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CUCKER-SMALE FLOCKING UNDER HIERARCHICAL
LEADERSHIP WITH TIME-DELAY AND A FREE-WILL LEADER∗

CHEN WU† AND JIU-GANG DONG‡

Abstract. We study the discrete-time Cucker-Smale model under hierarchical leadership with a
constant time delay. The overall leader of the flock is assumed to have a free-will acceleration. The
strength of the interaction is measured by a parameter β≥0. Under some suitable constraints on
the acceleration, we prove that unconditional convergence to flocking can be achieved for arbitrarily
large constant delay as long as β≤ 1

2
. The convergence rate is also provided depending on the leader’s

acceleration.
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1. Introduction
Collective behaviors in many-body systems are ubiquitous in our nature. The termi-

nology “flocking” represents a collective phenomenon in which the ensemble of flocking
particles (agents) organize into an ordered motion using only limited information and
simple rules. The typical examples of flocking include flocking of birds, schooling of
fish and herding of sheep. The flocking problem has gained considerable attention from
researchers in diverse disciplines such as computer science, biology, physics, control
engineering, etc. [4, 20, 21, 24, 26]. Mathematical abstraction and rigorous analysis are
acknowledged as the foundation for the study of the flocking problem. After the seminal
work by Vicsek et al. [27], several mathematical models for flocking have been proposed
in the literature, see, e.g., the survey papers [1, 28]. Among them, our focus in this
paper lies on the flocking model introduced by Cucker and Smale [7] in 2007.

Let us first recall the original flocking model in [7]. Consider a flock of k agents
moving in the Euclidean space Rd. Let xi and vi be the position and velocity of the i-th
agent, respectively. The discrete-time Cucker-Smale (C-S, for short) model is given by

xi[n+1]=xi[n]+hvi[n], n∈N,

vi[n+1]=h

k∑
j=1

aij(x[n])(vj [n]−vi[n])+vi[n],

where h is the time step, xi[n] :=xi(hn), vi[n] :=vi(hn), and the weight function aij(x)
quantifies the influence of agent j over i. In [7], it takes the form

aij(x)=
H

(1+∥xi−xj∥2)β
, (1.1)

where H>0 and β≥0 are system parameters, and ∥·∥ denotes the standard 2-norm in
Rd. The corresponding continuous-time model is also studied in [7]. The weight aij(x)
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is a decreasing function of the distance between agents. A notable feature of the C-S
model is that convergence to flocking can be established depending on the initial state
of the flock and system parameters only. More precisely, emergence of flocking exhibits
a threshold phenomenon, i.e., convergence to flock occurs for any initial state when
β≤1/2, while for β>1/2, such convergence occurs only for some restricted class of initial
configurations. Extensions of the Cucker-Smale results have been made in different
perspectives, e.g., avoiding collisions [5,30], kinetic and hydrodynamic description [2,15],
noisy effects [14, 16], directed networks [6, 10, 13], mean-field limit [18] and time-delay
effects [3, 11,29], etc.

In 2007, a generalization of the C-S model was made in [25] by incorporating the
structure of hierarchical leadership (HL) into the model. A detailed discussion for back-
ground on hierarchy can be found in [31]. In contrast with the all-to-all interactions
in [7], the HL structure leads to that the weights aij(x) are zero for certain pairs (i,j).
In particular, Shen [25] developed two elegant methods to deal with the discrete- and
continuous-time cases, respectively. Further extensions of the discrete-time C-S model
under HL were considered in [8,9,17]. In real applications, time delay is inevitable, and
it can cause oscillation, divergence, and even instability. The effect of time delays on the
C-S model has been studied in the literature. For example, in [19, 22], the C-S model
with time-delays under all-to-all interactions was considered. The effect of time-delay
on the C-S model under HL was further studied in [23]. More precisely, it was proved
in [23] that for the continuous-time C-S model under HL, flocking is achieved under the
same conditions as in the undelayed case when communication delay appears in velocity
information, and processing delay appears in position information. The continuous dy-
namics with delay under hierarchical leadership of (xi,vi) is governed by the following
continuous system: 

ẋi(t)=vi(t)

v̇i(t)=
∑

j∈L(i)

aij(x(t−τ))(vj(t−τ)−vi(t)), (1.2)

where aij(x) is defined as in (1.1) . In this paper, we are interested in the asymptotic
flocking behavior of discretization of (1.2). Therefore, it is very natural to ask whether
similar results can be rigorously proved for the corresponding discrete-time model.

We provide a positive answer to the above questions in the present paper. To be
precise, we discretize the continuous-time system (1.2) by the one-step forward Euler
scheme. We assume that the overall leader can have a free-will acceleration instead of
merely moving with a constant velocity. Under some growth assumption on the free-
will acceleration, we prove that when β≤1/2, convergence to flocking occurs for all
initial states and transmission delays. Our result shows the robustness of flocking in
the studied discrete-time model with respect to time delay, similar to the results for
continuous-time model in [23].

The rest of this paper is organized as follows. In Section 2, we introduce the discrete-
time C-S model under HL to be studied and present our main result. In Section 3, we
provide the proof of our flocking result. Finally, we conclude the paper in Section 4.

2. Preliminaries and main result
Before we state our main result, we first introduce the studied model.

2.1. The model. We recall the formal definition of hierarchical leadership first
introduced in [25].
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Definition 2.1. A flock of (k+1) agents labeled {0,1,. ..,k} is said to be under hier-
archical leadership if, for all x∈ (Rd)k+1, the adjacency matrix Ax=(aij(x)) satisfies:

(i) aij ̸=0 implies that j <i; and

(ii) for all i>1, the set L(i)={j : aij>0} is non-empty.

We call L(i) the leader set of agent i. Such a flock is called an HL-flock.

We see that agent 0 is not influenced by any other agents, and we call it the overall
leader of the HL flock. For an HL-flock {0,1,. ..,k}, we assume that the agents need
time to process perceived information, which is denoted by a constant transmission
delay τ ∈N. In discrete time setting, for 1≤ i≤k, the dynamics of agent i is specified
by 

xi[n+1]=xi[n]+hvi[n], n∈N,

vi[n+1]=h
∑

j∈L(i)

aij(x[n−τ ])(vj [n−τ ]−vi[n])+vi[n],

xi[n]=x
in
i [n], vi[n]=v

in
i [n], −τ ≤n≤0,

(2.1)

where the weight function aij(x[n−τ ]) is defined as in (1.1), i.e.,

aij(x[n−τ ])=
H

(1+∥xi[n−τ ]−xj [n−τ ]∥2)β
. (2.2)

We assume that the overall leader agent 0 has a free-will acceleration and its behavior
is given by 

x0[n+1]=x0[n]+hv0[n], n∈N,

v0[n+1]=v0[n]+hf [n].

x0[n]=x
in
0 [n], v0[n]=v

in
0 [n], −τ ≤n≤0.

(2.3)

For the case without delay, i.e., τ =0, system (2.1) becomes the classical C-S model
under HL, which has been studied in the literature, see, e.g., [8, 9, 25]. Before we state
our main result, we first give the concept of flocking. In what follows, we fix a solution
{(xi[n],vi[n])}ki=0 of systems (2.1) and (2.3).

Definition 2.2. We say that the HL-flock {0,1,. ..,k} converges to flocking asymp-
totically if the following conditions hold:

lim
n→∞

max
0≤i,j≤k

∥vi[n]−vj [n]∥=0, sup
0≤n<∞

max
0≤i,j≤k

∥xi[n]−xj [n]∥<∞.

We are now in a position to state our main result.

Theorem 2.1. Consider the HL-flock {0,1,. ..,k} with β≤1/2 in (2.2). Assume that
h satisfies 0<h≤ 1

kH and that the free-will acceleration f [n] is such that

∥f [n]∥=O((1+n)−p), p>k. (2.4)

Then the HL-flock converges to flocking asymptotically. In addition, we have

max
0≤i,j≤k

∥vi[n]−vj [n]∥=O((1+n)−p+k).
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Remark 2.1.
(1) We see that Theorem 2.1 shows that when β≤1/2, convergence to flocking occurs
independently of the initial state of the flock. Our result strengthens the corresponding
undelayed result in [8, 9, 25], where flocking occurs unconditionally for β<1/2. This
shows that the flocking behavior in systems (2.1) and (2.3) is robust with respect to the
time delay τ . In addition, when the free-will acceleration f [n] satisfies

f [n]=O(e−pn), p>0,

then we can use the same arguments to obtain

max
0≤i,j≤k

∥vi[n]−vj [n]∥=O
(
e−p̃n

)
with some p̃>0.

(2) By the same arguments, Theorem 2.1 also holds true for the case with a bounded
time-varying delay τ [n].

3. Proof of Theorem 2.1
In this section, we present the proof of Theorem 2.1. To this end, we next prove

some stepping stones towards the proof.

Lemma 3.1. Suppose that 0<h≤ 1
kH and (2.4) holds. Then we have for all n≥0 and

0≤ i≤k,

∥vi[n]∥≤V0,

where the constant V0 is defined as

V0 :=max

 max
0≤i≤k

−τ≤m≤0

∥vini [m]∥, ∥vin0 [0]∥+h
∞∑

m=0

∥f [m]∥

.
Proof. For the overall leader agent 0, we observe that for all n∈N,

∥v0[n]∥=∥v0[n−1]+hf [n−1]∥
≤∥v0[n−1]∥+h∥f [n−1]∥

≤∥vin0 [0]∥+h
n−1∑
m=0

∥f [m]∥

≤V0.

This shows that the statement holds true for agent 0. For 1≤ i≤k, we next show that
the statement holds for every time n by induction on n≥0. It is trivially true when
n=0. Assume that it holds true for n∈{0,1,2,...,m−1}. For n=m, it follows from
(2.1)2 that

∥vi[m]∥=

∥∥∥∥∥∥h
∑

j∈L(i)

aij(x[m−1−τ ])(vj [m−1−τ ]−vi[m−1])+vi[m−1]

∥∥∥∥∥∥
=

∥∥∥∥∥h ∑
j∈L(i)

aij(x[m−1−τ ])vj [m−1−τ ]

+

1−h
∑

j∈L(i)

aij(x[m−1−τ ])

vi[m−1]

∥∥∥∥∥
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≤h
∑

j∈L(i)

aij(x[m−1−τ ])∥vj [m−1−τ ]∥

+

1−h
∑

j∈L(i)

aij(x[m−1−τ ])

∥vi[m−1]∥

≤V0,

where the first inequality is due to

1−h
∑

j∈L(i)

aij(x[m−1−τ ])≥1−khH≥0,

and the last one follows by induction hypothesis. Thus, we complete the proof.

The following proposition considers the case of two agents.

Proposition 3.1. Assume that x[n],v[n]∈Rd(corresponding to x1[n]−x0[n] and
v1[n]−v0[n] for an HL-flocking with two agents) satisfy the system

x[n+1]=x[n]+hv[n], n≥ τ,
v[n+1]=(1−ha(x[n−τ ],n))v[n]+ε[n],
x[n]=xin[n], v[n]=vin[n], 0≤n≤ τ,

(3.1)

where a(x,n), v[n] and ε[n] satisfy the conditions

(1) R
(M2+∥x[n−τ ]∥2)β

≤a(x[n−τ ],n)≤K≤ 1
h , for some R>0,M>0, K>0, and β≤

1
2 ;

(2) ∥v[n]∥≤D0 , for D0>0 and all n≥0;

(3) ∥ε[n]∥=O((1+n)−µ) with µ>1, i.e., ∃ A>0 such that ∥ε[n]∥≤A(1+n)−µ for
all n≥ τ .

Then, there exists B0>0 such that ∥x[n]∥≤B0 for all n≥0 and ∥v[n]∥=O((1+
n)−µ+1).

We next present two lemmas to be used in the proof of Proposition 3.1.

Lemma 3.2. Under the hypotheses of Proposition 3.1, we have, for all n≥ τ ,

∥v[n+1]∥≤
(
1−hψ

(√
2∥x[n]∥

))
∥v[n]∥+∥ε[n]∥,

where

ψ(r)=
R

(M2+2C2
τ +r

2)
β

(3.2)

with

Cτ :=hτV0+ max
0≤m<τ

∥xin[m]∥.

Proof. It follows from (3.1)2 that

∥v[n+1]∥=∥(1−ha(x[n−τ ],n))v[n]+ε[n]∥
≤ (1−ha(x[n−τ ],n))∥v[n]∥+∥ε[n]∥, (3.3)
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where we use the fact that ha(x[n−τ ],n)≤hK≤1 by hypothesis (1) in Proposition 3.1.
On the other hand, we use (3.1)1 to see that for n≥2τ ,

x[n]=x[n−1]+hv[n−1]

=x[n−2]+hv[n−2]+hv[n−1]

=x[n−τ ]+h
τ∑

m=1

v[n−m],

which, together with Lemma 3.1, implies that for n≥2τ ,

∥x[n−τ ]∥=∥x[n]−h
τ∑

m=1

v[n−m]∥

≤∥x[n]∥+hτV0.

Thus, we obtain that for all n≥ τ ,

∥x[n−τ ]∥≤∥x[n]∥+hτV0+ max
0≤m<τ

∥xin[m]∥

=∥x[n]∥+Cτ .

We combine the above inequality and hypothesis (1) of Proposition 3.1 to see that

a(x[n−τ ],n)≥ R

(M2+∥x[n−τ ]∥2)β

≥ R(
M2+(∥x[n]∥+Cτ )

2
)β

≥ R

(M2+2∥x[n]∥2+2C2
τ )

β

=ψ
(√

2∥x[n]∥
)
. (3.4)

We then complete the proof by substituting (3.4) into (3.3).

Motivated directly by the nonlinear functionals introduced in [12], we define the
functional L[n] as follows:

L[n] :=∥v[n]∥+
n∑

i=1

ψ
(√

2∥x[i−1]∥
)
(∥x[i]∥−∥x[i−1]∥), n≥ τ,

where ψ(r) is given by (3.2).

Lemma 3.3. Under the hypotheses of Proposition 3.1, we have, for all n≥ τ ,

L[n+1]≤L[n]+∥ε[n]∥.

Proof. It follows from Lemma 3.2 and (3.1)1 that we have for n≥ τ ,

L[n+1]−L[n]

=∥v[n+1]∥−∥v[n]∥+ψ
(√

2∥x[n]∥
)
(∥x[n+1]∥−∥x[n]∥)

≤−hψ
(√

2∥x[n]∥
)
∥v[n]∥+∥ε[n]∥+ψ

(√
2∥x[n]∥

)
(∥x[n+1]∥−∥x[n]∥)
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=−ψ
(√

2∥x[n]∥
)
∥x[n+1]−x[n]∥+∥ε[n]∥+ψ

(√
2∥x[n]∥

)
(∥x[n+1]∥−∥x[n]∥)

≤−ψ
(√

2∥x[n]∥
)
∥x[n+1]−x[n]∥+∥ε[n]∥+ψ

(√
2∥x[n]∥

)
∥x[n+1]−x[n]∥

=∥ε[n]∥.

The following lemma gives a useful lower bound for L[n] in terms of the integral of ψ.

Lemma 3.4. For each n≥ τ , we have

L[n]≥∥v[n]∥+
∫ ∥x[n]∥

∥x[0]∥
ψ(

√
2r)dr.

Proof. The proof is the same as that for [12, Proposition 3.2]. To avoid repetition,
we omit it here.

Proof. (Proof of Proposition 3.1.) First, we apply Lemma 3.3 and hypothesis
(3) to derive that for all n≥ τ ,

L[n+1]≤L[τ ]+
n∑

m=τ

∥ε[m]∥≤L[τ ]+
∞∑

m=τ

∥ε[m]∥<∞.

That is, L[n] is uniformly bounded with n. Recalling the definition of (3.2) with β≤ 1
2 ,

we can always find a constant U0>0 such that

L[τ ]+
∞∑

m=τ

∥ε[m]∥=
∫ U0

∥x[0]∥
ψ(

√
2r)dr.

This equality and Lemma 3.4 yield that for n≥ τ ,∫ ∥x[n]∥

∥x[0]∥
ψ(

√
2r)dr≤

∫ U0

∥x[0]∥
ψ(

√
2r)dr.

Therefore, we have ∥x[n]∥≤B0 :=max{U0, max
0≤m<τ

∥xin[m]∥} for all n≥0. For the esti-

mate of velocity decay, we use Lemma 3.1 and Lemma 3.2 to see that for n≥ τ ,

∥v[n+1]∥≤
(
1−hψ

(√
2∥x[n]∥

))
∥v[n]∥+∥ε[n]∥

≤
(
1−hψ

(√
2B0

))
∥v[n]∥+∥ε[n]∥

≤
(
1−hψ

(√
2B0

))⌈n
2 ⌉∥∥∥v[n−⌈n

2

⌉]∥∥∥+ ⌈n
2 ⌉∑

m=1

(
1−hψ

(√
2B0

))m−1

∥ε[n−m]∥

≤
(
1−hψ

(√
2B0

))⌈n
2 ⌉
V0+

⌈n
2 ⌉∑

m=1

∥ε[n−m]∥

≤
(
1−hψ

(√
2B0

))⌈n
2 ⌉
V0+

n−1∑
m=⌈n

2 ⌉−1

∥ε[m]∥

=O((1+n)−µ+1),
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where the last equality follows from hypothesis (3) of Proposition 3.1. This completes
the proof.

We are now in a position to provide the proof of Theorem 2.1.

Proof. (Proof of Theorem 2.1.) We prove the statement by induction on
sub-flock {0,1,. ..,ℓ} with ℓ=1,. ..,k.

• Initial step. For the sub-flock {0,1}. From the definition of HL-flock (Definition 2.1),
we know that L(1)={0}, and by (2.3) we have for n≥ τ ,

v0[n]=v0[n−1]+hf [n−1]=v0[n−τ ]+h
n−1∑

m=n−τ

f [m]. (3.5)

Let x[n]=x1[n]−x0[n] and v[n]=v1[n]−v0[n]. Then we have

x[n+1]=x1[n+1]−x0[n+1]

=x1[n]+hv1[n]−x0[n]−hv0[n]
=x[n]+hv[n],

and by (3.5),

v[n+1]=v1[n+1]−v0[n+1]

=ha10(x[n−τ ])(v0[n−τ ]−v1[n])+v1[n]−v0[n]−f [n]h

=ha10(x[n−τ ])

(
v0[n]−h

n−1∑
m=n−τ

f [m]−v1[n]

)
+v[n]−f [n]h

=(1−ha10(x[n−τ ]))v[n]−h

(
ha10(x[n−τ ])

n−1∑
m=n−τ

f [m]+f [n]

)
.

Combining the above two equations, we obtain{
x[n+1]=x[n]+hv[n]

v[n+1]=(1−ha10(x[n−τ ]))v[n]+ε[n]
(3.6)

where

a10(x[n−τ ])=
H

(1+∥x1[n−τ ]−x0[n−τ ]∥2)β
,

and

ε[n]=−h

(
ha10(x[n−τ ])

n−1∑
m=n−τ

f [m]+f [n]

)
.

By Lemma 3.1, we see that ∥v[n]∥≤∥v1[n]∥+∥v0[n]∥≤2V0 for all n≥0. We apply
Proposition 3.1 with R=K=H, M =1, D0=2V0 and µ=p to establish the uniform
boundedness of ∥x[n]∥ and ∥v[n]∥=O

(
(1+n)−p+1

)
.

• Induction step. Suppose that the statement holds for the sub-flock {0,1,. ..,ℓ−1} with
2≤ ℓ≤k . We will show that it holds as well for the sub-flock {0,1,. ..,ℓ−1,ℓ}. We first
note that the induction hypothesis implies that

max
0≤i,j≤ℓ−1

∥vi[n]−vj [n]∥=O
(
(1+n)−p+ℓ−1

)
, (3.7)
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which implies that

max
0≤i,j≤ℓ−1

∥vi[n]−vj [n−τ ]∥

≤ max
0≤i,j≤ℓ−1

(∥v0[n]−vj [n−τ ]∥+∥vi[n]−v0[n]∥)

= max
0≤j≤ℓ−1

∥∥∥∥∥v0[n−τ ]+h
n−1∑

m=n−τ

f [m]−vj [n−τ ]

∥∥∥∥∥+ max
0≤i≤ℓ−1

∥vi[n]−v0[n]∥

≤ max
0≤j≤ℓ−1

∥v0[n−τ ]−vj [n−τ ]∥+h
n−1∑

m=n−τ

∥f [m]∥+ max
0≤i≤ℓ−1

∥vi[n]−v0[n]∥

=O
(
(1+n)−p+ℓ−1

)
. (3.8)

Consider the average velocity of the leaders of agent ℓ:

v̄ℓ[n]=
1

dℓ

∑
i∈L(ℓ)

vi[n]

where dℓ is the cardinality of the set L(ℓ), i.e., dℓ=#L(ℓ). For each 1≤ j≤ ℓ−1, n≥ τ ,
it follows from (3.8) that

∥vj [n−τ ]− v̄ℓ[n]∥=

∥∥∥∥∥∥ 1

dℓ

∑
i∈L(ℓ)

(vj [n−τ ]−vi[n])

∥∥∥∥∥∥
≤ 1

dℓ

∑
i∈L(ℓ)

∥vj [n−τ ]−vi[n]∥

=O
(
(1+n)−p+ℓ−1

)
. (3.9)

Similarly, define

x̄ℓ[n]=
1

dℓ

∑
i∈L(ℓ)

xi[n]

and let x[n]=xℓ[n]− x̄ℓ[n], v[n]=vℓ[n]− v̄ℓ[n]. Thus,

x[n+1]=x[n]+hv[n]

and

v[n+1]=vℓ[n+1]− v̄ℓ[n+1]

=
∑

j∈L(ℓ)

haℓj(x[n−τ ])(vj [n−τ ]−vℓ[n])+vℓ[n]−
1

dℓ

∑
i∈L(ℓ)

vi[n+1]

=
∑

j∈L(ℓ)

haℓj(x[n−τ ])(v̄ℓ[n]−vℓ[n])+
∑

j∈L(ℓ)

haℓj(x[n−τ ])(vj [n−τ ]− v̄ℓ[n])

+vℓ[n]−
1

dℓ

∑
i∈L(ℓ)

 ∑
j∈L(i)

haij(x[n−τ ])(vj [n−τ ]−vi[n])+vi[n]


=

1−
∑

j∈L(ℓ)

haℓj(x[n−τ ])

v[n]+ ∑
j∈L(ℓ)

haℓj(x[n−τ ])(vj [n−τ ]− v̄ℓ[n])
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− 1

dℓ

∑
i∈L(ℓ)

∑
j∈L(i)

haij(x[n−τ ])(vj [n−τ ]−vi[n])

=: (1−ha(x[n−τ ],n))v[n]+ε[n].

Hence we again obtain the system:

x[n+1]=x[n]+hv[n]

v[n+1]=(1−ha(x[n−τ ],n))v[n]+ε[n].

We need to show that all the hypotheses of Proposition 3.1 are satisfied. It first follows
from (3.8) and (3.9) and the fact that aij(x)≤H that

∥ε[n]∥=O
(
(1+n)−p+ℓ−1

)
with p−ℓ+1>1. This implies that the hypothesis (3) of Proposition 3.1 is fulfilled.

We next deal with

a(x[n−τ ],n)=
∑

j∈L(ℓ)

aℓj(x[n−τ ])=
∑

j∈L(ℓ)

H

(1+∥xj [n−τ ]−xℓ[n−τ ]∥2)β
.

It is clear that a(x)≤kH≤ 1
h for all x∈Rd. On the other hand, define g(s)= H

(1+s)β

with s≥0. Then g(s) is convex, and

1

dℓ

∑
j∈L(ℓ)

g(sj)≥g

 1

dℓ

∑
j∈L(ℓ)

sj

.
Let sj =∥xj [n−τ ]−xl[n−τ ]∥2. Then

a(x[n−τ ],n)=
∑

j∈L(ℓ)

H

(1+∥xj [n−τ ]−xℓ[n−τ ]∥2)β

≥ dℓH

(1+ 1
dℓ

∑
j∈L(ℓ)∥xj [n−τ ]−xℓ[n−τ ]∥2)β

. (3.10)

By the definition of x̄ℓ[n], we note that

1

dℓ

∑
j∈L(ℓ)

∥xj [n−τ ]−xℓ[n−τ ]∥2

=∥xℓ[n−τ ]− x̄ℓ[n−τ ]∥2+
1

dℓ

∑
j∈L(ℓ)

∥xj [n−τ ]− x̄ℓ[n−τ ]∥2

=∥x[n−τ ]∥2+ 1

dℓ

∑
j∈L(ℓ)

∥xj [n−τ ]− x̄ℓ[n−τ ]∥2 (3.11)

and additionally,

1

dℓ

∑
j∈L(ℓ)

∥xj [n−τ ]− x̄ℓ[n−τ ]∥2

≤ 1

dℓ

∑
j∈L(ℓ)

(
∥xj(0)− x̄ℓ(0)∥+

n−τ−1∑
m=0

∥(xj [m+1]− x̄ℓ[m+1])−(xj [m]− x̄ℓ[m])∥

)2



C. WU AND J.-G. DONG 1113

=
1

dℓ

∑
j∈L(ℓ)

(
∥xj(0)− x̄ℓ(0)∥+h

n−τ−1∑
m=0

∥vj [m]− v̄ℓ[m]∥

)2

(3.9)

≤ 1

dℓ

∑
j∈L(ℓ)

(
∥xj(0)− x̄ℓ(0)∥+h

n−τ−1∑
m=0

O
(
(1+m)−p+ℓ−1

))2

=:M2
ℓ −1. (3.12)

Combining (3.10), (3.11) and (3.12), we have

a(x[n−τ ],n)≥ dℓH

(M2
ℓ +∥x[n−τ ]∥2)β

,

which gives the hypothesis (1) of Proposition 3.1. To check the hypothesis (2), we use
Lemma 3.1 to see

∥v[n]∥=∥vl[n]− v̄ℓ[n]∥=
1

dℓ

∥∥∥∥∥∥
∑

i∈L(ℓ)

(vℓ[n]−vi[n])

∥∥∥∥∥∥
≤ 1

dℓ

∑
i∈L(ℓ)

∥vℓ[n]−vi[n]∥

≤ 1

dℓ

∑
i∈L(ℓ)

2V0=2V0.

Finally, we may apply Proposition 3.1, now with v1= v̄ℓ, v2=vℓ, K=kH, R=dℓH,
M =Mℓ, D0=2V0, and µ=p−ℓ+1 to establish the uniform boundedness of ∥x[n]∥ and

∥v[n]∥=∥vℓ[n]− v̄ℓ[n]∥=O
(
(1+n)−p+ℓ

)
.

Using this bound and (3.9), we deduce that, for any 1≤ j≤ ℓ−1.

∥vj [n]−vℓ[n]∥≤∥vj [n]− v̄ℓ[n]∥+∥vℓ[n]− v̄ℓ[n]∥
=O

(
(1+n)−p+ℓ−1

)
+O

(
(1+n)−p+ℓ

)
=O

(
(1+n)−p+ℓ

)
which, together with (3.7), leads to

max
0≤i,j≤ℓ

∥vi[n]−vj [n]∥=O
(
(1+n)−p+ℓ

)
.

For 0≤ i,j≤ ℓ, the uniform boundedness of ∥xi[n]−xj [n]∥ follows from induction hy-
pothesis and the relation: 0≤ j≤ ℓ−1,

∥xj [n]−xℓ[n]∥≤∥xj [n]− x̄ℓ[n]∥+∥x̄ℓ[n]−xℓ[n]∥

≤ 1

dℓ

∑
i∈L(ℓ)

∥xj [n]−xi[n]∥+∥x[n]∥.

This completes the proof of Theorem 2.1.
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4. Conclusion

This paper studied the flocking dynamics of discrete-time C-S model under hier-
archical leadership under the effect of a constant time delay. It is assumed that the
overall leader of the flock has a reasonable free-will acceleration. We show that for the
case with long-rang communication weight, i.e., β≤1/2, convergence to flocking can
be guaranteed for any size of the time delay. The result reveals that the asymptotic
flocking is robust with respect to the transmission delay. This tolerance may be due
to the efficiency of the hierarchical leadership structure. This work opens some further
research directions. For example, it is of interest to consider the effect of processing
delay in velocity information on convergence of flocking behavior. Also, more general
delays, e.g., time-varying unbounded delays or heterogenous delays, should be studied.
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