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PROPAGATOR NORM AND SHARP DECAY ESTIMATES FOR
FOKKER-PLANCK EQUATIONS WITH LINEAR DRIFT∗

ANTON ARNOLD† , CHRISTIAN SCHMEISER‡ , AND BEATRICE SIGNORELLO§

Abstract. We are concerned with the short- and large-time behavior of the L2-propagator norm
of Fokker-Planck equations with linear drift, i.e. ∂tf =divx(D∇xf+Cxf). With a coordinate trans-
formation these equations can be normalized such that the diffusion and drift matrices are linked as
D=CS , the symmetric part of C. The main result of this paper (Theorem 3.1) is the connection be-
tween normalized Fokker-Planck equations and their drift-ODE ẋ=−Cx: Their L2-propagator norms
actually coincide. This implies that optimal decay estimates on the drift-ODE (w.r.t. both the maxi-
mum exponential decay rate and the minimum multiplicative constant) carry over to sharp exponential
decay estimates of the Fokker-Planck solution towards the steady state. A second application of the the-
orem regards the short-time behaviour of the solution: The short-time regularization (in some weighted
Sobolev space) is determined by its hypocoercivity index, which has recently been introduced for Fokker-
Planck equations and ODEs (see [F. Achleitner, A. Arnold, and E. Carlen, Kinet. Relat. Models 11,
4:953–1009, 2018]; [F. Achleitner, A. Arnold, and E. Carlen, arXiv preprint, arXiv:2109.10784, 2021];
[A. Arnold and J. Erb, arXiv preprint, arXiv:1409.5425v2, 2014]).

In the proof we realize that the evolution in each invariant spectral subspace can be represented
as an explicitly given, tensored version of the corresponding drift-ODE. In fact, the Fokker-Planck
equation can even be considered as the second quantization of ẋ=−Cx.

Keywords. Fokker-Planck equation; large-time behavior; sharp exponential decay; semigroup
norm; hypocoercivity; regularization rate; second quantization.
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1. Introduction
We are going to study the large-time and short-time behavior of the solution of

Fokker-Planck (FP) equations with linear drift and possibly degenerate diffusion for
g=g(t,y):

∂tg=−L̃g :=divy(D̃∇yg+ C̃yg), y∈Rd, t∈ (0,∞),

g(t=0)=g0∈L1
+(Rd),∫

Rd

g0(y)dy=1. (1.1)

We assume that

• D̃∈Rd×d is non-zero, positive semi-definite, symmetric, and constant in y,

• C̃ ∈Rd×d is positive stable (typically non-symmetric) and constant in y.

The goal of this study is to investigate the qualitative and quantitative large-time be-
havior of the solution of (1.1). Several authors (see, e.g., [6–8, 26]) have addressed the
following questions: Under which conditions is there a non-trivial steady state g∞? In
the affirmative case, does the solution g(t) converge to the steady state for t→∞ in a
suitable norm? Is the convergence exponential?
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In particular, the large-time behavior of FP-equations has been treated in [33] via
spectral methods. Instead, entropy methods are used in [8]. From these previous studies
it is well known that (under some assumptions that will be defined in the next section)
the solution g(t) converges to the steady state g∞ with an exponential decay rate, up to
a multiplicative constant greater than one. In the degenerate case, where the diffusion
matrix D̃ is non-invertible, this property of the solution is known as hypocoercivity, as
introduced in [35].

Optimal exponential decay estimates for the convergence of the solution to the
steady state in both the degenerate and the non-degenerate cases have been shown
in [7]. Special care is required when the eigenvalues of C̃ with the smallest real part
are defective. This situation is covered in [6] and [24]. In both cases, the sharpness
of the estimate refers only to the exponential decay rate of the convergence of the
solution. The issue of finding the best multiplicative constant in the decay estimate for
FP-Equations (1.1) is still open. This is one of the topics of this paper. Even for linear
ODEs there are only partial results on this best constant, as for example in [23] and [3].
In particular, [3] gives the explicit best multiplicative constant in the two-dimensional
case for ẋ=−Cx, where C is a positive stable matrix. A very complete solution has
been derived in [17] for a special case, the kinetic FP-equation with quadratic confining
potential. There the propagator norm is computed explicitly. The result can be written
as an exponential decay estimate with time-dependent multiplicative constant, whose
maximal value is the result we are looking for. A related result based on Phi-entropies
can be found in [16], where improved time-dependent decay rates are derived.

The main result of this paper (Theorem 3.1) is equality of the propagator norms of
the PDE on the orthogonal complement of the space of equilibria and of its associated
drift ODE. The underlying norms are the L2-norm weighted by the inverse of the equi-
librium distribution for the PDE, and the Euclidian norm for the ODE. This has two
main consequences: First, the sharp (exponential) decay of the PDE is reduced to the
same, but much easier question on the ODE level. The second consequence is that the
hypocoercivity index (see [1,2,7]) of the drift matrix determines the short-time behavior
(in the sense of a Taylor series expansion) both of the drift ODE and the FP-equation.
As a further consequence for solutions of the FP-equation we determine the short-time
regularization from the weighted L2-space to a weighted H1-space. This result can be
seen as an illustration of the fact that for the FP-equation hypocoercivity is equivalent
to hypoellipticity. Finally, it is shown that the FP-equation can be considered as the
second quantization of the drift ODE. This follows from the proof of the main theorem,
where the FP-evolution is decomposed on invariant subspaces, in each of which the
evolution is governed by a tensorized version of the drift ODE.

The paper is organized as follows: In Section 2, we transform the FP-operator L̃
to an equivalent version L such that D=CS , the symmetric part of the drift matrix.
The conditions for the existence of a unique positive steady state and for hypocoercivity
are also set up. The main theorem is formulated in Section 3 together with the main
consequences. The proof of the main theorem requires a long preparation that is split
into Sections 4 and 5. In Section 4, we derive a spectral decomposition for the FP-
operator into finite-dimensional invariant subspaces. This allows to see an explicit link
with the drift ODE ẋ=−Cx. In order to make this link more evident, we work with the
space of symmetric tensors, presented in Section 5. In Section 6, we give the proof of
the main theorem as a corollary of the fact that the propagator norm on each subspace
is an integer power of the propagator norm of the ODE evolution. Finally, in Section
7, the FP-operator is rewritten in the second quantization formalism.
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2. Preliminaries and main result

2.1. Equilibria – normalized Fokker-Planck equation. The following
theorem (from [7], Theorem 3.1 or [22], p. 41) states under which conditions on the

matrices D̃ and C̃, there exists a unique steady state g∞ for (1.1) and the theorem

provides its explicit form. We denote the spectral gap of C̃ by µ(C̃) :=min{ℜ(λ) :
λ is an eigenvalue of C̃}.

Definition 2.1. We say that Condition Ã holds for the Equation (1.1), iff

(1) the matrix D̃ is symmetric, positive semi-definite,

(2) there is no non-trivial C̃T -invariant subspace of kerD̃,

(3) the matrix C̃ is positive stable, i.e. µ(C̃)>0.

Note that condition (2) is known as Kawashima’s degeneracy condition [19] in the
theory for systems of hyperbolic conservation laws. It also appears in [18] as a con-
dition for hypoellipticity of FP-Equations (see [35, Section 3.3] for the connection to
hypocoercivity).

Theorem 2.1 (Steady state). There exists a unique (L1-normalized) steady state g∞∈
L1(Rd) of (1.1), iff Condition Ã holds. It is given by the (non-isotropic) Gaussian

g∞(y)= cK exp

(
−y

TK−1y

2

)
, (2.1)

where the covariance matrix K ∈Rd×d is the unique, symmetric, and positive definite
solution of the continuous Lyapunov equation

2D̃= C̃K+KC̃T , (2.2)

and cK =(2π)−d/2(detK)−1/2 is the normalization constant.

In the above theorem, the matrix K can be represented analytically as

K=2

∫ ∞

0

e−C̃τ D̃e−C̃
T τdτ

(see [22], p. 41), and the numerical solution of (2.2) can be obtained with the Matlab
routine lyap.

Under Condition Ã the FP-Equation (1.1) can be rewritten (see Theorem 3.5, [7])
as

∂tg=divy

(
g∞(D̃+R̃)∇y

(
g

g∞

))
, y∈Rd, t∈ (0,∞), (2.3)

where R̃∈Rd×d is the anti-symmetric matrix R̃= 1
2

(
C̃K−KC̃T

)
. The natural setting

for the evolution Equation (1.1) is the weighted L2-space H̃ :=L2(Rd,g−1
∞ ) with the

inner product

⟨g1,g2⟩H̃ :=

∫
Rd

g1(y)g2(y)
dy

g∞(y)
.
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Using the notations Ṽ0 := spanR{g∞}⊂H̃ and C :=K−1/2C̃K1/2 we can now for-
mulate the main result of this paper: 1

Theorem 2.2. Let Condition Ã hold for the FP-Equation (1.1). Then the propagator
norms of the FP-Equation (1.1) and its corresponding drift ODE d

dtx=−Cx are equal,
i.e., ∥∥∥e−L̃t∥∥∥

B(Ṽ ⊥
0 )

=
∥∥e−Ct∥∥B(Rd)

, ∀t≥0, (2.4)

where B(.) denotes the operator and spectral matrix norms (for more details, see Defi-
nition 3.2 below).

The fact that (2.4) involves the matrix C (and not C̃), motivates the introduction of
the following coordinate transformation. Using x :=K−1/2y, f(x) :=(detK)1/2g(K1/2x)
transforms (1.1) into

∂tf =−Lf :=divx(D∇xf+Cxf)=divx

(
f∞C∇x

(
f

f∞

))
, (2.5)

where D :=K−1/2D̃K−1/2, and the steady state is the normalized Gaussian

f∞(x)=(2π)−d/2e−|x|2/2. (2.6)

This is due to the property

D=CS :=
1

2

(
C+CT

)
, (2.7)

which is a simple consequence of (2.2). We shall call a FP-equation normalized, if the
diffusion and drift matrices satisfy (2.7).

For later reference we rewrite Condition Ã in terms of the matrix C:

Definition 2.2. We say that Condition A holds for the Equation (2.5), iff

(1) the matrix CS is positive semi-definite,

(2) there is no non-trivial CT -invariant subspace of kerCS.

Proposition 2.1. The Equation (1.1) satisfies Condition Ã iff its normalized version
(2.5) satisfies Condition A. Moreover, Condition A implies that the matrix C is positive
stable, i.e. µ(C)>0.

Proof. Equivalence of the items (1) in Definitions 2.1 and 2.2 follows from CS=

K− 1
2 D̃K− 1

2 . For the second item, let us assume that (2) in Definition 2.2 does not hold.
Then, there exist v∈kerCS ,v ̸=0∈Rd such that

0=CSC
T v=(K−1/2D̃K−1/2)(K1/2C̃TK−1/2)v=K−1/2D̃C̃T (K−1/2v). (2.8)

1Note added in print: In the follow-up paper [9], Theorem 2.2 was recently extended to FP-equations
with time-dependent coefficient matrices D̃(t), C̃(t), provided that all these FP-operators, with fixed t,
have the same steady state, i.e. if (2.2) holds for all t with a constant matrix K. In this extension the two
propagators in (2.4) are replaced by the propagation operators that map the solution at time t1 to the
solution at time t2≥ t1, both for the FP-equation and for the corresponding drift ODE d

dt
x=−C(t)x.

K being constant in time implies that the FP-normatization to (2.5), the spaces H and H̃, as well as
the subspace decomposition in Section 4.1 are all time independent.

Moreover, Theorem 1.4 in [4] is closely related to our Theorem 2.2, but their analysis is very
different, based on harmonic Fock spaces and pseudodifferential operators.
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This implies D̃C̃T (K−1/2v)=0, since K−1/2>0. But this is a contradiction to (2) in

Condition Ã since it holds that v∈kerCS iff K−1/2v∈kerD̃. With a similar argument
the reverse implication can be proven.

For the proof that Condition A implies positive stability of C, we refer to Proposition
1 and Lemma 2.4 in [1].

From now on we shall study the normalized Equation (2.5) on the normalized version

H :=L2
(
Rd,f−1

∞
)
of the Hilbert space H̃. It is easily checked that

∥g(t)∥H̃=∥f(t)∥H, ∀t≥0, (2.9)

holds for the solutions g and f of (1.1) and, respectively, (2.5). This implies that the

propagator norms for L̃ and L are the same, and that the Theorems 2.2 and 3.1 are
equivalent.

2.2. Convergence to the equilibrium: hypocoercivity. In [7], a hypoco-
ercive entropy method was developed to prove the exponential convergence to f∞, for
the solution to (2.5) with any initial datum f0∈H. It employed a family of relative en-

tropies w.r.t. the steady state, i.e. eψ(f(t)|f∞) :=
∫
Rdψ

(
f(t)
f∞

)
f∞dx, where the convex

functions ψ are admissible entropy generators (as in [8] and [12]).

Definition 2.3. Given µ(C) :=min{Re(λ) :λ is an eigenvalue of C}.
(1) We call the matrix C non-defective if all the eigenvalues λ with Re(λ)=µ(C) are

non-defective, i.e., their algebraic and geometric multiplicities coincide.

(2) We call a FP-Equation (1.1) (non-)defective if its drift-matrix C̃ is (non-)defective,
or equivalently, if the matrix C in the normalized version (2.5) is (non-)defective.

For non-defective FP-equations, the decay result from [7] provides, on the one hand,
the sharp exponential decay rate µ>0, but, on the other hand, only a sub-optimal
multiplicative constant c>1. We give a slightly modified version of it:

Theorem 2.3 (Exponential decay of the relative entropy, Theorem 4.9, [7]). Let ψ
generate an admissible entropy and let f be the solution of (2.5) with normalized initial
state f0∈L1

+(Rd) such that eψ(f0|f∞)<∞. Let C satisfy Condition A. Then, if the
FP-equation is non-defective, there exists a constant c≥1 such that

eψ(f(t)|f∞)≤ c2e−2µteψ(f0|f∞), t≥0. (2.10)

Choosing the admissible quadratic function ψ(σ)=(σ−1)2 yields the exponential
decay of the H-norm. For this particular choice of ψ, Theorem 2.3 holds also for
f0∈L1(Rd)∩H, i.e. the positivity of the initial datum f0 is not necessary.

Corollary 2.1 (Hypocoercivity). Under the assumptions of Theorem 2.3 the fol-
lowing estimate holds with the same µ>0, c≥1:

∥f(t)−f∞∥H≤ ce−µt∥f0−f∞∥H, t≥0. (2.11)

The hypocoercivity approach in [7] provides the optimal (i.e. maximal) value for µ and
a computable value for c, which is however not sharp, i.e. c>cmin with

cmin :=min

{
c≥1 : (2.11) holds for all f0∈H with

∫
Rd

f0dx=1

}
. (2.12)

One central goal of this paper is the determination of cmin. But, actually, we shall
go much beyond this: The main result of this paper, Theorem 3.1, states that the
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H-propagator norm of each (stable) FP-equation is equal to the (spectral) propagator
norm of its corresponding drift ODE ẋ(t)=−Cx(t). Hence, all decay properties of the
FP-Equation (1.1) can be obtained from a simple linear ODE, and sharp exponential
decay estimates of this ODE carry over to the corresponding FP-equation. So, for
quantifying the decay behavior of FP-equations with linear drift, an infinite dimensional
PDE problem can be replaced by a (small) finite dimensional ODE problem.

2.3. The best multiplicative constant for the ODE-decay. In [3], we
analyzed the best decay constants for the (of course easier) finite dimensional problem

ẋ(t)=−Cx(t), t>0, x(0)=x0∈Cn, (2.13)

where C ∈Cn×n is a positive stable and non-defective matrix. In this case we con-
structed a problem-adapted norm as a Lyapunov functional. This allowed to derive a
hypocoercive estimate for the Euclidean norm ∥·∥2 of the solution:

∥x(t)∥2≤ ce−µt∥x0∥2, t≥0. (2.14)

Here µ>0 is the spectral gap of the matrix C (and the sharp decay rate of the ODE
(2.13)), and c≥1 is some constant.

In [3], we investigated, in the two dimensional case, the sharpness of the constant c.
By analogy with (2.12), we define the best multiplicative constant for the hypocoercivity
estimate of the ODE as

c1 := c1(C) :=min{c≥1 : (2.14) holds for all x0∈Cn} .

The explicit expression for the best constant c1 depends on the spectrum of C. In [3],
we treated all the cases for matrices in C2×2. In particular, denoting the two eigenvalues
of C by λ1 and λ2, we distinguish three cases:

(1) ℜ(λ1)=ℜ(λ2)=µ;
(2) µ=ℜ(λ1)<ℜ(λ2), ℑ(λ1)=ℑ(λ2);
(3) µ=ℜ(λ1)<ℜ(λ2), ℑ(λ1) ̸=ℑ(λ2).
The corresponding explicit form of c1 in the cases (1) and (2) is described in the next
theorem (see Theorem 3.7 and Theorem 4.1 in [3]). For the case (3), we have, instead,
an implicit form, see Proposition 4.2 and Corollary 4.3 in [3].

Theorem 2.4. Let C ∈C2×2 be positive stable and non-defective with eigenvalues
λ1,λ2. Denoting by α∈ [0,1) the cosine of the angle between the two eigenvectors of CT ,
the best constant for (2.14) in the cases (1) and (2) is

c1=

√
1+α

1−α
and, respectively, c1=

1√
1−α2

.

For dimension n≥3, explicit expressions for the best constant c1 seem to be unknown
in general.

2.3.1. The defective case. So far we have discussed non-defective matrices
C ∈Rd×d. The remaining case has to be treated differently since we cannot obtain both
the optimality of the multiplicative constant and the sharpness of the exponential decay
at the same time if C is defective. Nevertheless, hypocoercive estimates do hold (see
Chapter 1.8 in [28] and Theorem 2.8 in [11]) with either reduced exponential decay
rates (see Theorem 4.9 in [7]) or with the best decay rate µ, but augmented with a
time-polynomial coefficient (see Theorem 2.8 in [11]), as the following theorem claims.
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Theorem 2.5. Let C ∈Cd×d be a positive stable (possibly defective) matrix with
spectral gap µ>0. Let M be the maximal size of a Jordan block associated to µ. Let
x(t) be the solution of the ODE d

dtx(t)=−Cx(t) with initial datum x0∈Cd. Then, for
each ϵ>0 there exist a constant cϵ≥1 such that

∥x(t)∥2≤ cϵe−(µ−ϵ)t∥x0∥2, ∀t≥0,x0∈Cd. (2.15)

Moreover, there exists a polynomial p(t) of degree M−1 such that

∥x(t)∥2≤p(t)e−µt∥x0∥2, ∀t≥0,x0∈Cd. (2.16)

As we did for the non-defective case, we define the best constant c1,ϵ for the estimate
(2.15) with rate µ−ϵ as

c1,ϵ :=min
{
cϵ≥1 : (2.15) holds for all x0∈Cd

}
.

We do not attempt to define an “optimal polynomial” p(t) in (2.16). In the next section,
it is shown that these ODE-results carry over to the corresponding FP-Equation (2.5).

3. Main result for normalized FP-equations and applications
In Theorem 2.2, we anticipated the main result of this paper for the non-normalized

FP-Equation (1.1). In the sequel, we shall deal with its equivalent formulation for
normalized FP-equations, since this will simplify the proof. With the above review of
ODE results we can now state an essential aspect of this main result: The best decay
constants in (2.11) for the FP-Equation (2.5) (and therefore also for (1.1)) coincide
with the best constants for the ODE (2.13). This result is a corollary of the main
theorem of this paper, namely Theorem 3.1. It claims that the propagator norm of the
FP-equation coincides with the propagator norm of its corresponding ODE (w.r.t. the
Euclidean vector norm). With propagator norm we refer to the following notion for
linear ODEs or PDEs: If A is their infinitesimal generator on some Banach space X
and eAt, t≥0 their propagator, forming a C0-semigroup of bounded operators (cf. [27]),
the propagator norm is the operator norm of eAt on X, see Definition 3.2 below.

First we define the projection operator Π0 that maps a function in H into the
subspace generated by the steady state f∞.

Definition 3.1. Let f ∈H=L2
(
Rd,f−1

∞
)
and f∞ be the normalized Gaussian (2.6).

We define the operator Π0 :H−→H as

Π0f := ⟨f,f∞⟩Hf∞,

i.e., Π0 projects f onto V0 := spanR{f∞}=N (L).

Remark 3.1. Let f ∈H. Then, the coefficient ⟨f,f∞⟩H is equal to
∫
Rd f(x)dx, by

definition. Moreover, it is obvious from the divergence form of (2.5) that the “total
mass”

∫
Rd f(t,x)dx remains constant in time under the flow of the equation. Hence,

(Π0f)(t) is independent of t, if f(t) solves (2.5). This implies e−Lt(1−Π0)=e
−Lt−Π0.

We introduce the standard definitions of operator norms.

Definition 3.2. Let A :H→H and B : Rd→Rd be linear operators. Then

∥A∥B(H) := sup
0 ̸=f∈H

∥Af∥H
∥f∥H

, ∥B∥B(Rd) := sup
0̸=x∈Rd

∥Bx∥2
∥x∥2

.
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If f(t) is the solution of the FP-Equation (2.5) with f(0)=f0∈H, then

∥∥e−Lt (1−Π0)
∥∥
B(H)

=
∥∥e−Lt∥∥B(V ⊥

0 )
= sup

0̸=f0∈H

∥f(t)−Π0f0∥H
∥f0∥H

.

If x(t)∈Rd is the solution of the ODE d
dtx=−Cx with initial datum x(0) :=x0, then

∥∥e−Ct∥∥B(Rd)
= sup

0 ̸=x0∈Rd

∥x(t)∥2
∥x0∥2

.

With these notations we can state the main result of this paper.

Theorem 3.1. Let Condition A hold for the FP-Equation (2.5). Then the propagator
norms of the FP-Equation (2.5) and its corresponding ODE d

dtx=−Cx are equal, i.e.,∥∥e−Lt∥∥B(V ⊥
0 )

=
∥∥e−Ct∥∥B(Rd)

, ∀t≥0. (3.1)

The proof of Theorem 3.1 will be prepared in the following two sections and fi-
nally completed in Section 6. Translating this result back to the non-normalized FP-
Equation (1.1) yields the following corollary by using (2.9) and C=K−1/2C̃K1/2:

Corollary 3.1.∥∥∥e−L̃t∥∥∥
B(Ṽ ⊥

0 )
=
∥∥∥K−1/2e−C̃tK1/2

∥∥∥
B(Rd)

≤
√

cond(K)
∥∥∥e−C̃t∥∥∥

B(Rd)
, ∀t≥0,

where cond(K) denotes the condition number of K.

Theorem 3.1 can be seen as a generalization of a result in [17], where the propagator
norm for the following kinetic FP-equation (the L2-adjoint equation of (2) in [17])

∂tg=−L̃ag :=−v∂xg+∂v(∂vg+(ax+v)g)

=div(x,v)

((
0 0
0 1

)
∇(x,v)g+

(
0 −1
a 1

)(
x
v

)
g

)
, (3.2)

with (x,v)∈R2 and the parameter a>0, has been computed explicitly.

Theorem 3.2 ([17, Theorem 1.2]). For any a>0 and t≥0, it holds:

∥∥∥e−L̃at
∥∥∥
B(V ⊥

0 )
= ca(t)exp

(
−
1−
√

(1−4a)+
2

t

)
, (3.3)

where the non-negative factor ca(t) is given, for 0<a<1/4, by

ca(t) :=

√√√√√e−2θt+
1−θ2
2θ2

(1−e−θt)2+ 1−e−2θt

2

1+
1

θ

√
1+(θ−2−1)

(
eθt−1

eθt+1

)2
,
(3.4)

with θ=
√
1−4a, for a>1/4 by

ca(t) :=

√
1+

|eθt−1|
2|θ|2

(
|eθt−1|+

√
|eθt−1|2+4|θ|2

)
, (3.5)
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with θ :=
√
4a−1i, and for a=1/4 by

ca(t) :=

√√√√
1+

t2

2
+ t

√
1+

(
t

2

)2

. (3.6)

Note that there is a small typo in the formula for ca(t), a<1/4 in [17] that corresponds
to (3.4).

After normalization of the FP-Equation (3.2), the corresponding drift matrix is
given by

Ca :=

(
0 −

√
a√

a 1

)
. (3.7)

Its eigenvalues are λ1,2 :=
1
2 (1±θ), with θ as in Theorem 3.2, and the corresponding

eigenvectors are v1,2=(
√
a,−λ1,2)T . This shows that the spectral gap is given by µ=

1
2

(
1−
√

(1−4a)+

)
. It is easy to check that Ca satisfies Condition A for each a>0. We

observe that the value a=1/4 is critical in the sense that C1/4 is defective.
With the approach of this work we can employ the results of Section 2.3 for obtaining

the best possible constant c1 in∥∥∥e−L̃at
∥∥∥
B(V ⊥

0 )
=
∥∥e−Cat

∥∥
B(Rd)

≤ c1e−µt. (3.8)

For a ̸=1/4 we apply Theorem 2.4 and note that for 0<a<1/4 we are in case (2). We
compute α=2

√
a, giving the optimal constant

c1=(1−4a)−1/2,

which can also be obtained from (3.4) in the limit t→∞. For a>1/4 we are in case (1)
and obtain α=(2

√
a)−1 and

c1=
2
√
a+1√
4a−1

.

The same is obtained as the maximal value of ca(t) in (3.5), taken whenever
∣∣eθt−1

∣∣=2.

0 1 2 3 4 5 6 7 8 9 10

t

0

0.2

0.4

0.6

0.8

1

Fig. 3.1. The propagator norm for Equation (3.2) for 3 values of the parameter a. Solid (green)
curve for a=2, dashed (red) curve for a=1/4, dotted (blue) curve for a=1/5. The dash-dotted (green)
curve, gives the best exponential bound of the form c1e−t/2 for the case a=2. Note: The curves are
colored only in the electronic version of this article.



1056 SHARP DECAY ESTIMATES FOR FOKKER-PLANCK EQUATIONS

Finally, for a=1/4 the results of Theorems 2.5 and 3.2 agree with ca(t)≈ t as t→∞,
since the best approximation for the function in (3.6), i.e. the smallest affine linear upper
bound to (3.6), is the polynomial p(t)=1+ t.

The plot in Figure 3.1 shows the right-hand side of (3.3) as a function of time for
3 values of a (a=1/5, a=1/4, a=2). Note the non-smooth behavior in the case a=2.

3.1. Applications of Theorem 3.1.

3.1.1. Long-time behavior. One consequence of Theorem 3.1 is that all the
estimates about the decay of the solutions of the ODE carry over to the corresponding
FP-equation. In particular, it follows that the hypocoercive ODE estimates (2.14) and
(2.15) hold also for solutions of the corresponding FP-equation. Moreover, the best
constants in the estimates are the same, both for the FP-case and for its corresponding
drift ODE.

Theorem 3.3. Let C ∈Rd×d be non-defective and satisfy Condition A. Let c1 be the
best constant in the estimate (2.14) for the ODE (2.13). Then it is also the optimal
constant cmin in the following hypocoercive estimate

∥f(t)−f∞∥H≤ c1e−µt∥f0−f∞∥H, ∀t≥0,∀f0∈H,
∫
Rd

f0(x)dx=1 (3.9)

for the solution of the FP-Equation (2.5).

Theorem 3.4. Let C ∈Rd×d be defective and satisfy Condition A. Let M be the
maximal size of a Jordan block associated to µ. Let ϵ>0 be fixed and c1,ϵ be the best
constant in the estimate (2.15) for the ODE (2.13). Then the following hypocoercive
estimate holds

∥f(t)−f∞∥H≤ c1,ϵe−(µ−ϵ)t∥f0−f∞∥H, ∀t≥0,∀f0∈H,
∫
Rd

f0(x)dx=1 (3.10)

for the solution of the FP-Equation (2.5), and c1,ϵ is the optimal multiplicative constant.
Moreover,

∥f(t)−f∞∥H≤p(t)e−µt∥f0−f∞∥H, ∀t≥0,∀f0∈H,
∫
Rd

f0(x)dx=1, (3.11)

where p(t) is the polynomial of degree M−1 appearing in (2.16).

We remind that the quest to obtain the best decay for (1.1) is thus reduced to the
knowledge of the best decay constants for the corresponding drift ODE.

3.1.2. Short-time behavior. The second application of Theorem 3.1 concerns
the short-time behavior of the propagator norm of the FP-operator. It is linked to
the concept of hypocoercivity index, which describes the “structural complexity” of the
matrix C and, more precisely, the intertwining of its symmetric and anti-symmetric
parts. For the FP-equation, the hypocoercivity index reflects its degeneracy structure.
As we are going to illustrate in this section, this index represents the polynomial degree
in the short-time behavior of the propagator norm, both in the FP-equation and in the
ODE case. Moreover, it describes the rate of regularization of the FP-solution from H
to a weighted Sobolev space H1.

Next, we recall the definition of hypocoercivity index both for FP-equations and
ODEs, respectively, from [7] and [1, 2]. We will see that these two concepts coincide
when we consider the drift ODE associated to the FP-equation. We first give the
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definition for the normalized FP-equation and then it will be illustrated that the index
is invariant for the general (D ̸=CS) Equation (1.1).

Definition 3.3. We define mHC , the hypocoercivity index for the normalized FP-
Equation (2.5) as the minimum m∈N0 such that

Tm :=

m∑
j=0

CjASCS(C
T
AS)

j>0. (3.12)

Here CAS :=
1
2 (C−CT ) denotes the anti-symmetric part of C.

Remark 3.2. Lemma 2.3 in [7] states that the condition mHC <∞ is equivalent
to the FP-equation being hypoelliptic. This index can be seen as a measure of “how
much” the drift matrix has to mix the directions of the kernel of the diffusion matrix
with its orthogonal space, in order to guarantee convergence to the steady state. For
example, mHC =0 means, by definition, that the diffusion matrix D=CS is positive
definite, and hence coercive. In general, mHC is finite when we are assuming Condition
A (see Lemma 2.3, [7]).

For completeness, we include the definition of hypocoercivity index also for the non-
normalized case. For simplicity, we will denote it with mHC as well. This is actually
allowed since the next proposition will prove that these two definitions are unchanged
under normalization.

Definition 3.4. We define mHC the hypocoercivity index for the FP-Equation (1.1)
as the minimum m∈N0 such that

T̃m :=

m∑
j=0

C̃jD̃(C̃T )j>0, (3.13)

and mHC =∞ if this minimum does not exist.

Proposition 3.1. Let us consider the FP-Equation (1.1) and its normalized ver-

sion (2.5). Let Condition Ã (or, equivalently, Condition A) be satisfied. Then, the
hypocoercivity indices of the two equations coincide, i.e., for any m∈N0

Tm>0 if and only if T̃m>0. (3.14)

Proof. First we recall from Lemma 2.3, [2] that

m∑
j=0

CjASCS(C
T
AS)

j>0 if and only if

m∑
j=0

CjCS(C
T )j>0. (3.15)

The second step consists in proving that T̃m>0 iff

T̂m :=

m∑
j=0

CjD(CT )j>0,

where C=K−1/2C̃K1/2 and D=K−1/2D̃K−1/2=CS are the matrices appearing in the
normalized equation and K from (2.2). By substituting we get

T̂m=

m∑
j=0

(K−1/2C̃K1/2)jK−1/2D̃K−1/2(K1/2C̃TK−1/2)j
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=K−1/2
m∑
j=0

C̃jD̃(C̃T )jK−1/2

=K−1/2T̃mK
−1/2. (3.16)

Then, it is immediate to conclude that the positivity of the two matrices is equivalent
since K>0.

Combining this last equivalence with (3.15) yields (3.14).

Remark 3.3. We shall now compare the hypocoercivity index mHC of the normalized
FP-Equation (2.5) to the commutator condition (3.5) in [35]. To this end we rewrite
(2.5) for h(x,t) :=f(x,t)/f∞(x). In Hörmander form it reads

∂th=div(C∇h)−xTC∇h=−(A∗A+B)h, (3.17)

where the adjoint A∗ is taken w.r.t. L2(Rd,f∞). Here, the vector-valued operator A
and the scalar operator B are given by

A :=
√
D ·∇, B :=xT ·CAS ·∇.

Following Section 3.3 in [35] we define the iterated commutators

C0 :=A, Ck := [Ck−1,B].

They are vector-valued operators mapping from L2(Rd,f∞) to (L2(Rd,f∞))d. Hence,
the ∇ operator in B can be either the gradient or the Jacobian, depending on the
dimensionality of the argument of B. By induction one easily verifies that Ck=

√
D ·

CkAS ·∇, k∈N0.
We recall condition (3.5) from [35]: “There exists Nc∈N0 such that

Nc∑
k=0

C∗
kCk is coercive on ker(A∗A+B)⊥.” (3.18)

Note that ker(A∗A+B) consists of the constant functions, and its orthogonal comple-
ment is {h∈L2(Rd,f∞) :

∫
Rd hf∞dx=0}. The coercivity in (3.18) reads∫

Rd

∇Th ·TNc
·∇hf∞dx≥κ

∫
Rd

h2f∞dx (3.19)

for some κ>0 and all h∈ker(A∗A+B)⊥, where TNc :=
∑Nc

k=0(C
T
AS)

kDCkAS . Clearly,
the weighted Poincaré inequality (3.19) holds iff TNc

>0, see, for example, Section 3.2
in [8]. Hence, the minimum Nc, for condition (3.18) to hold, equals the hypocoercivity
index mHC from Definition 3.3 above.

Next we shall link the hypocoercivity index of the FP-equation with the hypoco-
ercivity index mHC of its associated ODE ẋ(t)=−Cx(t), which is defined in the same
way. At the ODE level, this index describes the short-time decay of the propagator
norm

∥∥e−Ct∥∥B(Rd)
as it is shown in the following Theorem 3.5 (see Theorem 2.6, [2]).

Remark 3.4. We note that our hypocoercivity index mHC also coincides with the
index appearing in the characterization of the singular space S of the FP-operator, i.e.
the smallest integer k0 such that

k0⋂
j=0

ker[CS(CAS)
j ]=S={0}
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(see (2.9) in [5], (3.22) in [25]). The equivalence of these two indices follows since they
are both equivalent to the smallest integer τ in the Kalman rank condition, i.e.

rank
{√

CS , CAS
√
CS , ...,C

τ
AS

√
CS
}
=d.

This was established in Proposition 1 of [1] and, respectively, on pages 705/706 of [25].
The latter proof uses the version (3.17) of the FP-equation.

Theorem 3.5. Let C satisfy Condition A. Then its hypocoercivity index is mHC ∈N0

(and hence finite) if and only if∥∥e−Ct∥∥B(Rd)
=1−ctα+O(tα+1), as t→0+, (3.20)

for some c>0, where α :=2mHC+1.

Remark 3.5. We observe that, in the coercive case (i.e., mHC =0), the propagator
norm satisfies an estimate of the form∥∥e−Ct∥∥B(Rd)

≤e−λt, t≥0, for some λ>0. (3.21)

In that case (α=1) Theorem 3.5 states that the propagator norm
∥∥e−Ct∥∥B(Rd)

behaves

as g(t) :=1−ct for short times. With c=λ, this is the (initial part of the) Taylor
expansion of the exponential function in (3.21).

Next, we shall use this result to derive information about the short-time behavior
of the Fokker-Planck propagator norm ∥e−Lt∥B(V ⊥

0 ). By Theorem 3.1, the propagator
norms of the FP-equation and the corresponding ODE coincide.

Theorem 3.6. Let L be the Fokker-Planck operator defined in (2.5). Let C satisfy
Condition A. Then the hypocoercivity index of (2.5) is mHC ∈N0 (and hence finite) if
and only if ∥∥e−Lt∥∥B(V ⊥

0 )
=1−ctα+O(tα+1), t→0+, (3.22)

where α=2mHC+1, for some c>0.

Proof. This result is an immediate corollary of Theorem 3.1 and Theorem 3.5, by
recalling that the FP-equation and its associated ODE have the same hypocoercivity
index.

Remark 3.6. As for the ODE case, the equality (3.22) shows that the index mHC

describes how fast the propagator norm decays for short times. This is consistent with
the fact that the coercive case (mHC =0) corresponds to the fastest behavior, i.e., with
an exponential decay (α=1). In general, the bigger the index, the slower is the decay
of the norm for short times.

Example 3.1. In Theorem 1.2 of [17] the authors derive the explicit expression for
the propagator norm of the FP-equation associated to the matrix (3.7), see Theorem
3.2. With it they also estimate the short-time behavior of this norm, depending on the
parameter a. In the case a>0, equality (2) in [17] implies∥∥∥e−L̃at

∥∥∥
B(V ⊥

0 )
=1− a

6
t3+o(t3).

We note that this result is consistent with the equality (3.22). Indeed, it is easy to verify
that for a>0 the matrix Ca has hypocoercivity index mHC =1. Hence the exponent in
the polynomial short-time behavior turns out to be α=3, as above.
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It is known that the hypocoercivity index also has a second implication on the qual-
itative behavior of FP-equations, namely the rate of regularization from some weighted
L2-space into a weighted H1-space (like in non-degenerate parabolic equations). The
following proposition was proven in [35] (see Section 7.3, Section A.21 for the kinetic
FP-equation with mHC =1. The extension from Theorem A.12 is given without proof
and includes a small typo.) and in [7, Theorem 4.8]. The following result can also be
seen as a special case of (2.21) as well as of Theorem 2.6 in [5].

Proposition 3.2. Let f(t) be the solution of (2.5). Let C satisfy Condition A and
mHC be its associated hypocoercivity index. Then, there exist c̃, δ>0, such that∥∥∥∥f∞∇

(
f(t)

f∞

)∥∥∥∥
H
≤ c̃t−α/2∥f0∥H , 0<t≤ δ, (3.23)

with α :=2mHC+1 for all f0∈H.

So far we have seen that the hypocoercivity index of a FP-equation determines
both the short-time decay and its regularization rate. An obvious question is now to
understand the relation of these two qualitative properties. The following proposition
shows that they are essentially equivalent for the family (2.5) of FP-equations:

Proposition 3.3. Let the matrix C satisfy Condition A (see Definition 2.2), and let
f(t) be the solution of (2.5). We denote its propagator norm by

∥∥e−Lt∥∥B(V ⊥
0 )

=: h̃(t),

t≥0.

(a) Assume that h̃(t)=1−ctα+o(tα) as t→0+ for some c>0 and α>0. Then the
regularization estimate (3.23) follows with the same α, and for all f0∈H. Moreover,
this α in (3.23) is optimal (i.e. minimal).

(b) Let there exist some c̃,δ >0 and α>0 (not necessarily integer) such that (3.23)
holds for all f0∈H. Then, there are δ2>0 and c2>0, such that h̃(t)≤1−c2tα on
0≤ t≤ δ2. Moreover, if α is minimal in the assumed regularization estimate (3.23),
then it is also minimal in the concluded decay estimate h̃(t)≤1−c2tα.

The proof of Proposition 3.3 can be found in the Appendix, since it requires results
that will be presented in the next sections.

Remark 3.7. We note that the statements (3.22) and (3.23) are different in nature:
While the equality (3.22) characterizes the short-time decay of e−Lt, the inequality
(3.23) only provides an upper bound for the short-time regularization of e−Lt. Hence,
since Proposition 3.2 is based on (3.23), it can only yield the conclusion h̃(t)≤1−c2tα,
which is also just an upper bound for the short-time behavior, rather than the dominant
part of the Taylor expansion of h̃(t). But if α is known to be minimal in (3.23), then it
is also minimal for (3.22).

Remark 3.8. Proposition 3.2 provides an isotropic regularization rate. We note that
this result can be improved for degenerate, hypocoercive FP-equations, and it gives rise
to anisotropic smoothing: There the regularization is faster in the diffusive directions
of (kerCS)

⊥ than in the non-diffusive directions of kerCS . “Faster” corresponds here
to a smaller exponent in (3.23).

An example of different speeds of regularization is given in [31, Section 11] for the
solution f(t,x,v) of a kinetic FP-equation in Td×Rd without confinement potential. In
that case the short-time regularization estimate for the v-derivatives is the same as for
the heat equation, since the operator is elliptic in v. But the regularization in x has an
exponent 3 times as large; this corresponds, respectively, to the two cases mHC =0, 1
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in (3.23). A more general result about anisotropic regularity estimates can be found
in [35, Section A.21.2]. In an alternative description one can fix a uniform regularization
rate in time, by considering different regularization orders (i.e. higher order derivatives)
in different spatial directions in the setting of anisotropic Sobolev spaces. A definition
of these functional spaces and an example of this behaviour is provided in [25], regarding
the solution of a degenerate Ornstein-Uhlenbeck equation.

4. Solution of the FP-equation by spectral decomposition
In order to link the evolution in (2.5) to the corresponding drift ODE ẋ=−Cx, we

shall project the solution f(t)∈H of (2.5) to finite dimensional subspaces {V (m)}m∈N0
⊂

H with LV (m)⊆V (m). Then we shall show that, surprisingly, the evolution in each
subspace can be based on the single ODE ẋ=−Cx. Moreover, the solution component
in the subspace V (1) will turn out to decay the slowest, and it is hence the dominant
part.

4.1. Spectral decomposition of the Fokker Planck operator. First we
define the finite dimensional, L-invariant subspaces V (m)⊂H. Let the dimension d≥1
be fixed. From Section 1 we recall that the (normalized) steady state of (2.5) is given

by g0(x) :=f∞(x)=
∏d
i=1g(xi), x=(x1,. ..,xd)∈Rd, where g(y)= 1√

2π
e−y

2/2 is the one-

dimensional (normalized) Gaussian. The construction and results about the spectral
decomposition of L that we are going to summarize can be found in [7, Section 5].

Definition 4.1. Let α=(αi)∈Nd0 be a multi-index. Its order is denoted by |α|=∑d
i=1αi. For a fixed α∈Nd0 we define

gα(x) :=(−1)|α|∇α
xg0(x), (4.1)

or, equivalently,

gα(x) :=

d∏
i=1

Hαi
(xi)g(xi), ∀x=(xi)∈Rd, (4.2)

where, for any n∈N0, Hn is the probabilists’ Hermite polynomial of order n defined as

Hn(y) :=(−1)ne
y2

2
dn

dyn
e−

y2

2 , ∀y∈R.

Lemma 4.1. Let α=(αi)∈Nd0. Then,

∥gα∥H=
√
α!=

√
α1! ·· ·αd! . (4.3)

Proof. We compute

∥gα∥2H=

∫
Rd

d∏
i=1

Hαi(xi)
2g(xi)

2g(xi)
−1dx=

d∏
i=1

∫
R
Hαi(xi)

2g(xi)dxi=

d∏
i=1

αi! , (4.4)

where we have used the following weighted L2-norm of Hn:∫
R
Hn(y)

2g(y)dy=n!. (4.5)
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Definition 4.2. We define the index sets S(m) :={α∈Nd0 : |α|=m}, m∈N0. For any
m∈N0, the subspace V (m) of H is defined as

V (m) := spanR

{
gα : α∈S(m)

}
. (4.6)

Remark 4.1. V (m) has dimension

Γm := |S(m)|=
(
d+m−1

m

)
<∞. (4.7)

Let us consider some examples. If d=2 we have

(1) V (0)={β1g0(x),β1∈R};

(2) V (1)=span{g(1,0),g(0,1)}=span
{
x1e

−|x|2/2, x2e
−|x|2/2

}
={(β1x1+β2x2)g0(x), β1,β2∈R};

(3) V (2)=span{g(2,0),g(1,1),g(0,2)}
=
{[
β1(x

2
1−1)+β2x1x2+β3(x

2
2−1)

]
g0(x), βi∈R, i=1,2,3

}
;

(4) V (3)=span{g(3,0),g(2,1),g(1,2),g(0,3)}
=
{[
β1(x

3
1−3x1)+β2(x

2
1x2−x2)+β3(x22x1−x1)+β4(x32−3x2)

]
g0(x),

β1,...,β4∈R
}
.

It is well known that {gα}α∈Nd
0
forms an orthogonal basis ofH=L2(Rd,g−1

0 ). Hence, also

the subspaces V (m) are mutually orthogonal. This yields an orthogonal decomposition
of the Hilbert space

H=
⊕
m∈N0

⊥ V (m). (4.8)

Remark 4.2. In [20, Section 5], an alternative block diagonal decomposition of the
FP-propagator (when considered in the flat L2(Rd)) into finite-dimensional subspaces
is derived by using Wick quantization.

We also consider the normalized version of the basis elements of the subspaces V (m):

Definition 4.3 (Normalized basis). For each fixed α∈Nd0, we denote with g̃α the
normalized function

g̃α :=
gα

∥gα∥H
.

The reason why we need both gα and g̃α is that we can obtain a “nicer” evolution
of f(t) projected into V (m) in terms of the matrix C with the first ones. Instead, the
functions g̃α can be used to express the equivalence of norms by Plancherel’s equality
in the Hilbert space H.

The orthogonal decomposition (4.8) allows to express f(t)∈L2(R2,f−1
∞ ), for a fixed

t≥0, in the form

f(t,x)=
∑
α∈Nd

0

⟨f(t),gα⟩H
∥gα∥2H

gα(x)=:
∑
α∈Nd

0

dα(t)gα(x), (4.9)

or in terms of the normalized basis,

f(t,x)=
∑
α∈Nd

0

⟨f(t), g̃α⟩H g̃α(x)=:
∑
α∈Nd

0

d̃α(t)g̃α(x). (4.10)
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The Fourier coefficients corresponding to a subspace V (m) can be grouped into vectors
in RΓm :

d(m) := (dα)α∈S(m) , and d̃(m) :=
(
d̃α

)
α∈S(m)

.

By the completeness of the Hilbert orthonormal basis {g̃α}α∈Nd
0
in H, Plancherel’s The-

orem then yields

∥f∥2H=
∑
m≥0

∥∥∥d̃(m)
∥∥∥2
2
=
∑
m≥0

∑
α∈S(m)

|d̃α|2=
∑
m≥0

∑
α∈S(m)

|dα|2∥gα∥2H, (4.11)

where we have used the relation d̃α=∥gα∥Hdα.
Moreover, we denote by (Πmf)∈V (m) the orthogonal projection of f into V (m). It

is given by

(Πmf)=
∑

α∈S(m)

dαgα=
∑

α∈S(m)

d̃αg̃α.

It follows that

∥Πmf∥H=
∥∥∥d̃(m)

∥∥∥
2
. (4.12)

In the next proposition we shall see that the subspaces V (m) are invariant under the
action of the operator L, by giving the explicit action of L on each basis element gα.
For this purpose we introduce a notation for shifted multi-indices.

Definition 4.4. Given α=(αi)∈Nd0 and l∈⟨d⟩ :={1,...,d}, we define the components
of the multi-indices α(l−), α(l+)∈Nd0 as

α
(l±)
j :=αj for j ̸= l, α

(l±)
l := (αl±1)+.

So, for instance, if gα∈V (m) and αl>0, then gα(l−) ∈V (m−1) and g(α(l−))(j+) ∈V (m).

Note that cutting off negative values guarantees that α(l−) is always an admissible multi-
index. This part of the definition will, however, not influence the following.

The action of the operator L on V (m) can be taken from [7, Proposition 5.1 and its
proof]:

Proposition 4.1. For every m∈N0, the subspace V (m) is invariant under L, its
adjoint L∗ and, hence, the solution operator e−Lt, t≥0. Moreover, for each gα,

Lgα=−
d∑

j,l=1

αlCjlg(α(l−))(j+) , (4.13)

where Cjl are the matrix elements of C.

4.2. Evolution of the Fourier coefficients. In this section we shall derive
the evolution of Πmf in terms of the Fourier coefficients d(m):

Proposition 4.2. Let f satisfy the FP-Equation (2.5). Then the coefficients in the
expansion (4.9) satisfy

d

dt
dα=−

d∑
j,l=1

1αj≥1(α
(j−))

(l+)
l Cjld(α(j−))(l+) , α∈Nd0. (4.14)
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Proof. We substitute (4.9) into (2.5) and use (4.13):

∑
α∈Nd

0

d

dt
dαgα=−

d∑
j,l=1

∑
α:αl≥1

dααlCjlg(α(l−))(j+) . (4.15)

In the sum over α on the right-hand side, we substitute

(α(l−))(j+)=β ⇐⇒ α=(β(j−))(l+), (4.16)

leading to

∑
α∈Nd

0

d

dt
dαgα=−

d∑
j,l=1

∑
β:βj≥1

d(β(j−))(l+)(β(j−))
(l+)
l Cjlgβ

=
∑
β∈Nd

0

−
d∑

j,l=1

1βj≥1(β
(j−))

(l+)
l Cjld(β(j−))(l+)

gβ , (4.17)

completing the proof.

Remark 4.3. From the family of Equations (4.14) we can deduce: The vector
d(m)=(dα)α∈S(m) ∈RΓm satisfies the ODE d

dtd
(m)=−C(m)d(m) for some matrix C(m)∈

RΓm×Γm . Actually, we shall not write down the matrix C(m) explicitly, as we shall not
need it.

As the simplest example, we shall first consider the evolution in V (1). We use the
notation S(1)={α(1),. ..,α(d)} with α(k)j= δjk, j,k=1,. ..,d. In the right-hand side of
(4.14), with α=α(k), obviously only the terms with j=k are nonzero, (α(k)(k−))(l+)=

α(l) and, thus, (α(k)(k−))
(l+)
l =1. This implies

d

dt
dα=−

d∑
l=1

Ckldα(l)

and therefore

d

dt
d(1)=−Cd(1) for d(1)=

(
dα(1),. ..,dα(d)

)
. (4.18)

We define h(t) :=
∥∥e−Ct∥∥B(Rd)

. Then (4.18) implies

h(t)= sup
0̸=d̃(1)(0)∈RΓ1

∥d̃(1)(t)∥2
∥d̃(1)(0)∥2

, t≥0. (4.19)

To analyze the evolution in V (m), m≥2, it turns out that the representation of d(m) as
a vector is not convenient. In the next section we shall rather represent it as a tensor.
Not as a tensor of order d, as the number of components of α would indicate, but as
a symmetric tensor of order m over Rd. This way it will be easier to characterize its
evolution – in fact as a tensored version of (4.18).
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5. Subspace evolution in terms of tensors

5.1. Order-m tensors. In this subsection we briefly review some notations
and basic results on tensors that will be needed. Most of their elementary proofs are
deferred to the appendix. For more details, we refer the reader to [14] and [21].

Let m∈N be fixed. We note that in the paper, the convention N={1,2,...}, exclud-
ing zero, is used.

Definition 5.1. For n1,...,nm∈N, a function h : ⟨n1⟩×···×⟨nm⟩→R is a (real-
valued) hypermatrix, also called order-m tensor or m-tensor, where ⟨nk⟩ :={1,...,nk},
∀1≤k≤m. We denote the set of values of h by an m-dimensional table of values, calling
it A=(Ai1...im)n1,...,nm

i1,...,im=1, or just A=(Ai1...im). The set of order-m hypermatrices (with

domain ⟨n1⟩×· · ·×⟨nm⟩) is denoted by Tn1×···×nm .
We will consider only the case in which n1= ·· ·=nm=d, i.e., A=

(Ai1...im)di1,...,im=1. In this case, we will denote T
(m)
d :=T d×···×d for simplicity. Also,

since in our case the dimension d is fixed, we will denote it by T (m). Then A∈T (m) is
a function from ⟨d⟩m to R, denoted by A=(AI)I∈⟨d⟩m .

It will be useful to define some operations on T
(m)
d :

Definition 5.2. It is natural to define the operations of entrywise addition and scalar
multiplication that make T (m) a vector space in the following way: for any A,B∈T (m)

and γ∈R

(A+B)i1...im :=Ai1...im +Bi1...im , (γA)i1...im :=γAi1...im .

Moreover, given m matrices B1=(b
(1)
ij ),...,Bm=(b

(m)
ij )∈Rd×d=T (2) and A∈T (m), we

define the multilinear matrix multiplication by A′ := (B1,...,Bm)⊙A∈T (m) where

A′
i1...im :=

d∑
j1,...,jm=1

b
(1)
i1j1

· · ·b(m)
imjm

Aj1...jm . (5.1)

For A∈T (m) and k≤m matrices B1,...,Bk ∈T (2), we also define the product A′ :=

(B1,...,Bk)⊙A∈T (m)
d in the following way:

A′
i1...im :=

d∑
j1,...,jk=1

b
(1)
i1j1

· · ·b(k)ikjk
Aj1...jkik+1...im ,

i.e., the multiplication acts on the first k indices of A. For simplicity, when B1= ...=
Bk :=B, we will denote (B1,...,Bk)⊙A by B⊙kA. For example, if d=4 and given
B=(bij)∈R4×4,A∈T (3),

(B⊙A)i1i2i3 =
4∑
j=1

bi1jAji2i3 ,

and

B⊙3A=(B,B,B)⊙A.

Finally, we equip T (m) with an inner product:
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Definition 5.3. Let A=(Ai1...im),B=(Bi1...im)∈T (m), we call ⟨A,B⟩F ∈R the
Frobenius inner product between the m-tensors A and B, defined by

⟨A,B⟩F :=

d∑
i1,...,im=1

Ai1...imBi1...im .

This induces a norm in T (m), called Frobenius norm in the natural way:

∥A∥F :=
√
⟨A,A⟩F =

 d∑
i1,...,im=1

(Ai1...im)2

1/2

≥0.

Definition 5.4. The tensor D=(DI)I∈⟨d⟩m ∈T (m) is called symmetric, if ∀I ∈ ⟨d⟩m
it is true that DI =Dσ(I) for every permutation σ of m elements. Then F (m)⊂T (m)

(and occasionally F
(m)
d ) denotes the set of symmetric m-tensors. Given A∈T (m), we

define the symmetric part of A as the symmetric tensor defined by

SymA :=
1

m!

∑
σ∈P

σ(A)∈F (m),

where P is the group of permutations of m elements and σ(A) is the tensor with com-
ponents σ(A)I :=Aσ(I), ∀I ∈⟨d⟩m.

Remark 5.1. For a symmetric tensor D∈F (m), clearly we do not need to define
DI for each I=(i1,...,im)∈⟨d⟩m since the value of DI depends only on the number of
occurrences of each value in the index I. Therefore, we define the function φ : ⟨d⟩m→
S(m) with

φk(I) :=

m∑
j=1

δk,ij , ∀k=1,...,d and for each I=(i1,...,im)∈⟨d⟩m ,

where δk,i denotes the Kronecker symbol. Hence, the component φk counts the occur-
rences of k in the multi-index I. Then, ∀I ∈⟨d⟩m we define the multi-index φ(I)∈S(m)

as φ(I)=(φ1(I),...,φd(I)). We observe that φ(I) is well defined, since
∑d
k=1φk(I)=m,

for any I ∈⟨d⟩m.

For the computation of the Frobenius norm of a symmetric tensor it will be useful
to introduce the following index classes:

Definition 5.5. For a fixed I ∈⟨d⟩m we define the equivalence class of I under the
action of φ as

[I]φ :={J ∈⟨d⟩m : φ(I)=φ(J)} ,

and the set of classes

⟨d⟩m/φ :={[I]φ : I ∈⟨d⟩m} .

It is easy to show that there is a bijection between the quotient set ⟨d⟩m/φ and S(m)

through the identification [I]φ⊂⟨d⟩m and α=φ(I), for each α∈S(m). We observe that:

• If φ(I)=α=(α1,...,αd), then [I]φ has exactly γα=
m!

α1!···αd!
elements.
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• If D=(DI)I∈⟨d⟩m is symmetric, then DI =DJ if I and J are in the same class.

We will use these two properties in the proof of Proposition 5.3, for example, to compute
the Frobenius norm of a symmetric tensor.

Definition 5.6. Let D=(DI) be a symmetric m-tensor and I ∈⟨d⟩m. Then, for any
α=(α1,...,αd)∈S(m) we define

Dα :=DI , if α=(φ1(I),...,φd(I)).

We observe that this notion is well-defined since D is symmetric and the property φ(I)=
φ(σ(I)) holds.

The previous definition shows that φ induces a one-to-one correspondence between
the indices of a symmetric m-tensor and the elements of S(m). This implies that the
dimension of F (m) is equal to the cardinality of S(m), i.e. Γm (see (4.7)). Hence, for
defining D∈F (m) we just need to define Dα for every α∈S(m).

Next, we define the order-m outer product and discuss the rank-1 decomposition of
tensors, using a result from multilinear algebra ([14], Lemma 4.2).

Definition 5.7. Let vi := (v
(i)
1 ,...,v

(i)
d ), i=1,...,m be m vectors in Rd. We define

v1⊗···⊗vm∈T (m) as the m-tensor with components

(v1⊗···⊗vm)I :=v
(1)
i1

·· ·v(m)
im

, ∀I=(i1,...,im)∈⟨d⟩m.

We call this operation between m vectors, m-outer product.
In the special case of all the vectors vi=v∈Rd, i=1,...,m equal, we denote

v⊗m :=v⊗···⊗v,

and we observe that the tensor v⊗m is symmetric by definition.

Proposition 5.1 ( [14], Lemma 4.2). Let D∈F (m)
d . Then, there exist an integer

s∈⟨Γm⟩, numbers λ1,...,λs∈R, and vectors v1,...,vs∈Rd such that

D=

s∑
k=1

λkv
⊗m
k . (5.2)

The minimum s such that (5.2) holds is called the symmetric rank of D.

Remark 5.2. In [14], the result is stated for complex tensors. In that case it is
possible to choose all the coefficients λi in (5.2) equal to one, due to the fact that C is
a closed field. We remark that the same decomposition carries over to the real case, i.e.
with real coefficients λi and real vectors vi, by using the same proof [15].

It is easy to see that this rank-1 decomposition persists under a (constant) multi-
linear matrix multiplication:

Lemma 5.1. Let B∈Rd×d. For any D∈F (m)
d decomposed as in formula (5.2), the

following decomposition holds:

B⊙mD=

s∑
k=1

λk(Bvk)
⊗m

. (5.3)

For rank-1 tensors, their inner product simplifies as follows:
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Lemma 5.2. Given vk=(v
(k)
i )∈Rd, k=1,...,2m, then

⟨v1⊗···⊗vm,vm+1⊗···⊗v2m⟩F =

m∏
i=1

⟨vi,vi+m⟩, (5.4)

where ⟨vi,vj⟩ is the inner product in Rd.

A special case of this lemma is given by

Corollary 5.1. Given v1,v2∈Rd, then

⟨v⊗
m

1 ,v⊗
m

2 ⟩F = ⟨v1,v2⟩m. (5.5)

Next, we shall derive some results on matrix-tensor products B⊙kA:

Lemma 5.3. Let B=BT ∈Rd×d be such that B≥0. Then, for any A∈T (m)

⟨A,B⊙A⟩F ≥0. (5.6)

For B∈Rd×d, ∥B∥ we will denote in the sequel the spectral norm of B.

Lemma 5.4. For any A∈T (m)
d , B∈Rd×d and 1≤k≤m,

∥B⊙kA∥F ≤∥B∥k∥A∥F . (5.7)

5.2. Time evolution of the tensors D(m)(t) in V (m). Proposition 4.2 gives
the time evolution of each vector d(m). But for m≥2 it does not reveal its inherent
structure. Therefore we shall now regroup the elements of d(m) as an order-m tensor
and analyze its evolution.

Definition 5.8. Let m≥1, t≥0, and d(m)(t)=(dα(t))α∈S(m) ∈RΓm be the solution
of the ODE d

dtd
(m)=−C(m)d(m), with the matrix C(m) discussed in Remark 4.3. Then

we define the symmetric m-tensor D(m)(t)=(D
(m)
α (t))α∈S(m) as

D(m)
α (t) :=

dα(t)

γα
, (5.8)

where γα :=
m!
α! , for α=(α1,...,αd).

For m=1 we of course have D(1)=d(1)=(dα)α∈⟨d⟩. We illustrate the above defini-
tion for the case m=d=2 with Γ2=3:

d(2)=

d(2,0)d(1,1)
d(0,2)

 , D(2)=

(
d(2,0)

d(1,1)
2

d(1,1)
2 d(0,2)

)
∈F (2)

2 ⊂T (2)
2 =R2×2.

Elementwise, the evolution of D
(m)
α easily carries over from Proposition 4.2:

Proposition 5.2. For any α∈S(m), the element D
(m)
α (t) evolves according to

d

dt
D(m)
α =−

d∑
j,l=1

αjCjlD
(m)

(α(j−))(l+) . (5.9)
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Proof. From (4.14) we obtain, by substituting the definition (5.8) on both sides:

d

dt
D(m)
α =− 1

γα

d∑
j,l=1

1αj≥1γ(α(j−))(l+)(α(j−))
(l+)
l CjlD

(m)

(α(j−))(l+) . (5.10)

The claim (5.9) then follows from the relation

γααj=γ(α(j−))(l+)(α(j−))
(l+)
l ∀α∈Nd0 with αj≥1, (5.11)

which can be obtained as follows: It is trivial for l= j, and for l ̸= j it follows from

the definition of γα and from the observation that (α(j−))
(l+)
l =αl+1 and (α(j−))

(l+)
j =

αj−1.

The advantage of this new structure consists in two facts:

• The Frobenius norm ∥D(m)(t)∥F is proportional (uniformly in t) to the Eu-

clidean norm
∥∥∥d̃(m)(t)

∥∥∥
2
for which we want to prove a decay estimate like (4.19).

• The rank-1 decomposition of D(m)(t) is compatible with the Fokker-Planck flow
in V (m), i.e., for each symmetric tensor D(m)(0) (considered as an initial condi-
tion in V (m)), we can decompose D(m)(t) as a sum of order-m outer products
of vectors that are solutions of the ODE d

dtv(t)=−Cv(t).
Concerning the first property, we have

Proposition 5.3. Given m≥1, then∥∥∥D(m)(t)
∥∥∥
F
=

1√
m!

∥∥∥d̃(m)(t)
∥∥∥
2
, ∀t≥0. (5.12)

Proof. We compute, using Remark 5.5,

∥D(m)(t)∥2F =
∑

I∈⟨d⟩m
D

(m)
I (t)2=

∑
α∈S(m)

D(m)
α (t)2γα, (5.13)

where we used the identification D
(m)
α (t) :=D

(m)
I (t) if α=φ(I) as well as |[I]φ|=γα.

Then, using the definition of D(m)(t), d̃α(t)=∥gα∥Hdα(t), and Lemma 4.1, we have∥∥∥D(m)(t)
∥∥∥2
F
=
∑

α∈S(m)

dα(t)
2

γα
=

∑
α∈S(m)

d̃α(t)
2

γα∥gα∥2H
=

1

m!

∑
α∈S(m)

d̃α(t)
2

=
1

m!

∥∥∥d̃(m)(t)
∥∥∥2
2
, (5.14)

concluding the proof.

Concerning the second property, we find that the rank-1 decomposition of D(m)(t)
commutes with the time evolution by the Fokker-Planck equation:

Theorem 5.1. Let m≥1 be fixed and let D(m)∈F (m), having the rank-1 decomposi-
tion D(m)=

∑s
k=1λkv

⊗m
k with symmetric rank s, constants λ1,...,λs∈R and s vectors

vk := (v
(k)
j )dj=1∈Rd. Then, D(m)(t), t>0, the solution to (5.9) with initial condition

D(m)(0)=D(m) has the decomposition

D(m)(t)=

s∑
k=1

λk[vk(t)]
⊗m, (5.15)
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where all vectors vk(t)∈Rd, k=1,...,s satisfy the ODE d
dtvk(t)=−Cvk(t) with initial

condition vk(0)=vk. Moreover, D(m)(t), t>0 has the constant-in-t symmetric rank s.

Proof. We shall compute the evolution of the symmetric m-tensor A(t) :=∑s
k=1λk[vk(t)]

⊗m, using that d
dtvk(t)=−Cvk(t). To this end we compute first the

derivative d
dt (w(t)

⊗m)α if the vector w(t)=(w1(t),...,wd(t))
T ∈Rd satisfies the ODE

d
dtw(t)=−Cw(t).

Given α=(α1,...,αd)∈S(m), we have

d

dt
(w(t)⊗m)α=

d

dt

d∏
j=1

wj(t)
αj

=

d∑
j=1

αj
(
w1(t)

α1 ·· ·wj(t)αj−1 ·· ·wd(t)αd
)( d

dt
wj(t)

)

=−
d∑
j=1

αj
(
w1(t)

α1 ·· ·wj(t)αj−1 ·· ·wd(t)αd
) d∑
l=1

Cjlwl(t)

=−
d∑

j,l=1

αjCjl
(
w1(t)

α1 ·· ·wj(t)αj−1 ·· ·wl(t)αl+1 ·· ·wd(t)αd
)

=−
d∑

j,l=1

αjCjl
(
w(t)⊗m

)
(α(j−))(l+) , (5.16)

and hence, by linearity

d

dt
(A(t))α=−

d∑
j,l=1

αjCjl (A(t))(α(j−))(l+) . (5.17)

This ODE equals the evolution Equation (5.9) for D(m), and hence A(t)=D(m)(t)
follows.

Next, we consider the symmetric rank of D(m)(t), t>0. If it would be smaller than
s, a reversed evolution to t=0 would lead to a contradiction to the symmetric rank of
D(m).

This theorem allows to reduce the evolution of the tensors D(m)(t) to the ODE for
the vectors vk(t). This will be a key ingredient for proving sharp decay estimates of
D(m) in the next section. Moreover it provides a compact formula for the evolution of
D(m)(t).

Corollary 5.2. Let m≥1 be fixed. Then, D(m)(t), t>0, the solution to (5.9) follows
the evolution

d

dt
D(m)(t)=−m Sym(C⊙D(m)(t)), t>0. (5.18)

Proof. We shall use the decomposition (5.15) for D(m)(t). First, we compute the
evolution of [v(t)]⊗m, if d

dtv(t)=−Cv(t):

d

dt
([v(t)]⊗m)=−

m−1∑
k=0

[v(t)]⊗k⊗((Cv(t))⊗ [v(t)]⊗(m−k−1)
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=−m Sym
(
(Cv(t))⊗ [v(t)]⊗(m−1)

)
. (5.19)

In the last equality, we have used, with w :=Cv(t), the general formula

Sym(w⊗v⊗(m−1))=
1

m

m−1∑
k=0

(v⊗k⊗w⊗v⊗(m−k−1)), ∀v,w∈Rd (5.20)

that can be proven with a straightforward computation. By using the linearity of Sym
in T (m), we obtain

d

dt
D(m)(t)=

d

dt

s∑
k=1

λk[vk(t)]
⊗m=−m

(
s∑

k=1

λkSym
(
(Cvk(t))⊗ [vk(t)]

⊗(m−1)
))

=−m Sym

(
s∑

k=1

λk(Cvk(t))⊗ [vk(t)]
⊗(m−1)

)
=−m Sym(C⊙D(m)(t)). (5.21)

6. Decay of the subspace evolution in V (m)

First we shall rewrite our main decay result, Theorem 3.1 in terms of tensors for all
subspaces V (m). We recall h(t) :=

∥∥e−Ct∥∥B(Rd)
, which satisfies

h(t)≤1, t≥0. (6.1)

This follows from

d

dt

∥∥e−Ctx0∥∥22=−2⟨CSx(t),x(t)⟩≤0, x0∈Rd,

for x(t)=e−Ctx0. Using Theorem 3.5, the statement of (6.1) can be improved immedi-
ately to

h(t)<1, t>0. (6.2)

We have shown in (4.19) that the inequality (6.8), see below, holds with m=1, since
D(1)(t)=d(1)(t) satisfies the evolution ḋ(1)=−Cd(1). Next we extend the estimate (6.8)
to general m≥1. To this end we will show in the next theorem that the propagator
norm in each V (m) is the m-th power of the propagator norm of the ODE ẋ=−Cx.
This will be used to derive the decay estimates for

∥∥e−Lt∥∥B(V ⊥
0 )

.

Theorem 6.1. For each m≥1, D(m)(0)∈F (m), and D(m)(t) defined as in (5.8), the
following estimate holds:∥∥∥D(m)(t)

∥∥∥
F
≤h(t)m

∥∥∥D(m)(0)
∥∥∥
F
, t≥0. (6.3)

Moreover,

sup
0̸=D(m)(0)∈F (m)

∥D(m)(t)∥F
∥D(m)(0)∥F

=h(t)m. (6.4)

Proof. Given the initial condition D(m)(0)∈F (m), Theorem 5.1 provides its rank-1
decomposition as

D(m)(t)=

s∑
k=1

λk[vk(t)]
⊗m=

s∑
k=1

λk[e
−Ctvk]

⊗m=e−Ct⊙mD(m)(0), ∀t≥0, (6.5)
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with vk(t)=e
−Ctvk, for k=1,...,s, where we have used Lemma 5.1 in the last equality.

Using (5.7) then yields:

∥D(m)(t)∥F =∥e−Ct⊙mD(m)(0)∥F ≤∥e−Ct∥m∥D(m)(0)∥F , (6.6)

proving (6.3).
In order to prove the equality (6.4) we choose initial data of the form D(m)(0) :=

v⊗m, v∈Rd. In this case the Frobenius norm factorizes, i.e. ∥D(m)(0)∥F =∥v∥m2 and

∥D(m)(t)∥F =∥(e−Ctv)⊗m∥F =∥e−Ctv∥m2 .

We conclude by observing that

sup
0̸=v∈Rd

∥e−Ctv∥m2
∥v∥m2

=h(t)m.

The key step in the above proof is to write the evolution of the tensor D(m)(t)
as in (6.5), which allows for the simple estimate (6.6). In contrast, using the rank-1
decomposition in ∥D(m)(t)∥2F would not be helpful, since the vectors vk(t) are in general
not orthogonal.

We conclude this section with the proof of our main result, Theorem 3.1, by using
Theorem 6.1.

Proof. (Proof of Theorem 3.1.) The first step consists in proving the inequality∥∥e−Lt∥∥B(V ⊥
0 )

≤h(t),∀t≥0. (6.7)

We can derive the estimate (6.7) from the same ones that hold for the tensors D(m)(t)
at each level m. More precisely, (6.7) holds if

∥D(m)(t)∥F ≤h(t)∥D(m)(0)∥F , t≥0, D(m)(0)∈F (m), m≥1, (6.8)

where D(m)(t) is defined as in (5.8). Indeed,

∥f(t)−f∞∥2H=
∑
m≥1

∥Πmf(t)∥2H=
∑
m≥1

∥d̃(m)(t)∥22=
∑
m≥1

m! ∥D(m)(t)∥2F , t≥0, (6.9)

where we have used the orthonormal decomposition of f(t), formulas (4.11), (5.12), and
that the coefficient d0(t)≡1 (with the index 0∈Nd0) is constant in time, since Lg0=0
and the normalization

∫
Rd f0dx=1. Let us assume (6.8). Then,

∥f(t)−f∞∥2H=
∑
m≥1

m! ∥D(m)(t)∥2F ≤h(t)2
∑
m≥1

m! ∥D(m)(0)∥2F =h(t)2∥f0−f∞∥2H, (6.10)

proving (6.7).

Next, the proof of (6.8) is a direct consequence of Theorem 6.1 and h(t)≤1, yielding

∥D(m)(t)∥F ≤ (h(t))m∥D(m)(0)∥F ≤h(t)∥D(m)(0)∥F .

Now that (6.7) has been proved, we need to show that it is actually an equality,
in order to conclude the proof of (3.1). For this purpose, we observe that for m=1,
D(1)∈Rd evolves according to the ODE ẋ=−Cx (see (4.18)). Then, it is sufficient to
choose an initial datum f0∈V (1) to achieve the equality, concluding the proof.

Remark 6.1. Using (6.2), the decay estimates (6.3) show that the higher subspace
components D(m)(t) decay, for each fixed t>0, with a rate that increases exponentially
in m. Due to the subspace decomposition (6.9), this enhanced decay of the higher sub-
space components translates into a parabolic-type regularization of the FP-semigroup
for t>0, cp. to Proposition 3.2.
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7. Second quantization
In this last section we are going to write the FP-operator L in (2.5) in terms of the

second quantization formalism. This “language” was introduced in quantum mechanics
in order to simplify the description and the analysis of quantum many-body systems.
The assumption of this construction is the indistinguishability of particles in quantum
mechanics. Indeed, according to the statistics of particles, the exchange of two of them
does not affect the status of the configuration, possibly up to a sign. Since we are
dealing with symmetric tensors, we are going to consider the case in which the sign
does not change, i.e. the wave function is identical after this exchange. This is the case
of particles that are called bosons.

The functional spaces of second quantization are the so-called Fock spaces, that we
are going to define in this section. When a single Hilbert space H describes a single
particle, then it is convenient to build an infinite sum of symmetric tensorization of H
in order to represent a system of (up to) infinitely many indistinguishable particles, i.e.
the Fock space over H.

In the first part of this section the definitions of the Boson Fock space and second
quantization operators are given. These constructions will be needed in order to write
the FP-operator L as the second quantization of its corresponding drift matrix C. This
will be the main result of the second part of this section, as an application of well known
results in the literature.

7.1. The Boson Fock space. In the next definition we will use the notion of
m-fold tensor product over a Hilbert space H. This is a generalization of the space of
order-m hypermatrices T (m) defined in Section 5, where the Hilbert space was the finite
dimensional space Rd. In the quantum mechanics literature, the role of the Hilbert
space is often played by L2(R3;C), in order to describe the wave function of a quantum
particle. For a more complete explanation of tensor products of Hilbert spaces and Fock
spaces, we refer to Section II.4 in [29].

In the literature, Fock spaces are mostly considered for Hilbert spaces over the
field C. But since the FP-Equations (1.1) and (2.5) are posed on Rd (and not over
Cd), we shall use here only real-valued Fock spaces. Moreover, these FP-equations are
considered here only for real-valued initial data, and hence real-valued solutions.

Definition 7.1. Let H be a Hilbert space and denote by H(m) :=H⊗H⊗···⊗H (m
times), for any m≥1. Set H(0) :=C (or R) and define the Fock space over H as the
completed direct sum

F(H)=

∞⊕
m=0

H(m). (7.1)

Then, an element ψ∈F(H) can be represented as a sequence ψ={ψ(m)}∞m=0, where
ψ(0)∈C (or R), ψ(m)∈H(m),∀m≥1, so that

∥ψ∥F(H) :=

√√√√ ∞∑
m=0

∥ψ(m)∥2
H(m) <∞. (7.2)

Here ∥·∥H(m) denotes the norm induced by the inner product in H(m) (see Proposition
1, Section II.4 in [29]).

As we anticipated, we will rather work with a subspace of F(H), the so-called Boson
Fock space that we are going to define. First we need to define the m-fold symmetric
tensor product of H as follows:
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Let Pm be the permutation group on m elements and let {ϕk}; k=1,...,dimH, be a
basis for H. For each σ∈Pm, we define its corresponding operator (we will still denote
it with σ) acting on basis elements of H(m) by

σ(ϕk1 ⊗ϕk2 ⊗···⊗ϕkm) :=ϕσ(k1)⊗ϕσ(k2)⊗···⊗ϕσ(km). (7.3)

Then σ extends, by linearity, to a bounded operator on H(m). With the previous
definition (7.3) we can define the operator Sm := 1

m!

∑
σ∈Pm

σ that acts on H(m). Its

range SmH
(m) is called the m-fold symmetric tensor product of H. Let us see examples

of SmH
(m).

Example 7.1. Let us consider first the case H=L2(R) and H(m)=L2(R)⊗···⊗
L2(R). Since H(m) is isomorphic to L2(Rm), it follows that an element ψ(m)∈SmH(m)

is a function ψ(m)(x1,...,xm) in L2(Rm) left invariant under any permutation of the
variables. It is used in quantum mechanics to describe the quantum states of m particles
that are not distinguishable.

For our purposes, we will deal with H=Rd. In this case it is easy to check that
SmH

(m) corresponds to the space of symmetric m-tensors F (m) that we defined in Sec-
tion 5, equipped with the Frobenius norm.

Definition 7.2. The subspace of F(H),

Fs(H) :=

∞⊕
m=0

SmH
(m) (7.4)

is called the symmetric Fock space over H or the Boson Fock space over H.

7.2. The second quantization operator. In order to write the FP-propagator
in terms of the second quantization formalism, we need to define the second quantization
operators (see Section I.4 in [32] and Section X.7 in [30]) acting on the Boson Fock space.

Let H be a Hilbert space and Fs(H) be the Boson Fock space over H. Let A be
a contraction on H, i.e., a linear transform of norm smaller than or equal to 1. Then
there is a unique contraction (Corollary I.15, [32]) Γ(A) on Fs(H) so that

Γ(A) ↾SmH(m)=A⊗···⊗A (m times), (7.5)

where the operator A⊗···⊗A is defined on each basis element ψ(m)=ψi1 ⊗···⊗ψim of
SmH

(m) as

(A⊗···⊗A)(ψ(m)) :=(Aψi1)⊗···⊗(Aψim),

and equal to the identity when restricted to H(0). In order to prove the above existence
of Γ(A), the estimate ∥Γ(A) ↾SmH(m) ∥≤∥A∥m is first shown in [32]. This allows to
extend the operator Γ(A) to the Boson Fock space by continuity, and by remaining a
contraction. In the case A=e−Ct and H=Rd, the operator Γ(A) will be useful to show
the link between the Fokker-Planck solution operator e−Lt and the second quantization
operators, defined in the following way:

Definition 7.3. Let H be a Hilbert space. Let A be an operator on H (with domain
G(A)). The operator dΓ(A) is defined as follows: Let Gm(A)⊆SmH(m) be G(A)⊗···⊗
G(A) and G(dΓ(A)) :=+∞

m=0Gm(A) (incomplete direct sum):

dΓ(A) ↾SmH(m) :=A⊗1⊗···⊗1+ ·· ·+1⊗···⊗1⊗A, m≥1, (7.6)
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and dΓ(A) ↾H(0) :=0. The operator dΓ(A) is called the second quantization of A.

In [32], the following property of the second quantization operator can be found
(see I.41):

Let A generate a C0-contraction semigroup on H. Then the closure of dΓ(A) gen-
erates a C0-contraction semigroup on Fs(H) and

e−dΓ(A)t=Γ(e−At) ∀t≥0. (7.7)

7.3. Application to the operator e−Lt. In the last part of this section we
will show that the Fokker-Planck operator L is the second quantization of C. First, we
shall identify the Hilbert space L2(Rd,f−1

∞ ) with a suitable Fock space.
The spectral decomposition and the tensor structure that we introduced in Section

5 suggest to consider the Boson Fock space over the finite dimensional Hilbert space
Rd, whose elements have components in the space of symmetric tensors F (m). Indeed,
we can define an isomorphism Ψ between L2(Rd,f−1

∞ ) and Fs(Rd) as follows:
Let f ∈L2(Rd,f−1

∞ ). As we saw in Section 4, f admits the decomposition f(x)=∑∞
m=0

∑
α∈S(m) dαgα(x), for suitable coefficients dα∈R. For each m≥1, we define the

symmetric tensor D̃(m)∈F (m) with components D̃
(m)
α :=dα

√
m!
γα

∈R (see (5.8)), ∀α∈
S(m). For m=0 we choose D̃(0) := ⟨f,f∞⟩L2(f−1

∞ ). Hence, by observing that F (m)=

SmH
(m), H :=Rd, we define the isometry

Ψ :f ∈L2(Rd,f−1
∞ )→ψ :={D̃(m)}∞m=0∈Fs(Rd). (7.8)

It remains to check that ∥ψ∥Fs(Rd)<∞. This follows from Plancherel’s equality, together
with (5.12). It leads to

∥f∥2
L2(f−1

∞ )
=

∞∑
m=0

∥D̃(m)∥2F =∥ψ∥2Fs(Rd).

Hence, up to an isomorphism, we can consider the FP-operator L also as acting on the
Fock space Fs(Rd). We conclude the section with the next proposition that allows to
write L in the second quantization formalism.

Proposition 7.1. Let L be the Fokker-Planck operator defined in (2.5) and let C ∈
Rd×d be its corresponding drift matrix. Then, L, now considered as acting on Fs(Rd),
is the second quantization of C, considered as an operator from the Hilbert space Rd to
itself, i.e., L=dΓ(C).

Proof. Due to the relation (7.7), it is sufficient to prove that the FP-propagator
e−Lt (considered on Fs(Rd)) satisfies the equality

e−Lt=Γ(e−Ct), ∀t≥0. (7.9)

Equivalently, on each SmH
(m), m≥1, the formula

e−Lt(ψ(m))=(e−Ctψi1)⊗···⊗(e−Ctψim), (7.10)

holds for every basis element ψ(m)=
⊗m

k=1ψik of F (m).
Given an initial condition f0∈L2(Rd,f−1

∞ ) and its corresponding solution f(t)=
e−Ltf0 of (2.5), the isometry Ψ:L2(Rd,f−1

∞ )→Fs(H) maps then as follows:

Ψf0=ψ0={D̃(m)(0)}∞m=0, and Ψf(t)=ψ(t)={D̃(t)(m)}∞m=0,
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respectively. Then, the factored evolution formula (6.5) for D(m)(t)=
√
m! D̃(m)(t)

proves the equality (7.10), for each m≥1. Since the generator of a C0-semigroup is
unique, we obtain L=dΓ(C).

While C is a bounded operator with domain G(C)=Rd, its second quantization
dΓ(C) is unbounded with dense domain G(dΓ(C))⊊Fs(H), just like L is unbounded
on L2(Rd,f−1

∞ ).
Finally, our main result, Theorem 3.1 reads in the language of second quantization∥∥∥e−dΓ(C)t ↾⊕

m≥1

SmH
(m)

∥∥∥
B(Fs(H))

=∥e−Ct∥Rd×d , t≥0. (7.11)

Note that the restriction to
⊕
m≥1

SmH
(m) corresponds to the restriction to V ⊥

0 in (3.1),

the orthogonal of the steady state f∞.
We remark that Proposition 7.1 is a special case of Theorem 1 in [13], formulated

there for an infinite dimensional Hilbert space setting. We still include a proof here to
make this paper self-contained. Moreover, an explicit computation of the spectrum and
second quantization formalism for FP-equations in the infinite dimensional setting were
given in [34].

Remark 7.1. Many aspects of the above analysis seem to rely importantly on the
explicit spectral decomposition of the FP-operator in Subsection 4.1, i.e. knowing the
FP-eigenfunctions (as Hermite functions). We remark that this situation in fact carries
over to FP-equations with linear coefficients plus a nonlocal perturbation of the form
θf :=θ∗f with the function θ(x) having zero mean, see Lemma 3.8 and Theorem 4.6
in [10]. For such nonlocally perturbed FP-equations, surprisingly, one still knows all the
eigenfunctions as well as its (multi-dimensional) creation and annihilation operators.

Acknowledgement. The authors were partially supported by the FWF (Austrian
Science Fund) funded SFB #F65 and the FWF-doctoral school W 1245. The first author
acknowledges fruitful discussions with Miguel Rodrigues that led to Proposition 3.3(b),
as well as with Wolfgang Herfort.

Appendix. Deferred proofs.
Proof. (Proof of Lemma 5.1.) We compute the components of the l.h.s. of (5.3).

Using (5.2) with vk=(v
(k)
i )∈Rd, we have for any (i1,..,im)∈⟨d⟩m:

(B⊙mD)i1...im =

d∑
j1,...,jm=1

Bi1j1 · ··BimjmDj1...jm =

d∑
j1,...,jm=1

Bi1j1 · ··Bimjm

s∑
k=1

λkv
(k)
j1

· ··v(k)jm

=

s∑
k=1

λk(Bvk)i1 · ··(Bvk)im =

(
s∑

k=1

λk(Bvk)
⊗m

)
i1···im

, (A.1)

concluding the proof.

Proof. (Proof of Lemma 5.2.) By definition,

⟨v1⊗···⊗vm,vm+1⊗···⊗v2m⟩F =

d∑
i1,...,im=1

(v1⊗···⊗vm)i1...im(vm+1⊗···⊗v2m)i1...im

=

d∑
i1,...,im=1

v
(1)
i1

·· ·v(m)
im

v
(m+1)
i1

·· ·v(2m)
im
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=

(
d∑

i1=1

v
(1)
i1
v
(m+1)
i1

)
·· ·

(
d∑

im=1

v
(m)
im

v
(2m)
im

)
=⟨v1,vm+1⟩···⟨vm,v2m⟩. (A.2)

Proof. (Proof of Lemma 5.3.) We have

⟨A,B⊙A⟩F =

d∑
i1,...,im=1

Ai1...im(B⊙A)i1...im =

d∑
j1,i1,...,im=1

Ai1...imBi1j1Aj1i2...im

=

d∑
i2,...,im=1

⟨x(i2...im),Bx(i2...im)⟩, (A.3)

where, for i2,...,im fixed, x
(i2...im)
i1

:=Ai1i2...im are vectors in Rd. The claim then follows
from B≥0.

Proof. (Proof of Lemma 5.4.) First consider the Case k=1. We have

∥B⊙A∥2F =

d∑
i1,...,im=1

(

d∑
j1=1

Bi1j1Aj1i2...im)2=

d∑
i2,...,im=1

∥Bx(i2...im)∥2

≤
d∑

i2,...,im=1

∥B∥2∥x(i2...im)∥2=∥B∥2
d∑

i1,...,im=1

(x
(i2...im)
i1

)2

=∥B∥2∥A∥2F (A.4)

where, for i2,...,im fixed, x
(i2...im)
j1

:=Aj1i2...im are vectors in Rd. Note that the estimate
(A.4) would hold as well if the matrix-tensor product does not operate on the first
index (as in B⊙A), but on the j−th index, with some 1≤ j≤m. Then (5.7) follows by
iterated applications of (A.4).

Proof. (Proof of Proposition 3.3.) (a) We recall that Theorem 3.1 and (6.1)
imply

h̃(t)=∥e−Lt∥B(V ⊥
0 )=∥e−Ct∥2=h(t)≤1, t≥0.

Then, Theorem 6.1 implies (6.3), ∀m≥1. From (4.11) we recall∣∣∣∣∣∣∣∣f(t)f∞

∣∣∣∣∣∣∣∣2
L2(f∞)

=∥f(t)∥2H=
∑
m∈N0

∥d̃(m)(t)∥2=
∑
β∈Nd

0

|d̃β(t)|2, (A.5)

and f(t)
f∞

=
∑
β∈Nd

0
d̃β(t)ĝβ , where ĝβ :=

g̃β
f∞

is an orthonormal basis of L2(f∞).

Using (4.2) and the formula H
′

n(x)=nHn−1(x) for Hermite polynomials, we com-
pute, for any β∈Nd0,

∂xj ĝβ=
βjHβj−1(xj)√

β!

∏
i ̸=j

Hβi
(xi), and ∥∂xj

ĝβ∥L2(f∞)=
√
βj ,

where we used ∥Hn∥L2(f∞)=
√
n ! . This yields, with (6.3) and (5.12),∣∣∣∣∣∣∣∣∇(f(t)f∞

)∣∣∣∣∣∣∣∣2
L2(f∞)

=
∑
β∈Nd

0

|d̃β(t)|2|β|=
∑
m∈N0

m∥d̃(m)(t)∥2



1078 SHARP DECAY ESTIMATES FOR FOKKER-PLANCK EQUATIONS

≤
∑
m∈N0

m(h̃(t))2m∥d̃(m)(0)∥2, t>0. (A.6)

From the hypothesis on h̃, we deduce h̃(t)≤1−c1tα on 0≤ t≤ δ for some 0<c1≤ c and
some δ>0. Then (A.6) can be estimated further by∑

m∈N0

m(1−c1tα)2m∥d̃(m)(0)∥2≤ 1

ec1
t−α

∑
m∈N0

∥d̃(m)(0)∥2, 0≤ c1tα≤1,

where we used the elementary inequality m(1−c1tα)2m≤ 1
ec1
t−α, m∈N0. The main

assertion of part (a) then follows from (A.5).

Finally we turn to the optimality of α: If (3.23) would hold for all f0∈H with
some α1∈ (0,α), then part (b) of this proposition would imply h̃(t)≤1−c2tα1 . But
this would contradict the assumption h̃(t)=1−ctα+o(tα). Hence, α/2 is indeed the
minimal regularization exponent in (3.23).

(b) For f0∈V (m), m∈N we compute, by using (A.6) and (3.23),∣∣∣∣∣∣∣∣∇(f(t)f∞

)∣∣∣∣∣∣∣∣2
L2(f∞)

=m ∥d̃(m)(t)∥2≤ c̃2t−α∥d̃(m)(0)∥2, 0<t≤ δ. (A.7)

Then, by taking in (A.7) the supremum w.r.t. the set {0 ̸= d̃(m)(0)∈RΓm} and using
(6.4), (5.12) we obtain the family of estimates

h̃(t)2m= sup
0 ̸=D(m)∈F (m)

∥D(m)(t)∥2F
∥D(m)∥2F

= sup
0̸=d̃(m)(0)∈RΓm

∥d̃(m)(t)∥2

∥d̃(m)(0)∥2
≤ c̃2

m
t−α, (A.8)

with m∈N, 0<t≤ δ.
Next, we will show that this family of estimates for h̃(t) implies h̃(t)≤1−c2tα for

0≤ t≤ δ2, with some c2>0, δ2>0 (see Figure A.1 for the case α=1). For each m∈N
and t∈ Iδ := (0,δ], we rewrite (A.8) as

h̃(t)≤
(

c̃√
m
t−

α
2

) 1
m

=e−
1
2

log(c̄mtα)
m =:g(m;t), (A.9)

with c̄ := c̃−2. For t∈ Iδ fixed, we now consider the function g(µ;t) with continuous argu-
ment µ>0. g(·;t) has its unique minimum at µ0(t) :=

e
c̄ t

−α and it is strictly decreasing
on (0,µ0(t)).

To estimate the minimum of g for the discrete argument m∈N, we consider: For

0≤ t≤ t1 :=
(
e−2
c̄

)1/α
we have

2

c̄
t−α≤

⌈2
c̄
t−α
⌉
<

2

c̄
t−α+1≤ e

c̄
t−α=µ0(t),

with ⌈·⌉ denoting the ceiling function. We choose the index m(t) :=
⌈
2
c̄ t

−α⌉∈N and use
the monotonicity of g(·;t) on (0,µ0(t)] to estimate:

h̃(t)≤min
m∈N

g(m;t)≤g(m(t);t)≤g
(2
c̄
t−α;t

)
=e−2c2t

α

,

with c2 :=
log(2)c̄

8 >0.
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With the elementary estimate e−2c2y≤1−c2y on some [0,t2], we obtain

h̃(t)≤e−2c2t
α

≤1−c2tα, t∈ [0,δ2],

with δ2 :=min{t1,t1/α2 }.
Finally we turn to the minimality of α: If h̃ would even satisfy the decay estimate

h̃(t)≤1− c̃2tα1 with some α1∈ (0,α) and c̃2>0, then (the proof of) part (a) of this
proposition would imply the regularization estimate (3.23) with the exponent α1/2.
But this would contradict the assumption on α being minimal in that estimate.
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Fig. A.1. The family of decay estimates h(t)≤g(m;t), m∈N with α=1, c̄=4 (solid, blue curves)
implies h(t)≤e−2c2t (dashed, green curve), and hence h(t)≤1−c2t (dotted, red line).
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