 θ).

Recalling the treatment of I3, owing to (2.10) and (4.90), we find

I6≤C∥θ∥3/2 ∥∇u1∥1/2 ∥∇A−1
0 θ∥1/2≤ κ

6
∥θ∥2+C∥θ∥2♯ ∥∇u1∥2.

On the other hand, by Ladyzhenskaya and Young’s inequalities, (2.10) and (4.90), we
have

I7=−(u ·θ2,∇A−1
0 θ)≤∥u∥ ∥θ2∥L4(Ω) ∥∇A−1

0 θ∥[L4(Ω)]2
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≤C∥u∥ ∥θ2∥1/2∥∇θ2∥1/2∥∇A−1
0 θ∥1/2∥A−1

0 θ∥1/2H2(Ω)

≤C∥u∥∥∇θ2∥1/2∥θ∥1/2♯ ∥θ∥1/2

≤ ν

8
∥u∥2+ κ

3
∥θ∥2+C∥∇θ2∥2∥θ∥2♯ , (4.94)

for a suitable C>0 independent of t. Set now

H2 :=
1

2
∥u∥2♭ +

1

2
∥φ∥2∗+

1

2
∥θ∥2♯ ,

R2 :=1+∥∇u1∥2+∥∇u2∥2+∥φ1∥4H2(Ω)+∥φ2∥4H2(Ω)+∥∇θ2∥2.

Collecting and adding together the above estimates we get

d

dt
H2+

ν

2
∥u∥2+ κ

3
∥θ∥2+ α

8
∥∇φ∥2≤CR2H2. (4.95)

and Gronwall’s lemma entails (3.12). This ends the proof.

5. Proofs of Section 3.3
Proof. (Proof of Theorem 3.5.) The idea of the proof is to find uniform-in-κ

estimates for the weak solution to CHBκ, with given initial data and g≡0, and then pass
to the limit as κ→0. On account of Remark 4.2, we already know that estimates (4.84)-
(4.86), and (4.63) are uniform in κ. We are only left to consider a uniform estimate for
the time derivative of the temperature. From now on we will denote by (uκ,φκ,θκ) the
weak solution to CHBκ, for a fixed 0<κ≤1. Moreover, C>0 will indicate a constant
independent of κ which may vary from line to line. First observe that, for almost any
t∈ (0,T ), being g≡0, by Remark 3.10, we get

∥θκ∥≤∥θ0∥, ∥θκ∥L∞(Ω)≤∥θ0∥L∞(Ω).

Then consider the weak formulation

<∂tθκ,ξ >+(uκ ·∇θκ,ξ)+κ(∇θκ,∇ξ)=0 ∀ξ∈Vθ. (5.1)

Observe that, for every ξ∈Vθ,

|(uκ ·∇θκ,ξ)|≤∥θκ∥L∞(Ω)∥uκ∥ ∥∇ξ∥≤∥θ0∥L∞(Ω)∥uκ∥ ∥∇ξ∥≤C∥∇ξ∥,

since uk is uniformly bounded in L∞(0,T ;Hσ). Thus, we get∫ T

0

∥∂tθκ∥2V ′
θ
≤2κ2

∫ T

0

∥∇θκ∥2+2C2T ≤2κ

∫ T

0

∥∇θκ∥2+2C2T ≤C(T ),

where in the last estimate we exploited the bound
√
κ∥θ∥L2(0,T ;Vθ)≤C.

Summing up, we have that

• uκ is uniformly bounded in L∞(0,T ;Hσ)∩L2(0,T ;Vσ)∩H1(0,T ;V′
σ),

• φκ is uniformly bounded in L∞(0,T ;V )∩L4(0,T ;V2)∩H1(0,T ;V ′),

• θκ is uniformly bounded in L∞(0,T ;H)∩L∞(Ω×(0,T ))∩H1(0,T ;V ′
θ ).

Then, by classical compactness arguments, we obtain a candidate weak solution (u,φ,θ)
such that

u∈L∞(0,T ;Hσ)∩L2(0,T ;Vσ)∩H1(0,T ;V′
σ)
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φ∈L∞(0,T ;V )∩L4(0,T ;V2)∩H1(0,T ;V ′)

θ∈L∞(0,T ;H)∩L∞(Ω×(0,T ))∩H1(0,T ;V ′
θ ).

We just need to show the convergence in the transport-diffusion equation, the other
convergences being as above. Let us multiply the equation by χ∈C∞

0 (0,T ) and integrate
in time between 0 and T, after integration by parts in space. We obtain, up to a non-
relabeled subsequence,∫ T

0

(<∂tθκ,ξ >+κ(∇θκ,∇ξ)−(uκθκ,∇ξ))χ(t)dt ∀ξ∈Vθ.

We notice that ∣∣∣∣∣
∫ T

0

(uκθκ,∇ξ)χ(t)dt−
∫ T

0

(uθ,∇ξ)χ(t)dt

∣∣∣∣∣
≤ max

t∈[0,T ]
|χ(t)|

{
∥uκ−u∥L2(0,T ;Hσ)∥∇ξ∥ ∥θκ∥L∞(Ω×(0,T ))

+

∣∣∣∣∣
∫ T

0

∫
Ω

(u ·∇ξ)(θ−θκ)dxdt

∣∣∣∣∣
}

so, since ∥θκ∥L∞(Ω×(0,T ))≤C, by the strong convergence uκ→u in L2(0,T ;Hσ) (up
to a subsequence), the first term in the right-hand side vanishes as κ→0. Regarding

the second term, it vanishes by the weak∗ convergence θκ
∗
⇀θ in L∞(Ω×(0,T )), since

u ·∇ξ∈L1(Ω×(0,T )). Concerning the diffusion term, we have∣∣∣∣∣κ
∫ T

0

(∇θκ,χ(t)∇ξ)dt

∣∣∣∣∣≤√
κ
(√
κ∥θκ∥L2(0,T ;Vθ)

)
∥χ(t)∇ξ∥L2(0,T ;H)≤

√
κC →

κ→0
0.

In addition, we have ∂tθκ⇀∂tθ in L2(0,T ;V ′
θ ). Thus we can pass to the limit as κ→0

and by standard density arguments (see, e.g., [9, Lemma V.1.2]) we deduce that∫ T

0

{<∂tθ,w>−(uθ,∇w)}dt=0 ∀w∈L2(0,T ;Vθ). (5.2)

We conclude that (u,φ,θ) is a weak solution to CHB0 according to Definition 3.3.
To get the additional regularity (3.13), we observe that, ν being constant, we can
apply [32, Thm.1.1] with, using the same notation as in [32], g≡0 and h=ϕ∇µ+θe2∈
L2(Ω×(0,T )) (where the term ∇(ϕµ) has been added to the pressure).

To show uniqueness, let us consider (ui,φi,θi), i=1,2, two weak solutions with the
same initial data, and set u=u1−u2, φ=φ1−φ2, θ=θ1−θ2 and µ=−α∆φ+Ψ′(φ1)−
Ψ′(φ2). Then we have

<∂tu,w>+b(u1,u,w)+b(u,u2,w)+ν(∇u,∇w)

=α(∇φ1⊗∇φ,∇w)+α(∇φ⊗∇φ2,∇w)+(θ,e2 ·w) ∀w∈Vσ (5.3)

<∂tφ,v>+(∇µ,∇v)+(u1 ·∇φ,v)+(u ·∇φ2,v)=0 ∀v∈V (5.4)

<∂tθ,ξ >−(u1 ·θ,∇ξ)−(u ·θ2,∇ξ)=0 ∀ξ∈Vθ. (5.5)

We then take w=A−1u, v= Ā−1
0 φ and ξ=A−1

0 θ, respectively. These choices yield

d

dt
H3(t)+ν∥u∥2+(µ,φ)=

6∑
j=1

Ij , (5.6)
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where H3 :=
1
2∥u∥

2
♭ +

1
2∥φ∥

2
∗+

1
2∥θ∥

2
♯ and

I1=(u1φ,∇Ā−1
0 φ), I2=(uφ2,∇Ā−1

0 φ),

I3=−b(u1,u,A
−1u)−b(u,u2,A

−1u),

I4=α(∇φ1⊗∇φ,∇A−1u)+α(∇φ⊗∇φ2,∇A−1u),

I5=(θ,e2 ·A−1u), I6=(uθ2,∇A−1
0 θ), I7=(u1θ,∇A−1

0 θ).

From now on, C>0 is a generic constant depending at most on the data, on the struc-
tural parameters, on Ω and on T . C may vary from line to line. Due to the regularity
of a weak solution, we have, for almost any t∈ (0,T ), i=1,2,

∥ui(t)∥≤C, ∥φi(t)∥V ≤C, ∥φi(t)∥L∞(Ω)≤1, ∥θi(t)∥L∞(Ω)≤C. (5.7)

The terms I1-I4 can be estimated as the ones in the proof of Theorem 3.4 with the
corresponding numbering, thanks to (5.7). Thus we obtain

I1≤
α

8
∥∇φ∥2+C∥∇u1∥2∥φ∥2∗,

I2≤
ν

8
∥u∥2+C∥φ∥2∗,

I3≤
ν

8
∥u∥2+C∥u∥2♭

(
∥∇u1∥2+∥∇u2∥2

)
,

I4≤
α

4
∥∇φ∥2+ ν

8
∥u∥2+C

(
∥φ1∥4H2(Ω)+∥φ2∥4H2(Ω)

)
∥u∥2♭ .

Then, recalling the equivalence of the norms ∥·∥♯ and ∥·∥V ′
θ
and using (5.7), we find

I5=<θ,e2 ·A−1u>≤∥θ∥V ′
θ
∥∇A−1u∥≤C∥θ∥2♯ +∥u∥2♭ ,

I6≤
ν

8
∥u∥2+C∥θ2∥2L∞(Ω)∥θ∥

2
♯ ≤

ν

8
∥u∥2+C∥θ∥2♯ .

Consider now I7. To treat this term we will follow closely [32, Sec.5]. Recalling the
two-dimensional interpolation inequality, for r≥2,

∥f∥Lr(Ω)≤
√
r∥f∥2/r∥f∥1−2/r

1 ,

an integration by parts together with (2.10) gives, for any p∈ [2,∞),

I7=−(u1∆A
−1
0 θ,∇A−1

0 θ)=(∇A−1
0 θ,∇u1 ·∇A−1

0 θ)≤∥∇u1∥[Lp(Ω)]2∥|∇A−1
0 θ|2∥

L
p

p−1 (Ω)

≤∥∇u1∥[Lp(Ω)]2∥∇A−1
0 θ∥2[

L
2p

p−1 (Ω)

]2 ≤
2p

p−1
∥∇u1∥[Lp(Ω)]2∥∇A−1

0 θ∥2−
2
p ∥∇A−1

0 θ∥
2
p

1

≤ 2Cp

p−1
∥∇u1∥[Lp(Ω)]2∥∇A−1

0 θ∥2−
2
p ∥θ∥

2
p ≤C∥∇u1∥[Lp(Ω)]2∥θ∥

2− 2
p

♯ ,

where we exploited −∆A−1
0 θ=θ almost everywhere in Ω×(0,T ), the fact that 2p

p−1 ≤4.

Note that C does not depend on p and (5.7). Therefore, setting

R3=1+∥∇u1∥2+∥∇u2∥2+∥φ1∥4H2(Ω)+∥φ2∥4H2(Ω),

we get from (5.6) (see also (4.92))

d

dt
H3+

ν

2
∥u∥2+ α

8
∥∇φ∥2≤CR3H3+Cp

∥∇u1∥[Lp(Ω)]2

p
H3

1− 1
p . (5.8)
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Applying now the well-known Yudovich’s argument (see [32] and [50]), we can easily
conclude the proof of uniqueness. First, integrate (5.8) in time over (0,s) to get, for any
0≤s≤ t≤T , recalling that H3(0)=0,

H3(s)≤C
∫ t

0

R3(τ)H3(τ)dτ+Cp

∫ t

0

∥∇u1(τ)∥[Lp(Ω)]2

p
H3

1− 1
p (τ)dτ,

i.e.,

sup
s∈[0,t]

H3(s)≤C
∫ t

0

R3(τ)H3(τ)dτ+Cp

∫ t

0

∥∇u1(τ)∥[Lp(Ω)]2

p
H3

1− 1
p (τ)dτ. (5.9)

Then let 0<t⋆≤T sufficiently small such that

C

∫ t⋆

0

R3(τ)dτ ≤
1

2
,

which is possible since R3∈L1(0,T ), and set

H̃3(t)= sup
s∈[0,t]

H3(s).

We infer from (5.9), since H3(τ)≤H̃3(τ) for any τ ≥0,

H̃3(t)≤Cp
∫ t

0

(
1+

∥∇u1(τ)∥[Lp(Ω)]2

p

)
H̃3

1− 1
p (τ)dτ, (5.10)

for any t∈ [0,t⋆]. Setting Ξ=p
∫ t

0

(
1+

∥∇u1(τ)∥[Lp(Ω)]2

p

)
H̃3

1− 1
p (τ)dτ and Ξε=Ξ+ε, for

ε>0, we get

d

dt
Ξ

1
p
ε =

1

p
Ξ

1
p−1
ε

d

dt
Ξε≤C

(
1+

∥∇u1∥[Lp(Ω)]2

p

)
,

which means, integrating in time over (0,t), t≤ t⋆ , and recalling that Ξε(0)=ε,

Ξε(t)≤
(
ε

1
p +C

∫ t

0

(
1+

∥∇u1(τ)∥[Lp(Ω)]2

p

)
dτ

)p

,

This implies, letting ε→0,

Ξ(t)≤
(
C

∫ t

0

(
1+

∥∇u1(τ)∥[Lp(Ω)]2

p

)
dτ

)p

≤
(
C

∫ t

0

(
1+sup

p≥2

∥∇u1(τ)∥[Lp(Ω)]2

p

)
dτ

)p

,

ending up, recalling (5.10), with

H̃3(t)≤C
(
C

∫ t

0

(
1+sup

p≥2

∥∇u1(τ)∥[Lp(Ω)]2

p

)
dτ

)p

.

Therefore, if we adjust t⋆ so that also

C

∫ t⋆

0

(
1+sup

p≥2

∥∇u1(τ)∥[Lp(Ω)]2

p

)
dτ ≤ 1

2
,
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which is possible due to (3.13), we immediately infer, letting p→∞, H3(t)=0 for every
t≤ t⋆. We then extend this result to any t∈ [0,T ] by means of a standard connectivity
argument and by the continuity in time of the solution, so that (u,φ,θ)=(0,0,0) for
any t∈ [0,T ], implying uniqueness for any T >0 and thus concluding the proof.

Proof. (Proof of Theorem 3.6.) Within this proof, C>0 is a constant in-
dependent of κ and t, which may vary from line to line. We consider the (unique)
strong solutions (uκ,φκ,θκ), with the same initial data of the assumptions and with
g≡θ0|∂Ω∈H3/2(∂Ω). Note that in this way assumption (I4) is trivially satisfied and
also the compatibility condition (I5), i.e., θκ(0)|∂Ω=g(0), is fulfilled. Therefore, from
the end of the proof of Theorem 3.1, estimates (4.23)-(4.27), (4.31), (4.33), (4.50),
(4.51) and (4.63) hold with C independent of κ. Moreover, since θ0∈H2(Ω) ↪→L∞(Ω),
estimate (3.8) holds with C independent of κ as well. Our aim is now to show some
other uniform-in-κ estimates to be able to pass to the limit as κ→0 in a suitable sense
(see [14]). We observe that θκ solves

∂tθκ+uκ ·∇θκ−κ∆θκ=0 a.e. in Ω×(0,T ) (5.11)

θκ=g on ∂Ω×(0,T )

θκ(0)=θ0 in Ω.

Let us proceed formally. The argument can be justified by using a semi-Galerkin scheme
(i.e. keeping uκ given). We resort again to the lift operator (see Section 2.4), write
θκ=Θκ+θg and note that ∆θg =0 in Ω×(0,T ) and, since g is independent of time,
∂tθg =0. We apply ∆ to the first equation, multiply it by ∆Θκ and integrate it over
Ω, recalling that ∆Θκ=0 (due to the fact that g is independent of time) and uκ=0 on
∂Ω×(0,T ). We find

d

dt
∥∆Θκ∥2+(∆(uκ ·∇Θκ),∆Θκ)+(∆(uκ ·∇θg),∆Θκ)+κ∥∇(∆Θκ)∥2=0,

but

∆(uκ ·∇Θκ)=∆uκ ·∇Θκ+2∇uκ :D
2Θκ+uκ ·∇(∆Θκ) (5.12)

and note that (uκ ·∇(∆Θκ),∆Θκ)=0, whereas, similarly,

∆(uκ ·∇θg)=∆uκ ·∇θg+2∇uκ :D
2θg+uκ ·∇(∆θg)=∆uκ ·∇θg+2∇uκ :D

2θg.

Thus we obtain

d

dt
∥∆Θκ∥2+κ∥∇(∆Θκ)∥2≤

(
∥∆uκ∥L4(Ω)∥∇Θκ∥L4(Ω)+2∥∇uκ∥L∞(Ω)∥D2Θκ∥

)
∥∆Θκ∥

+
(
∥∆uκ∥L4(Ω)∥∇θg∥L4(Ω)+2∥∇uκ∥L∞(Ω)∥D2θg∥

)
∥∆Θκ∥

≤C(1+∥∆uκ∥L4(Ω)+∥∇uκ∥L∞(Ω))∥∆Θκ∥2+C(∥∆uκ∥2L4(Ω)+∥∇uκ∥2L∞(Ω))∥θg∥
2
H2(Ω)

≤C(1+∥∆uκ∥L4(Ω)+∥∇uκ∥L∞(Ω))∥∆Θκ∥2

+C(∥∆uκ∥2L4(Ω)+∥∇uκ∥2L∞(Ω))∥g∥
2
H3/2(∂Ω), (5.13)

where in the last inequality we have used the embedding H2(Ω) ↪→W 1,4(Ω). Recalling
that ∥∆uκ∥L4(Ω)≤C∥uκ∥W 2,4(Ω) and [W 2,4(Ω)]2 ↪→ [W 1,∞(Ω)]2, from (5.13), by (3.8),
we deduce

d

dt
∥∆Θκ∥2+κ∥∇(∆Θκ)∥2≤C

(
1+∥uκ∥W 2,4(Ω)

)
∥∆Θκ∥2+C∥uκ∥2W 2,4(Ω)∥g∥

2
H3/2(∂Ω).
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Thus, since ∥uκ∥L2(0,T ;W 2,4(Ω)≤C and g independent of time, Gronwall’s lemma entails

∥Θκ∥L∞(0,T ;V 2
θ )≤C,

therefore, recalling that θg ∈L∞(0,T ;H2(Ω)), we have

∥θκ∥L∞(0,T ;H2(Ω))≤C. (5.14)

By comparison in the equation for θκ, we infer

∥∂tθκ∥≤κ∥∆θκ∥+∥∇θκ∥L4(Ω)∥uκ∥L4(Ω)≤C,

where we have exploited (5.14), ∥uκ∥L∞(0,T ;Vσ)≤C and standard Sobolev embeddings.
Therefore we obtain ∥∂tθκ∥L∞(0,T ;H)≤C. Summing up, for the original problem, the
following uniform-in-κ estimates hold:

• uκ is uniformly bounded in L∞(0,T ;Vσ)∩L2(0,T ;Wσ)∩L2(0,T ;[W 2,p(Ω)]2)∩
H1(0,T ;[Lp(Ω)]2), for any p∈ [2,∞),

• φκ is uniformly bounded in L∞(0,T ;V )∩L4(0,T ;V2)∩H1(0,T ;V ),

• µκ is uniformly bounded in L∞(0,T ;V ),

• θκ is uniformly bounded in L∞(0,T ;L∞(Ω))∩L∞(0,T ;H2(Ω))∩W 1,∞(0,T ;H).

By a classical compactness argument, we obtain a candidate strong solution to CHB0

as κ→0, say (u,φ,θ), with the following regularity

u∈L∞(0,T ;Vσ)∩L2(0,T ;Wσ)∩L2(0,T ;[W 2,p(Ω)]2)∩H1(0,T ;[Lp(Ω)]2), p∈ [2,∞)

φ∈L∞(0,T ;V )∩L4(0,T ;V2)∩H1(0,T ;V )

µ∈L∞(0,T ;V )

θ∈L∞(0,T ;L∞(Ω))∩L∞(0,T ;H2(Ω))∩W 1,∞(0,T ;H).

Using a standard argument we can pass to the limit as κ→0, obtaining that (u, φ, θ)
is a solution to CHB0 that satisfies the system almost everywhere in Ω×(0,T ). Thanks
to the same arguments used in the proof of Theorem 3.1, we can prove the additional
regularity properties for φ and u stated in Theorem 3.6. The proof is finished.

Proof. (Proof of Theorem 3.7.) In order to prove Theorem 3.7, let us consider the
same setting as the one adopted in the proof of uniqueness of weak solutions (Theorem
3.5). We start from (5.6). All the estimates are indeed the same: the only difference is
in the term I7. In particular, an integration by parts gives

I7=−(u1∆A
−1
0 θ,∇A−1

0 θ)=(∇A−1
0 θ,∇u1 ·∇A−1

0 θ)≤∥∇u1∥L∞(Ω)∥θ∥2♯ ,

where we exploited −∆A−1
0 θ=θ almost everywhere in Ω×(0,T ). Therefore, we get

from (5.6) (see also (4.92))

d

dt
H3+

ν

2
∥u∥2+ α

8
∥∇φ∥2≤CR4H3,

where R4=R3+∥∇u1∥L∞(Ω). Observe that R4∈L1(0,T ), since u1∈
L2(0,T ;[W 2,4(Ω)]2) ↪→L1(0,T ;[W 1,∞(Ω)]2), u1 being a strong solution. Hence
estimate (3.14) follows through Gronwall’s lemma. This concludes the proof.

Proof. (Proof of Theorem 3.8.) First of all, on account of the assumptions on
the initial data and on g, due to Theorems 3.1, 3.4, 3.6 and 3.7, there exist unique strong
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solutions to CHBκ, for each κ>0 as well as a unique strong solution to CHB0. Thus,
given κ>0, we consider the strong solution (uκ,φκ,θκ) to CHBκ and the strong solution
(u,φ,θ) to CHB0 corresponding to the same initial data. Note that, for any κ>0, the
boundary datum g satisfies assumptions (I)4 and (I)5. Setting U=u−uκ, Φ=φ−φκ,
Θ=θ−θκ, µ=−α∆Φ+Ψ′(φ)−Ψ′(φκ) and following [12], we have that (U,Φ,Θ) solves
the following identities

<∂tU,w>+b(u,U,w)+b(U,uκ,w)+ν(∇U,∇w)

=α(∇φ⊗∇Φ,∇w)+α(∇Φ⊗∇φκ,∇w)+(Θ,e2 ·w) ∀w∈Vσ (5.15)

<∂tΦ,v >+(∇µ,∇v)+(u ·∇Φ,v)+(U ·∇φκ,v)=0 ∀v∈V (5.16)

<∂tΘ,ξ >+κ(∇Θ,∇ξ)−κ(∇θ,∇ξ)+κ
∫
∂Ω

(∇θκ ·n)ξdS (5.17)

−(uΘ,∇ξ)−(Uθκ,∇ξ)=0 ∀ξ∈V.

We test the three equations with Φ, U and Θ, respectively. This yields

d

dt
H4+ν∥∇U∥2+κ∥∇Θ∥2+(∇µ,∇Φ)=

6∑
j=1

Ij ,

where H4=
1
2∥U∥2+ 1

2∥Φ∥
2+ 1

2∥Θ∥2 and

I1=−b(U,uκ,U), I2=α(∇φ⊗∇Φ,∇U)+α(∇Φ⊗∇φκ,∇U),

I3=(uΦ,∇Φ)+(Uφκ,∇Φ), I4=(Θ,e2 ·U),

I5=−(U ·∇θκ,Θ), I6=κ(∇θ,∇Θ)−κ
∫
∂Ω

(∇θκ ·n)ΘdS.

From now on, C>0 is a constant independent of κ that may vary from line to line. On
account of the existence and uniqueness (in particular from the proof of Theorem 3.6),
we know that our solutions satisfy the following bounds

∥u∥L∞(0,T ;Vσ)+∥u∥L∞(0,T ;[L3(Ω)]2)+∥φ∥L∞(0,T ;V )

+∥φ∥L∞(0,T ;W 2,3(Ω))+∥Ψ′′(φ)∥L∞(0,T ;L3(Ω))≤C, (5.18)

∥uκ∥L∞(0,T ;Vσ)+∥uκ∥L∞(0,T ;[L3(Ω)]2)+∥φκ∥L∞(0,T ;V )+∥φκ∥L∞(0,T ;W 2,3(Ω))

+∥Ψ′′(φκ)∥L∞(0,T ;L3(Ω))+∥θκ∥L∞(Ω×(0,T ))+∥θκ∥L∞(0,T ;H2(Ω))≤C. (5.19)

Following step by step the proof of Theorem 3.2, we can get

I1≤
ν

4
∥∇U∥2+C∥U∥2∥∇uκ∥2[L3(Ω)]4 ,

I2≤
ν

4
∥∇U∥2+ α

8
∥∆Φ∥2+C∥Φ∥2,

I3≤
α

8
∥∆Φ∥2+C(∥Φ∥2+∥φκ∥2∞∥U∥2).

Moreover, using standard arguments (see also (5.19)), we obtain

I4≤∥Θ∥ ∥U∥≤ 1

2
∥Θ∥2+ 1

2
∥U∥2,

I5≤∥U∥[L4(Ω)]2∥∇θκ∥[L4(Ω)]2∥Θ∥≤ ν

4
∥∇U∥2+C∥θκ∥2H2(Ω)∥Θ∥2≤ ν

4
∥∇U∥2+C∥Θ∥2.
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In conclusion, by the properties of the trace operator, together with the embedding
V ↪→H1/2(Ω),

I6≤κ
(
∥∇θ∥∥∇Θ∥+∥∇θκ∥[L2(∂Ω)]2∥Θ∥L2(∂Ω)

)
≤κ
(
∥∇θ∥∥∇Θ∥+C∥θκ∥H3/2(Ω) (∥Θ∥+∥∇Θ∥)

)
≤ κ

2
∥∇θ∥2+ κ

2
∥∇Θ∥2+C(κ+κ2)∥θκ∥2H3/2(Ω)+C∥Θ∥2.

Adding together the above estimates and recalling (4.92), we find

d

dt
H4+

ν

4
∥∇U∥2+ κ

2
∥Θ∥2+ α

4
∥∆Φ∥2≤CR5H4+

κ

2
∥∇θ∥2+C(κ+κ2)∥θκ∥2H3/2(Ω),

where R5 :=1+∥∇uκ∥2[L3(Ω)]4 +∥φκ∥2∞∈L1(0,T ). Hence Gronwall’s lemma gives (re-

call that H4(0)=0)

H4≤
κ

2

∫ T

0

eC∥∇θ∥2ds+C(κ+κ2)
∫ T

0

eC∥θκ∥2H3/2(Ω)ds.

Since we have ∥θ∥L2(0,T ;Vθ)≤C and by (5.19), recalling the embedding H2(Ω) ↪→
H3/2(Ω), we infer that (3.15) holds and the proof is finished.

6. Proofs of Section 3.4
Proof. (Proof of Theorem 3.9.) The proof follows closely the corresponding one

in [28]. Let (u, φ, θ) be the global weak solution with initial condition (u0,φ0,θ0) given
by Theorem 3.3. Due to the regularity properties of weak solution we have that for
any τ >0 there exists τ0∈ (0,τ) such that (u(τ0),φ(τ0),θ(τ0)) satisfies assumptions of
Theorem 3.1. Moreover, recalling (4.71) and Remark 4.2, we have

E(τ0)≤E(0)+
C2

0

2νβ0
∥θ0∥2(1−e−β0τ0)≤R+k0≤R1, φ(τ0)=m.

Thus we have a global strong solution on the time interval [τ0,+∞), which coin-
cides with the weak solution due to Theorem 3.4, corresponding to the initial datum
(u(τ0),φ(τ0),θ(τ0)). From (4.68) we have

∥θ∥2≤∥θ(τ0)∥2e−β0(t−τ0) ∀t≥ τ0. (6.1)

In the following the positive constants denoted by ci, i∈N, depend on R and possibly τ ,
but are independent of t and the specific initial data. Due to Gronwall’s lemma applied
to the energy estimate (4.70) together with (6.1), we have that, for every t≥ τ0,

E(u(t),φ(t),θ(t))≤E(u(τ0),φ(τ0),θ(τ0))

+
C2

0

2νβ0
∥θ(τ0)∥2(1−e−β0(t−τ0))≤ c0. (6.2)

We then have, by the same estimate (6.1) applied to (4.70),

d

dt
E(t)+∥∇µ∥2+ ν

2
∥∇u∥2+κ∥∇θ∥2≤ C2

0

2ν
∥θ(τ0)∥2e−β0(t−τ0), (6.3)

for every t≥ τ0. Integrating (6.3) on (t,t+1) we deduce:

E(u(t+1),φ(t+1),θ(t+1))
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+
ν

2

∫ t+1

t

∥∇u(s)∥2ds+κ
∫ t+1

t

∥∇θ(s)∥2ds+
∫ t+1

t

∥∇µ(s)∥2ds (6.4)

≤E(u(t),φ(t),θ(t))+
C2

0e
τβ0

2νβ0
∥θ(τ0)∥2(1−e−β0), ∀t≥ τ0, (6.5)

since e−β0t≤1 and eτ0β0 ≤eτβ0 . Thus, thanks to (6.2), since |Ψ(s)|≥−C for some C>0
independent of t and every s∈ [−1,1], we get

ν

2

∫ t+1

t

∥∇u(s)∥2ds+κ
∫ t+1

t

∥∇θ(s)∥2ds+
∫ t+1

t

∥∇µ(s)∥2ds≤ c1 ∀t≥ τ0.

In conclusion, we write, for every t≥ τ0,

E(u(t),φ(t),θ(t))+

∫ t+1

t

(ν
2
∥∇u(s)∥2+κ∥∇θ(s)∥2+∥∇µ(s)∥2

)
ds≤ c2. (6.6)

The following global-in-time estimates are formal, but they can be made rigorous by
repeating verbatim the proof of Theorem 3.1 in the Galerkin setting (note that the
energy identity also holds in the Galerkin scheme). On account of (4.47), here we can
find

d

dt
Λ+

ν

4
∥Au∥2+ ω

2
∥∂tu∥2+

α

4
∥∇∂tφ∥2≤ c3(1+Λ2), (6.7)

where Λ :=(µ,u ·∇φ)+ 1
2∥∇µ∥

2+ 1+ων
2 ∥∇u∥2. Recalling (6.6), we have∫ t+1

t

Λ(s)ds≤ c4, ∀t≥ τ0. (6.8)

Hence, observing that Λ≥ 1
4

(
∥∇u∥2+∥∇µ∥2

)
−C, for some C>0 independent of t, we

can apply the uniform Gronwall lemma (see [48, Ch.3, Lemma 1.1]), to (6.8) to obtain
Λ(t)≤ c5 for every t≥ τ . This entails

∥u∥L∞(τ,∞;Vσ)+∥µ∥L∞(τ,∞;V )≤ c6. (6.9)

Integrating (6.7) in time, on (t,t+1), we deduce

∥u∥L2(t,t+1;Wσ)+∥∂tu∥L2(t,t+1;Hσ)+∥∂tφ∥L2(t,t+1;V )≤ c7 ∀t≥ τ.

Arguing formally, we also obtain (see (4.60))(
1

2
+
κ

2

)
d

dt
∥∇θ∥2+ 1

2
∥∂tθ∥2+

κ

4
∥∆θ∥2≤C∥∇θ∥2 ∀t≥ τ0, (6.10)

with C depending on ci, i=0,. ..,7, but not on t. Therefore, due to (6.6) we infer, by
uniform Gronwall’s lemma, ∥θ∥L∞(τ,∞;Vθ)≤ c8, for every t≥ τ . Then, integrating (6.10)
in time on (t,t+1), we get

∥θ∥L2(t,t+1;V 2
θ )+∥∂tθ∥L2(t,t+1;H)≤ c9 ∀t≥ τ.

Taking the time regularity of the strong solutions into account, (3.16) and (3.17) fol-
low. Then (3.18) is deduced from (6.9) and [28, Thm.A.2]. Therefore, we know that
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φ∈L∞(τ,∞;W 2,p(Ω)) and F ′(φ)∈L∞(τ,∞;Lp(Ω)) for any p∈ [2,∞). Then, on ac-
count of (2.8), we deduce F ′′(φ)∈L∞(τ,∞;Lp(Ω)), for p∈ (2,∞) (see [27, Lemma
5.1]). Thus, by the chain rule, F ′(φ)∈L∞(τ,∞;W 1,p(Ω)) for any p∈ (2,∞). Fix now
p>2. Thanks to the embedding W 1,p(Ω) ↪→L∞(Ω), there exists C>0 depending on
the norms of the initial data, the parameters of the problem, the domain and F , such
that ∥F ′(φ)∥L∞(Ω×(τ,∞))≤ c10. This entails the existence of δ>0 such that

sup
t≥τ

∥φ(t)∥C(Ω)≤1−δ, (6.11)

ending the proof.

Proof. (Proof of Theorem 3.10.) By replacing τ with τ
2 in Theorem 3.1, we

can assume that the solution (u, φ, θ) satisfies the uniform estimates of Theorem 3.9
on the interval [ τ2 ,∞). We need some other higher-order a priori estimates on the
solution (see [27] for an analogous proof). In the sequel, ci, i∈N, stands for a positive
constant depending onR,m,τ , but not on the specific initial data. Given h>0, repeating
verbatim the proof of Theorem 3.2, in which the difference (u1−u2,φ1−φ2,θ1−θ2) is
replaced by the difference quotients (∂ht u,∂

h
t φ,∂

h
t θ), we deduce the following, for t≥ τ

2

d

dt
H2+

ν

4
∥∇∂ht u∥2+κ∥∇∂ht θ∥2+

α

4
∥∆∂ht φ∥2≤CRH2, (6.12)

where

H2 :=
1

2
∥∂ht u∥2+

1

2
∥∂ht φ∥2+

1

2
∥∂ht θ∥2, R :=1+∥∇u∥2[L3(Ω)]4 +∥φ∥2∞+∥θ∥2V 2

θ
.

Here C>0 does not depend on h, but depends on M1 and M3 (see Theorem 3.9). By
Sobolev embeddings, we obtain (see also (3.17))∫ t+1

t

(H2(s)+R(s))ds≤ c0 ∀t≥ τ

2
,

where c0 depends on M2 but not on h. We can thus apply the uniform Gronwall’s
lemma to (6.12), with r= τ

2 . This gives

∥∂ht u∥+∥∂ht φ∥+∥∂ht θ∥≤ c1 ∀t≥ τ,

so that

∥∂ht u∥L2(t,t+1;Vσ)+∥∂ht φ∥2L2(t,t+1;H2(Ω))+∥∂ht θ∥L2(t,t+1;Vθ)≤ c2 ∀t≥ τ.

A passage to the limit as h→0 entails (3.20) and (3.21).
We now prove the separation property. First of all, we recall that ∥u ·

∇φ∥L∞(τ,∞,H)≤ c3 owing to (3.16) and (3.18). Then, due to (3.20) we deduce
∂tφ+u ·∇φ∈L∞(τ,∞;H); thus the regularity theory for the Neumann problem gives
∥µ∥L∞(τ,∞,H2(Ω))≤ c4 so that ∥µ∥L∞(Ω×(τ,∞))≤ c5. From (3.18), (3.19) and F ′∈
C3([−1+δ,1−δ]) we deduce that ∥F ′(φ)∥L∞(τ,∞,V2)≤ c6. Hence, well-known regularity
results imply ∥φ∥L∞(τ,∞,H4(Ω))≤ c7. Concerning u, setting f :=µ∇φ−∂tu−(u ·∇)u+
θe2, and arguing as in [28, Thm.4.4], we find ∥u∥L∞(τ,∞,[W 2,p(Ω)]2)≤ c8= c8(p), since
f∈L∞(τ,∞,[Lp(Ω)]2), with p∈ (1,2). Then, using [W 2, 43 (Ω)]2 ↪→ [W 1,4(Ω)]2 we can get
f∈L∞(τ,∞,[L2(Ω)]2) and recover ∥u∥L∞(τ,∞;Wσ)≤ c9. Therefore (3.22) holds and the
proof is concluded.
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Proof. (Proof of Theorem 3.11.) Let T >0 be given and let (u, φ, θ) be
a strong solution to CHB0 on [0,T ] according to Definition 3.4. We can exploit the
regularity stated in Definition 3.4, though, in this case, δ depends on T . We know
that φ∈L∞(0,T ;W 2,p(Ω)) and F ′(φ)∈L∞(0,T ;Lp(Ω)) for any p∈ [2,∞). Similarly
as before, we deduce F ′′(φ)∈L∞(0,T ;Lp(Ω)), for p∈ (2,∞). Thus the chain rule
gives F ′(φ)∈L∞(0,T ;W 1,p(Ω)) for any p∈ (2,∞). For p>2, due to the embedding
W 1,p(Ω) ↪→L∞(Ω), there exists C>0 depending on the norms of the initial data, the
parameters of the problem, the domain, F and T , such that ∥F ′(φ)∥L∞(Ω×(0,T ))≤C,
which implies, together with Remarks 3.9 and 3.11, the existence of δ= δ(T )>0 such
that (3.23) holds. The proof is finished.
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Appendix. Approximating the NSCH system (1.1). Here we show how to
formally deduce system (1.3) from NSCH system (1.1) introduced in [40]. We use a
perturbation argument ([26]): Let (ρ∗,u∗,φ∗,p∗)=(c1,0,c2,p

∗), c1 ̸=0, c2∈ (−1,1), be
a stationary solution to (1.1). We now write the system for the perturbation (ρ+
ρ∗, u, φ, p+p∗). From (1.1)3 we obtain

∂t(ρ+ρ
∗)+u ·∇(ρ+ρ∗)=−(ρ+ρ∗)div u,

so that

∂tρ+u ·∇ρ=−ρ∗div u−ρdiv u.

This equation holds for any ρ∗= c∈R+. Therefore we obtain{
∂tρ+u ·∇ρ=0

div u=0.
(A.1)

From (1.1)1 we deduce

(ρ+ρ∗)∂tu+(ρ+ρ∗)(u ·∇)u+∇(p+p∗)−div(ν(φ)Du)−∇(div u)

=−α div((ρ+ρ∗)∇φ⊗∇φ)+(ρ+ρ∗)g.

We recall that, (ρ∗,u∗,φ∗,p∗) being a stationary solution to (1.1), the hydrostatic bal-
ance ∇p∗=ρ∗g holds. Thus we get, remembering (A.1) and dividing by ρ∗,

∂tu+(u ·∇)u+
ρ

ρ∗
∂tu+

ρ

ρ∗
(u ·∇)u+

1

ρ∗
∇p−div

(
ν(φ)

ρ∗
Du

)
=−α div(∇φ⊗∇φ)−α div

(
ρ

ρ∗
∇φ⊗∇φ

)
+
ρ

ρ∗
g.

Since ρ∗ is arbitrary, we can take it arbitrarily large, such that ρ
ρ∗ ≈0, and we can

neglect all the terms with this coefficient in front, except the gravitational one, because
it is linear and by means of an energy budget argument. Therefore, we find

∂tu+(u ·∇)u+
1

ρ∗
∇p−div

(
ν(φ)

ρ∗
Du

)
=−α div(∇φ⊗∇φ)+ ρ

ρ∗
g. (A.2)
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In conclusion, dividing by ρ∗, we infer from (1.1)2 the following(
1+

ρ

ρ∗

)
∂tφ+

(
1+

ρ

ρ∗

)
u ·∇φ=∆

(
− α

ρ∗
1

1+ ρ
ρ∗

div

(
(1+

ρ

ρ∗
)∇φ

)
+

1

ρ∗
Ψ′(φ)

)
.

By using again ρ
ρ∗ ≈0, we deduce

∂tφ+u ·∇φ=∆

(
− α

ρ∗
∆φ+

1

ρ∗
Ψ′(φ)

)
. (A.3)

Putting together equations (A.1), (A.2) and (A.3), we are then led to formulate (1.3),
which can thus be interpreted as an incompressible approximation of (1.1).
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