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A SECOND ORDER ACCURATE, ENERGY STABLE NUMERICAL
SCHEME FOR THE ONE-DIMENSIONAL POROUS MEDIUM
EQUATION BY AN ENERGETIC VARIATIONAL APPROACH∗

CHENGHUA DUAN† , WENBIN CHEN‡ , CHUN LIU§ ,

CHENG WANG¶, AND XINGYE YUE∥

Abstract. The porous medium equation (PME) is a typical nonlinear degenerate parabolic equa-
tion. An energetic variational approach (EVA) provides many insights to such a physical model, in
which the trajectory equation can be obtained, based on different dissipative energy laws. In this ar-
ticle, we propose and analyze a second order accurate in time numerical scheme for the PME in the
EVA approach. A modified Crank-Nicolson temporal discretization is applied, combined with the finite
difference over a uniform spatial mesh. Such a numerical scheme is highly nonlinear, and it is proved to
be uniquely solvable on an admissible convex set, in which the convexity of the nonlinear implicit terms
will play an important role. Subsequently, the energy dissipation property is established, with careful
summation by parts formulas applied in the spatial discretization. More importantly, an optimal rate
convergence analysis is provided in this work, in which many highly non-standard estimates have to
be involved, due to the nonlinear parabolic coefficients. The higher order asymptotic expansion (up to

fourth order temporal and spatial accuracy), the rough error estimate (to establish the W 1,∞
h bound

for the numerical variable), and the refined error estimate have to be carried out to accomplish such a
convergence result. In our knowledge, it will be the first work to combine three theoretical properties
for a second order accurate numerical scheme to the PME in the EVA approach: unique solvability,
energy stability and optimal rate convergence analysis. A few numerical results are also presented in
this article, which demonstrate the robustness of the proposed numerical scheme.

Keywords. Energetic variational approach; porous medium equation; trajectory equation; optimal
rate convergence analysis.

AMS subject classifications. 35K35; 35K55; 49J40; 65M06; 65M12.

1. Introduction and background
In this paper, we consider the second order scheme of the porous medium equation

(PME):

∂tf =∆x(f
m), x∈Ω⊂Rd, m>1,

where f :=f(x,t) is a non-negative scalar function of space x∈Rd (d≥1) and the time
t∈R+, and m is a constant larger than 1. It has wide application in many physical and
biological models, such as an isentropic gas flow through a porous medium, the viscous
gravity currents, nonlinear heat transfer and image processing [39], etc.

The basic characteristic of the PME is that it is degenerate at points where f =
0. In turn, there are many special features: the finite speed of propagation, the free
boundary, and a possible waiting time phenomenon [13, 39]. Many theoretical analyses
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have been derived in the existing literature [1, 26, 32, 36, 37, 39], etc. Meanwhile, various
numerical methods have been studied for the PME, such as finite difference approach
[17], tracking algorithm method [9], a local discontinuous Galerkin finite element method
[45], Variational Particle Scheme (VPS) [44] and an adaptive moving mesh finite element
method [31]. Also see other related numerical works [4, 18, 25, 28, 29], etc.

The numerical methods have also been developed for the PME by an Energetic
Variational Approach (EnVarA). Instead of solving the original PME in Eulerian co-
ordinate directly, we need two steps: obtaining a trajectory equation by an EnVarA
and combining with the mass conservation law. Based on the trajectory of particles,
the free boundary and the waiting time can be obtained more accurately. Meanwhile,
the numerical solution can naturally keep the physical laws, such as the conservation
of mass, energy dissipation and force balance. Moreover, numerical schemes could be
constructed based on different dissipative energy laws. These features indicate certain
advantages of the Lagrangian method over the traditional Euler method. In [13, 14],
two different Lagrange numerical schemes have been derived, based on two different
energy dissipation laws. It has also been proved that these two numerical schemes are
uniquely solvable on an admissible convex set, and preserve the corresponding discrete
energy dissipation laws. Besides a good approximation for the solution without oscil-
lation and the free boundary, the notable advantage is that the waiting time problem
could be naturally treated, which has been a well-known difficult issue for all the existing
methods.

The aim of the paper is to construct a second order accurate scheme in both time and
space. A modified Crank-Nicolson approximation is taken in the temporal discretization,
and a finite difference is applied over a uniform spatial mesh. The resulting numerical
scheme is highly nonlinear, and its solution is equivalent to a minimization of a discrete
functional. In turn, its unique solvability comes from the convexity property associated
with the implicit nonlinear parts, combined with the singular nature of the logarithmic
terms. Subsequently, an unconditional energy stability is a direct consequence of the
convexity analysis of each numerical approximation. More importantly, an optimal rate
convergence analysis is provided in this work. In fact, the highly nonlinear nature of
the trajectory equation makes the corresponding analysis very challenging. To overcome
these subtle difficulties, we make use of a higher order expansion technique to ensure
a higher order consistency estimate, which is needed to obtain a discrete W 1,∞ bound
of the numerical solution. Similar ideas have been reported in earlier literature for
incompressible fluid equations [15, 16, 33, 42], non-local gradient flows [19, 21, 27],
while the analysis presented in this work turns out to be more complicated, due to the
lack of a linear diffusion term in the trajectory equation of the PME and the high order
of the numerical scheme. In addition, we have to carry out two-step estimates to recover
the nonlinear analysis:

• Step 1. A rough estimate for the discrete derivative of numerical solution,
namely (Dhx

n+1
h ) at time tn+1, to control the nonlinear term;

• Step 2. A refined estimate for the numerical error function to obtain an optimal
convergence order.

Different from a standard error estimate, the rough estimate controls the nonlinear term,
which is an effective approach to handle the highly nonlinear term. As a result of the
rough estimate, the refined error estimate is performed to derive the desired convergence
result.

This paper is organized as follows. The trajectory equation of the PME and the
numerical scheme are outlined in Section 2 and Section 3, respectively. The proof of
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unique solvability analysis, unconditional energy stability, and optimal rate convergence
analysis are provided in Sections 4, 5 and 6, respectively. In addition, the convergence
of Newton’s iteration for the nonlinear numerical scheme can be found in Section 7.
Finally we present a simple numerical example to demonstrate the convergence rate of
the numerical scheme in Section 8. Some concluding remarks are also made in Section 9.

2. Trajectory equation of the PME
In comparison with solving the original PME directly, we split the PME into mass

conservation and force balance relationship (trajectory equation in Lagrangian coordi-
nate), which can be regarded as the gradient flow of total energy and contain all the
physical information of the system. Based on the trajectory of particles, the free bound-
ary, the finite speed and the waiting time can be computed more effectively. Moreover,
the system satisfies some laws of physics, such as the conservation of mass, force balance
and the dissipation of energy. In this section, we review the one-dimensional trajectory
equation, derived by an Energetic Variational Approach.

Firstly, we briefly introduce the Lagrangian coordinate and the Eulerian coordinate
systems.

Definition 2.1. Suppose that ΩX
0 and Ωx

t ⊂Rm, m∈N+, are domains with smooth
boundaries, time t>0, and v is a smooth vector field in Rm. The flow map x(X,t) :
ΩX

0 →Ωx
t is defined as a solution of

d

dt
x(X,t)=v(x(X,t),t), t>0,

x(X,0)=X,
(2.1)

where X=(X1,...,Xm)∈ΩX
0 and x=(x1,...,xm)∈Ωx

t . The coordinate system X is
called the Lagrangian coordinate and ΩX

0 is called the reference configuration; the coor-
dinate system x is called the Eulerian coordinate and Ωx

t is called the deformed config-
uration [13, 14].

Considering ΩX
0 and Ωx

t are the same domain described by different coordinate
systems, we uniformly denote the domain by Ω in the rest of this paper.

The following initial-boundary problem is formulated:

∂tf+∂x(fv)=0, x∈Ω⊂R, t>0, (2.2)

fv=−∂x(fm), x∈Ω, m>1, (2.3)

f(x,0)=f0(x)≥0, x∈Ω, (2.4)

∂xf =0, x∈∂Ω, t>0, (2.5)

where f is a non-negative function, Ω is a bounded domain and v is the velocity. The
following lemma is available; the proof has been provided in a recent work [13], here we
go over it again.

Lemma 2.1. f(x,t) is a positive solution of (2.2)-(2.5) if and only if f(x,t) satisfies
the corresponding energy dissipation law:

d

dt

∫
Ω

f lnfdx=−
∫
Ω

f

mfm−1
|v|2dx. (2.6)

Proof. We first prove the energy dissipation law (2.6) if f is the solution of
(2.2)-(2.5). Multiplying by (1+lnf) and integrating on both sides of (2.2), we get∫

Ω

(1+lnf)∂tfdx=−
∫
Ω

(1+lnf)∂x(fv)dx.
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Using integration by parts, in combination with (2.3), we have

d

dt

∫
Ω

f lnfdx=

∫
Ω

∂xf

f
(fv)2dx=−

∫
Ω

f

mfm−1
|v|2dx≤0. (2.7)

Subsequently, we are also able to derive (2.3) from the energy dissipation law (2.6)
by EnVarA, which include the mass conservation, the least action principle (LAP), the
maximum dissipation law (MDL), and force balance.

• The mass conservation. We know that the conservation of mass means∫
EX

0

f0(X)dX=

∫
Ex

t

f(x,t)dx=

∫
EX

0

f(x(X,t),t)det
∂x

∂X
dX,

where f0(X) is the initial condition. Ex
t ⊂Ωx

t is the deformed configuration

of an arbitrary subdomain EX
0 ⊂ΩX

0 , and det ∂x(X,t)
∂X is the Jacobian matrix of

the map: X→x(X,t). Thus, in the Lagrangian coordinate, mass conservation
leads to

f(x(X,t),t)=
f0(X)

det ∂x(X,t)
∂X

. (2.8)

In addition, (2.2) corresponds to a conservation law in the Eulerian coordinate.

• LAP. With (2.8) and the total energy

Etotal=

∫
Ω

f lnfdx, (2.9)

the action functional in Lagrangian coordinate is

A(x)=

∫ t∗

0

(−H)dt=−
∫ t∗

0

∫
ΩX

0

f0(X)ln
(f0(X)

∂Xx

)
dXdt,

where t∗>0 is a given terminal time. By taking the variational of A(x) with
respect to x, we obtain the conservation force

Fcon=
δA
δx

=−∂xf,

in Eulerian coordinate, and

Fcon=−∂X
(
f0(X)

∂Xx

)
,

in Lagrangian coordinate.

• MDL. Consider the entropy production

∆=

∫
Ω

f

mfm−1
|v|2dx.

By taking the variational of 1
2∆ with respect to v, we have the dissipation force

Fdis=
δ 1
2∆

δv
=

f

mfm−1
v
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in Eulerian coordinate and

Fdis=
δ 1
2∆

δxt
=

f0(X)

m
(

f0(X)
∂Xx

)m−1xt

in Lagrangian coordinate.

• Force balance. By the force balance law, we obtain the trajectory equation:

f0(X)

m
( f0(X)

∂Xx

)m−1 ∂tx=−∂X
(
f0(X)

∂Xx

)
, (2.10)

in the Lagrangian coordinate, and the Darcy’s law in the Eulerian coordinate

f

mfm−1
u=−∂xf.

which is exactly (2.3).

Note that there is an assumption that the value of initial state f0(x) is non-negative in
Ω to make

∫
Ω
f lnfdx well-defined in (2.6).

In turn, the trajectory problem becomes

f0(X)

m
( f0(X)

∂Xx

)m−1 ∂tx=−∂X
(
f0(X)

∂Xx

)
, X ∈Ω, t>0, (2.11)

x|∂Ω=X|∂Ω, t>0, (2.12)

x(X,0)=X, X ∈Ω. (2.13)

Finally, with a substitution of (2.11) into (2.8), we obtain the solution f(x,t) to (2.2)-
(2.5).

Throughout the rest of this article, the one-dimensional trajectory equation will be
considered.

3. The proposed numerical scheme
Consider the trajectory problem for the porous medium equation

f0(X)

m
( f0(X)

∂Xx

)m−1 ∂tx=−∂X
(
f0(X)

∂Xx

)
, X ∈Ω, t>0, (3.1)

x |X=0=0, and x |X=1=1, t>0, (3.2)

x(X,0)=X, X ∈Ω. (3.3)

Let X0 be the left point of Ω and h= |Ω|
M be the spatial step, M ∈N+. Denote by

Xr=X(r)=X0+rh, where r takes on integer and half integer values. Let EM and CM
be the spaces of functions whose domains are {Xi | i=0,...,M} and {Xi− 1

2
| i=1,...,M},

respectively. In component form, these functions are identified via li= l(Xi), i=0,...,M ,
for l∈EM , and ϕi− 1

2
=ϕ(Xi− 1

2
), i=1,...,M , for ϕ∈CM .

The difference operator Dh :EM →CM , dh :CM →EM , and D̃h :EM →EM can be de-
fined as:

(Dhl)i− 1
2
=(li− li−1)/h, i=1,...,M, (3.4)
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(dhϕ)i=(ϕi+ 1
2
−ϕi− 1

2
)/h, i=1,...,M−1, (3.5)

(D̃hl)i=

 (li+1− li−1)/2h, i=1,...,M−1,
(4li+1− li+2−3li)/2h, i=0,
(li−2−4li−1+3li)/2h, i=M.

(3.6)

Let Q :={l∈EM | li−1<li, 1≤ i≤M ; l0=X0, lM =XM} be the admissible set, in
which the particles are arranged in the order without twisting or exchanging. Its bound-
ary set is ∂Q :={l∈EM | li−1≤ li, 1≤ i≤M, and li= li−1, for some 1≤ i≤M ; l0=
X0, lM =XM}. Then Q̄ :=Q∪∂Q is a closed convex set.

For two grid functions f and g over a uniform numerical mesh h, the discrete ℓ2

inner product and the associated ℓ2 norm are defined as

⟨f,g⟩ :=h
(1
2
(f0g0+fMgM )+

M−1∑
i=1

figi

)
, ∥f∥2 :=

√
⟨f,f⟩. (3.7)

The corresponding ℓ2 inner product and ℓ2 norm for the gradient variable could be
formulated as

⟨Dhf,Dhg⟩ :=h
M∑
i=1

(Dhf)i− 1
2
(Dhg)i− 1

2
, ∥Dhf∥2 :=

√
⟨Dhf,Dhf⟩. (3.8)

In addition to the discrete ∥·∥2 norm, the discrete maximum norm is defined as ∥f∥∞ :=
max0≤i≤M |fi|. An application of inverse inequality gives

∥f∥∞≤Ch− 1
2 ∥f∥2. (3.9)

Notice that this inverse inequality is valid for the spatially discrete function, while it is
incorrect for a continuous function.

We propose the second order numerical scheme as follows, based on a modified
Crank-Nicolson approach. Given the positive initial state f0(X)∈EM and the particle
position xn,xn−1∈Q, find xn+1=(xn+1

0 ,...,xn+1
M )∈Q such that

f0(Xi)

m
( f0(X)
Sh(xn,xn−1)

)m−1

i

· x
n+1
i −xni
∆t

=−dh
[(
f0(X)

ln(Dhx
n+1)− ln(Dhx

n)

Dhxn+1−Dhxn

)
−A0∆tDh(x

n+1−xn)+∆t2(
1

Dhxn+1
− 1

Dhxn
)
]
i
, (3.10)

with Sh(x
n,xn−1)=max(D̃h(

3

2
xn− 1

2
xn−1),∆t2),

for 1≤ i≤M−1, and we take xn+1
0 =0 and xn+1

M =1, n=0, ·· · ,N−1. Notice that A0 is
a second order artificial regularization parameter.

To solve the nonlinear Equation (3.10), we use Newton’s iteration.

Newton’s iteration. Set xn+1,0=xn. For k=0,1,2, ·· ·, update xn+1,k+1=xn+1,k+
δx, which is the solution of

f0(Xi)

m
( f0(X)
Sh(xn,xn−1)

)m−1

i

· δxi

∆t
−dh

[(
f0(X) ·Wn+1,k+A0∆t+

∆t2

(Dhxn+1,k)2

)
Dhδx

]
i
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=− f0(Xi)

m
( f0(X)
Sh(xn,xn−1)

)m−1

i

xn+1,k
i −xni

∆t
−dh

[
f0(X)Rn+1,k

−A0∆tDh(x
n+1,k−xn)+∆t2(

1

Dhxn+1,k
− 1

Dhxn
)
]
i
, 1≤ i≤M−1, (3.11)

with δx0
= δxM

=0,

where, for i=1, ·· · ,M ,

Wn+1,k

i− 1
2

=

[
(1− Dhx

n

Dhxn+1,k )+ln( Dhx
n

Dhxn+1,k )

(Dhxn+1,k−Dhxn)2

]
i− 1

2

,

and

Rn+1,k

i− 1
2

=
[ ln(Dhx

n+1,k)− ln(Dhx
n)

Dhxn+1,k−Dhxn

]
i− 1

2

.

Let wn+1,k
i = |Dhx

n+1,k

i− 1
2

−Dhx
n
i− 1

2

|, 1≤ i≤M . Then we have

lim
wn+1,k

i →0
Wn+1,k

i− 1
2

=− 1

2(Dhxn+1,k)2
,

and

lim
wn+1,k

i →0
Rn+1,k

i− 1
2

=
1

Dhxn+1,k
.

Then we obtain the numerical solution f(xn,tn) :=fni by

fni =
f0(X)

D̃hxni
, 0≤ i≤M, (3.12)

which is the discrete scheme of (2.8).

Remark 3.1. In the numerical scheme (3.10), the numerical discretization to the

nonlinear chemical potential term, namely ln(Dhx
n+1)−ln(Dhx

n)
Dhxn+1−Dhxn , turns out to be a sec-

ond order approximation to 1
∂Xx at the middle time instant tn+1/2, due to the fact

that lny is the primitive function of 1
y (in terms of y=∂Xx>0). Because of this sub-

tle fact, such a second order numerical discretization is labeled as a modified Crank-
Nicolson approximation. In particular, this approximation makes its inner product with
Dh(x

n+1−xn) exactly the difference of the nonlinear energy functionals between two
consecutive time steps, as will be observed in the later sections. Also see the related
works [6, 7, 8, 10, 11, 12, 20, 22, 23, 24, 35] for various gradient flows, in particular for
the modified Crank-Nicolson approximation to the nonlinear energy potential, which

takes a form of F (ϕn+1)−F (ϕn)
ϕn+1−ϕn (with ϕ being the phase variable). In comparison with

the standard Crank-Nicolson formula, such a modified Crank-Nicolson approximation
greatly facilitates the energy stability analysis, while the standard formula would face
serious difficulty in the theoretical justification of this property.

Remark 3.2. The term Sh(x
n,xn−1), given by Sh(x

n,xn−1)=max(D̃h(
3
2x

n−
1
2x

n−1),∆t2) in (3.10), stands for a second order approximation to ∂Xx at the middle



994 A SECOND ORDER METHOD FOR POROUS MEDIUM EQUATION

time instant tn+1/2 in the nonlinear mobility part on the left-hand side. The mobility
function has to be explicitly updated in the numerical approximation, to ensure the
convexity of the temporal differentiation term and the unique solvability of the numer-
ical scheme. Therefore, we have to use a second order explicit extrapolation formula
in such a numerical approximation, which in turn gives the extrapolation weight coeffi-
cients as 3

2 and − 1
2 at time steps tn, tn−1, respectively. In addition, a maximum value

of ∆t2 is taken, to ensure the point-wise positivity of such a mobility function. On the
other hand, if the exact PDE solution preserves a separation property, i.e, ∂Xx≥ ϵ0 for
a fixed ϵ0>0, we see that 3

2D̃hx
n− 1

2D̃hx
n−1 will always be greater than another fixed

constant, if the numerical solution is a sufficiently accurate approximation to the exact
PME solution. In other words, if the exact PME solution preserves a phase separation
property and the numerical solution is sufficiently accurate, the value of Sh(x

n,xn−1)

will always be given by 3
2D̃hx

n− 1
2D̃hx

n−1, a second order approximation to ∂Xx at

the middle time instant tn+1/2.

Remark 3.3. A similar energy dissipative numerical method has been reported
in [18], based on Eulerian coordinate. The authors replace the original problem with
a perturbed problem by a positivity-preserving perturbation term. In comparison with
this method in Eulerian coordinate, the trajectory equation in the Lagrangian coordi-
nate can capture the trajectory of particles along the direction of the maximum energy
dissipation. Therefore, the numerical scheme in this paper can naturally satisfy the
original discrete energy dissipation law, preserve the positivity of the solution and the
force balance law. In particular, the degenerate feature, such as the free boundary and
the waiting time, can be solved more effectively. In addition, another advantage of
the Lagrange method could be observed from the fact that, numerical schemes can be
established [13] based on different dissipation laws.

In addition, we consider the trajectory equation and numerical scheme for the free
boundaries. If the initial data is given with a compact support in Ω, the left and right
interfaces can be defined as

ξt1 :=inf{x∈Ω:u(x,t)>0,t≥0}, (3.13)

ξt2 :=sup{x∈Ω:u(x,t)>0,t≥0}. (3.14)

We denote Γt := [ξt1,ξ
t
2]⊂Ω. In this case, we shall solve the initial-boundary value prob-

lem (2.11) with the boundary condition:

∂tx=− m

m−1

∂X [f0(X)m−1]

(∂Xx)m
, X= ξt1,ξ

t
2, (3.15)

and the initial condition

x(X,0)=X, X ∈Γ0. (3.16)

The Equation (3.15) is derived from the trajectory Equation (2.11) by the fact that the
initial data f0(X)=0, X ∈∂Ω.

Based on the Crank-Nicolson temporal discretization, the full numerical scheme
becomes

xn+1−xn

∆t
=− m

m−1

Dh[f0(X)m−1](
D̃hx

n+1
i +D̃hxn

i

2

)m , i=1,M. (3.17)

Again, the Newton’s iteration is applied in the numerical implementation.
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4. Unique solvability analysis
Theorem 4.1. Given any xn,xn−1, with Dhx

n>0, Dhx
n−1>0 at a point-

wise level. In more details, we denote Q(k),1=mini=1,...,M (Dhx
k)i−1/2 and Q(k),2=

maxi=1,...,M (Dhx
k)i−1/2, k=n,n−1, so that the following inequality is valid:

0<Q(k),1≤Dhx
k≤Q(k),2, k=n,n−1. (4.1)

The proposed numerical scheme (3.10) is uniquely solvable, with Dhx
n+1>0 at a point-

wise level.

Proof. With an introduction x̂=xn+1−X, it is clear that (3.10) could be rewritten
as

f0(Xi)

m
( f0(X)

Sh(xn,xn−1)

)m−1

i

·Xi+ x̂i−xn
i

∆t
=−dh

[(
f0(X)

ln(1+Dhx̂)− ln(Dhx
n)

1+Dhx̂−Dhxn

)
−A0∆tDh(x̂−xn)+∆t2(

1

1+Dhx̂
− 1

Dhxn
)
]
i
. (4.2)

Because of the fact that x̂0= x̂M =0, we see that the solution of (4.2) is equivalent to
a minimization of the following discrete functional:

F (x̂)=

4∑
j=1

Fj(x̂), with F1(x̂)=
1

2∆t

〈 f0(X)

m
( f0(X)
Sh(xn,xn−1)

)m−1 ,(X+ x̂−xn)2
〉
, (4.3)

F2(x̂)=
〈
f0(X)G(Dhx̂,Dhx

n),1
〉
, (4.4)

F3(x̂)=A0∆t
(1
2
∥Dhx̂∥22−⟨Dhx̂,Dhx

n⟩
)
, (4.5)

F4(x̂)=∆t2
(
−⟨ln(1+Dhx̂,1⟩+⟨Dhx̂,

1

Dhxn
⟩
)
, (4.6)

in which G(x,x0) is given by the primitive function of − ln(1+x)−lnx0

1+x−x0
, for a fixed x0:

G(x,x0)=

∫ 0

x

ln(1+ t)− lnx0
1+ t−x0

dt, for x≥−1. (4.7)

The convexity of F1, F3 and F4 (in terms of x̂) is obvious. For the functional F2, we
have the following observation, for x>−1:

G′′(x,x0)=
(
− ln(1+x)− lnx0

1+x−x0

)′
x
=

− 1
1+x

(1+x−x0)+(ln(1+x)− lnx0)

(1+x−x0)2
≥0, (4.8)

in which the convexity of −ln(1+x) has been used. This fact implies the convexity of
F2. Therefore, we conclude that F is convex in terms of x̂, provided that Dhx̂>−1 at
a point-wise level. Furthermore, F is strictly convex, because of the strict convexity of
F1.

In the next step, we wish to prove that there exists a minimizer of F at an interior
point of Q. To this end, consider the following closed domain: for a given δ>0,

Qδ :=
{
X+ x̂∈Q : 1+(Dhx̂)i+1/2 ≥ δ,∀0≤ i≤M−1

}
⊂Q. (4.9)

Since Qδ is a compact and convex set in RM−1, there exists a (not necessarily unique)
minimizer of F over Qδ. The key point of our positivity analysis is that such a minimizer
could not occur on the boundary of Qδ, if δ is small enough.
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Assume a minimizer of F over Qδ, denoted by x̂⋆, occurs at a boundary point.
There is at least one grid point such that 1+(Dhx̂

∗)i0+1/2 = δ. Next we estimate the
value of F (x̂∗). For the F1 part, the following bound is available, for any X+ x̂∈Q:

0≤F1(x̂)=
1

2∆t

〈 f0(X)

m
( f0(X)
Sh(xn,xn−1)

)m−1 ,(X+ x̂−xn)2
〉

≤ 1

2m∆t

(
C̃

|m−2|
1 (

3

2
Q(n),2+

1

2
Q(n−1),2)m−1

)
:=A(1), (4.10)

with C̃1=max
(
max
Ω
f0(X),

1

minΩf0(X)

)
,

in which the assumption (4.1) has been recalled, and we have made use of the following
fact:

0≤X+ x̂≤1, so that −1≤X+ x̂−xn≤1, at a point-wise level. (4.11)

For the F2 part, we observe that G(x,x0)≥0 for −1≤x≤0, and

G(x,x0)=−
∫ x

0

ln(1+ t)− lnx0
1+ t−x0

dt≥−
∫ x

0

1

1+ t
dt=−ln(1+x), for x≥0, (4.12)

in which the convexity of ln(1+ t) has been applied. Meanwhile, by the fact that X+ x̂∈
Q, we have the following observation:

0<1+(Dhx̂)i+1/2 ≤
1

h
, ∀0≤ i≤M−1, since 0≤xi≤1, 0≤xi+1≤1. (4.13)

In turn, its substitution into (4.12) implies that

G(Dhx̂,Dhx
n)≥−ln

1

h
=lnh, at any grid point. (4.14)

As a consequence, we obtain a lower bound for F2:

F2(x̂
∗)=

〈
f0(X)G(Dhx̂

∗,Dhx
n),1

〉
≥∥f0(X)∥∞ · lnh, (4.15)

The derivation for a lower bound of F3 is straightforward:

F3(x̂
∗)≥−A0∆t⟨Dhx̂,Dhx

n⟩≥−A0∆t

h2
, (4.16)

in which the inequality (4.13) has been applied. For the functional F4, we see that the
second part has the following lower bound:

∆t2⟨Dhx̂,
1

Dhxn
⟩≥−∆t2 · 1

h
· 1

Q(n),1
=− ∆t2

Q(n),1h
, (4.17)

in which the inequality (4.13) and the assumption (4.1) have been used. For the first
part of F4, we recall that 1+(Dhx̂

∗)i0+1/2 = δ, and the following estimate is available:

−⟨ln(1+Dhx̂
∗,1⟩=−h

(
ln(1+(Dhx̂

∗)i0+1/2)+
∑
i ̸=i0

ln(1+(Dhx̂
∗)i+1/2)

)
≥−h

(
lnδ+(M−1)ln

1

h

)
=h

(
ln

1

δ
+(M−1)lnh

)
≥hln 1

δ
+lnh, (4.18)
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in which the inequality (4.13) has been applied in the second step, and we have used
the fact that h ·M =1 in the last step. In turn, we get a lower bound for F4(x̂

∗):

F4(x̂
∗)=∆t2

(
−⟨ln(1+Dhx̂,1⟩+⟨Dhx̂,

1

Dhxn
⟩
)
≥∆t2h ln

1

δ
− ∆t2

Q(n),1h
+∆t2 lnh. (4.19)

Therefore, a combination of (4.10), (4.15), (4.16) and (4.19) yields a lower bound for
F (x̂∗):

F (x̂∗)≥∆t2hln
1

δ
−A∆t,h, with A∆t,h=

A0∆t

h2
+

∆t2

Q(n),1h
−(∆t2+∥f0(X)∥∞)lnh. (4.20)

Meanwhile, we observe that, by taking x̂0=0, so that X+ x̂0∈Qδ, the following
estimates are available:

0≤F1(x̂
0)≤A(1), (by (4.10)), F2(x̂

0)=0, F3(x̂
0)=0, F4(x̂

0)=0, (4.21)

so that

0≤F (x̂0)≤A(1). (4.22)

We also notice that both A∆t,h and A(1) are independent of δ. Consequently, by taking
δ>0 sufficiently small so that

∆t2hln
1

δ
−A∆t,h>A

(1), i.e. 0<δ< exp
(
−A∆t,h+A

(1)

∆t2h

)
. (4.23)

This yields a contradiction that F takes a global minimum at x̂⋆ over Qδ, because
F (x̂⋆)>F (x̂0). As a result, the global minimum of F over Qδ could only possibly occur
at an interior point, with δ satisfying (4.23). We conclude that there must be a solution
x̂∈ (Qδ)

o
, the interior region of Qδ, so that for all ψ∈Cper,

0=dsF (x̂+sψ)|s=0, (4.24)

which is equivalent to the numerical solution of (4.2), provided that δ satisfies (4.23).
The existence of a numerical solution of (3.10), with “positive” gradient, is established.
In addition, since F is a strictly convex function over Q, the uniqueness analysis for
this numerical solution is straightforward.

5. Unconditional energy stability
With the positivity-preserving and unique solvability properties for the numerical

scheme (3.10) established, we now prove energy stability. For any grid function x with
Dhx>0 at a point-wise level, the following discrete energy functional is introduced:

Eh(x) := ⟨f0(X)ln(Dhx),1⟩. (5.1)

In fact, such a discrete energy functional is a second order numerical approximation to
the continuous version of the free energy, namely

∫
Ω
f0(X)ln(∂Xx)dX, associated with

the trajectory Equation (2.10) of the PME. Notice that this energy is only involved with
∂Xx (and Dhx in the finite difference approximation), not with x itself.

Theorem 5.1. The proposed numerical scheme (3.10) is unconditionally energy
stable: Eh(x

n+1)≤Eh(x
n).
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Proof. Taking a discrete inner product with (3.10) by xn+1−xn, making use of
the summation by parts formula (because of the boundary condition (xn+1−xn)0=
(xn+1−xn)M =0), we get

1

∆t

〈 (Sh(x
n,xn−1))m−1

m(f0(X))m−2
,(xn+1−xn)2

〉
−
〈
f0(X)

ln(Dhx
n+1)− ln(Dhx

n)

Dhxn+1−Dhxn
,Dhx

n+1−Dhx
n
〉

+A0∆t∥Dh(x
n+1−xn)∥22−∆t2

〈 1

Dhxn+1
− 1

Dhxn
,Dhx

n+1−Dhx
n
〉
=0. (5.2)

The first term on the left-hand side turns out to be non-negative, since Sh(x
n,xn−1)>0,

f0(X)>0 at a point-wise level:〈 (S(xn,xn−1))m−1

m(f0(X))m−2
,(xn+1−xn)2

〉
≥0. (5.3)

The second term exactly gives the difference between the discrete energy values at time
steps tn+1 and tn:

−
〈
f0(X)

ln(Dhx
n+1)− ln(Dhx

n)

Dhxn+1−Dhxn
,Dhx

n+1−Dhx
n
〉

=−
〈
f0(X)ln(Dhx

n+1),1
〉
+
〈
f0(X)ln(Dhx

n),1
〉
=Eh(x

n+1)−Eh(x
n). (5.4)

The third term is clearly non-negative, and the last term turns out to be non-negative
as well:

−
〈 1

Dhxn+1
− 1

Dhxn
,Dhx

n+1−Dhx
n
〉
=
〈 1

Dhxn+1Dhxn
,(Dhx

n+1−Dhx
n)2
〉
≥0, (5.5)

in which we have made use of the unique solvability result, Dhx
n+1>0, Dhx

n>0, at
the point-wise level, as given by Theorem 4.1. As a consequence, a substitution of (5.3)-
(5.5) into (5.2) reveals an unconditional energy stability of the numerical scheme:

Eh(x
n+1)−Eh(x

n)≤−A0∆t∥Dh(x
n+1−xn)∥22≤0,so that Eh(x

n+1)≤Eh(x
n). (5.6)

This completes the proof of Theorem 5.1.

6. Optimal rate convergence analysis
Now we proceed into the convergence analysis. Let xe be the exact solution for the

PME Equation (3.1)-(3.3). With sufficiently regular initial data, we could assume that
the exact solution has regularity of class R:

xe∈R :=H6 (0,T ;C(Ω))∩H4(0,T ;C2(Ω)
)
∩L∞(0,T ;C6Ω)

)
, with

∥f∥Hk(0,T ;Cm(Ω)) :=
∥∥∥∥f(·,t)∥Cm(Ω)

∥∥∥
Hk(0,T )

, ∥f∥L∞(0,T ;Cm(Ω)) :=
∥∥∥∥f(·,t)∥Cm(Ω)

∥∥∥
L∞(0,T )

,

∥g∥Cm(Ω) :=

m∑
ℓ=0

∥∂ℓ
xg∥C(Ω), ∥∂ℓ

xg∥C(Ω) :=max
Ω

|∂ℓ
xg|. (6.1)

In addition, we assume that the following separation property is valid for the exact solution,
in terms of its gradient:

∂Xxe≥ ϵ0, for ϵ0>0, (6.2)

at a point-wise level. The following theorem is the convergence result of the proposed scheme.
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Theorem 6.1. Given initial data xe( · ,t=0)∈C6(Ω), suppose the exact solution for the
PME Equation (3.1)-(3.3) is of regularity class R. Define the numerical error function as
enj =(xe)

n
j −xn

j , at a point-wise level. Then, provided ∆t and h are sufficiently small, and
under the linear refinement requirement C1h≤∆t≤C2h, we have

∥en∥2+
(
∆t

n−1∑
m=0

∥1
2
Dh(e

m+em+1)∥22
)1/2

≤C(∆t2+h2), (6.3)

for all positive integers n, such that tn=n∆t≤T , where C>0 is independent of n, ∆t, and
h.

6.1. Higher order consistency analysis of (3.10): asymptotic expansion
of the numerical solution. By consistency, the exact solution xe solves the discrete
Equation (3.10) with second order accuracy in both time and space. Meanwhile, it is observed
that this leading local truncation error will not be enough to recover an a-priori W 1,∞

h bound
for the temporal derivative of the numerical solution, which is needed in the nonlinear error
estimate. To remedy this, we use a higher order consistency analysis, via a perturbation
argument, to recover such a bound in later analysis. In more details, we need to construct
supplementary fields, xh,1, x∆t,1, x∆t,2, and W , satisfying

W =xe+h2xh,1+∆t2x∆t,1+∆t3x∆t,2, (6.4)

so that a higher O(∆t4+h4) consistency is satisfied with the given numerical scheme (3.10).
The constructed fields xh,1, x∆t,1, x∆t,2, which will be found using a perturbation expansion,
will depend solely on the exact solution xe.

In other words, we introduce a higher order approximate expansion of the exact solution,
since a leading order consistency estimate gives a second order accuracy in both time and
space, which is not able to control the discrete W 1,∞

h norm of the numerical solution. Instead
of substituting the exact solution into the numerical scheme, a careful construction of an
approximate profile is performed by adding O(∆t2), O(∆t3) and O(h2) correction terms to the
exact solution to satisfy an O(∆t4+h4) truncation error. In turn, we estimate the numerical
error function between the constructed profile and the numerical solution, instead of a direct
comparison between the numerical solution and exact solution. Such a higher order consistency
enables us to derive a higher order convergence estimate in the ∥·∥2 norm, which in turn leads
to a desired W 1,∞

h bound of the numerical solution, via an application of inverse inequality.
This approach has been reported for a wide class of nonlinear PDEs; see the related works
for the incompressible fluid equation [15, 16, 33, 34, 40, 41, 42], various gradient equations [3,
19, 21, 27], the porous medium equation based on the energetic variational approach [14], the
Poisson-Nernst-Planck system [28], the nonlinear wave equation [43], etc.

The following truncation error analysis for the temporal discretization can be obtained by
using a straightforward Taylor expansion

(Se(x
n
e ,x

n−1
e ))m−1

m(f0(X))m−2
· x

n+1
e −xn

e

∆t

=−∂X

[(
f0(X)

ln(∂Xxn+1
e )− ln(∂Xxn

e )

∂X(xn+1
e −xn

e )

)
−A0∆t∂X(xn+1

e −xn
e )+∆t2(

1

∂Xxn+1
e

− 1

∂Xxn
e

)
]

+∆t2(g
(0)
1 )n+1/2+∆t3(g

(1)
1 )n+1/2+O(∆t4), (6.5)

with Se(x
n
e ,x

n−1
e )=∂X(

3

2
xn
e −

1

2
xn−1
e ).

Here the functions g
(j)
1 (j=0, 1) are smooth enough in the sense that their derivatives, both

the temporal and spatial ones, are bounded in the ∥·∥L∞ norm. In more details, g
(j)
1 turns out

to be only dependent on the higher order derivatives (both spatial and temporal) of the exact

solution xe, as indicated by the Taylor expansion. In fact, both g
(0)
1 and g

(j)
1 are space-time
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functions, i.e., they are time and space dependent, due to the involved higher order spatial
and temporal derivatives of the exact solution. Meanwhile, for a fixed time instant tn+1/2,
(g

(0)
1 )n+1/2 and (g

(1)
1 )n+1/2 become spatial functions.

The temporal correction function x∆t,1 is given by solving the following equation:

(∂Xxe)
m−1

m(f0(X))m−2
∂tx∆t,1+

(m−1)(∂Xxe)
m−2∂Xx∆t,1

m(f0(X))m−2
∂txe

=−∂X

(
−f0(X)

1

(∂Xxe)2
∂Xx∆t,1

)
−(g

(0)
1 ), (6.6)

x∆t,1(0)=x∆t,1(1)=0, x∆t,1(t=0)=0. (6.7)

In fact, (6.6) is a linear parabolic PDE, with sufficiently regular coefficient functions. The exis-
tence and uniqueness of its solution could be derived by making use of a standard Galerkin pro-
cedure and Sobolev estimates, following the classical techniques for time-dependent parabolic
equation [38]. Such a solution depends solely on the exact profile xe and is regular enough. In
addition, the derivatives of x∆t,1 of various orders are bounded. Of course, an application of
the semi-implicit discretization to (6.6)-(6.7) implies that

(Se(x
n
e ,x

n−1
e ))m−1

m(f0(X))m−2
·
xn+1
∆t,1−xn

∆t,1

∆t
+

(m−1)(Se(x
n
e ,x

n−1
e ))m−2Se(x

n
∆t,1,x

n−1
∆t,1)

m(f0(X))m−2
· x

n+1
e −xn

e

∆t

=−∂X

(
−f0(X)

1

(∂X( 1
2
xn+1
e +xn

e ))2
· 1
2
∂X(xn+1

∆t,1+xn
∆t,1)

)
−(g

(0)
1 )n+1/2+O(∆t2), (6.8)

with Se(x
n
∆t,1,x

n−1
∆t,1)=∂X(

3

2
xn
∆t,1−

1

2
xn−1
∆t,1). (6.9)

Therefore, a combination of (6.5) and (6.8) leads to the third order temporal truncation error
for W1=xe+∆t2x∆t,1:

(Se(W
n
1 ,Wn−1

1 ))m−1

m(f0(X))m−2
·W

n+1
1 −Wn

1

∆t

=−∂X

[(
f0(X)

ln(∂XWn+1
1 )− ln(∂XWn

1 )

∂X(Wn+1
1 −Wn

1 )

)
−A0∆t∂X(Wn+1

1 −Wn
1 )+∆t2(

1

∂XWn+1
1

− 1

∂XWn
1

)
]

+∆t3(g
(1)
1 )n+1/2+O(∆t4), (6.10)

with Se(W
n
1 ,Wn−1

1 )=∂X(
3

2
Wn

1 − 1

2
Wn−1

1 ).

In the derivation of (6.10), the following linearized expansions have been utilized:

Wn+1
1 −Wn

1

∆t
=

xn+1
e −xn

e

∆t
+O(∆t2), (6.11)

(Se(x
n
e ,x

n−1
e ))m−1+(m−1)(Se(x

n
e ,x

n−1
e ))m−2Se(x

n
∆t,1,x

n−1
∆t,1) ·∆t2x∆t,1

=Se(W
n
1 ,Wn−1

1 )+O(∆t4), (6.12)

ln(∂Xxn+1
e )− ln(∂Xxn

e )

∂X(xn+1
e −xn

e )
−∆t2

1

(∂X( 1
2
xn+1
e +xn

e ))2
· 1
2
∂X(xn+1

∆t,1+xn
∆t,1)

=
ln(∂XWn+1

1 )− ln(∂XWn
1 )

∂X(Wn+1
1 −Wn

1 )
+O(∆t4). (6.13)

Similarly, the temporal correction function x∆t,2 is given by solving the following equation:

(∂Xxe)
m−1

m(f0(X))m−2
∂tx∆t,2+

(m−1)(∂Xxe)
m−2∂Xx∆t,2

m(f0(X))m−2
∂txe
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=−∂X

(
−f0(X)

1

(∂Xxe)2
∂Xx∆t,2

)
−g

(1)
1 , (6.14)

x∆t,2(0)=x∆t,2(1)=0, x∆t,2(t=0)=0. (6.15)

Similarly, (6.14) is a linear parabolic PDE, with sufficiently regular coefficient functions, and its
unique solution depends solely on the exact profile xe and is smooth enough, with derivatives
of various orders staying bounded. In turn, an application of the semi-implicit discretization
to (6.14)-(6.15) implies that

(Se(x
n
e ,x

n−1
e ))m−1

m(f0(X))m−2
·
xn+1
∆t,2−xn

∆t,2

∆t
+

(m−1)(Se(x
n
e ,x

n−1
e ))m−2Se(x

n
∆t,2,x

n−1
∆t,2)

m(f0(X))m−2
· x

n+1
e −xn

e

∆t

=−∂X

(
−f0(X)

1

(∂X( 1
2
xn+1
e +xn

e ))2
· 1
2
∂X(xn+1

∆t,2+xn
∆t,2)

)
−(g

(1)
1 )n+1/2+O(∆t2), (6.16)

with Se(x
n
∆t,2,x

n−1
∆t,2)=∂X(

3

2
xn
∆t,2−

1

2
xn−1
∆t,2). (6.17)

Subsequently, a combination of (6.10) and (6.16) yields the fourth order temporal truncation
error for W2=W1+∆t3x∆t,2=xe+∆t2x∆t,1+∆t2x∆t,2:

(Se(W
n
2 ,Wn−1

2 ))m−1

m(f0(X))m−2
·W

n+1
2 −Wn

2

∆t

=−∂X

[(
f0(X)

ln(∂XWn+1
2 )− ln(∂XWn

2 )

∂X(Wn+1
2 −Wn

2 )

)
−A0∆t∂X(Wn+1

2 −Wn
2 )+∆t2(

1

∂XWn+1
2

− 1

∂XWn
2

)
]
+O(∆t4), (6.18)

with Se(W
n
2 ,Wn−1

2 )=∂X(
3

2
Wn

2 − 1

2
Wn−1

2 ),

in which the linearized expansions have been extensively applied.
Next, we construct the spatial correction term xh,1 to upgrade the spatial accuracy order.

The following truncation error analysis for the spatial discretization can be obtained by using
a straightforward Taylor expansion for the constructed profile W2, and exact solution xe:

(Sh(W
n
2 ,Wn−1

2 ))m−1

m(f0(X))m−2
·W

n+1
2 −Wn

2

∆t

=−dh
[(

f0(X)
ln(DhW

n+1
2 )− ln(DhW

n
2 )

Dh(W
n+1
2 −Wn

2 )

)
−A0∆tDh(W

n+1
2 −Wn

2 )+∆t2(
1

DhW
n+1
2

− 1

DhWn
2

)
]

+h2(h(0))n+1/2+O(h4)+O(∆t4), (6.19)

with Sh(W
n
2 ,Wn−1

2 )= D̃h(
3

2
Wn

2 − 1

2
Wn−1

2 ).

Similarly, the function h(0) is smooth enough in the sense that its derivatives are bounded in
the ∥·∥L∞ norm, and it is only dependent on the higher order derivatives (both spatial and
temporal) of the exact solution W2, henceforth only dependent on the exact solution xe. It
is a space-time function, while for a fixed time instant tn+1/2, (h(0))n+1/2 becomes a spatial
function. We also notice that there is no O(h3) truncation error term, due to the fact that
the centered difference used in the spatial discretization gives local truncation errors with only
even order terms, O(h2), O(h4), etc. Subsequently, the spatial correction function xh,1 is given
by solving the following linear PDE:

(∂Xxe)
m−1

m(f0(X))m−2
∂txh,1+

(m−1)(∂Xxe)
m−2∂Xxh,1

m(f0(X))m−2
∂txe
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=−∂X

(
−f0(X)

1

(∂Xxe)2
∂Xxh,1

)
−h(0), (6.20)

xh,1(0)=xh,1(1)=0, xh,1(t=0)=0, (6.21)

and the solution depends only on the exact solution xe, with the divided differences of various
orders staying bounded. In turn, an application of a full discretization to (6.20) implies that

(Sh(x
n
e ,x

n−1
e ))m−1

m(f0(X))m−2
·
xn+1
h,1 −xn

h,1

∆t
+

(m−1)(Sh(x
n
e ,x

n−1
e ))m−2Sh(x

n
h,1,x

n−1
h,1 )

m(f0(X))m−2
· x

n+1
e −xn

e

∆t

=−dh
(
−f0(X)

1

(Dh(
1
2
xn+1
e +xn

e ))2
· 1
2
Dh(x

n+1
h,1 +xn

h,1)
)
−(h(0))n+1/2+O(h2), (6.22)

with Sh(x
n
h,1,x

n−1
h,1 )= D̃h(

3

2
xn
h,1−

1

2
xn−1
h,1 ). (6.23)

Finally, a combination of (6.18) and (6.22) yields the fourth order temporal truncation error
for W =W2+h2xh,1=xe+h2xh,1+∆t2x∆t,1+∆t2x∆t,2 (as given by (6.4)):

(Sh(W
n,Wn−1))m−1

m(f0(X))m−2
·W

n+1−Wn

∆t

=−dh
[(

f0(X)
ln(DhW

n+1)− ln(DhW
n)

Dh(Wn+1−Wn)

)
−A0∆tDh(W

n+1−Wn)+∆t2(
1

DhWn+1
− 1

DhWn
)
]

+τn, with ∥τn∥2≤C(∆t4+h4), (6.24)

and Sh(W
n,Wn−1)= D̃h(

3

2
Wn− 1

2
Wn−1).

Again, the linearized expansions have been extensively applied.

Remark 6.1. Since the temporal and spatial correction functions, namely x∆t,1, x∆t,2 and
xh,1, are bounded, we recall the separation property (6.2) for the exact solution, and obtain a
similar property for the constructed profile W :

DhW ≥ ϵ∗0, for ϵ∗0 =
ϵ0
2
>0. (6.25)

Such a uniform bound will be used in the convergence analysis.

For the the constructed profile W , we also assume its discrete W 2,∞ bound, as well as the
W 1,∞ bound for its temporal derivatives:

∥DhW∥∞+∥D2
hW∥∞≤C∗, ∥DtW

n∥∞+∥DhDtW
n∥∞+

∥∥Dh(D
2
tW

n)
∥∥
∞≤C∗,(6.26)

with DtW
n :=

Wn+1−Wn

∆t
, D2

tW
n=

Wn+1−2Wn+Wn−1

∆t2
,

which comes from the regularity of the exact solution xe and the correction functions.

Remark 6.2. The aim for such a higher order asymptotic expansion and truncation error
estimate is to justify an a-priori W 1,∞

h bound of the numerical solution, which is needed
to obtain the phase separation property, similarly formulated as (6.25) for the constructed
approximate solution. In addition, a discrete W 1,∞

h bound for the temporal derivatives of the
numerical solution is also needed in the nonlinear analysis, which turns out to be the key reason
to derive a fourth order consistency estimate for the constructed solution.
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6.2. A preliminary rough error estimate. Instead of a direct analysis for the
error function defined as em=xm

e −xm, we introduce an alternate numerical error function:

x̃m :=Wm−xm. (6.27)

The advantage of such a numerical error function is associated with its higher order accu-
racy, which comes from the higher order consistency estimate (6.24). Moreover, the following
notations are introduced, for the convenience of the analysis presented later.

xn+1/2 =
1

2
(xn+1+xn), Wn+1/2 =

1

2
(Wn+1+Wn), (6.28)

x̆n+1/2 =
3

2
xn− 1

2
xn−1, W̆n+1/2 =

3

2
Wn− 1

2
Wn−1, (6.29)

x̃n+1/2 =Wn+1/2−xn+1/2 =
1

2
(x̃n+1+ x̃n), ˘̃xn+1/2 =W̆n+1/2− x̆n+1/2 =

3

2
x̃n− 1

2
x̃n−1.

(6.30)

In turn, subtracting the numerical scheme (3.10) from the consistency estimate (6.24)
yields

(Sh(x
n,xn−1))m−1

m(f0(X))m−2
· x̃

n+1− x̃n

∆t
+

(Sh(W
n,Wn−1))m−1−(Sh(x

n,xn−1))m−1

m(f0(X))m−2
·W

n+1−Wn

∆t

=−dh
[
f0(X)

( ln(DhW
n+1)− ln(DhW

n)

Dh(Wn+1−Wn)
− ln(Dhx

n+1)− ln(Dhx
n)

Dh(xn+1−xn)

)
−A0∆tDh(x̃

n+1− x̃n)−∆t2(
Dhx̃

n+1

DhWn+1Dhxn+1
− Dhx̃

n

DhWnDhxn
)
]

+τn, with ∥τn∥2≤C(∆t4+h4). (6.31)

To proceed with the nonlinear analysis, we make the following a-priori assumption at the
previous time steps, for k=n,n−1,n−2:

∥x̃k∥2≤C(∆t4+h4), with C uniform for a fixed final time T . (6.32)

Such an a-priori assumption will be recovered by the optimal rate convergence analysis at the
next time step, as will be demonstrated later. With this assumption, the following bounds for
the numerical solution are obtained, with the help of inverse inequality:

∥Dhx̃
k∥2≤

C∥x̃k∥2
h

≤CC(∆t3+h3), (6.33)

∥Dhx̃
k∥∞≤ C∥x̃k∥2

h
3
2

≤CC(∆t
5
2 +h

5
2 )≤ ϵ∗0

2
, (6.34)

so that
ϵ∗0
2
≤Dhx

k =DhW
k−Dhx̃

k ≤C∗+
ϵ∗0
2
:= C̃∗, (6.35)

for k=n,n−1,n−2, in which the lower and upper bounds (6.25), (6.26), for the constructed
profile W , have been used. Notice that the separation property (6.2) is valid for the exact PDE
solution, with a fixed constant ϵ0>0, while the constructed solution W preserves a similar
separation property (6.25), with an alternate constant ϵ∗0 >0. Without loss of generality, such
a constant could be taken as ϵ∗0 =

ϵ0
2
>0. As a result, the bound (6.34) is always available,

provided that ∆t and h are sufficiently small. In addition, the following observation is made,
motived by the preliminary estimate (6.34):

∥Dhx
k−Dhx

k−1∥∞≤∥DhW
k−DhW

k−1∥∞+∥Dhx̃
k−Dhx̃

k−1∥∞
≤C∗∆t+CC(∆t

5
2 +h

5
2 )≤ (C∗+1)∆t, (6.36)
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for k=n,n−1, in which the regularity requirement (6.26) for the constructed solution has been
applied again. In turn, we conclude that

D̃h(
3

2
xk− 1

2
xk−1)= D̃hx

k+
1

2
D̃h(x

k−xk−1)≥ ϵ∗0
2
− ϵ∗0

4
=

ϵ∗0
4
≥∆t2, (6.37)

so that Sh(x
k,xk−1)= D̃hx̆

n+1/2 = D̃h(
3

2
xk− 1

2
xk−1), for k=n,n−1. (6.38)

The following preliminary estimates are needed in the nonlinear error analysis for the two
terms on the left-hand side of (6.31).

Lemma 6.1. For the constructed profile W satisfying (6.26), and the numerical error function
with a discrete W 1,∞ bound given by (6.34), for k=n,n−1,n−2, we have

∥(Sh(x
n,xn−1))m−1−(Sh(x

n−1,xn−2))m−1∥∞
≤ C̃1∆t, (6.39)

(Sh(W
n,Wn−1))m−1−(Sh(x

n,xn−1))m−1

=Nn+1/2D̃h
˘̃xn+1/2, with ∥Nn+1/2∥∞≤ C̃2, (6.40)

Nn+1/2 := (m−1)(ξ(2))m−2,

for some ξ(2) between D̃h

(
3
2
Wn− 1

2
Wn−1

)
and D̃h

(
3
2
xn− 1

2
xn−1

)
,

and ∥DhNn+1/2∥∞≤ C̃3,

if we define (Nn+1/2)0=(Nn+1/2)1, (Nn+1/2)M =(Nn+1/2)M−1, (6.41)

in which C̃1, C̃2 and C̃3 are only dependent on the exact solution, and independent of ∆t and
h.

Proof. Based on the representation identity (6.38), we apply the intermediate value
theorem and see that

(Sh(x
n,xn−1))m−1−(Sh(x

n−1,xn−2))m−1

=(m−1)(ξ(1))m−2D̃h

(3
2
(xn−xn−1)− 1

2
(xn−1−xn−2)

)
, (6.42)

with ξ(1) between D̃h

(
3
2
xn− 1

2
xn−1

)
and D̃h

(
3
2
xn−1− 1

2
xn−2

)
. Meanwhile, by the upper

estimate (6.35) and the lower bound (6.37), we get

ϵ∗0
4
≤ D̃h(

3

2
xk− 1

2
xk−1)≤ 3C̃∗

2
, for k=n,n−1, so that

ϵ∗0
4
≤ ξ(1)≤ 3C̃∗

2
. (6.43)

A substitution into (6.42), combined with the estimate (6.36), indicates the desired inequality,

with C̃1=2(m−1)max( 4
ϵ∗0
, 3C̃

∗

2
)|m−2|(C∗+1).

A similar application of intermediate value theorem reveals that

(Sh(W
n,Wn−1))m−1−(Sh(x

n,xn−1))m−1=(m−1)(ξ(2))m−2D̃h
˘̃xn+1/2, (6.44)

and ξ(2) between D̃h

(
3
2
Wn− 1

2
Wn−1

)
and D̃h

(
3
2
xn− 1

2
xn−1

)
. Using the same argument as

in (6.43), we see that
ϵ∗0
4
≤ ξ(2)≤ 3C̃∗

2
, so that

∥Nn+1/2∥∞=∥(m−1)(ξ(2))m−2∥∞≤ C̃2 := (m−1)max(
4

ϵ∗0
,
3C̃∗

2
)|m−2|, (6.45)

which completes the proof of (6.40). Moreover, for two adjacent grid points xi and xi+1 (with
1≤ i≤M−2), motivated by the fact that

ξ
(2)
i is between D̃hW̆

n+1/2
i and D̃hx̆

n+1/2
i , ξ

(2)
i+1 is between D̃hW̆

n+1/2
i+1 and D̃hx̆

n+1/2
i+1 , (6.46)
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we have the following observation:

|ξ(2)i+1−ξ
(2)
i |≤

∣∣∣D̃hW̆
n+1/2
i+1 −D̃hW̆

n+1/2
i

∣∣∣+ ∣∣∣D̃h
˘̃x
n+1/2
i

∣∣∣+ ∣∣∣D̃h
˘̃x
n+1/2
i+1

∣∣∣
≤ 1

2
h
(∣∣∣D2

hW̆
n+1/2
i+1

∣∣∣+ ∣∣∣D2
hW̆

n+1/2
i

∣∣∣)+CC(∆t
5
2 +h

5
2 )

≤C∗h+h=(C∗+1)h, (6.47)

in which the preliminary estimate (6.34) and the regularity assumption (6.26) for the con-
structed profile have been used. On the other hand, with another application of intermediate
value theorem:

Nn+1/2
i+1 −Nn+1/2

i =(m−1)(ξ
(2)
i+1)

m−2−(m−1)(ξ
(2)
i )m−2

=(m−1)(m−2)(η(1))m−3(ξ
(2)
i+1−ξ

(2)
i ), (6.48)

with η(1) between ξ
(2)
i and ξ

(2)
i+1, we get the desired estimate∣∣∣Nn+1/2

i+1 −Nn+1/2
i

∣∣∣≤ (m−1)|m−2|max(
4

ϵ∗0
,
3C̃∗

2
)|m−3|(C∗+1)h. (6.49)

This completes the proof of (6.41), by taking C̃3=(m−1)|m−2|max( 4
ϵ∗0
, 3C̃

∗

2
)|m−3|(C∗+1).

Now we proceed with a rough error estimate. Taking a discrete inner product with (6.31)
by 2x̃n+1 leads to〈 (Sh(x

n,xn−1))m−1

m(f0(X))m−2
· x̃

n+1− x̃n

∆t
,2x̃n+1

〉
+2A0∆t⟨Dh(x̃

n+1− x̃n),Dhx̃
n+1⟩

−2
〈
f0(X)

( ln(DhW
n+1)− ln(DhW

n)

Dh(Wn+1−Wn)
− ln(Dhx

n+1)− ln(Dhx
n)

Dh(xn+1−xn)

)
,x̃n+1

〉
=−2

〈 (Sh(W
n,Wn−1))m−1−(Sh(x

n,xn−1))m−1

m(f0(X))m−2
·W

n+1−Wn

∆t
,x̃n+1

〉
−2∆t2

〈 Dhx̃
n+1

DhWn+1Dhxn+1
− Dhx̃

n

DhWnDhxn
,Dhx̃

n+1
〉
+2⟨∆tn,x̃n+1⟩. (6.50)

For the temporal derivative term, we make use of the equality

2x̃n+1(x̃n+1− x̃n)=(x̃n+1)2−(x̃n)2+(x̃n+1− x̃n)2≥ (x̃n+1)2−(x̃n)2, (6.51)

and get 〈 (Sh(x
n,xn−1))m−1

m(f0(X))m−2
· x̃

n+1− x̃n

∆t
,2x̃n+1

〉
≥ 1

∆t

(〈 (Sh(x
n,xn−1))m−1

m(f0(X))m−2
,(x̃n+1)2

〉
−
〈 (Sh(x

n,xn−1))m−1

m(f0(X))m−2
,(x̃n)2

〉)
=

1

∆t

(〈 (Sh(x
n,xn−1))m−1

m(f0(X))m−2
,(x̃n+1)2

〉
−
〈 (Sh(x

n−1,xn−2))m−1

m(f0(X))m−2
,(x̃n)2

〉)
− 1

∆t

〈 (Sh(x
n,xn−1))m−1−(Sh(x

n−1,xn−2))m−1

m(f0(X))m−2
,(x̃n)2

〉
. (6.52)

Furthermore, with an application of the preliminary estimate (6.39), the last term of (6.52)
could be bounded as

1

∆t

〈 (Sh(x
n,xn−1))m−1−(Sh(x

n−1,xn−2))m−1

m(f0(X))m−2
,(x̃n)2

〉
≤ C̃4∥x̃n∥22, (6.53)
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with C̃4= C̃1max(
1

minΩf0(X)
,max

Ω
f0(X))|m−2|.

The second term on the left-hand side of (6.50) could be controlled by a standard inequal-
ity:

2A0∆t⟨Dh(x̃
n+1− x̃n),Dhx̃

n+1⟩≥A0∆t(∥Dhx̃
n+1∥22−∥Dhx̃

n∥2). (6.54)

The Cauchy inequality could be applied to bound the term associated with the local truncation
error:

2⟨τn,x̃n+1⟩≤∥τn∥22+∥x̃n+1∥22. (6.55)

For the second term on the right-hand side of (6.50), we make the following observation:

−2∆t2
〈 Dhx̃

n+1

DhWn+1Dhxn+1
,Dhx̃

n+1
〉
≤0, (6.56)

2∆t2
〈 Dhx̃

n

DhWnDhxn
,Dhx̃

n+1
〉
≤2∆t2 · 1

1
2
(ϵ∗0)

2
∥Dhx̃

n∥2 ·∥Dhx̃
n+1∥2

≤∆t3∥Dhx̃
n+1∥22+4∆t(ϵ∗0)

−4∥Dhx̃
n∥22

≤ C̃5∆t∥x̃n+1∥22+4∆t(ϵ∗0)
−4∥Dhx̃

n∥22, (6.57)

in which (6.56) is based on the fact that DhW
n+1>0, Dhx

n+1>0 (as given by the unique
solvability analysis in Theorem 4.1), the first step of (6.57) comes from the separation prop-
erty (6.25) (for the constructed profile W ) and the preliminary estimate (6.35), and an inverse
inequality has been applied at the last step.

For the first term on the right-hand side of (6.50), the preliminary estimate (6.40) and the
regularity assumption (6.26) have to be applied:

−2
〈 (Sh(W

n,Wn−1))m−1−(Sh(x
n,xn−1))m−1

m(f0(X))m−2
·W

n+1−Wn

∆t
,x̃n+1

〉
=−2

〈Nn+1/2D̃h
˘̃xn+1/2

m(f0(X))m−2
·W

n+1−Wn

∆t
,x̃n+1

〉
≤ C̃6∥D̃h

˘̃xn+1/2∥2 ·∥x̃n+1∥2≤
C̃6

2
(∥Dh

˘̃xn+1/2∥22+∥x̃n+1∥22), (6.58)

with C̃6=
2

m
C̃2C

∗ ·max(
1

minΩf0(X)
,max

Ω
f0(X))|m−2|.

Notice that the inequality ∥D̃hf∥2≤∥Dhf∥2 has been used in the last step.
The rest of the analysis is focused on the term associated with the nonlinear diffusion part:

NLEn+1/2 :=− ln(DhW
n+1)− ln(DhW

n)

Dh(Wn+1−Wn)
+

ln(Dhx
n+1)− ln(Dhx

n)

Dh(xn+1−xn)
. (6.59)

The following lemma is needed in the nonlinear estimate; its proof will be provided in the
Appendix.

Lemma 6.2. Fix x0>0, and we define q1(x) :=− lnx−lnx0
x−x0

for x>0. The following properties
are valid:

q′1(x)>0, for any x>0, (6.60)

q1(y)−q1(x)= q′1(η)(y−x), with q′1(η) between 1
2y2 ,

1
2x2 and 1

2x2
0
, ∀x>0, y>0, (6.61)

q′′1 (x)≤0, for any x>0, (6.62)

q1(y)−q1(x)

y−x
is a decreasing function of x, for any fixed y>0. (6.63)
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Subsequently, the following point-wise nonlinear estimate becomes available for NLEn+1/2.

Lemma 6.3. At each numerical mesh cell (xi,xi+1), we have the following estimate

NLEn+1/2

i+1/2 = ξ
(3)

i+1/2Dhx̃
n+1
i+1/2+ξ

(4)

i+1/2Dhx̃
n
i+1/2, (6.64)

with ξ
(3)

i+1/2 ≥
1

2C̃∗
h,

1

2(C̃∗)2
≤ ξ

(4)

i+1/2 ≤2(ϵ∗0)
−2. (6.65)

Proof. The following decomposition is performed for NLE :

NLEn+1/2 =NLEn+1/2,(1)+NLEn+1/2,(2), with

NLEn+1/2,(1)=− ln(DhW
n+1)− ln(Dhx

n)

DhWn+1−Dhxn
+

ln(Dhx
n+1)− ln(Dhx

n)

Dhxn+1−Dhxn

= q1(DhW
n+1)−q1(Dhx

n+1), with fixed x0=Dhx
n, (6.66)

NLEn+1/2,(2)=− ln(DhW
n+1)− ln(DhW

n)

DhWn+1−DhWn
+

ln(DhW
n+1)− ln(Dhx

n)

DhWn+1−Dhxn

= q1(DhW
n)−q1(Dhx

n), with fixed x0=DhW
n+1. (6.67)

For the first part NLEn+1/2,(1), we make use of the following bound for Dhx
n+1:

0< (Dhx
n+1)i+1/2 ≤

1

h
, since 0≤xn+1

k ≤1, ∀0≤k≤M, (6.68)

so that an application of property (6.63) implies that

q1(DhW
n+1)−q1(Dhx

n+1)

DhWn+1−Dhxn+1
≥

q1(DhW
n+1)−q1(

1
h
)

DhWn+1− 1
h

=
− ln 1

h
−ln(Dhxn)
1
h
−Dhxn −q1(DhW

n+1)

1
h
−DhWn+1

≥ 1

2C̃∗
h, (6.69)

in which the last step is based on the preliminary estimate (6.35), as well as the fact that the
value of −q1(DhW

n+1) is between 1
DhWn+1 and 1

Dhxn . This inequality is equivalent to

NLEn+1/2,(1)

i+1/2 = ξ
(3)

i+1/2Dhx̃
n+1
i+1/2, with ξ

(3)

i+1/2 ≥
1

2C̃∗
h. (6.70)

For the first part NLEn+1/2,(2), we apply property (6.61) so that

NLEn+1/2,(2)= q1(DhW
n)−q1(Dhx

n)= q′1(η)Dhx̃
n, (6.71)

with q′1(η)between
1

2(DhWn)2
,

1

2(Dhxn)2
, and

1

2(DhWn+1)2
. (6.72)

On the other hand, by the separation property (6.25), the regularity assumption (6.26) for W ,
combined with the preliminary estimate (6.35), we obtain the desired estimate:

1

2(C̃∗)2
≤ q′1(η)≤2(ϵ∗0)

−2. (6.73)

In other words, the second estimate in (6.64) becomes available:

NLEn+1/2,(2)

i+1/2 = ξ
(4)

i+1/2Dhx̃
n
i+1/2, with

1

2(C̃∗)2
≤ ξ

(4)

i+1/2 ≤2(ϵ∗0)
−2. (6.74)

This completes the proof of Lemma 6.3.
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As a consequence of this lemma, we analyze the nonlinear product at each cell (xi,xi+1):

f0(Xi+1/2)NLEn+1/2

i+1/2 ·2Dhx̃
n+1
i+1/2

=2f0(Xi+1/2)
(
ξ
(3)

i+1/2(Dhx̃
n+1
i+1/2)

2+ξ
(4)

i+1/2Dhx̃
n+1
i+1/2 ·Dhx̃

n
i+1/2

)
≥2f0(Xi+1/2)

( 1

2C̃∗
h(Dhx̃

n+1
i+1/2)

2−2(ϵ∗0)
−2Dhx̃

n+1
i+1/2 ·Dhx̃

n
i+1/2

)
≥2f0(Xi+1/2) ·

(
− 2C̃∗(ϵ∗0)

−4

h
·(Dhx̃

n
i+1/2)

2
)
, (6.75)

in which the Cauchy inequality has been applied at the last step. A summation of this inequality
yields〈

f0(X)NLEn+1/2,2Dhx̃
n+1
〉
≥−C̃7h

−1∥Dhx̃
n∥22, with C̃7=4C̃∗(ϵ∗0)

−4∥f0(X)∥∞. (6.76)

Finally, a substitution of (6.52), (6.53), (6.54), (6.55), (6.56), (6.57), (6.58) and (6.76)
into (6.50) leads to〈 (Sh(x

n,xn−1))m−1

m(f0(X))m−2
−∆t

( C̃6

2
+1+ C̃5∆t

)
,(x̃n+1)2

〉
≤
〈 (Sh(x

n−1,xn−2))m−1

m(f0(X))m−2
,(x̃n)2

〉)
+∆tC̃4∥x̃n∥22+(A0+4(ϵ∗0)

−4)∆t2∥Dxx̃
n∥22

+∆t∥τn∥22+
C̃6

2
∆t∥Dh

˘̃xn+1/2∥22+ C̃7 ·
∆t

h
∥Dhx̃

n∥22. (6.77)

On the left-hand side, we observe the following point-wise lower bound, which comes from the
preliminary estimate (6.37):

(Sh(x
n,xn−1))m−1

m(f0(X))m−2
≥ C̃8 :=

1

m
(
ϵ∗0
4
)m−1min

( 1

maxΩf0(X)
,min

Ω
f0(X)

)|m−2|
, (6.78)

∆t
( C̃6

2
+1+ C̃5∆t

)
≤ C̃8

2
, provided that ∆t is sufficiently small, (6.79)

which in turn indicates that〈 (Sh(x
n,xn−1))m−1

m(f0(X))m−2
−∆t

( C̃6

2
+1+ C̃5∆t

)
,(x̃n+1)2

〉
≥ C̃8

2
∥x̃n+1∥22. (6.80)

On the right-hand side, the following estimates are available, based on the a-priori assump-
tion (6.32) and the preliminary estimate (6.33):〈 (Sh(x

n−1,xn−2))m−1

m(f0(X))m−2
,(x̃n)2

〉)
=O((∆t4+h4)2), (6.81)

∆tC̃4∥x̃n∥22+∆t∥τn∥22=O(∆t(∆t4+h4)2), (6.82)

(A0+4(ϵ∗0)
−4)∆t2∥Dxx̃

n∥22=O(∆t2(∆t3+h3)2), (6.83)

C̃6

2
∆t∥Dh

˘̃xn+1/2∥22=O(∆t(∆t3+h3)2), (6.84)

C̃7 ·
∆t

h
∥Dhx̃

n∥22≤CC̃7C2C2(∆t3+h3)2. (6.85)

Then we arrive at a rough estimate for the numerical error function at time step tn+1:

C̃8

2
∥x̃n+1∥22≤

(
CC̃7C2C2+1

)
(∆t3+h3)2, provided that ∆t and h are sufficiently small,



C. DUAN, W. CHEN, C. LIU, C. WANG, AND X. YUE 1009

i.e. ∥x̃n+1∥2≤ Ĉ(∆t3+h3), with Ĉ :=
(2(CC̃7C2C2+1)

C̃8

) 1
2
, (6.86)

under the linear refinement requirement C1h≤∆t≤C2h. Subsequently, an application of 1-D
inverse inequality implies that

∥Dhx̃
n+1∥∞≤ C∥x̃n+1∥2

h
3
2

≤ Ĉ1(∆t
3
2 +h

3
2 ), with Ĉ1=CĈ, (6.87)

under the same linear refinement requirement. Because of the accuracy order, we could take

∆t and h sufficiently small so that Ĉ1(∆t
3
2 +h

3
2 )≤ ϵ∗0

2
, which in turn gives

ϵ∗0
2
≤Dhx

n+1=DhW
n+1−Dhx̃

n+1≤C∗+
ϵ∗0
2
= C̃∗, (6.88)

in which the lower and upper bounds (6.25), (6.26) (for the constructed profile W ) have been
used again. Such a uniform ∥·∥

W
1,∞
h

bound will play a very important role in the refined error

estimate.

Remark 6.3. In the rough error estimate (6.86), we see that the accuracy order is lower
than the one given by the a-priori-assumption (6.32). Therefore, such a rough estimate could
not be used for a global induction analysis. Instead, the purpose of such an estimate is to
establish a uniform ∥·∥

W
1,∞
h

bound for the numerical solution at time step tn+1, as well as its

temporal derivative, via the technique of inverse inequality. With these bounds established for
the numerical solution, the refined error analysis will yield much sharper estimates.

6.3. A further rough error estimate. Meanwhile, we have to derive a discrete
W 1,∞

h bound for the second order temporal derivative of the numerical solution at time step
tn+1, which will be needed in the refined error estimate. In fact, such a bound could not be
obtained by (6.87). To obtain such a bound, we have to perform a further rough error estimate.

We revisit the proof of Lemma 6.3 and discover that, ξ
(3)

i+1/2 has to be between DhW
n+1

and Dhx
n+1, based on the representation (6.66) and the property (6.61). In more details, the

regularity assumption (6.26) (for W ) and the W 1∞
h bound (6.88) imply a similar bound for

ξ
(3)

i+1/2:

1

2(C̃∗)2
≤ ξ

(4)

i+1/2 ≤2(ϵ∗0)
−2. (6.89)

With such a bound at hand, we are able to rewrite the inner product in a more precise way:

f0(Xi+1/2)NLEn+1/2

i+1/2 ·2Dhx̃
n+1
i+1/2

=2f0(Xi+1/2)
(
ξ
(3)

i+1/2(Dhx̃
n+1
i+1/2)

2+ξ
(4)

i+1/2Dhx̃
n+1
i+1/2 ·Dhx̃

n
i+1/2

)
≥2f0(Xi+1/2)

( 1

2(C̃∗)2
(Dhx̃

n+1
i+1/2)

2−2(ϵ∗0)
−2Dhx̃

n+1
i+1/2 ·Dhx̃

n
i+1/2

)
≥2f0(Xi+1/2) ·

( 1

4(C̃∗)2
(Dhx̃

n+1
i+1/2)

2−4(C̃∗)2(ϵ∗0)
−4 ·(Dhx̃

n
i+1/2)

2
)
,

which in turn gives〈
f0(X)NLEn+1/2,2Dhx̃

n+1
〉
≥ C̃9∥x̃n+1∥22− C̃10∥Dhx̃

n∥22, (6.90)

with C̃9=
1

2(C̃∗)2
min
Ω

(f0(X)), C̃10=8(C̃∗)2(ϵ∗0)
−4∥f0(X)∥∞.

A substitution of this updated estimate yields a rewritten inequality for (6.77):〈 (Sh(x
n,xn−1))m−1

m(f0(X))m−2
−∆t

( C̃6

2
+1+ C̃5∆t

)
,(x̃n+1)2

〉
+ C̃9∆t∥Dhx̃

n+1∥22
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≤
〈 (Sh(x

n−1,xn−2))m−1

m(f0(X))m−2
,(x̃n)2

〉)
+∆tC̃4∥x̃n∥22+(A0+4(ϵ∗0)

−4)∆t2∥Dxx̃
n∥22

+∆t∥τn∥22+
C̃6

2
∆t∥Dh

˘̃xn+1/2∥22+ C̃10∆t∥Dhx̃
n∥22. (6.91)

Meanwhile, all other estimates (6.78)-(6.84) are still valid, then we arrive at

C̃8

2
∥x̃n+1∥22+ C̃9∆t∥Dhx̃

n+1∥22

≤ C̃6

2
∆t∥Dh

˘̃xn+1/2∥22+ C̃10∆t∥Dhx̃
n∥22+O(∆t2(∆t3+h3)2)

≤ C̃11∆t(∥Dhx̃
n∥22+∥Dhx̃

n−1∥22)+O(∆t2(∆t3+h3)2)

≤ C̃12∆t(∆t3+h3)2, (6.92)

with C̃11= C̃9+
9C̃6
4

, C̃12=CC̃11C2+1, provided that ∆t and h are sufficiently small. This in
turn results in a further rough estimate for x̃n+1:

∥Dhx̃
n+1∥2≤ Ĉ2(∆t3+h3), with Ĉ2 :=

( C̃12

C̃9

) 1
2
. (6.93)

As a consequence, an application of 1-D inverse inequality gives a sharper estimate
for ∥Dhx̃

n+1∥∞:

∥Dhx̃
n+1∥∞≤ C∥Dhx̃

n+1∥2
h

1
2

≤ Ĉ3(∆t
5
2 +h

5
2 ), with Ĉ3=CĈ2, (6.94)

∥DhD
2
t x̃

n∥∞≤ (Ĉ3+1)(∆t
3
2 +h

3
2 )≤∆t, D2

t x̃
n :=

x̃n+1−2x̃n+ x̃n−1

∆t2
, (6.95)

in combination with (6.34) , under the same linear refinement requirement. This ∥·∥
W

1,∞
h

bound for the second order temporal derivative will play a very important role in the refined
error estimate.

6.4. The refined error estimate. Now we proceed with the refined error estimate.
Taking a discrete inner product with (6.31) by 2x̃n+1/2 = x̃n+1+ x̃n leads to〈 (Sh(x

n,xn−1))m−1

m(f0(X))m−2
· x̃

n+1− x̃n

∆t
,x̃n+1+ x̃n

〉
+A0∆t⟨Dh(x̃

n+1− x̃n),Dh(x̃
n+1+ x̃n)⟩

−
〈
f0(X)

( ln(DhW
n+1)− ln(DhW

n)

Dh(Wn+1−Wn)
− ln(Dhx

n+1)− ln(Dhx
n)

Dh(xn+1−xn)

)
,Dh(x̃

n+1+ x̃n)
〉

=−
〈 (Sh(W

n,Wn−1))m−1−(Sh(x
n,xn−1))m−1

m(f0(X))m−2
·W

n+1−Wn

∆t
,2x̃n+1/2

〉
−∆t2

〈 Dhx̃
n+1

DhWn+1Dhxn+1
− Dhx̃

n

DhWnDhxn
,Dh(x̃

n+1+ x̃n)
〉
+⟨τn,x̃n+1+ x̃n⟩. (6.96)

For the temporal derivative term, the equality (x̃n+1+ x̃n)(x̃n+1− x̃n)=(x̃n+1)2−(x̃n)2

implies a similar estimate as in (6.52)-(6.53):〈 (Sh(x
n,xn−1))m−1

m(f0(X))m−2
· x̃

n+1− x̃n

∆t
,x̃n+1+ x̃n

〉
=

1

∆t

(〈 (Sh(x
n,xn−1))m−1

m(f0(X))m−2
,(x̃n+1)2

〉
−
〈 (Sh(x

n,xn−1))m−1

m(f0(X))m−2
,(x̃n)2

〉)
≥ 1

∆t

(〈 (Sh(x
n,xn−1))m−1

m(f0(X))m−2
,(x̃n+1)2

〉
−
〈 (Sh(x

n−1,xn−2))m−1

m(f0(X))m−2
,(x̃n)2

〉)
− C̃4∥x̃n∥22.

(6.97)



C. DUAN, W. CHEN, C. LIU, C. WANG, AND X. YUE 1011

For the second term on the left-hand side, the second term on the right-hand side of (6.96),
and the local truncation error terms, the following bounds could be similarly derived:

A0∆t⟨Dh(x̃
n+1− x̃n),Dh(x̃

n+1+ x̃n)⟩=A0∆t(∥Dhx̃
n+1∥22−∥Dhx̃

n∥2), (6.98)

2⟨∆tn,x̃n+1+ x̃n⟩≤∥∆tn∥22+∥x̃n+1/2∥22≤∥∆tn∥22+
1

2
(∥x̃n+1∥22+∥x̃n∥22), (6.99)

−∆t2
〈 Dhx̃

n+1

DhWn+1Dhxn+1
− Dhx̃

n

DhWnDhxn
,Dh(x̃

n+1+ x̃n)
〉

≤2∆t2 · 1
1
2
(ϵ∗0)

2
∥Dhx̃

n∥2 ·∥Dhx̃
n+1∥2−∆t2 · 1

1
2
(ϵ∗0)

2
∥Dhx̃

n∥22

≤2∆t2(ϵ∗0)
−2(∥Dhx̃

n+1∥22+∥Dhx̃
n∥22)+2∆t2(ϵ∗0)

−2∥Dhx̃
n∥22

≤2∆t2(ϵ∗0)
−2(∥Dhx̃

n+1∥22+2∥Dhx̃
n∥22), (6.100)

in which the separation property (6.25) (for the constructed profile W ), the preliminary esti-
mates (6.35), (6.88) (for xn and xn+1, respectively), have been used in (6.100).

For the first term on the right-hand side of (6.96), we cannot count on the estimate (6.58),
since there is no stability control for ∥Dh

˘̃xn+1/2∥22=∥Dh(
3
2
x̃n− 1

2
x̃n−1)∥22. To overcome this

difficulty, a summation by parts formula is applied, due to the fact that x̃
n+1/2
0 = x̃

n+1/2
M =0:

−2
〈 (Sh(W

n,Wn−1))m−1−(Sh(x
n,xn−1))m−1

m(f0(X))m−2
·W

n+1−Wn

∆t
,x̃n+1/2

〉
=−2

〈Nn+1/2D̃h
˘̃xn+1/2

m(f0(X))m−2
·W

n+1−Wn

∆t
,x̃n+1/2

〉
=2
〈
D̃h

(Nn+1/2 Wn+1−Wn

∆t

m(f0(X))m−2
· x̃n+1/2

)
, ˘̃xn+1/2

〉
. (6.101)

Meanwhile, the following observation is made in the finite difference space:∥∥∥∥∥D̃h

(Nn+1/2 Wn+1−Wn

∆t

m(f0(X))m−2
· x̃n+1/2

)∥∥∥∥∥
2

≤

∥∥∥∥∥Dh

(Nn+1/2 Wn+1−Wn

∆t

m(f0(X))m−2
· x̃n+1/2

)∥∥∥∥∥
2

≤ 1

m
(∥x̃n+1/2∥2+∥Dhx̃

n+1/2∥2) ·(∥Nn+1/2∥∞+∥DhNn+1/2∥∞)

·
(
∥W

n+1−Wn

∆t
∥∞+∥Dh(W

n+1−Wn)

∆t
∥∞
)

·
(
∥ 1

(f0(X))m−2
∥∞+∥Dh

( 1

(f0(X))m−2

)
∥∞
)

≤ 1

m
(C̃2+ C̃3)C̃13C

∗(∥x̃n+1/2∥2+∥Dhx̃
n+1/2∥2), (6.102)

with C̃13 :=∥ 1

(f0(X))m−2
∥∞+∥Dh

( 1

(f0(X))m−2

)
∥∞,

in which the preliminary W 1,∞
h estimates (6.40), (6.41), and the regularity assumption (6.26)

have been repeatedly used in the derivation. Then we arrive at

−2
〈 (Sh(W

n,Wn−1))m−1−(Sh(x
n,xn−1))m−1

m(f0(X))m−2
·W

n+1−Wn

∆t
,x̃n+1/2

〉
≤2C̃14(∥x̃n+1/2∥2+∥Dhx̃

n+1/2∥2)∥˘̃xn+1/2∥2, (with C̃14=
1

m
(C̃2+ C̃3)C̃9C

∗)

≤
(
C̃14+ C̃2

14(C̃
∗)2
)
∥˘̃xn+1/2∥22+ C̃14∥x̃n+1/2∥22+(C̃∗)−2∥Dhx̃

n+1/2∥22. (6.103)

Again, the rest of the work is focused on the error analysis associated with the nonlinear
diffusion part, as given by (6.59). However, the point-wise estimate (6.64), (6.65) is not useful
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in the refined analysis any more. Instead, we begin with the following application of higher
order Taylor expansion for lnx, around x+x0

2
:

lnx− lnx0

x−x0
=

1
x+x0

2

+
2

3(x+x0
2

)3
· (x−x0)

2

8
+
( 1

5(ξ(5))5
+

1

5(ξ(6))5

)
· (x−x0)

4

32
, (6.104)

with ξ(5) between x+x0
2

and x, ξ(6) between x+x0
2

and x0. This in turn gives

ln(DhW
n+1)− ln(DhW

n)

Dh(Wn+1−Wn)
=

1

Dh(
Wn+1+Wn

2
)
+

2

3(Dh
Wn+1+Wn

2
)3

· (Dh(W
n+1−Wn))2

8

+
( 1

5(η(1))5
+

1

5(η(2))5

)
· (Dh(W

n+1−Wn))4

32
, (6.105)

ln(Dhx
n+1)− ln(Dhx

n)

Dh(xn+1−xn)
=

1

Dh(
xn+1+xn

2
)
+

2

3(Dh
xn+1+xn

2
)3

· (Dh(x
n+1−xn))2

8

+
( 1

5(η(3))5
+

1

5(η(4))5

)
· (Dh(x

n+1−xn))4

32
, (6.106)

with

η(1) betweenDh(
Wn+1+Wn

2
) andDhW

n+1, η(2) betweenDh(
Wn+1+Wn

2
) andDhW

n,

η(3) betweenDh(
xn+1+xn

2
) andDhx

n+1, η(4) betweenDh(
xn+1+xn

2
) andDhx

n.

Then we arrive at a decomposition for NLEn+1/2:

NLEn+1/2 =NL(1)+NL(2)+NL(3), with

NL(1)=− 1

Dh(
Wn+1+Wn

2
)
+

1

Dh(
xn+1+xn

2
)
=

Dhx̃
n+1/2

Dh(
Wn+1+Wn

2
) ·Dh(

xn+1+xn

2
)
, (6.107)

NL(2)=
1

12

(
− (Dh(W

n+1−Wn))2

(Dh
Wn+1+Wn

2
)3

+
(Dh(x

n+1−xn))2

(Dh
xn+1+xn

2
)3

)
, (6.108)

NL(3)=
1

160

(
−
( 1

(η(1))5
+

1

(η(2))5

)
(Dh(W

n+1−Wn))4

+
( 1

(η(3))5
+

1

(η(4))5

)
(Dh(x

n+1−xn))4
)
. (6.109)

For the leading expansion NL(1), the following nonlinear estimate is available:

⟨NL(1),2Dhx̃
n+1/2⟩=

〈 2

Dh(
Wn+1+Wn

2
) ·Dh(

xn+1+xn

2
)
,(Dhx̃

n+1/2)2
〉

≥ 2

(C̃∗)2
∥Dhx̃

n+1/2∥22, (6.110)

with repeated applications of (6.40), (6.41) and (6.26). The second expansion NL(2) could
have a further decomposition: NL(2)=NL(2),1+NL(2),2, with

NL(2),1=−Dh(W
n+1−Wn+xn+1−xn) ·Dh(x̃

n+1− x̃n)

(DhWn+1/2)3
, (6.111)

NL(2),2=NLC(2) ·Dhx̃
n+1/2 ·(Dh(x

n+1−xn))2, (6.112)

NLC(2)=
(DhW

n+1/2)2+(DhW
n+1/2)(Dhx

n+1/2)+(Dhx
n+1/2)2)

(DhWn+1/2)3(Dhxn+1/2)3
. (6.113)
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We notice a bound for the nonlinear coefficient NLC(2):

|NLC(2)|≤ 3(C̃∗)2

1
2
(ϵ∗0)

2
=6(C̃∗)2(ϵ∗0)

−2 := C̃15, by (6.25), (6.26), (6.35), (6.88). (6.114)

This in turn yields an estimate for the term associated with NL(2),2:

⟨NL(2),1,2Dhx̃
n+1/2⟩≥−2C̃16∆t∥Dhx̃

n+1/2∥22, with C̃16 := C̃15(C
∗+1)2, (6.115)

in which a point-wise bound ∥Dx(x
n+1−xn)∥∞≤ (C∗+1)∆t comes from (6.26), (6.35) and

(6.87). For NL(2),1, we introduce the following discrete function

γn+1/2 :=−
Dh(Wn+1−Wn)

∆t
+ Dh(xn+1−xn)

∆t

(DhWn+1/2)3
, so that (6.116)

⟨NL(2),1,Dh(x̃
n+1+ x̃n)⟩ = ∆t⟨γn+1/2,(Dhx̃

n+1)2−(Dhx̃
n))2⟩

= ∆t(⟨γn+1/2,(Dhx̃
n+1)2⟩−⟨γn−1/2,(Dhx̃

n))2⟩)
−∆t⟨γn+1/2−γn−1/2,(Dhx̃

n))2⟩. (6.117)

For the last correction term, the following observation is made:

γn+1/2−γn−1/2 =−∆tDh(D
2
tW

n)+∆tDh(D
2
tx

n)

(DhWn+1/2)3

+NLC(2) ·
(Dh(W

n+1−Wn)

∆t
+

Dh(x
n+1−xn)

∆t

)
·Dhx̃

n+1/2. (6.118)

Meanwhile, a ∥·∥
W

1,∞
h

bound for D2
tx

n is available, as a result of the further rough esti-

mate (6.95) and the regularity assumption (6.26) for W:

∥Dh(D
2
tx

n)∥∞≤∥Dh(D
2
tW

n)∥∞+∥Dh(D
2
t x̃

n)∥∞≤C∗+
ϵ∗0
2
= C̃∗. (6.119)

This in turn implies an O(∆t) estimate for the first part, in combination with (6.25)

∆t
∣∣∣Dh(D

2
tW

n)+Dh(D
2
tx

n)

(DhWn+1/2)3

∣∣∣≤ C∗+ C̃∗

(ϵ∗0)
3

∆t. (6.120)

A similar bound for the second part is also available, which comes from (6.26), (6.34), (6.94)
and (6.114): ∣∣∣NLC(2) ·

(Dh(W
n+1−Wn)

∆t
+

Dh(x
n+1−xn)

∆t

)
·Dhx̃

n+1/2
∣∣∣

≤ (2C∗+1)C̃15(Ĉ+ Ĉ3)(∆t
5
2 +h

5
2 )≤∆t. (6.121)

Therefore, an O(∆t) bound for γn+1/2−γn−1/2 is obtained:

∥γn+1/2−γn−1/2∥∞≤ C̃17∆t, with C̃17 := (C∗+ C̃∗)(ϵ∗0)
−3+1, (6.122)

so that the nonlinear inner product associated with NL(2),1 could be analyzed as follows:

⟨NL(2),1,Dh(x̃
n+1+ x̃n)⟩≥∆t(⟨γn+1/2,(Dhx̃

n+1)2⟩−⟨γn−1/2,(Dhx̃
n))2⟩)

−C̃17∆t2∥Dhx̃
n∥22. (6.123)

Its combination with (6.115) yields the nonlinear estimate for NL(2):

⟨NL(2),Dh(x̃
n+1+ x̃n)⟩≥∆t(⟨γn+1/2,(Dhx̃

n+1)2⟩−⟨γn−1/2,(Dhx̃
n))2⟩)

−C̃18∆t2(∥Dhx̃
n+1∥22+∥Dhx̃

n∥22), with C̃18= C̃16+ C̃17 . (6.124)
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The analysis for NL(3) is similar for that of NL(2),2. We are able to obtain the following
estimate; the technical details are skipped for the sake of brevity.

⟨NL(3),Dh(x̃
n+1+ x̃n)⟩≥−C̃19∆t2(∥Dhx̃

n+1∥22+∥Dhx̃
n∥22)−(∆t4+h4)2. (6.125)

A combination of (6.110), (6.124) and (6.125) results in an estimate for NLEn+1/2:

⟨NLEn+1/2,2Dhx̃
n+1/2⟩

≥ 2

(C̃∗)2
∥Dhx̃

n+1/2∥22+∆t(⟨γn+1/2,(Dhx̃
n+1)2⟩−⟨γn−1/2,(Dhx̃

n))2⟩)

−C̃20∆t2(∥Dhx̃
n+1∥22+∥Dhx̃

n∥22)−(∆t4+h4)2, (6.126)

with C̃20= C̃18+ C̃19.

Finally, a substitution of (6.97)-(6.100), (6.103) and (6.126) into (6.96) results in〈 (Sh(x
n,xn−1))m−1

m(f0(X))m−2
,(x̃n+1)2

〉
+

1

(C̃∗)2
∆t∥Dhx̃

n+1/2∥22

+A0∆t2(∥Dhx̃
n+1∥22−∥Dhx̃

n∥22)+∆t2(⟨γn+1/2,(Dhx̃
n+1)2⟩−⟨γn−1/2,(Dhx̃

n))2⟩)

≤
〈 (Sh(x

n−1,xn−2))m−1

m(f0(X))m−2
,(x̃n)2

〉)
+ C̃22∆t∥x̃n+1∥22+ C̃23∆t∥x̃n∥22+

C̃21

2
∆t∥x̃n−1∥22

+C̃24∆t3(∥Dhx̃
n+1∥22+∥Dhx̃

n∥22)+∆t(∥τn∥22+(∆t4+h4)2), (6.127)

with C̃21= C̃14+ C̃2
14(C̃

∗)2, C̃22=
C̃14
2

+ C̃6
2
+2, C̃23= C̃4+

1
2
+ C̃14

2
+ 9C̃21

2
, C̃24= C̃20+4(ϵ∗0)

−2.
Subsequently, a summation in time gives

〈 (Sh(x
n,xn−1))m−1

m(f0(X))m−2
,(x̃n+1)2

〉
+

1

(C̃∗)2
∆t

n∑
k=0

∥Dhx̃
k+1/2∥22

+∆t2
(
A0∥Dhx̃

n+1∥22+⟨γn+1/2,(Dhx̃
n+1)2⟩

)
≤ C̃25∆t

n+1∑
k=0

∥x̃k∥22+2C̃24∆t3
n+1∑
k=0

∥Dhx̃
k∥22+C(∆t4+h4)2, (6.128)

with C̃25= C̃22+ C̃23+
C̃21
2

. Meanwhile, by the definition of γn+1/2 (6.116), we have

∥γn+1/2∥∞≤ 2C∗+1

(ϵ∗0)
3

, by (6.26), (6.35), (6.87). (6.129)

In turn, by taking A0=(2C∗+1)(ϵ∗0)
−3+1, and making use of the inequality (6.78), we obtain

C̃8∥x̃n+1∥22+
1

(C̃∗)2
∆t

n∑
k=0

∥Dhx̃
k+1/2∥22+∆t2∥Dhx̃

n+1∥22

≤ C̃25∆t

n+1∑
k=0

∥x̃k∥22+2C̃24∆t3
n+1∑
k=0

∥Dhx̃
k∥22+C(∆t4+h4)2. (6.130)

Therefore, an application of discrete Gronwall inequality (in the integral form) leads to the
desired higher order convergence estimate

∥x̃n+1∥2+
(
(C̃∗)−2∆t

n∑
m=0

∥1
2
Dh(x̃

m+1+ x̃m)∥22
)1/2

≤ Ĉ4(∆t4+h4). (6.131)

This completes the refined error estimate.
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6.5. Recovery of the a-priori assumption (6.32). With the higher order error
estimate (6.131) at hand, we conclude that the a-priori assumption in (6.32) is satisfied at the
next time step tn+1, since Ĉ4 takes the following form:

Ĉ4≤C exp
( (C̃25+2C̃24)t

n+1

min(C̃8,1)

)
≤ Ĉ :=C exp

( (C̃25+2C̃24)T

min(C̃8,1)

)
. (6.132)

We also notice that C̃8, C̃24 and C̃25 are independent of C. Therefore, the a-priori assumption
in (6.32) is satisfied, so that an induction analysis could be applied. This finishes the higher
order convergence analysis.

Finally, the convergence estimate (6.3) is a direct consequence of (6.131), combined with
the definition (6.4) of the constructed approximate solution W . This completes the proof of
Theorem 6.1.

7. Convergence analysis of Newton’s iteration
In this section, we prove the convergence of damped Newton’s iteration (3.11) in the convex

set Q, based on self-concordant [30]. The definition of self-concordant is given as the following:

Definition 7.1. Let G be a finite-dimensional real vector space, Q be an open nonempty
convex subset of G, Λ:Q→R be a function, a>0. Λ is called self-concordant on Q with the
parameter value a, if Λ∈C3 is a convex function on Q, and, for all x∈Q and all u∈G, the
following inequality holds:

|D3Λ(x)[u,u,u]|≤2a−1/2(D2Λ(x)[u,u])3/2

(DkΛ(x)[u1, · ·· ,uk] henceforth denotes the value of the k-th differential of Λ taken at x along
the collection of directions u1,· ·· ,uk) [30].

The self-concordant function has two typical characteristics [30]:

• Linear and (convex) quadratic functions are evidently self-concordant, since they have
zero third derivative.

• A function f :Rn→R is self-concordant if it is self-concordant along every line in its
domain.

Then we review the definition of F , given by (4.3)-(4.6), in which G(x,x0) turns out to be the

primitive function of − ln(1+x)−lnx0
1+x−x0

, for a fixed x0, as formulated in (4.7). The convexity of
F1, F3 and F4 (in terms of x̂) is obvious. For the functional F2, the inequality (4.8) is valid,
in which the convexity of − ln(1+x) has been used. This fact implies the convexity of F2.
Therefore, we conclude that F is convex in terms of x̂, provided that Dhx̂>−1 at a point-wise
level. Furthermore, F is strictly convex, because of the strict convexity of F1.

Theorem 7.1. Suppose f0(X)∈EN is the initial distribution with a positive lower bound for
X ∈Q and

√
a := min

0≤i≤M
f0(Xi)

hCNewton
2

with a positive constant CNewton, then F (x̂), defined

in (4.3)-(4.6), is a self-concordant function and Newton’s iteration is convergent in Q.

Proof. Since linear and quadratic functions have zero third derivative, F1(x̂) and F3(x̂)
are self-concordant. We just need to prove F2(x̂) and F4(x̂) are self-concordant along every
line in Q.

Suppose xn∈Q and let

ξi− 1
2
:=

Dhx
n
i− 1

2

1+Dhx̂i− 1
2

,i=1, · ·· ,M.

Then ξi− 1
2
>0, i=1, · ·· ,M . For ∀i=1, · ·· ,M , we can obtain

∂F2(x̂i)

∂x̂i
=

f0(Xi− 1
2
)

1+Dhx̂i− 1
2
−Dhxn

i− 1
2

ln(ξi− 1
2
)−

f0(Xi+ 1
2
)

1+Dhx̂i+ 1
2
−Dhxn

i+ 1
2

ln(ξi+ 1
2
),
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∂2F2(x̂i)

∂x̂2
i

=−
f0(Xi− 1

2
)

h
(
1+Dhx̂i− 1

2
−Dhxn

i− 1
2

)2 [(1−ξi− 1
2
)+ln(ξi− 1

2
)]

−
f0(Xi+ 1

2
)

h
(
1+Dhx̂i+ 1

2
−Dhxn

i+ 1
2

)2 [(1−ξi+ 1
2
)+ln(ξi+ 1

2
)],

∣∣∣∂3F2(x̂i)

∂x̂3
i

∣∣∣=∣∣∣ 2f0(Xi− 1
2
)

h2
(
1+Dhx̂i− 1

2
−Dhxn

i− 1
2

)3 [(1−ξi− 1
2
)+ln(ξi− 1

2
)+

1

2
(1−ξi− 1

2
)2
]

−
2f0(Xi+ 1

2
)

h2
(
1+Dhx̂i+ 1

2
−Dhxn

i+ 1
2

)3 [(1−ξi+ 1
2
)+ln(ξi+ 1

2
)+

1

2
(1−ξi+ 1

2
)2
]∣∣∣

≤
∣∣∣ 2f0(Xi− 1

2
)

h2
(
1+Dhx̂i− 1

2
−Dhxn

i− 1
2

)3 [(1−ξi− 1
2
)+ln(ξi− 1

2
)+

1

2
(1−ξi− 1

2
)2
]

+
2f0(Xi+ 1

2
)

h2
(
1+Dhx̂i+ 1

2
−Dhxn

i+ 1
2

)3 [(1−ξi+ 1
2
)+ln(ξi+ 1

2
)+

1

2
(1−ξi+ 1

2
)2
]∣∣∣.

Notice that

lnt=ln(1+(t−1))=(t−1)− 1

2
(t−1)2+O(t−1)3, ∀t>0,

hence there exists a constant CNewton>0 such that[
(1−ξi− 1

2
)+ln(ξi− 1

2
)+

1

2
(1−ξi− 1

2
)2
]2

≤CNewton

[
−(1−ξi− 1

2
)− ln(ξi− 1

2
)
]3

.

If the parameter
√
a := min

0≤i≤M
f0(Xi))

hCNewton
2

, we obtain

∣∣∣∣∣∣∣
2f0(Xi− 1

2
)

h2
(
1+Dhx̂i− 1

2
−Dhxn

i− 1
2

)3 [(1−ξi− 1
2
)+ln(ξi− 1

2
)+

1

2
(1−ξi− 1

2
)2
]∣∣∣∣∣∣∣

2

≤2a− 1
2

−
f0(Xi− 1

2
)

h
(
1+Dhx̂i− 1

2
−Dhxn

i− 1
2

)2 [(1−ξi− 1
2
)+ln(ξi− 1

2
)
]

3

,∀i=1,· ·· ,M. (7.1)

So F2(x̂) is self-concordant. By the same method, F4(x̂) is also self-concordant. Based on
Theorem 2.2.3 in [30], Newton’s iteration is convergent in Q.

8. Numerical results
In this section, we present an example with a positive state to demonstrate the convergence

rate of the numerical scheme.

Before that, we define the error of a numerical solution measured in the L2 and L∞ norms
as:

∥eh∥22=
1

2

(
e2h0

hx0 +

M−1∑
i=1

e2hi
hxi +e2hM

hxM

)
, (8.1)

and

∥eh∥∞= max
0≤i≤M

{|ehi |}, (8.2)

where eh=(eh0 ,eh1 , · ·· ,ehM ) and for the error of the density f−fh,

hxi =xi+1−xi−1, 1≤ i≤M−1; hx0 =x1−x0; hxM =xM −xM−1,
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and for the error of the trajectory x−xh,

hxi =2h, 1≤ i≤M−1, hx0 =hxM =h,

where h is the spatial step.

Example 1 (The problem with a positive initial state). Consider the problem (2.2)-(2.5)
in dimension one with a smooth positive initial data

f0(x)=0.5−(x−0.5)2, x∈Ω:=(0,1). (8.3)

Firstly, the trajectory Equation (2.11) with the initial and boundary condition (2.12)-(2.13)
can be solved by the fully discrete scheme (3.10), and then the density function f in (2.8) can
be approximated by (3.12). The reference “exact” solution is obtained numerically on a much
finer mesh with h= 1

10000
, ∆t= 1

10000
. By Theorem 7.1, the convergence of Newton’s iteration

is ensured for any choice of ∆t and h. Meanwhile, we take ∆t=h in the practical computations
for simplicity of presentation.

Table 8.1 shows the second order convergence for density f and trajectory x in the L2 and
L∞ norm with both m= 5

3
and m=3 at time t=0.05. That verifies the optimal convergence

rate of the numerical scheme. Figure 8.1 (a) and (b) present the density f for both values of m
at time t=0.05 and t=0.1, respectively. That implies that the speed of diffusion increases as
m increases. The reason is that the density f is bigger than 1 such that the diffusion become
larger with the growth of m. Figure 8.2 (a) displays the decay of total energy and Figure 8.2
(b) shows that particles move outward at a finite speed for m=2.

m=5/3

h ∆t ∥efh∥2 Order ∥efh∥∞ Order ∥exh∥2 Order ∥exh∥∞ Order
1/200 1/200 1.506e-04 3.277e-04 7.593e-05 7.844e-05
1/400 1/400 3.620e-05 2.056 8.421e-05 1.960 1.871e-05 2.021 1.934e-05 2.020
1/800 1/800 8.495e-06 2.092 2.033e-05 2.050 4.464e-06 2.067 4.617e-06 2.066
1/1600 1/1600 1.887e-06 2.170 4.695e-06 2.114 1.000e-06 2.158 1.036e-06 2.156

m=2

h ∆t ∥efh∥2 Order ∥efh∥∞ Order ∥exh∥2 Order ∥exh∥∞ Order
1/200 1/200 1.502e-04 3.279e-04 7.642e-05 7.902e-05
1/400 1/400 3.599e-05 2.061 8.370e-05 1.970 1.873e-05 2.028 1.938e-05 2.028
1/800 1/800 8.431e-06 2.094 2.005e-05 2.061 4.458e-06 2.071 4.615e-06 2.070
1/1600 1/1600 1.853e-06 2.186 4.563e-06 2.136 9.871e-07 2.175 1.024e-06 2.172
1 ∆t is the time step and h is the space step.

Table 8.1. Convergence rate of solution f and trajectory x at time t=0.05.

Example 2 (The problem with free boundaries). In this example, we consider the
Barenblatt solution [13], which can be expressed as

Bm(x,t)=

(t+1)−k

(
1− k(m−1)

2m

|x|2

(t+1)2k

)1/(m−1)

, x∈ [−ξtB ,ξ
t
B ], t≥0,

0, otherwise in Ω,

(8.4)

where l+=max{l,0}, k=(m+1)−1 and

ξtB =

√
2m

k(m−1)
(t+1)k.

Let Ω=(−10,10). We take Bm(x,0) as the initial data and solve the problem with the
numerical scheme (3.10) with (3.17). Figure 8.3 (a) displays the numerical density fnum and
the exact solution fexact at time t=5 and (b) gives a zoomed-in view near the right interface
with the parameter m=2, the spatial resolution M =100 and the time step ∆t=1/100. The
results indicate that the numerical solution is an effective approximation to the exact solution.
Moreover, Figure 8.4 (a) and (b) demonstrates the total energy decay and the total mass
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Fig. 8.1. The density f at time t=0.05 and t=0.1 (h=1/100, ∆t=1/100).
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(b) Particle Position for m=2

Fig. 8.2. The evolution of total energy and particle position (h=1/100, ∆t=1/100).

conservation, as well as the finite movement of particles, respectively. Table 8.2 gives the L2

and L∞ convergence rates of f at time t=1, and at X=0. Because of the low regularity of the
exact solution in the free boundary set-up, only the first order convergence rates are observed
in this case.

Example 3 (The waiting time phenomenon). The waiting time phenomenon is a classical
and difficult problem in porous medium equation, which could occur for some initial state [39].
More detailed descriptions could be found in [13]. Now we consider the following set-up:

Ω=(−5,5), (8.5)

f0(x)=

{{
m−1
m

[(1−θ)sin2(x)+θsin4(x)
}1/(m−1)

, x∈ [−π,0],
0, otherwise in Ω,

(8.6)

with θ∈ [0, 1
4
]. Then the waiting time is positive and the exact value is given by [2]

t∗exact=
1

2(m+1)(1−θ)
. (8.7)
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(b) Zoomed-in plot near right interface

Fig. 8.3. The density f at time t=5 and zoomed-in plot near right interface with the exact
solution fexact and the numerical solution fnum (M =100, ∆t=1/100).
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Fig. 8.4. The evolution of total energy, total mass and particle position for m=2 (M =100,
∆t=1/100).

In the computation, we take m=2 and θ= 1
4
. Figure 8.5 displays the evolution of f . It is

observed that the interface of f remains static before t=0.2405 (the waiting time), and then
moves at a finite speed with M =100 and ∆t=1/2000. Furthermore, Figure 8.6 (a) presents
the total energy decay and the mass conservation of the system. The particle movement in
Figure 8.6 (b) reveals that the particles at the interface do not move until t=0.2405. In
addition, Table 8.3 gives the convergence order for the waiting time. Although the convergence
rate is less than first order, at least a positive accuracy order has been obtained in the simulation
of this challenging problem. This example demonstrates another advantage of the proposed
algorithm.

This numerical example suggests that the proposed scheme works for the case that f0(X) is
degenerate in Ω0. Such a performance comes from the subtle fact that, there is no logarithmic
term in the Equation (3.1), while the energy formulation is always valid for non-negative
f0(X) (by noticing that the energy density function f lnf is well-defined even if f =0 in a
certain region).
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m=2

M ∆t ∥efh∥2 Order ∥efh∥∞ Order
100 1/100 3.147e-03 2.381e-03
200 1/200 1.573e-03 1.0005 1.191e-03 0.999
400 1/400 7.865e-04 1.0001 5.953e-04 1.000
800 1/800 3.932e-04 1.0000 2.976e-04 1.000

Table 8.2. Example 2. The convergence rate of f at the finite time T =1.
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Fig. 8.5. The evolution of density f with m=2 (M =100, ∆t=1/2000).
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Fig. 8.6. The evolution of total energy, total mass and particle position (M =100, ∆t=1/2000).
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M ∆t t∗w |t∗w − t∗w,e| Order

50 1/1000 0.2540 0.032
100 1/2000 0.2405 0.0183 0.806
200 1/4000 0.2328 0.01053 0.7973
t∗exact 0.2222

Table 8.3. Example 3. The convergence rate of waiting time (m=2, θ= 1
4
).

Remark 8.1. In two or higher dimensions, the determinant of the deformation gradient,
i.e., det ∂x

∂X
, will appear in the trajectory equation, which becomes a fully nonlinear degener-

ate parabolic system. An efficient numerical method, which can satisfy the discrete energy
dissipation law, has not been available in this area. A similar numerical method, based on
evolving diffeomorphisms [5], will also encounter a similar difficulty. Because of this limitation,
we have to focus on the one-dimensional equation in this article. The proposed numerical
scheme (3.10) preserves the second order temporal accuracy, as well as all the nice theoretical
properties, such as positivity-preservation, unique solvability, energy stability and optimal rate
convergence analysis (provided that the exact PDE solution is sufficiently smooth). In addi-
tion, this numerical algorithm is able to capture complicated physical structures in an accurate
way, such as waiting time phenomenon, in the practical computations, due to its Lagrange
approach. These combined features make the proposed numerical method very attractive, at
least for the one-dimensional case.

9. Concluding remarks
A second order accurate numerical scheme, both in time and space, is constructed and ana-

lyzed for the one-dimensional porous medium equation (PME) based on an energetic variational
approach (EVA). A modified Crank-Nicolson temporal discretization is applied, combined with
the finite difference over a uniform spatial mesh. Such a highly nonlinear numerical scheme is
proved to be uniquely solvable on an admissible convex set, and an energy dissipation property
is established, in which the convexity of the nonlinear implicit terms has played an important
role. Moreover, an optimal rate convergence analysis is provided in this work, in which many
highly non-standard estimates have to be involved. The higher order asymptotic expansion is
performed to obtain higher order consistency estimate, the rough error estimate is needed so
that an application of inverse inequality leads to an W 1,∞

h bound for the numerical variable.
Subsequently, the refined error estimate is carried out to accomplish the desired convergence
result, in which the W 1,∞

h bound for the numerical solution is applied. A few numerical results
are also presented in this article, which demonstrates the robustness of the proposed numerical
scheme.

On the other hand, one obvious limitation of this work is associated with the one-dimensional
nature of the problem. In two or higher dimensions, the determinant of the deformation gradi-
ent, i.e., det ∂x

∂X
, will arise in the trajectory equation, which is a complex nonlinear degenerate

parabolic equation system. A suitable numerical method in multi-dimensional case, which can
satisfy the discrete energy dissipation law, is still in the investigation process. Solving for
multi-dimensional PME by this energetic method and the corresponding optimal error esti-
mate will be left to the future works. Another limitation is the assumption of a positive initial
condition (f0>0), in which the convergence rate does not depend on the constant m. It is
well known that if the initial state has a compact support, the convergent rate decreases with
m. In this case, the trajectory equation with a free boundary makes the convergence analysis
more difficult. This problem will also be considered in the future works.
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Appendix. Proof of Lemma 6.2. A direct calculation gives

q′1(x)=−
1
x
(x−x0)−(lnx− lnx0)

(x−x0)2
>0, (A.1)

in which the convexity of −lnx (for x>0) has been applied:

− 1

x
(x−x0)+(lnx− lnx0)>0. (A.2)

Meanwhile, a detailed Taylor expansion leads to

lnx− lnx0=
1

x
(x−x0)+

1

2ζ2
(x−x0)

2, with ζ between x0 and x, (A.3)

which in turn implies that

q′1(x)=−
1
x
(x−x0)−(lnx− lnx0)

(x−x0)2
=

1

2ζ2
, with ζ between x0 and x. (A.4)

Therefore, an application of the intermediate value theorem indicates that

q1(y)−q1(x)= q′1(η)(y−x), with η between x and y, (A.5)

q′1(η)=
1

2ζ2η
, with ζη between x0 and η. (A.6)

Of course, a careful analysis implies that

q′1(η)=
1

2ζ2η
, q′1(η) is between

1

2y2
,

1

2x2
, and

1

2x2
0

, ∀x>0, y>0. (A.7)

This completes the proof of (6.61).
A further calculation gives

q′′1 (x)=−
− 1

x2 (x−x0)
3−2(x−x0)

(
1
x
(x−x0)−(lnx− lnx0)

)
(x−x0)4

≤0, (A.8)

for any x>0, in which a higher order Taylor expansion has been applied:

lnx− lnx0=
1

x
(x−x0)+

1

2x2
(x−x0)

2+
1

3ζ3
(x−x0)

3, with ζ between x0 and x. (A.9)

As a direct consequence, by an introduction of q2(x) :=
q1(y)−q1(x)

y−x
for a fixed y>0, we get

q′2(x)=
−q′1(x)(y−x)+(q1(y)−q1(x))

(y−x)2
≤0, (A.10)

since q1(y) is concave: −q′1(x)(y−x)+(q1(y)−q1(x))≤0, ∀y>0, x>0.

This completes the proof of Lemma 6.2.
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Ž. Vyčisl. Mat. Mat. Fiz., 7:440–444, 1967. 1

[27] X. Li, Z. Qiao, and C. Wang, Convergence analysis for a stabilized linear semi-implicit numerical
scheme for the nonlocal Cahn-Hilliard equation, Math. Comput., 90:171–188, 2021. 1, 6.1

https://link.springer.com/article/10.1007%2Fs10915-017-0594-5
https://link.springer.com/article/10.1007%2Fs10915-017-0594-5
https://doi.org/10.1016/j.jcp.2016.09.040
https://doc.global-sci.org/uploads/Issue/CiCP/v31n1/311_60.pdf?1638756797
https://link.springer.com/article/10.1007/s10915-013-9774-0
https://link.springer.com/article/10.1007/s10915-013-9774-0
https://link.springer.com/article/10.1007/s10915-016-0228-3
https://doi.org/10.1090/S0002-9947-1984-0743729-3 
https://arxiv.org/abs/1606.02668v1
https://arxiv.org/pdf/1411.5248.pdf
https://doi.org/10.1016/j.camwa.2017.07.012
https://doi.org/10.1016/j.jcp.2019.01.055
https://arxiv.org/abs/1910.04578v1
https://doi.org/10.1137/0732047
https://doi.org/10.1090/S0025-5718-01-01313-8
https://doi.org/10.1137/0120027
https://doi.org/10.1016/j.jcp.2020.109378
https://onlinelibrary.wiley.com/doi/epdf/10.1002/mma.4497
https://doi.org/10.1016/j.jcp.2014.08.001
https://doi.org/10.1016/j.jcp.2014.08.001
https://link.springer.com/article/10.1007%2Fs00211-014-0608-2
https://dx.doi.org/10.4310/CMS.2016.v14.n2.a8
https://doi.org/10.1016/j.cam.2020.113300
https://doi.org/10.1016/j.jcp.2009.04.020
https://doi.org/10.1016/j.jcp.2009.04.020
https://doi.org/10.1137/S0036142997315962
https://mathscinet.ams.org/mathscinet-getitem?mr=211058
https://doi.org/10.1090/mcom/3578 


1024 A SECOND ORDER METHOD FOR POROUS MEDIUM EQUATION

[28] C. Liu, C. Wang, S. Wise, X. Yue, and S. Zhou, A positivity-preserving, energy stable and conver-
gent numerical scheme for the Poisson-Nernst-Planck system, Math. Comput., 90:2071–2106,
2021. 1, 6.1

[29] C. Liu and Y. Wang, On Lagrangian schemes for porous medium type generalized diffusion equa-
tions: A discrete energetic variational approach, J. Comput. Phys., 417:109566, 2020. 1

[30] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Programming,
SIAM, 13, 1994. 7, 7.1, 7, 7

[31] C. Ngo and W.Z. Huang, A study on moving mesh finite element solution of the porous medium
equation, J. Comput. Phys., 331:357–380, 2017. 1
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