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A FINITE ELEMENT METHOD FOR DIRICHLET BOUNDARY
CONTROL OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS∗

SHAOHONG DU† AND ZHIQIANG CAI‡

Abstract. This paper introduces a new variational formulation for Dirichlet boundary control
problem of elliptic partial differential equations, based on an observation that the state and adjoint
state are related through the control on the boundary of the domain, and that such a relation may
be imposed in the variational formulation of the adjoint state. Well-posedness (unique solvability and
stability) of the new variational problem is established in the H1(Ω)×H1

0 (Ω) spaces for the respective
state and adjoint state. A finite element method based on this formulation is analyzed. It is shown
that the conforming k−th order finite element approximations to the state and the adjoint state, in the
respective L2 and H1 norms, converge at the rate of order k−1/2 on quasi-uniform meshes. Numerical
examples are presented to validate the theory.
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1. Introduction
Let Ω⊂Rd,d≥2, be a bounded polygonal or polyhedral domain with Lipshitz

boundary Γ=∂Ω. Consider the following Dirichlet boundary control problem of elliptic
partial differential equations (PDEs):

min J(u), J(u)=
1

2
||y−yd||2L2(Ω)+

γ

2
||u||2L2(Γ), (1.1)

where the regularization parameter γ>0 and y is the solution of the Poisson equation
with nonhomogeneous Dirichlet boundary conditions:

−△y=f in Ω, (1.2)

y=u on Γ. (1.3)

After the pioneering works of Falk [19] and Geveci [21], there were some efforts on
the error estimates for finite element approximation to control problems governed by
PDEs. Arada et al. in [4, 10] derived error estimates for the control in the L∞ and
L2 norms for semilinear elliptic control problem. The articles [20, 25] studied the error
estimates of finite element approximation for some important flow control problems.
Casas [10] carried out the study of the Neumann boundary control problem; Wang,
Yang, and Xie [38] developed a Nitsche-extended finite element method for control
problems of elliptic interface equations. However, these works are mainly contributions
to the distributed control.
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It is well known that the Dirichlet boundary control plays an important role in
many applications such as flow control problems and has been a hot topic for decades.
However, the Dirichlet boundary control problems are extremely difficult to solve from
both the theoretical and the numerical points of view, because the Dirichlet boundary
data does not directly enter a standard variational setting for the PDEs. On the one
hand, the traditional finite element method (see, e.g., [3, 11, 15, 33, 37]) deals with the
state variable (y) using its weak formulation, e.g., allowing for solution y∈L2(Ω); on
the other hand, the attempt of the first order optimality condition involves the normal
derivative of the adjoint state (z) on the boundary of the domain. Therefore, it is
crucial to obtain this normal derivative numerically by an additional equation. But in
doing so the problem becomes complicated in both theoretical analysis and numerical
practice. Note that the regularity of the solution and error estimates for finite element
approximates have been studied in [2, 3, 32].

To avoid the difficulty described above, there are two ways to deal with the control
variable. One is to replace the L2 norm in the cost functional with the H1/2 norm, thus,
a priori estimate of the numerical error of the control is obtained by using piecewise lin-
ear elements (see [34]); and the other is to approximate the nonhomogeneous Dirichlet
boundary condition with a Robin boundary condition or weak boundary penalization.
These techniques were further developed later in [13, 23, 24]. However, the former ap-
proach changed the problem and the latter had to deal with the penalization which is
computationally expensive.

Recently, Gong and Yan considered the mixed finite element method in [22], where
the optimal control and the adjoint state were involved in a variational form in a natural
sense, which makes its theoretical analysis straightforward, but the corresponding fluxes
of the two states (y and z) are required to be introduced. Apel et al. [3] considered a
standard finite element method on a special class of meshes and achieved a superlinear
convergence rate for the control. Very recently, Hu et al. [27] considered a hybridizable
discontinuous Galerkin method and obtained optimal a priori error estimates for the
control.

Based on the fact that the state and adjoint state are related through the control on
the boundary of the domain, and that such a relation may be imposed in the variational
formulation of the adjoint state, i.e., one can eliminate the boundary control by the
control law (the control is the normal derivative of the adjoint state on the boundary
(up to a factor)), a new variational formulation for Dirichlet boundary control problem
of elliptic PDEs is introduced. This idea is different from that in the literature e.g.,
[3,11,13,15,23,24,33,34,37], where both the original equation and an extra equation were
taken into account in variational formulations. Its well-posedness (unique solvability and
stability) is established in the H1(Ω)×H1

0 (Ω) spaces for the respective state and adjoint
state. A finite element method based on this formulation is analyzed. It is shown that
the conforming k−th order finite element approximations to the state and the adjoint
state, in the respective L2 and H1 norms converge at the rate of order k−1/2 on a
quasi-uniform mesh. Note that the order of convergence is optimal for the control, and
that the new variational setting cannot be incorporated into the framework of mixed
problems, since LBB condition is not satisfied.

In fact, the new discrete variational problem can also be derived by eliminating
the discrete normal derivative in terms of the discrete control rule (analogous to the
continuous control rule) given by Casas and Raymond in [11], where the concept of the
discrete normal derivative has been introduced and the discrete first order optimality
conditions have been achieved. This procedure indeed follows the route of “discretize-
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then-optimize-then-eliminate”, it is different from the route of “optimize-then-eliminate-
then-discretize” adopted by us in this paper. We shall remark that eliminating the
control variable does not only make the system simple, but also brings a convenience to
define the residual functional with the help of the new discrete variational formulation
when the residual-type a posteriori estimators are considered (see Remark 4.1).

This paper is organized as follows. In Section 2, we introduce a new variational
setting based on an observation. Section 3 is devoted to the unique solvability and
stability of the variational problem. In Section 4, we introduce finite element approx-
imation to the variational setting and prove a preliminary result, which will be used
in the a priori error estimation in Section 5. In Section 6, we analyze the stability of
the discrete control in L2(Γ) norm and H1/2(Γ) norm in the sense that the restriction
of the discrete state on the boundary is considered as an approximation of the control.
Finally, numerical tests are provided in Section 7 to support our theory.

2. A variational formulation
For any bounded open subset ω of Ω with Lipschitz boundary ι, let L2(ι) and

Hm(ω) be the standard Lebesgue and Sobolev spaces equipped with standard norms
∥·∥ι=∥·∥L2(ι) and ∥·∥m,ω =∥·∥Hm(ω), m∈N. Note that H0(ω)=L2(ω). Denote by
| · |m,ω the semi-norm in Hm(ω). Similarly, denote by (·, ·)ι and (·,·)ω the L2 inner
products on ι and ω, respectively. We shall omit the symbol Ω in the notations above
if ω=Ω.

It is well known that the Dirichlet boundary control problem in (1.1)-(1.3) is equiv-
alent to the optimality system (the first order optimality conditions):

−△y=f in Ω, (2.1)

y=u on Γ, (2.2)

−△z=y−yd in Ω, (2.3)

z=0 on Γ, (2.4)

u=
1

γ

∂z

∂n
on Γ, (2.5)

where, yd and f are sufficiently smooth prescribed functions, γ>0 is a regularization
parameter, n is the outer normal unit vector. Note that these equations must be
understood in a weak sense. We refer to the references [11,27,33].

To see the idea of variational setting, we consider the following several cases under
an assumption that the domain and known data are respectively satisfied with these
cases:

Case one: the control u∈L2(Γ), so y belongs to H1/2(Ω). Owing to the control
law, (2.5) yields ∂z/∂n|Γ∈L2(Γ), which needs the adjoint state z∈H3/2(Ω).

Case two: y∈H1(Ω),y|Γ=u∈H1/2(Γ), the Equation (2.5) means ∂z/∂n|Γ∈
H1/2(Γ), which demands z∈H2(Ω).

Case three: y∈L2(Ω),y|Γ=u∈H−1/2(Γ) (the dual space of H1/2(Γ)), the Equation
(2.5) indicates ∂z/∂n|Γ∈H−1/2(Γ), which requires z∈H1(Ω).

Case four: y∈H3/2(Ω),y|Γ=u∈H1(Γ), the Equation (2.5) shows ∂z/∂n|Γ∈H1(Γ),
which expects z∈H5/2(Ω).

Since natural functional analytical setting of this problem uses L2(Γ) as a “control
space”, Case one is an ideal choice for the control u, state y, and adjoint state z.
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However, it is difficult to bring these characteristics of y and z into their respective
variational formulations if (2.2) and (2.5) are regarded as two independent equations.
For Cases two and three, it is convenient to incorporate the spaces of y and z into their
respective variational formulation, but doing so expands or narrows down the space of
the control u, and can not provide the variational formulation of u if (1.3) and (2.5)
are still regarded as two independent equations. Case four further not only enlarges the
space of u, but also requires a higher regularity on y and z, and brings an unexpected
difficulty to variation and computation.

These cases show that it is difficult to keep the compatibility of the spaces of u,y
and z and incorporate them into their respective variational formulations. Based on
the fact that the state y and adjoint state z are connected by the control u on the

boundary of the domain, and that such connection
1

γ

∂z

∂n

∣∣
Γ
=y|Γ can be absorbed into

the variational formulation of z as a boundary condition, i.e., we can eliminate the
control by the control law to obtain a coupled system of the state and adjoint state.
Although the control u is eliminated in form, it can be in essence reflected by the state
y.

Based on this idea, multiplying both sides of (2.1) by ψ∈H1
0 (Ω), and applying

integration by parts, we attain ∫
Ω

∇y ·∇ψdx=
∫
Ω

fψdx. (2.6)

Similarly, multiplying both sides of (2.3) by ϕ∈H1(Ω), and applying integration by
parts, yield ∫

Ω

∇z ·∇ϕdx−
∫
Γ

∂z

∂n
ϕds=

∫
Ω

(y−yd)ϕdx. (2.7)

Eliminating u from a combination of (2.2) and (2.5), yields

∂z

∂n

∣∣
Γ
=γy|Γ. (2.8)

Substituting (2.8) into (2.7), we get∫
Ω

∇z ·∇ϕdx−
∫
Γ

γyϕds=

∫
Ω

(y−yd)ϕdx. (2.9)

Collecting (2.6) and (2.9), gives the following variational formulation: Find (y,z)∈
H1(Ω)×H1

0 (Ω) such that

(∇y,∇ψ)=(f,ψ) ∀ ψ∈H1
0 (Ω), (2.10)

(∇z,∇ϕ)−(γy,ϕ)Γ−(y,ϕ)=−(yd,ϕ) ∀ ϕ∈H1(Ω). (2.11)

In what follows, we clarify the unique solvability of the variational problem in
(2.10)-(2.11). For a 2D convex polygonal domain, we recall a regularity result of May,
Rannacher, and Vexler in [33] below, which gives conditions on the domain and data to
guarantee the regularity of the solutions. To this end, let ωmax be the maximum interior
angle of the polygonal domain Ω, and denote pΩ∗ by

pΩ∗ =2ωmax/(2ωmax−π), (2.12)
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including the special case pΩ∗ =∞ for ωmax=π/2. For a higher dimensional convex
polygonal domain, we do not attempt to provide conditions on the regularity of the
solutions, because we put an emphasis on a variational setting and the corresponding
finite element approximation. Of course, the regularity theory is more complicated in
the three-dimensional case.

Lemma 2.1. ([33], Lemma 2.9). Suppose that f ∈L2(Ω) and yd∈Lpd
∗(Ω),pd∗>2,

and that Ω⊂R2 is a bounded convex domain with polygonal boundary Γ. Let pΩ∗ ≥2
be defined by (2.12) and p∗ :=min(pd∗,p

Ω
∗ ). Then, the solutions (y,u) of the optimiza-

tion problem (1.1)-(1.3) and the associated adjoint state determined by (2.3) have the
regularity properties

(y,u,z)∈H3/2−1/p(Ω)×H1−1/p(Γ)×(H1
0 (Ω)∩W 2

p (Ω)), 2≤p<p∗.

Since the optimal system in (2.1)-(2.5) is equivalent to the problem (1.1)-(1.3), and
since the coupled system (2.10)-(2.11) is obtained by eliminating the control variable,
the regularities of the solutions of the system (2.10)-(2.11) are guaranteed in terms of
Lemma 2.1 in case of p=2.

3. Unique solvability and stability
This section establishes unique solvability for the variational problem in (2.10)-

(2.11), and stability estimates of the control, state and adjoint state.

Theorem 3.1. For f ∈H−1(Ω) and yd∈L2(Ω), the system (2.10)-(2.11) is uniquely
solvable, and is stable in the sense that there exists a positive constant Cγ , depending
on γ, such that

γ1/2||u||0,Γ+ ||y||+ ||∇z||≤Cγ (||f ||−1+ ||yd||) . (3.1)

Proof. The existence of the solutions of this coupled system is an immediate
corollary of Theorem 2.3 in [11].

We now prove its stability. By (2.11) with ψ=z, we obtain

||∇z||2 = (γy,z)Γ+(y,z)−(yd,z)

≤ γ||y||−1/2,Γ||z||1/2,Γ+ ||y||−1||z||1+ ||yd||−1||z||1
≤ C(γ||y||0,Γ||z||1+∥y∥∥z∥1+∥yd∥∥z∥1),

which, together with the Poincáre inequality, implies

||z||1≤C (γ||y||0,Γ+ ||y||+ ||yd||) . (3.2)

It follows from (2.11) with ψ=y, (2.10), the Cauchy-Schwarz and Young inequali-
ties, and (3.2) that

γ||y||20,Γ+ ||y||2 = (∇z,∇y)+(yd,y)

= (f,z)+(yd,y)≤||f ||−1||z||1+∥yd∥∥y∥

≤ C||f ||−1 (γ||y||0,Γ+ ||y||+ ||yd||)+∥yd∥∥y∥

≤ C (||f ||−1+ ||yd||)(γ||y||0,Γ+ ||y||)+C
(
||f ||2−1+ ||yd||2

)
,

which implies

γ||y||20,Γ+ ||y||2≤Cγ

(
||f ||2−1+ ||yd||2

)
.
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Now, (3.1) is a direct consequence of (3.2) and the fact that u=y on Γ, and the
uniqueness of the solution follows from (3.1) immediately, since the corresponding ho-
mogeneous system has vanishing solution. This completes the proof of the theorem.

Theorem 3.2. Assume that Ω is a convex domain with Lipshitz boundary. For
f ∈H−1(Ω) and yd∈L2(Ω), there exists a positive constant Cγ dependent on γ such
that

||∇y||≤Cγ (||f ||−1+ ||yd||) . (3.3)

Proof. By the standard H1(Ω) a priori estimate of the problem in (2.1)-(2.2), and
by the Equation (2.5), we have

||∇y||≤C
(
||f |−1+ ||u||1/2,Γ

)
≤C

(
||f |−1+

1

γ

∥∥∥ ∂z
∂n

∥∥∥
1/2,Γ

)
. (3.4)

The standard H2(Ω) a priori estimate (see, e.g., [12, 33]) of the problem in (2.2)-(2.3)
gives

||z||2+
∥∥∥ ∂z
∂n

∥∥∥
1/2,Γ

≤C||y−yd||

≤C (||y||+ ||yd||). (3.5)

Now, (3.3) is a direct consequence of (3.4), (3.5), and (3.1).

Remark 3.1. Due to z∈H1
0 (Ω), the Pioncaré inequality implies ||z||1≤C||∇z||.

Hence, under the assumption of Theorem 3.2, there holds the following stable estimate:

γ1/2||u||0,Γ+ ||y||1+ ||z||1≤Cγ (||f ||−1+ ||yd|) .

4. Finite element approximation and preliminary result
We introduce the discrete formulation of (2.10)-(2.11). To this end, let Th be a

shape regular partition of Ω into triangles (tetrahedra for d=3) or parallelograms (par-
allelepiped for d=3). With each element K ∈Th, we denote ρ(K) as the diameter of
the set K, and define the size of the mesh by h=maxK∈Th

ρ(K). About the partition,
we also assume that there exists a constant ρ>0 such that h/ρ(K)≤ρ for all K ∈Th
and h>0, i.e., the mesh Th is quasi-uniform.

Denote Pk(K) to be the space of polynomials of total degree at most k if K is a
simplex, or the space of polynomials with degree at most k for each variable if K is a
parallelogram/parallelepiped. Define the finite element space by

Vh :={vh∈C(Ω) :vh|K ∈Pk(K), ∀K ∈Th}.

Furthermore, set V 0
h =Vh∩H1

0 (Ω), and denote V ∂
h as the trace space corresponding to

Vh, i.e., V
∂
h =Vh|Γ.

In the rest of this paper, we denote by C a constant independent of mesh size with a
different context in a different occurrence, and also use the notation A≲F to represent
A≤CF with a generic constant C>0 independent of mesh size. In addition, A≈F
abbreviates A≲F ≲A.

The discrete form reads: Find (yh,zh)∈Vh×V 0
h such that

(∇yh,∇ψh)=(f,ψh) ∀ ψh∈V 0
h , (4.1)
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(∇zh,∇ϕh)−(γyh,ϕh)Γ−(yh,ϕh)=−(yd,ϕh) ∀ ϕh∈Vh. (4.2)

Theorem 4.1. The discrete variational problem in ( 4.1)-( 4.2) has a unique solution
(yh,zh)∈Vh×V 0

h .

Proof. Since the existence of the solutions is equivalent to its uniqueness for a finite-
dimensional system, it is sufficient to prove that the corresponding homogeneous system
has trivial solution. To this end, let f =0 and yd=0 in (4.1) and (4.2), respectively, we
get

(∇yh,∇ψh)=0 ∀ ψh∈V 0
h , (4.3)

(∇zh,∇ϕh)−(γyh,ϕh)Γ−(yh,ϕh)=0 ∀ ϕh∈Vh. (4.4)

Taking ϕh=yh in (4.4) leads to

(∇zh,∇yh)−(γyh,yh)Γ−||yh||2=0. (4.5)

Noticing zh∈V 0
h gives (∇zh,∇yh)=0. Combining this with (4.5), yields∫

Γ

γy2hds+ ||yh||2=0,

which, altogether with the assumption γ>0, results in yh=0.
Inserting yh=0 into (4.4), gives

(∇zh,∇ϕh)=0 ∀ ϕh∈Vh, (4.6)

which, in turn, yields (∇zh,∇zh)=0, by choosing ϕh=zh. Noticing zh∈V 0
h , we get

zh=0. Thus, the corresponding homogeneous system has vanishing solution.

Remark 4.1. To obtain the analogous discrete control rule to (2.5), Casas and
Raymond [11] have introduced the so-called discrete normal derivative ∂hnzh∈V ∂

h solving

(
∂hnzh,wh

)
Γ
=(∇zh,∇wh)−(yh−yd), ∀wh∈Vh, (4.7)

and have obtained the discrete first order optimality conditions (see Theorem 4.3 in [11]):
Find (zh,∂

h
nzh)∈V 0

h ×V ∂
h such that

(∇zh,∇wh)=(yh−yd), ∀wh∈V 0
h , (4.8)

(γuh,χh)Γ=(∂hnzh,χh)Γ, ∀χh∈V ∂
h . (4.9)

Note that (4.8) is a special case of (4.7) with wh∈V 0
h . Owing to (4.9), we have the

discrete control rule γuh=∂
h
nzh. Eliminating the discrete normal derivative ∂hnzh from

(4.7), and noticing the discrete trace condition uh=yh|Γ, we can still derive the discrete
variational problem in (4.1)-(4.2). This procedure indeed follows the route of “discretize-
then-optimize-then-eliminate”, where the concept of the discrete normal derivative is
needed to be introduced, it is different from the route of “optimize-then-eliminate-
then-discretize” adopted by us in this paper. We further remark that eliminating the
control variable not only makes the system simple, but also brings a convenience to
define the residual functional according to (4.1)-(4.2) when the residual-type a posteriori
estimators are considered.
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Lemma 4.1. Assume that θb1∈Vh and vanishes at all interior nodes of the mesh, and
let h be the size of the quasi-uniform mesh Th. There holds the following estimate

||∇θb1||≲h−1/2||θb1||L2(Γ). (4.10)

Proof. Denote Ωb
h as the set of elements with at least one vertex on the boundary.

Since θb1 vanishes at any node of an element whose vertices are completely contained in
the interior of the domain Ω, it’s restriction on the element is zero, which implies

||∇θb1||2=
∑

K∈Ωb
h

||∇θb1||2K . (4.11)

For the sake of simplicity, we consider only triangular element in two dimensions as an
example, since the same proof is easily extended to the other types of elements and the
three-dimensional case. There are three cases as follows:

(1) Two vertices of an element K lie on the boundary, i.e., K has an edge E con-
tained in Γ (E=∂K∩Γ) (see (Case 1) in Figure 4.1). Assuming ||∇θb1||K =0 indicates
that θb1 is a constant over the element K, and since θb1 vanishes at internal node of K
(there exists at least an internal node such as internal vertex), this shows that θb1 is zero
over K, and that ||∇θb1||K is a norm of θb1 over K. Further assuming ||θb1||E =0, this
leads to the fact that θb1 vanishes over E, and that θb1 vanishes at nodes of E, and that
θb1 is zero over K. Therefore, ||θb1||E is another norm of θb1 over K. Since any two norms
are equivalent to each other over a finite-dimension space, we attain

||∇θb1||K ≈CK ||θb1||E , (4.12)

where the positive constant CK depends on the size hK of K (and number of dimensions
of Vh|K). To see the dependence on the size of K, we apply the scaling argument.

(Case 1)

K

E

ΩΓ

(Case 2)

K
K

′

Ω

Γ

(Case 3)

K
K

′

E

ΩΓ

xj

Fig. 4.1. Three cases of location of an element in Ωb
h for triangular element in two dimensions.

To this end, for any element K ∈Th there exists a bijection FK : K̂→K, where K̂ is
the reference element. Denote by DFK the Jacobian matrix and let JK = |det(DFK)|.
It is easy to see that for all element types, the mapping definition and shape-regularity
and quasi-uniformity of the grids imply that

||DF−1
K ||0,∞,K̂ ≈h−1

K , ||JK ||0,∞,K̂ ≈hdK , ||DFK ||0,∞,K̂ ≈hK ,

which, results in

||∇θb1||2K =

∫
K

∇θb1 ·∇θb1dx
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=

∫
K̂

DF−1
K ∇̂θ̂b1 ·DF−1

K ∇̂θ̂b1JKdx̂

≈hd−2
K ||∇̂θ̂b1||2K̂ . (4.13)

Let E be an edge (side) of K, and Ê be an edge (side) of K̂ with respect to E.
Similarly, we have

||θb1||2E =

∫
E

(θb1)
2ds=

∫
Ê

|E|
|Ê|

(θ̂b1)
2dŝ=

|E|
|Ê|

||θ̂b1||2Ê ≈hd−1
K ||θ̂b1||2Ê . (4.14)

We have from (4.12)

||∇̂θ̂b1||K̂ ≈||θ̂b1||Ê . (4.15)

A combination of (4.13), (4.14), and (4.15), yields

||∇θb1||K ≲h−1/2
K ||θb1||E . (4.16)

(2) Three vertices of an element K lie on the boundary Γ, i.e., K has two edges
contained in Γ (see (Case 2) in Figure 4.1). Suppose that one can always choose an
element K ′ that has an internal vertex and a common edge with K. Now consider θb1
over K∪K ′. Repeating the proof of Case (1), we have

||∇θb1||K∪K′ ≈CK∪K′ ||θb1||Γ∩∂(K∪K′), (4.17)

where CK∪K′ relies on the size hK∪K′ , of K∪K ′. Using the scaling argument again,
we easily obtain

||∇θb1||2K∪K′ ≈hd−2
K ||∇̂θ̂b1||2K̂∪K′ (4.18)

||θb1||2∂(K∪K′)∩Γ≈h
d−1
K ||θ̂b1||2∂̂K∩Γ

. (4.19)

(4.17) indicates that ||∇̂θ̂b1||K̂∪K′ ≈||θ̂b1||∂̂K∩Γ
. Hence, we obtain from a combination of

(4.18) and (4.19)

||∇θb1||K∪K′ ≲h−1/2
K ||θb1||∂K∪Γ. (4.20)

(3) Only one vertex xj , of K lies on the boundary Γ (see (Case 3) in Figure 4.1).
Suppose that one can always choose an element K ′ such that ∂(K∪K ′) contains a
boundary edge E and K ′ has a common edge with K, i.e., E⊂∂(K∪K ′)∩Γ. Similarly
to Case (2) or (1), we easily obtain

||∇θb1||K ≤||∇θb1||K∪K′ ≲h−1/2
K ||θb1||∂(K∪K′)∩Γ. (4.21)

In fact, in this case, we can also consider θb1 over the patch ωxj
(the set of elements

sharing xj with K), of xj . By using the scaling argument, we can obtain

||∇θb1||K ≤||∇θb1||ωxj
≲h−1/2

K ||θb1||∂(ωxj
)∩Γ. (4.22)
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Collecting (4.16) and (4.20)-(4.22), we obtain from (4.11)

||∇θb1||2 =
∑

K∈Ωb
h: Case (1)

||∇θb1||2K+
∑

K∈Ωb
h: Case (2)

||∇θb1||2K+
∑

K∈Ωb
h: Case (3)

||∇θb1||2K

≲
∑

K∈Ωb
h: Case (1)

h−1
K ||θb1||2∂K∩Γ+

∑
K∈Ωb

h: Case (2)

h−1
K ||θb1||2∂K∩Γ

+
∑

K∈Ωb
h: Case (3)

h−1
K ||θb1||2∂(ωxj

)∩Γ

≲ h−1||θb1||2Γ,

which results in the desired estimate (4.10).

5. Analysis of error
Since the control u is equal to the restriction of the state y on the boundary, i.e.,

u=y|Γ, it is natural that the restriction of an approximation yh of y on the boundary is
also an approximation of u. Therefore, ||y−yh||0,Γ can be used to measure the numerical
error of the control, and in this sense, we write ||u−uh||0,Γ= ||y−yh||0,Γ.

Theorem 5.1. Assume that (y,z)∈H1(Ω)×H1
0 (Ω) and (yh,zh)∈Vh×V 0

h be the
solutions to (2.10)-(2.11) and (4.1)-(4.2), respectively. For y∈Hk(Ω),z∈Hk+1(Ω)∩
H1

0 (Ω), and for the numerical error of the state variable y, there exists a positive constant
Cγ depending on γ such that

||y−yh||+ ||γ1/2(y−yh)||0,Γ≤Cγh
k−1/2 (|y|k+ |z|k+1) . (5.1)

Proof. Denote by Rh :H
1(Ω)→Vh the Ritz projection operator

(∇(Rhv),∇vh)=(∇v,∇vh), (v−Rhv,1)=0, ∀vh∈Vh. (5.2)

Recall the properties of the Ritz projection [7, 8] as the following

||v−Rhv||≲hk|v|k,||∇(v−Rhv)||≲hk−1|v|k, ∀ v∈Hm(Ω),0<k≤m≤3. (5.3)

Setting η1=y−Rhy and θ1=Rhy−yh, gives y−yh=η1+θ1. We have from triangle
inequality and (5.3)

||y−yh||≤ ||η1||+ ||θ1||≲hk|y|k+ ||θ1||. (5.4)

The trace inequality and the properties, (5.3), of the Ritz projection imply that

||γ1/2(y−yh)||0,Γ≤γ1/2||η1||0,Γ+ ||γ1/2θ1||0,Γ
≲γ1/2||η1||1/2||η1||1/21 + ||γ1/2θ1||0,Γ

≲γ1/2
(
||η1||+ ||∇η1||1/2||η1||1/2

)
+ ||γ1/2θ1||0,Γ)

≲γ1/2hk−1/2|y|k+ ||γ1/2θ1||0,Γ. (5.5)

(5.4) and (5.5) indicate that we only need to estimate ||θ1|| and ||γ1/2θ1||0,Γ in order
to estimate ||y−yh||+ ||γ1/2(y−yh)||0,Γ. To this end, let R0

h :H
1
0 (Ω)→V 0

h be the Ritz
projection operator by

(∇(R0
hv),∇vh)=(∇v,∇vh) ∀ vh∈V 0

h .
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Again, recall the properties of the Ritz projection [7, 8] as the following

||∇(v−R0
hv)||≲hk−1|v|k, ∀ v∈Hm(Ω)∩H1

0 (Ω),0<k≤m≤3. (5.6)

Setting η2=z−R0
hz,θ2=R

0
hz−zh, gives z−zh=η2+θ2. From (2.11) and (4.2), we

obtain the following orthogonality

(∇(z−zh),∇ϕh)−(γ(y−yh),ϕh)Γ−(y−yh,ϕh)=0, ∀ ϕh∈Vh. (5.7)

Especially taking ϕh=θ1∈Vh in (5.7), yields

(∇η2+∇θ2,∇θ1)−(γ(η1+θ1),θ1)Γ−(η1+θ1,θ1)=0,

which results in

||γ1/2θ1||20,Γ+ ||θ1||2=(∇η2,∇θ1)+(∇θ2,∇θ1)−(γη1,θ1)Γ−(η1,θ1). (5.8)

From (2.10) and (4.1), we get the following orthogonal property

(∇(y−yh),∇ψh)=0, ∀ ψh∈V 0
h . (5.9)

Taking ψh=θ2∈V 0
h in (5.9), yields

(∇θ2,∇θ1)=−(∇η1,∇θ2)=0. (5.10)

In the second step above, we apply the orthogonal property of the Ritz projection,
because of θ2∈V 0

h ⊂Vh. Combining (5.8) with (5.10), we attain

||γ1/2θ1||20,Γ+ ||θ1||2=(∇η2,∇θ1)−(γη1,θ1)Γ−(η1,θ1). (5.11)

In what follows, we estimate each term on the right-hand side of (5.11). In terms of
the proof of (5.4) and (5.5), we immediately obtain the estimates of the last two terms
on the right-hand side of (5.11)

|−(η1,θ1)|≲hk|y|k||θ1|| (5.12)

and

|−(γη1,θ1)Γ|≲γ1/2hk−1/2|y|k||γ1/2θ1||0,Γ. (5.13)

To estimate the first term on the right-hand side of (5.11), we decompose θ1 into
θi1 and θb1, where the value of θi1 at the internal node equals to that of θ1 at the corre-
sponding node, and the value of θi1 at the boundary node is zero; the value of θb1 at the
internal node is zero, and the value of θb1 at boundary node equals to that of θ1 at the
corresponding node. Obviously, θ1=θ

i
1+θ

b
1.

Noticing θi1∈V 0
h ,θ

b
1∈Vh, we have from the definition of the Ritz projection

(∇η2,∇θ1) = (∇η2,∇θi1+∇θb1)

= (∇η2,∇θb1)≤∥∇η2∥∥∇θb1∥.
(5.14)

We further derive from Lemma 4.1, together with θb1=θ1 on the boundary Γ

(∇η2,∇θ1) ≲ h−1/2∥∇η2∥∥θb1∥0,Γ
= h−1/2γ−1/2∥∇η2∥∥γ1/2θ1∥0,Γ.

(5.15)
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By combining (5.11)-(5.13) with (5.15), and applying the properties, (5.6), of the
Ritz projection, and Young inequality, we obtain

||γ1/2θ1||20,Γ+ ||θ1||2 ≤ Ch−1/2γ−1/2∥∇η2∥∥γ1/2θ1∥0,Γ

+Chk|y|k||θ1||+Cγ1/2hk−1/2|y|k||γ1/2θ1||0,Γ
≤ Ch−1/2γ−1/2hk|z|k+1||γ1/2θ1||0,Γ

+Chk|y|k||θ1||+Cγ1/2hk−1/2|y|k||γ1/2θ1||0,Γ
≤ Cγ−1h2k−1|z|2k+1+ ||γ1/2θ1||20,Γ/4+Ch2k|y|2k

+||θ1||2/2+Cγh2k−1|y|2k+ ||γ1/2θ1||20,Γ/4,

which, implies

||γ1/2θ1||20,Γ+ ||θ1||2≤Cγh
2k−1

(
|z|2k+1+ |y|2k

)
. (5.16)

Collecting (5.4), (5.5), and (5.16), we get

||γ1/2(y−yh)||20,Γ+ ||y−yh||2≤Cγh
2k−1

(
|z|2k+1+ |y|2k

)
,

which results in the desired estimate (5.1).

Remark 5.1. As pointed at the beginning of this section, we understand ||u−uh||L2(Γ)

as ||y−yh||0,Γ. For y∈Hk(Ω),z∈H1
0 (Ω)∩Hk+1(Ω), Theorem 5.1 gives the control an

estimate

||u−uh||0,Γ≤Cγh
k−1/2 (|y|k+ |z|k+1) .

Owing to y∈H1(Ω) and u∈H1/2(Γ), yields the optimal order 1/2 of convergence for
the control.

Theorem 5.2. Assume that (y,z)∈H1(Ω)×H1
0 (Ω) and (yh,zh)∈Vh×V 0

h be the
solutions to (2.10)-(2.11) and (4.1)-(4.2), respectively. For y∈Hk(Ω),z∈Hk+1(Ω)∩
H1

0 (Ω), the numerical error of the adjoint state z is bounded by

||∇(z−zh)||≤Cγh
k−1/2 (|y|k+ |z|k+1) . (5.17)

Proof. Recalling the decomposition of the error z−zh in the proof of Theorem
5.1, we obtain from the orthogonal property of the Ritz projection

||∇(z−zh)||2= ||∇η2||2+ ||∇θ2||2, (5.18)

which, together with the property (5.6) of the Ritz projection, results in,

||∇(z−zh)||≲hk|z|k+1+ ||∇θ2||. (5.19)

The inequality (5.19) means that it is sufficient to only estimate ||∇θ2|| in order to
estimate ||∇(z−zh)||.

Taking ϕh=θ2∈V 0
h in (5.7), yields

(∇η2+∇θ2,∇θ2)−(y−yh,θ2)=0,

which, together with the orthogonal relation (∇η2,∇θ2)=0, results in,

||∇θ2||2=(y−yh,θ2)≤||y−yh||||θ2||. (5.20)
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Applying the Poincaré inequality, we obtain from (5.20)

||∇θ2||≲ ||y−yh||. (5.21)

Combining (5.19) with (5.21), we obtain

||∇(z−zh)||≲hk|z|k+1+ ||y−yh||, (5.22)

which, together with (5.1), results in the desired estimate (5.17).

Remark 5.2. According to Lemma 2.1, the H2 regularity for the state cannot be
reached on polygonal/polyhedral domain. Hence, these estimates above are restricted to
the case of k=1. However, the Hk regularity for the state can be reached for domains
with sufficiently smooth boundary. Since the Dirichlet boundary control problem is
completely different from the Dirichlet boundary value problem, it is non-trivial to gen-
eralize analytical technique for high order element (including isoparametric-equivalent
element) for the Dirichlet boundary value problem to the Dirichlet boundary control
problem. Here are two remedies.

In first remedy, let Ω⊂R2 be a bounded domain with smooth boundary and Th be
a “triangulation” of Ω, where each triangle at the boundary has at most one curved
side. The finite element spaces Vh and V 0

h are defined by

Vh=
{
v∈C(Ω̄) :v|T ∈Pk

}
and V 0

h =Vh∩H1
0 (Ω), respectively.

By using standard interpolation error estimates, we can easily verify that the properties
of the Ritz projection over Vh (and V 0

h ) are still true. Assume that the “triangulation”
Th guarantees Lemma 4.1. Indeed, this is easily realised by assuming that there exists
ρ>0 such that for each triangle T ∈Th one can find two concentric circular discs D1

and D2 such that

D1⊆T ⊆D2 and
diamD2

diamD1
≤ρ.

Since ∂Ω is smooth, for h small enough, we have he<2diamT <2diamD2 (curved side
e⊂∂T , he denotes the arc length of e). This indicates Lemma 4.1 is still valid. Therefore,
the results of Theorems 5.1-5.2 are applicable to high order curved-triangle Lagrange
element.

In the second remedy, recall that we have a polyhedral approximation, Ωh to Ω, and
an isoparametric mapping Fh such that Fh(Ωh) closely approximates Ω, and denote Ṽh
as a base finite element space defined on Ωh, the resulting space,

Vh :=
{
v((Fh)−1(x)) :x∈Fh(Ωh), v∈ Ṽh

}
,

is an isoparametric-equivalent finite element space (we refer to [14, 16] for the de-
tails). Let V 0

h =Vh∩H1
0 (F

h(Ωh)). If we impose the control rule on ∂(Fh(Ωh)),

i.e.,
1

γ

∂z

∂n
=u on ∂(Fh(Ωh)), this shows that we are considering the problem (1.1)-

(1.3) on the domain Fh(Ωh). The only difference is that we substitute the domain
Ω in the previous context with Fh(Ωh). Since the corresponding Ritz projection
Rh :H

1(Fh(Ωh))→Vh (R0
h :H

1
0 (F

h(Ωh))→V 0
h ) still possesses the same approximation

properties as (5.3)((5.6)), and hence the result of Lemma 4.1 can be achieved by a simi-
lar proof. Therefore, by repeating the proof of Theorem 5.1, we can obtain the following
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estimate

||y−yh||0,Fh(Ωh)+ ||γ1/2(y−yh)||0,∂(Fh(Ωh))≤Cγh
k− 1

2 (|y|k,Fh(Ωh)+ |z|k+1,Fh(Ωh))
(5.23)

under the assumption that y∈Hk(Fh(Ωh)),z∈Hk+1(Fh(Ωh)).
Furthermore, we will assume there is an auxiliary mapping F :Ωh→Ω and that

Fh
i = IhFi for each component of the mapping. Here Ihv denotes the isoparametric

interpolation by Ihv(Fh(x))= Ĩhṽ(x) for all x∈Ωh where ṽ(x)=v(Fh(x)) for all x∈Ωh

and Ĩh is the global interpolation for the base finite element space, Ṽh (we refer to [14,16]
for the details). Thus, the mapping Φh :Ω→Fh(Ωh) defined by Φh(x)=Fh(F−1(x))
gives an estimate for (5.23)

||y− ŷh||0,Ω+ ||γ1/2(y−yh)||0,Ω≤Cγh
k−1/2(|y|k,Ω+ |z|k+1,Ω)

under the assumptions that the Jacobian JΦh is independent of h and that y∈Hk(Ω),z∈
Hk+1(Ω), where ŷh=yh(Φ

h(x)),x∈Ω.

It is well known that the L2 norm of numerical error is controlled by the H1 norm
for conforming finite element approximation to the standard Laplacian equation, and
that the L2 norm of numerical error is of order one higher than the H1 norm. The
following Theorem 5.3 shows that ||y−yh|| is still controlled by ||y−yh||1, but isn’t of
order one higher than ||y−yh||1. This will be testified by numerical experiments in
Section 7.

Theorem 5.3. Assume that (y,z)∈H1(Ω)×H1
0 (Ω) and (yh,zh)∈Vh×V 0

h be the
solutions to (2.10)-(2.11) and (4.1)-(4.2), respectively. There holds

||y−yh||≲ ||∇(y−yh)||. (5.24)

Proof. Consider the following Neumann boundary-value problem{−△w=y(x)−yh(x) in Ω,
∂w

∂n
=γ(y(x)−yh(x))|Γ on Γ.

(5.25)

The continuous weak formulation for the problem (5.25) reads: Find w∈H1(Ω) such
that

(∇w,∇ψ)=(γ(y−yh),ψ)Γ+(y−yh,ψ) ∀ ψ∈H1(Ω). (5.26)

We get the following orthogonality from a combination of (2.11) and (4.2)

(∇(z−zh),∇vh)−(γ(y−yh),vh)Γ−(y−yh,vh)=0, ∀ vh∈Vh.

Owing to vh=1∈Vh, the above identity implies∫
Ω

(y(x)−yh(x))dx+
∫
Γ

γ(y(x)−yh(x))ds=0,

which shows that the problem (5.25) satisfies the consistent condition. Therefore, the
weak formulation (5.26) has a unique solution in the sense that the solutions differ by
a constant, and satisfies the following estimate

||∇w||≲ ||y−yh||+γ||y−yh||−1/2,Γ. (5.27)
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Taking ψ=y and ψ=yh, respectively, in (5.26), yields

(∇w,∇y)=(γ(y−yh),y)Γ+(y−yh,y) (5.28)

and

(∇w,∇yh)=(γ(y−yh),yh)Γ+(y−yh,yh). (5.29)

A combination of (5.28) and (5.29) leads

||γ1/2(y−yh)||20,Γ+ ||y−yh||2=(∇w,∇(y−yh))≤∥∇w∥∥∇(y−yh)∥. (5.30)

We obtain from (5.27)

||∇w||≲ ||y−yh||+γ||y−yh||0,Γ. (5.31)

A combination of (5.30) and (5.31) yields

||γ1/2(y−yh)||20,Γ+ ||y−yh||2≲ (||y−yh||+γ||y−yh||0,Γ)||∇(y−yh)||,

which, results in

||y−yh||≤
(
||γ1/2(y−yh)||20,Γ+ ||y−yh||2

)1/2
≲ ||∇(y−yh)||.

We complete the proof of (5.24).

Remark 5.3. In terms of the proof of Theorem 5.3, for a function v∈H1(Ω) satisfying∫
Ω

vdx+

∫
Γ

vds=0,

there holds an analogue of the Poincaré inequality

||v||1≲ ||∇v||.

6. Stability for discrete solution
Since the control is firstly concerned in practice for the optimal control problem,

this section is specially devoted to an analysis of the stability for the control in the sense
that the restriction of the discrete state yh on the boundary is an approximation of the
control u. Recall the following “inverse estimate” for finite element functions χh∈V ∂

h :

|χh|H1/2(Γ)≲h
−1/2||χh||L2(Γ). (6.1)

Indeed, this can be found in [33] or be proven by combining estimates in [7, 14] with
standard results from interpolation theory. We define the L2 projection P ∂

h :L2(Γ)→V ∂
h

by

(q−P ∂
h q,χh)=0, ∀χh∈V ∂

h .

By standard results for finite elements we have the error estimate (see [7, 11,14])

||q−P ∂
h q||0,Γ+h1/2|P ∂

h q|1/2,Γ≲h1/2|q|1/2,Γ, ∀q∈H1/2(Γ). (6.2)
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Theorem 6.1. Assume that f ∈H−1(Ω),yd∈L2(Ω), the domain Ω is convex, and its
boundary Γ is Lipschitz continuous. There exists a positive constant Cγ depending on
γ such that

||γ1/2yh||0,Γ+ ||yh||≤Cγ (||f ||−1+ ||yd||) . (6.3)

Proof. Taking ϕh=yh and ψh=zh in (4.2) and (4.1), respectively, gives

||γ1/2yh||20,Γ+ ||yh||2=(∇zh,∇yh)+(yd,yh)

=(f,zh)+(yd,yh)

=(f,zh−z)+(f,z)+(yd,yh)

≤||f |−1|||z−zh||1+ ||f ||−1||z||1+∥yd∥∥yh∥. (6.4)

Noticing z−zh∈H1
0 (Ω), we obtain from the Poincaré inequality, (5.17) with k=1, and

(3.5)

||z−zh||1≲||∇(z−zh)||≤Cγh
1/2 (||y||1+ ||z||2)

≤Cγh
1/2 (||y||1+ ||y−yd||)≤Cγh

1/2 (||y||1+ ||yd||) . (6.5)

Combining (6.4) with (6.5), together with the Young inequality, gives

||γ1/2yh||20,Γ+ ||yh||2≤Cγ

(
||y||21+ ||yd||2+ ||f ||2−1+ ||z||21

)
. (6.6)

Applying the stable estimates (3.1) and (3.3) of the state y and adjoint state z, respec-
tively, we get

||γ1/2yh||20,Γ+ ||yh||2≤Cγ

(
||yd||2+ ||f ||2−1

)
,

which results in the desired estimate (6.3).

Theorem 6.2. Under the assumption of Theorem 6.1, the discrete solutions admit
the uniform bound

|yh|1/2,Γ≤Cγ (||f ||−1+ ||yd||). (6.7)

Proof. From triangle inequality, “inverse estimate” (6.1), and the property (6.2)
of the L2 projection operator P ∂

h , we get

|yh|1/2,Γ≤|yh−P ∂
h y|1/2,Γ+ |P ∂

h y−y|1/2,Γ+ |y|1/2,Γ
≲h−1/2||yh−P ∂

h y||0,Γ+ |y|1/2,Γ
≤h−1/2

(
||yh−y||0,Γ+ ||y−P ∂

h y||0,Γ
)
+ |y|1/2,Γ

≲h−1/2||yh−y||0,Γ+h−1/2h1/2|y|1/2,Γ+ |y|1/2,Γ). (6.8)

From (5.1) with k=1 and (3.5), we have

||yh−y||0,Γ≤Cγh
1/2 (||∇y||+ |z|2)≤Cγh

1/2 (||y||1+ ||yd||) . (6.9)

A combination of (6.8) and (6.9) yields

|yh|1/2,Γ≤Cγ

(
||y||1+ ||yd||+ |y|1/2,Γ

)
≤Cγ (||y||1+ ||yd||). (6.10)

The desired estimate (6.7) follows from a combination of (6.10), (3.1) and (3.3).



S. DU AND Z. CAI 1097

7. Numerical experiments
In this section, we test the performance of finite element approximation to the

variational formulation developed in this paper with two model problems. The actual
solution of the first model problem is known, and the true solution of the second example
is unknown, and two settings of the regularization parameter γ will be considered here,
We are thus able to study the convergence rate of the state y and adjoint state z, as well
as the control variable u over quasi-uniform mesh, and to study the relation between
the singularity of the actual solution and the regularization parameter in Example two.
Note that we shall employ the piecewise linear elements in both examples. Let {ψi}
and {ϕj} be respectively the basis of V 0

h and Vh, then the algebraic system with respect
to (4.1)-(4.2) has the following form(

A O
B C

)(
Y
Z

)
=

(
F
G

)
.

7.1. Example one. We consider the problem (1.1)-(1.2) over a unit square
Ω=(0,1)×(0,1) with

f =− 4

γ
,yd=

(
2+

1

γ

)(
x21−x1+x22−x2

)
.

The exact solutions are given by

u=
x21−x1+x22−x2

γ
,y=

x21−x1+x22−x2
γ

,z=
(
x21−x1

)(
x22−x2

)
.

It is easy to verify that the control u, state y, and adjoint state z satisfy

u=y|Γ=
1

γ

∂z

∂n

∣∣∣
Γ
.

Here, we consider two settings, γ=1 and γ=0.01, of the regularization parameter.
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Fig. 7.1. Left: regularization parameter γ=1, an approximation to the state variable y over the
mesh with 8192 elements generated by uniform refinement of iterations 5. Right: regularization param-
eter γ=0.01, an approximation to the state variable y over the mesh with 32768 elements generated
by uniform refinement of iterations 6.

We start with an initial mesh consisting of 8 congruent right triangles. Figure
7.1 reports an approximation solution of the state variable y over the mesh with 8192
elements, which are generated by uniform refinement of iterations 5 for regularization
parameter γ=1 (left), and over the mesh with 32768 elements, which are generated
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Fig. 7.2. An approximation to the adjoint state z over the mesh with 8192 elements for γ=1
(left) and over the mesh with 32768 elements for γ=0.01 (right).
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Fig. 7.3. An approximation to the control variable u, i.e., a restriction of yh to the boundary Γ,
over the mesh with 32768 elements generated by uniform refinement of iterations 6 for regularization
parameter γ=1 (left) and γ=0.01 (right).

by uniform refinement of iterations 6 for regularization parameter γ=0.01 (right). In
Figure 7.2, we depict the pictures of an approximation solution of the adjoint state z over
the mesh with 8192 elements for γ=1 (left) and over the mesh with 32768 elements for
γ=0.01 (right). Figure 7.3 shows a restriction (which is regarded as an approximation
solution of the control variable u) of yh on the boundary over the mesh with 32768
elements for γ=1 (left) and for γ=0.01 (right).

Table 7.1 shows, respectively, the exact errors ∥∇(y−yh)∥,∥∇(z−zh)∥ and ∥u−
uh∥0,Γ for the regularization parameter γ=1. It is observed that they have the rate of
convergence of order one for linear element, which is order half higher than theoretical
results. Table 7.2 reports the true errors of the state and adjoint state in L2 norm for
γ=1. It can be seen that ||y−yh|| has the rate of convergence of order 1.5 at least,
and that the speed of convergence of ||z−zh|| is close to 2. Table 7.3 provides the
exact errors of ||y−yh||,||∇(z−zh)|| and ||u−uh||0,Γ for the regularization parameter
γ=0.01, and a similar rate of convergence as that for γ=1 can be observed.

In addition, comparing Table 7.1 with Table 7.2, we can see that the speed of
convergence of ||y−yh|| is order half higher than ||∇(y−yh)||, and that the rate of
convergence of ||z−zh|| is order one higher than ||∇(z−zh)||.

7.2. Example two. We consider a 2D example over a square domain Ω=
(0,1/4)×(0,1/4)⊂R2. The data is chosen as

f =0, yd=
(
x21+x

2
2

)s
,
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h ||∇(y−yh)|| ordery ||∇(z−zh)|| orderz ||u−uh||0,Γ orderu
0.7071 0.7187 – 0.1069 – 0.1901 –

0.3536 0.3603 0.9964 0.0539 0.9881 0.0663 1.5200

0.1768 0.1928 0.9021 0.0278 0.9552 0.0345 0.9424

0.0884 0.0898 1.1023 0.0140 0.9897 0.0154 1.1637

0.0442 0.0446 1.0097 0.0070 1.000 0.0066 1.2224

Table 7.1. Numerical data of γ=1 for Example 1: h – maximum size of quasi-uniform mesh;
||∇(y−yh)|| – numerical error for the state variable y; ordery – the speed of convergence for y; ||∇(z−
zh)|| – numerical error for the adjoint state variable z; orderz – the speed of convergence for z;
||u−uh||0,Γ – numerical error for the control variable u; orderu – the speed of convergence for u.

h 0.7071 0.3536 0.1768 0.0884 0.0442 0.0221

||y−yh|| 0.0897 0.0250 0.0078 0.0025 7.86e-004 2.55e-004

ordery – 1.8436 1.6804 1.6415 1.6686 1.6259

||z−zh|| 0.0181 0.0054 0.0014 3.55e-004 8.74e-005 2.10e-005

orderz – 1.7453 1.9475 1.9775 2.0234 2.0604

Table 7.2. Numerical data of γ=1 for Example 1: h – maximum size of quasi-uniform mesh;
||y−yh|| – numerical error for the state variable y; ordery – the speed of convergence for y in L2

norm; ||z−zh|| – numerical error for the adjoint state variable z; orderz – the speed of convergence
for z in L2 norm.

h ||y−yh|| ordery ||∇(z−zh)|| orderz ||u−uh||0,Γ orderu
0.7071 2.9637 – 0.1134 – 9.0693 –

0.3536 0.7594 1.9649 0.0561 1.0156 2.5525 1.8295

0.1768 0.2101 1.8538 0.0279 1.0077 0.8519 1.5832

0.0884 0.0663 1.6640 0.0140 0.9948 0.3384 1.3320

0.0442 0.0191 1.7954 0.0070 1.000 0.1187 1.5114

Table 7.3. Numerical data of γ=0.01 for Example 1: h – maximum size of quasi-uniform mesh;
||y−yh|| – numerical error for the state variable y; ordery – the speed of convergence for y in L2 norm;
||∇(z−zh)|| – numerical error for the adjoint state variable z; orderz – the speed of convergence for
z; ||u−uh||0,Γ – numerical error for the control variable u; orderu – the speed of convergence for u.

Fig. 7.4. An approximation solution to the state variable y over the mesh generated by uniform
refinement of iteration 6 (with 32768 elements) for the regularization parameter γ=1 (left) and γ=0.01
(right).

where s=10−5. Since we do not have an explicit expression for the exact solution, the
“reference solution” has been calculated over a fine mesh with 131072 elements. Here,
we also consider two settings, γ=1 and γ=0.01, of the regularization parameter.
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Fig. 7.5. An approximation solution to the adjoint state z over the mesh generated by uniform
refinement of iteration 6 (with 32768 elements) for the regularization parameter γ=1 (left) and γ=0.01
(right).
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Fig. 7.6. An approximation to the control variable u, i.e., the restriction of yh on the bound-
ary Γ, over the mesh generated by uniform refinement of iteration 7 (with 131072 elements) for the
regularization parameter γ=1 (left) and γ=0.01 (right).

h ||y−yh|| ordery ||u−uh||0,Γ orderu ||∇(y−yh)||0,Γ order∇y

0.1768 0.0117 – 0.3212 – 0.4462 –

0.0884 0.0034 1.7833 0.1663 0.9497 0.2596 0.7812

0.0442 0.0011 1.6280 0.0851 0.9659 0.1683 0.6249

0.0221 3.61e-004 1.6078 0.0445 0.9356 0.1106 0.6057

0.0111 1.18e-004 1.6185 0.0236 0.9178 0.0723 0.6124

Table 7.4. Numerical data of γ=1 for Example 2: h – maximum size of quasi-uniform mesh;
||y−yh|| – numerical error for the state variable y in L2 norm; ordery – the speed of convergence for
y ; ||u−uh||0,Γ – numerical error for the control variable u; orderu – the speed of convergence for
u; ||∇(y−yh)|| – numerical error for the state variable y in H1 seminorm; order∇y – the speed of
convergence for y in H1 seminorm

We still start with an initial mesh consisting of 8 congruent right triangles. Figures
7.4 and 7.5 show an approximation solution to the state y and adjoint state z over
the mesh generated by uniform refinement of iteration 6 (with 32768 elements) for
two different values of the regularization parameter, namely, γ=1 (left) and γ=0.01
(right). Figure 7.6 reports the restriction of an approximation of the state on the
boundary, i.e., an approximation solution of the control u, over the mesh generated by
uniform refinement of iteration 7 (with 131072 elements) for two different values of the
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regularization parameter, namely, γ=1 (left) and γ=0.01 (right).

From Figures 7.4 and 7.6, we observe that the control changes quickly at the four
corners of the boundary Γ. Furthermore, we remark that the control for the regulariza-
tion parameter γ=0.01 changes more sharply at the four corners of the boundary than
for γ=1, and that the singularity of the exact solution for γ=0.01 is stronger than for
γ=1.

From Table 7.4, we observe that the numerical error of the state y in L2 norm has
the speed of convergence of order 1.6, and that the speed of convergence of ||u−u||0,Γ is
close to one. However, the numerical error ||∇(y−yh)|| has a slow speed of convergence,
this is due to the low regularity of the exact solutions. In fact, the exact control u has
strong singularity at four corners of the boundary, which indicates that adaptive mesh
based on a posteriori error estimator is efficient for this type of problems; we refer to
the articles [1, 5, 6, 9, 17, 18, 26, 28–31, 35, 36] about adaptive finite element methods on
the base of a posteriori error estimates.
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