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ADAPTIVE IMAGE PROCESSING: A BILEVEL STRUCTURE
LEARNING APPROACH FOR MIXED-ORDER TOTAL VARIATION
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Abstract. We propose a class of mixed-order PDE -constraint regularizer for image processing
problem, generalizing the standard first-order total variation (TV ). Then, we study the corresponding
semi-supervised (bilevel) training scheme, which provides a simultaneous optimization with respect to
parameters and new class of regularizers. Finally, by relying on the finite approximation method, we
solve the global optimization problem on such training scheme, and analyze the resulting numerical
results.
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1. Introduction
The use of variational techniques with non-smooth regularizers in image processing

has become popular in the recent decades. One of the most successful approaches
is introduced in the celebrated work [21], which relies on the so-called ROF total-
variational functional

I(u) :=∥u−uη∥2L2(Q)+αTV (u), (1.1)

named after the authors Rudin, Osher, Fatemi. Here uη ∈L2(Q) is a given corrupted
image, the unit square Q := (0,1)2 is our domain, α∈R+ is an intensity parameter, and
TV (u) stands for the total variation of u in Q (see [14]). For brevity, in this paper we will
always use the notation L2(Q) to denote square integrable functions on Q, independent
of their co-domain. In the simple case that u∈W 1,1(Q), we have

TV (u)=

ˆ
Q

|∇u| dx=
ˆ
Q

(∣∣∂1
1u(x)

∣∣2+ ∣∣∂1
2u(x)

∣∣2)1/2dx. (1.2)

One advantage of using the TV regularization is it promotes piecewise constant recon-
structions, thus preserving edges. However, this also leads to blocky-like artifacts in
the reconstructed image, an effect known as stair-casing. To mitigate this effect, and
also to explore possible improvements, the following methods have been introduced and
studied:

(1) using higher-order extensions [3, 9];

(2) changing the underlying Euclidean norm [23];

(3) introducing fractional order derivatives [10,20].
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These methods introduce collections of regularizers which generalize the TV seminorm.
For example, in [23], the underlying Euclidean norm is generalized from p=2, used in
(1.2), to p∈ [1,+∞] by defining

TVp(u)=

ˆ
Q

|∇u|p dx=
ˆ
Q

(∣∣∂1
1u(x)

∣∣p+ ∣∣∂1
2u(x)

∣∣p)1/pdx.
In [20], the order of the derivative is generalized from r=1, used in (1.2), to r∈R+, by
defining

TV r(u)=

ˆ
Q

|∇ru| dx=
ˆ
Q

(
|∂r

1u(x)|
2
+ |∂r

2u(x)|
2
)1/2

dx,

in which the fractional order derivative is realized by using the Riemann-Liouville frac-
tional order derivative (see [22] for definition). In both works [10,20], it has been shown
that for given corrupted image uη, a carefully selected regularizer parameter p∈ [1,+∞]
(resp. r∈R+) allows TVp (resp. TV r) to provide improved results, and such selection
can be done automatically by using a bi-level training scheme, which will be detailed
below.

In general, with a reliable selection mechanism, the image processing results would
certainly be improved if we could further expand the collection of regularizers. To this
purpose, in this paper we introduce a family of novel TV -like PDE -constraint regularizer
(seminorm), say PVB, given by

PVB(u) := |Bu|Mb(Q;RK) . (1.3)

Here Mb denotes the space of finite Radon measures, |·|Mb
denotes the Radon norm of a

measure, and B: L1(Q)→D′(Q,RK) is a linear differential operator (see Notation 2.1).
In the simple case B=∇, we recover the total variation TV seminorm (see also [16,17]).
We remark that the abstract framework studied in (1.3) naturally incorporates the
recent PDE -based approach to image denoising problems formulated in [1], and also
allows us to simultaneously describe a variety of different image-processing techniques.
The greater generality of the PVB seminorm, compared to the classic TV seminorm, is
beneficial in allowing for more a general functional, and hence better processing results,
but, on the other hand, such increased generality is also the main issue in our analysis.

The aim of this paper is threefold. First, we provide a rigorous and detailed analysis
of the properties of the PVB seminorm, such as approximation by smooth functions,
lower semi-continuity with respect to both the function u and the operator B, and a
point-wise characterization of the sub-gradient of PVB.

The second result is the analysis of the aforementioned selection mechanism, realized
by a semi-supervised (bilevel) training scheme from machine learning (see [7, 8, 11, 12,
19, 24]). For example, we could apply the bilevel training scheme to determine the
optimal value of α∈R+ from (1.1), which controls the strength of the regularizer. More
precisely, we assume that the corrupted image uη can be decomposed as uη =uc+η
where uc∈L2(Q) represents a noise-free clean image (the perfect data), η encodes the
noise, and we refer to (uη,uc) as training set. Then, a bilevel training scheme, say
Scheme B, for determining the optimal intensity parameter α, can be formulated as
follows:

Level 1. αT∈A[T] :=argmin
{
∥uα−uc∥2L2 : α∈T

}
, (B-L1)
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Level 2. uα :=argmin
{
∥u−uη∥2L2(Q)+αTV2(u) : u∈BV (Q)

}
, (B-L2)

where T := [0,+∞], used in (B-L1), is called the training ground. Roughly speaking,
Level 1 problem in (B-L1) looks for an α that minimizes the L2-distance to the clean
image uc, subject to the minimizing problem (B-L2). That is, scheme B is able to
optimally adapt itself to the given perfect data uc.

In the same spirit, in order to identify the optimal operator B in PVB for a given
training set (uη,uc), we introduce the scheme T ((T -L1)-(T -L2)) defined as

Level 1. (αT,BT)∈A[T] :=argmin
{
∥uc−uα,B∥2L2(Q) : (α,B)∈T

}
, (T -L1)

Level 2. uα,B :=argmin
{
∥u−uη∥2L2(Q)+αPVB(u):u∈L1(Q)

}
. (T -L2)

In (T -L1), we expand the training ground to T :=cl(R+)×Σ to incorporate the new
parameter B∈Σ, where Σ denotes a closed collection of operators B (see Notation 2.1,
Notation 4.1, and (4.1) for details). We remark that the expanded training ground T
allows the scheme T to optimize both the regularizer PVB(u) and intensity parameter
α simultaneously. The main result is:

Theorem 1.1 (see Theorem 4.1). The training scheme T admits at least one so-
lution (αT,BT)∈T, and provides an associated optimally reconstructed image uαT,BT ∈
BVBT(Q).

In the third part of this article we focus on how to numerically determine the optimal
solution of scheme T , or equivalently, compute global minimizers of the assessment
function A(α,B): T→R+ defined as

A(α,B) :=∥uα,B−uc∥2L2(Q) , (1.4)

where uα,B is obtained from (T -L2). However, as shown in [23], even in the simplest
case with B=∇ (i.e. PVB =TV ), the assessment function A(α,∇) is not quasi-convex
(in the sense of [18]), and hence methods such as Newton’s descent or Line search might
get trapped in a local minimum. To overcome this difficulty, we introduce the concept
of the acceptable optimal solution. To be precise, we say the solution (α′,B′) is an
acceptable optimal solution of scheme T with the given error ε>0 if

|A(αT,BT)−A(α′,B′)|<ε, (1.5)

where (αT,BT) is a global minimum obtained from (T -L1).
To compute such an acceptable optimal solution, we use a finite approximation

method, originally introduced and studied in [23], and generalize it in Section 4.2 to fit
our new regularizer PV . To this aim, and also for the numerical realization of scheme
T , we add the following box-constraint on the training ground T.

• The intensity parameter α is contained in a closed interval [0,P ], where the
box-constraint constant P >0 can be chosen by the user.

• The collection Σ of operators B satisfies an additional continuity assumption:
For any B1, B2∈Σ,

|PVB1
(u)−PVB2

(u)|≤O(|B1−B2|)min{PVB1
(u),PVB2

(u)},

where O(·) denotes the big-O notation.
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Then, the finite approximation method is constructed based on a sequence of (finite)
training sets Tl, indexed by l∈N, in which (where H0(·) denotes the counting measure)

H0 (Tl)<+∞ and T⊂ cl

(⋃
l∈N

Tl

)
.

Here cl(·) denotes the topological closure. The precise definition of Tl will be presented
in Definition 4.2 below. We remark that, since H0 (Tl)<+∞ for each l∈N fixed, we
could evaluate A(α,B) at each element of Tl and determine the optimal solution(s)

(αTl
,BTl

)∈A[Tl] :=argmin{A(α,B) : (α,B)∈Tl}

precisely. The following result, i.e. Theorem 1.2 below, is crucial for (1.5).

Theorem 1.2 (see Theorem 4.2). Let T be a training ground satisfying the above
box-constraint. Then the following assertions hold:

(1) We have

lim
l→∞

dist(A[T],A[Tl])=0,

where dist denotes the Hausdorff distance: Given two sets A,B, and a metric m,
the Hausdorff distance between A,B is defined as

max
{
sup
x∈A

inf
y∈B

m(x,y), sup
x∈B

inf
y∈A

m(x,y)
}
.

(2) Let ε>0 be given. Then for each l∈N we have

|A(αTl
,BTl

)−A(αT,BT)|≤4KP [O(P/l)+1/l]
1/2∥uη∥1/2Wd,1(Q)

/εd+ε/2,

where the value of the right-hand side can be computed explicitly. Here d denotes
the order of the considered differential operator B, and the constant K is defined
in the proof of Theorem 4.2.

This result states that, for any given ε>0, we could compute a sufficiently large
l∈N such that the corresponding optimal solution (αTl

,BTl
) is an acceptable optimal

solution of scheme T . Also, in Section 5.1 we show that, even with the box-constraint,
the training ground T is still sufficiently large to encompass many interesting operators.
We finally remark that, although this work focuses mainly on the theoretical analysis of
the operators PVB and the training scheme T , in Section 5.1 a primal-dual algorithm for
solving (T -L2) is discussed, and some numerical realizations of scheme T are provided.

This article is structured as follows. In Section 2 we study the theoretical properties
of PVB-seminorms. The Γ-convergence result, the bilevel training scheme, and the finite
approximation are the subjects of Sections 3 and 4, respectively. Finally, in Section 5.1
we show several numerical implementations.

2. The space of functions with bounded PV -seminorm
Let d, N ∈N be given, and let Q := (0,1)N be the open unit cube in RN . Denote

by MNn the space of matrices/tensors with dimension N×···×N (n times), and real
entries. For convenience, we identify the matrix space MNn with the vector space RNn

.
Moreover, we denote by D′(Q,Rn) the space of real-valued distributions on Rn.

Notation 2.1. We first collect some notations, which will be used in connection with
linear differential operators.
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(1) For h∈N, we denote by Hh: D′(Q)→D′(Q;RNh

) the h-th Hessian differential op-
erator. For example, when h=1, we have H1u=∇u.

(2) For h=1,. ..d, we let Bh be a matrix mapping from RNh

to RNh

and

K :=
∑

h∈N,h≤d

Nh.

We denote by B :D′(Q)→D′(Q;RK) the d-th order differential operator

Bu :=
∑

h∈N,h≤d

Bh(Hhu). (2.1)

(3) For h=1,. ..d, we denote by (Bh)∗ the formal adjoint of the matrix Bh, and we
define the differential operator B∗ :D′(Q;RK)→D′(Q) by

⟨B∗v,u⟩R := ⟨v,Bu⟩RK .

(4) We denote by ◦B the bilinear operator induced by B, i.e.

B(uw)=wBu+u◦Bw. (2.2)

(5) Given a sequence of operators {Bn}∞n=1 and an operator B, with coefficients
{Bn}∞n=1 and B, respectively, we say that Bn→B in ℓ∞ if

|Bn−B| :=
∑
h≤d

∣∣Bh
n−Bh

∣∣
ℓ∞

→0,

where |·|ℓ∞ denotes the ℓ∞ matrix norm.

Definition 2.1. Let d∈N be fixed. We denote by Πd the collection of operators B
defined in Notation 2.1, with order at most d.

2.1. The PDE-constraint total variation defined by an operator B. We
generalize the standard total variation seminorm by using the d-th order differential
operators B∈Πd defined in Definition 2.1.

Definition 2.2. Let u∈L1(Q) and B∈Πd be given.

(1) We define the PDE-constraint seminorm, say PVB, by

PVB(u) :=sup

{ˆ
Q

uB∗φdx : φ∈C∞
c (Q;RK), |φ|≤1

}
; (2.3)

(2) We define the space

BVB(Q) :=
{
u∈L1(Q) : PVB(u)<+∞

}
,

and equip it with the norm

∥u∥BVB(Q) :=∥u∥L1(Q)+PVB(u). (2.4)

In the next proposition we collect several preliminary results on functions in
BVB(Q).
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Proposition 2.1. Let B∈Πd and u∈BVB(Q) be given.

(1) For any sequence {un}∞n=1⊂L1(Q) and function u∈L1(Q), we have

liminf
n→∞

PVB(un)≥PVB(u), (2.5)

provided that one of the following conditions is satisfied:

(i) {un}∞n=1 is locally uniformly integrable and un→u a.e.;

(ii) un
∗
⇀u in Mb(Q).

(2) There exists a Radon measure µ, and a µ-measurable function σ: Q→RK , such
that

(i) |σ(x)|=1 µ-a.e.;

(ii) for all φ∈C∞
c (Q;RK), it holds

ˆ
Q

uB∗φdx=−
ˆ
Q

φ ·σdµ.

Proof. We prove Assertion 1 first. If

liminf
n→∞

PVB(un)=+∞,

then there is nothing to prove. Assume the opposite, i.e. for an arbitrary φ∈
C∞

c (Q;RK),

liminf
n→∞

PVB(un)≥ liminf
n→∞

ˆ
Q

unB∗φdx=

ˆ
Q

uB∗φdx,

where the last equality can be deduced from either condition 1(i) or 1(ii). Hence, we
conclude (2.5) by the arbitrariness of φ.

We next prove Assertion 2. We define the linear functional

L :C∞
c (Q;RK)→R, L(φ) :=−

ˆ
Q

uB∗φdx, for φ∈C∞
c (Q;RK).

Then, since u∈BVB(Q), we have that

sup

{
1

∥φ∥L∞(Q)

ˆ
Q

uB∗φdx : for φ∈C∞
c (Q;RK)

}
=PVB(u)<+∞,

which implies that

|L(φ)|≤PVB(u)∥φ∥L∞(Q) . (2.6)

Now, for an arbitrary φ∈Cc(Q;RK), we define φε :=φ∗ηε, for some suitable mollifier
ηε with ε<dist(spt(φ),∂Q). The particular form of ηε is not really relevant, but we
point out that, for instance, a possible choice for such ηε can be a Gaussian distribution
with mean zero and variance 1/ε2. Then we have, by [14, Theorem 1, item (ii), Section
4.2], that φε→φ uniformly on Q. Then, define

L̄(φ) := lim
ε→0

L(φε) for φ∈Cc(Q;RK),
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and together with (2.6), we conclude that

sup
{
L̄(φ) : for φ∈Cc(Q;RK) and |φ|≤1

}
<+∞.

Thus, by the Riesz representation theorem (see [14, Section 1.8]), the proof is complete.

Remark 2.1. We henceforth haveˆ
Q

uB∗φdx=−
ˆ
Q

φ ·σd |Bu|

for arbitrary φ∈C∞
c (Q;RK).

Theorem 2.1 (local approximation by smooth functions). Let p≥1 and u∈
BVB(Q)∩Lp(Q) be given. There exists a sequence {un}∞n=1⊂C∞(Q)∩BVB(Q) such
that the following assertions hold.

(1) un→u strongly in Lp(Q);

(2) PVB(un)→PVB(u);

(3) un∈C∞(Q̄) for each n∈N.

Remark 2.2. Assertion 3 only states that, for each fixed n∈N, un∈C∞(Q̄), but it
is possible that ∥un∥L1(∂Q)→∞ as n→∞. That is, we make no conclusions about the
trace of u.

Proof. The construction of the approximation sequence {un}∞n=1 is almost identical
to that for the standard BV case, presented in [14, Theorem 2, Page 172]. We shall only
concentrate on showing Assertion 3, but for readers’ convenience, we quickly outline the
construction of approximation sequence, and its key steps.

Let u∈BVB(Q) be given, and let Qk be the cube centered at point q=(1/2, ·· · ,1/2)
with side length 1−1/(k+M). Given an arbitrary ε>0, we choose M>0 large enough
such that

|Bu|(Q\Q0+M )<ε/2.

Define Q0=Q0+M and

Vk :=Qk+1 \Q̄k−1 for k∈N.

Let {ζk}∞k=1⊂C∞
c (Q) be the partition of unity such that

ζk ∈C∞
c (Vk) such that 0≤ ζk≤1,∑

k≥1

ζk(x)=1 for each x∈Q.

Let ηε be a suitable mollifier, and for each k, we choose εk small enough such that

spt(ηεk ∗(uζk))⊂Vk, (2.7)

∥ηεk ∗(uζk)−uζk∥Lp(Q)<ε/2k+1, (2.8)

∥ηεk ∗(uBζk)−uBζk∥L1(Q)<ε/2k+1, (2.9)

and we define

uε :=

∞∑
k=1

ηεk ∗(uζk).
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We observe that (2.7) implies that uε∈C∞(Q), and (2.8) implies that

uε→u strongly in Lp(Q).

This, combined with Assertion 1 of Proposition 2.1, gives

liminf
ε→0

PVB(uε)≥PVB(u).

Next, for arbitrary φ∈C∞
c (Q;RN ), we observe that,

⟨ηεk ∗(uζk),B∗φ⟩= ⟨uζk,B∗(ηεk ∗φ)⟩= ⟨u,B∗(ζk(ηξk ∗φ))⟩−⟨u,(ηεk ∗φ)◦B∗ ∇ζk⟩ ,

where, at the first equality we used the linearity of the convolution operator, and at the
last equality we used (2.2). Thus, we have

⟨uε,B
∗φ⟩=

∑
k≥1

⟨ηεk ∗(uζk),B∗φ⟩=
∑
k≥1

⟨u,B∗(ζk(ηξk ∗φ))⟩−
∑
k≥1

⟨u,(ηεk ∗φ)◦B∗ ∇ζk⟩ .

Following the same computations from [14, Theorem 2, Page 172], and using (2.9), we
deduce that

⟨uε,B
∗φ⟩≤PVB(u)+ε,

Hence, in view of the arbitrariness of φ, we obtain that

limsup
ε→0

PVB(uε)≤PVB(u).

Finally, we further modify the sequence {uε}ε>0, so that uε∈C∞(Q̄) for each ε>0. Let
δ>0 be given, and define

uε,δ(x) :=uε((x−q)/(1+δ)), for x∈Q. (2.10)

As a consequence, uε,δ →uε strongly in Lp(Q), and PVB(uε,δ)→PVB(uε), as δ→0.
Hence, by a diagonal argument, we could extract a subsequence {uδε}ε>0 such that

uδε →u strongly in Lp(Q) and PVB(uδε)→PVB(u).

On the other hand, by the definition of uδε , we have uδε ∈C∞(Q̄), which concludes
Assertion 3, as desired.

Remark 2.3. The construction of uε,δ in (2.10) is only possible due to the simple
geometry of Q. However, for domains with more complicated geometry, even with
Lipschitz regular boundary, such construction is not available. We refer the interested
reader to [4,15] for alternative constructions which, however, require several additional
conditions on the operator B.

Corollary 2.1. Let Bi, i=1,. ..M be given, and let

u∈
M⋂
i=1

BVBi
(Q).

Then, there exists a sequence

{un}∞n=1⊂C∞(Q)∩
M⋂
i=1

BVBi
(Q)

such that the following assertions hold.
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(1) un→u strongly in L1(Q);

(2) PVBi
(un)→PVBi

(u), for each i=1,. ..,M uniformly;

(3) un∈C∞(Q̄) for each n∈N.
Proof. We only need to change (2.9) to

M∑
i=1

∥ηεk ∗(uBiζk)−uBiζk∥L1(Q)<ε/2k+1,

and the rest follows with the same arguments used in the proof of Theorem 2.1.

We close this section with a lower semi-continuity result for PVB.

Proposition 2.2. Given u∈L1(Q), and a sequence {Bn}∞n=1 such that Bn→B in
ℓ∞, it holds

liminf
n→∞

PVBn
(u)≥PVB(u).

Proof. First, if

liminf
n→∞

PVBn
(u)=+∞,

then the thesis is trivial. Assume the opposite, i.e.

sup{PVBn
(u) : n∈N} :=M<+∞.

For arbitrary φ∈C∞
c (Q;RK), we have

+∞> liminf
n→∞

PVBn(u)≥ liminf
n→∞

ˆ
Q

uB∗
nφdx=

ˆ
Q

uB∗φdx.

Hence, by taking the supremum with respect to φ on the right-hand side, we conclude

liminf
n→∞

PVBn(u)≥PVB(u),

as desired.

3. Analytic properties of PDE-constraint variations

3.1. Γ-convergence of functionals defined by PV seminorms. In this sec-
tion we prove a Γ-convergence result with respect to the intensity parameter α and
operator B.

Definition 3.1. We define the functional

Iα,B :L1(Q)→ [0,+∞], Iα,B(u) :=

{
∥u−uη∥2L2(Q)+αPVB(u) if u∈BVB(Q),

+∞ otherwise.

The following theorem is the main result of this section.

Theorem 3.1. Let sequences {Bn}∞n=1 and {αn}∞n=1 be given such that Bn→B0 in
ℓ∞ and αn→α0∈R+. Then, the functional Iαn,Bn Γ-converges to Iα,B in the weak L2

topology. More precisely, for any u∈L1(Q), the following two assertions hold.

(Lower semi-continuity) For any sequence

un⇀u weakly in L2(Q),
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we have

Iα,B(u)≤ liminf
n→+∞

Iαn,Bn(un).

(Recovery sequence) For any u∈BV (Q), there exists {un}∞n=1⊂L1(Q) such that

un⇀u weakly in L2(Q)

and

limsup
n→+∞

Iαn,Bn(un)≤Iα,B(u).

We split the proof of Theorem 3.1 into two propositions.

The following result is instrumental in establishing the liminf inequality.

Proposition 3.1. Let sequences {Bn}∞n=1 and {αn}∞n=1 be given, such that Bn→B0

in ℓ∞ and αn→α0∈R+. Let {un}∞n=1⊂L1(Q) be given such that

sup
{
∥un∥Lp(Q)+PVBn

(un) : n∈N
}
<+∞ (3.1)

for some p∈ (1,+∞]. Then there exists u0∈BVB0
(Q) such that, up to a subsequence

(not relabeled),

un⇀u0 weakly in Lp(Q) (3.2)

and

liminf
n→∞

PVBn
(un)≥PVB0

(u0). (3.3)

Proof. Without loss of generality, we assume that αn=1 for every n∈N, as the
general case for αn and α0∈R+ can be argued with straightforward adaptations.

From (3.1), and the fact that p>1, we have, up to a subsequence, the existence of
u0∈Lp(Q) such that (3.2) holds.

Next, for arbitrary φ∈C∞
c (Q;RK), we observe that

limsup
n→∞

∣∣∣∣ˆ
Q

unB∗
nφdx−

ˆ
Q

unB∗
0φdx

∣∣∣∣
≤limsup

n→∞

ˆ
Q

|un||B∗
nφ−B∗

0φ| dx

≤
(
sup
n≥0

∥un∥Lp

)(
limsup
n→∞

∥B∗
nφ−B∗

0φ∥Lp′

)
=0, (3.4)

where we used the fact that φ∈C∞
c (Q;RK), and the dominated convergence theorem.

Hence, we could obtain that

liminf
n→∞

PVBn
(un)≥ liminf

n→∞

ˆ
Q

unB∗
nφdx

≥ liminf
n→∞

ˆ
Q

unB∗
0φdx+liminf

n→∞

ˆ
Q

un(B
∗
n−B∗

0)φdx≥
ˆ
Q

u0B
∗
0φdx,
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where, at the last inequality we used (3.2) and (3.4). By the arbitrariness of φ∈
C∞

c (Q;RK), we conclude (3.3).

Proposition 3.2 (Γ-limsup inequality). Given sequences {Bn}∞n=1 and {αn}∞n=1,
such that Bn→B0 in ℓ∞ and αn→α0∈R+, for any u0∈BVB0

(Q) there exists a se-
quence {un}∞n=1⊂BVBn(Q), such that (up to a subsequence) un⇀u0 in Lp(Q), and

limsup
n→∞

PVBn
(un)≤PVB0

(u0).

Proof. If PVB0
(u)=∞, then the thesis is trivial. Assume the opposite, and

suppose for now that u0∈C∞(Q̄), which gives that u0∈BVBn(Q) for each n∈N. Fix
δ>0, and choose φδ,n∈C∞

c (Q;RK) such that

PVBn
(u)≤

ˆ
Q

uB∗
nφδ,ndx+δ. (3.5)

We observe that∣∣∣∣ˆ
Q

u0B
∗
nφδ,ndx

∣∣∣∣= ∣∣∣∣ˆ
Q

[Bnu0]φδ,ndx

∣∣∣∣≤∥φδ,n∥L∞(Q)

ˆ
Q

|Bnu0|dx≤
ˆ
Q

|Bnu0|dx,

(3.6)
where, at the last inequality we used the fact that φδ,n satisfies (2.3). Next, since
u∈C∞(Q̄) and Bn→B in ℓ∞, we have

|Bnu(x)|≤ sup{|Bn|ℓ∞ : n∈N}·
∑
h≤d

∣∣Hhu0(x)
∣∣
ℓ∞

,

which implies that
ˆ
Q

∑
h≤d

∣∣Hhu(x)
∣∣
ℓ∞

dx≤∥u∥Wd,+∞(Q)<+∞.

Thus, we could apply the dominated convergence theorem to conclude that

limsup
n→∞

ˆ
Q

|Bnu0|dx≤
ˆ
Q

limsup
n→∞

|Bnu0|dx=
ˆ
Q

|B0u0|dx.

This, combined with (3.5) and (3.6), gives

limsup
n→∞

PVBn
(u0)≤ limsup

n→∞

ˆ
Q

u0B
∗
nφδ,ndx+δ≤

ˆ
Q

|B0u0|dx+δ=PVB0
(u0)+δ,

which implies, by taking δ↘0, that

limsup
n→∞

PVBn
(u0)≤PVB0

(u0). (3.7)

Next, by Theorem 2.1, we could construct an approximation sequence {uε}ε>0⊂C∞(Q̄)
such that uε→u in Lp(Q) and

PVB0
(uε)→PVB0

(u), or PVB0
(uε)≤PVB0

(u)+O(ε).

Also, by (3.7), we have

limsup
n→∞

PVBn
(uε)≤PVB0

(uε)≤PVB0
(u)+O(ε).
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Thus, by a diagonal argument, we can obtain a sequence {Bnε}ε>0 such that

PVBnε
(uε)≤PVB0

(u)+O(ε).

That is, we have

limsup
ε→0

PVBnε
(uε)≤PVB0(u),

which concludes the proof.

Proof. (Proof of Theorem 3.1.) Property (Lower semi-continuity) holds in view
of Proposition 3.1, and Property (Recovery sequence) follows from Proposition 3.2.

3.2. The point-wise characterization of sub-differential of PVB. We first
recall a few notations, preliminary results, and definitions.

Definition 3.2 ([13, Definition 4.1 & 5.1]). Let F be a given function on a normed
space V , taking values in R̄.
(1) We define the polar function of F , denoted by F ∗, by

F ∗(u∗)=sup
{
⟨v,u∗⟩V,V ∗ −F (v) : v∈V

}
.

(2) We define the bipolar function, say F ∗∗, of F by

F ∗∗=(F ∗)∗.

(3) We say F is sub-differentiable at point u∈V if F (u) is finite and there exists
u∗∈V ∗ such that

⟨v−u,u∗⟩V,V ∗ +F (u)≤F (v)

for all v∈V . Then such u∗∈V ∗ is called a sub-gradient of F at u, and the set of
sub-gradients at u is called the sub-differential at u, and is denoted by ∂F (u).

For brevity, when the sub-differential is a singleton, we might identify it with its only
element, and write “∂F (u)=v” instead of “∂F (u)={v}”.

Proposition 3.3 ([13, Propositions 4.1 and 5.1]). Let F :V −→ R̄ be a given function,
and let F ∗ be its polar. Then the following assertions hold.

(1) We have u∗∈∂F (u) if and only if

F (u)+F ∗(u∗)= ⟨u,u∗⟩.

(2) The (possibly empty) set ∂F (u) is convex and closed.

(3) If in addition F is convex, then F ∗∗=F .

Definition 3.3. Let p∈ [1,+∞), v∈Lp(Q;RK), and B be given.

(1) We say that B∗v in Lp(Q) if there exists w∈Lp(Q) such that for all φ∈C∞
c (Q;RK)ˆ

Q

Bφ ·vdx=−
ˆ
Q

φwdx.

(2) We define the space

W p[B](Q;RK) :=
{
v∈Lp(Q;RK) : B∗v∈Lp(Q)

}
endowed with the norm

∥v∥pWp(B) :=∥v∥pLp(Q)+∥B∗v∥pLp(Q) .
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(3) We define

W p
0 [B](Q;RK) :=cl(C∞

c (Q;RK))∥·∥Wp(B)
,

i.e., the closure of C∞
c (Q;RK) with respect to the norm ∥·∥Wp(B).

(4) We define

C∞
c [B](Q) :=

{
B∗φ : φ∈C∞

c (Q;RK), ∥φ∥L∞(Q)≤1
}
.

and

Kp[B](Q) :=
{

B∗v : v∈W p
0 [B](Q;RK), ∥v∥L∞(Q)≤1

}
.

The main result of Section 3.2 is:

Theorem 3.2. Let p>1, q=p/(p−1), u∈Lp(Q), and ũ∈Lq(Q) be given. Then
ũ∈∂PVB(u) if and only if the following two conditions hold:

(1) u∈BVB(Q);

(2) there exist v∈W q
0 [B](Q;RK) such that ∥v∥L∞(Q)≤1, ũ=B∗v, and

PVB(u)=

ˆ
Q

uB∗vdx.

We prove Theorem 3.2 over several propositions.

Proposition 3.4. Let p∈ (1,+∞) be given. Then the closure of CB(Q) under the Lq

norm is equal to W q
0 [B](Q), i.e.,

cl(CB(Q))Lq(Q)=W q
0 [B](Q).

Proof. We claim

cl(CB(Q))Lq(Q)⊂W q
0 [B](Q) (3.8)

first, and we do it by showing the space W q
0 [B](Q) is closed with respect to the Lq norm.

Let g∈ cl(W q[B](Q;RK)) be given, and consider a sequence {vn}∞n=1⊂W q
0 [B](Q;RK)

such that

∥B∗vn−g∥Lq(Q)→0. (3.9)

Since {vn}∞n=1⊂W q[B](Q;RK), we have ∥vn∥L∞(Q)≤1 and hence, up to a subsequence,

there exists v0∈L∞(Q) such that

vn⇀v0 weakly in Lq(Q) and ∥v0∥L∞(Q)≤1.

Next, let ϕ∈C∞
c (Q) be given, and we observe that

ˆ
Q

B∗vnϕdx=−
ˆ
Q

vnBϕdx→−
ˆ
Q

v0Bϕdx,

which, combined with (3.9), gives
ˆ
Q

gϕdx=−
ˆ
Q

v0Bϕdx,
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and hence g=B∗v0. Thus, we have v0∈W q
0 [B](Q;RK). Next, since the set{

(v,B∗v) : v∈W q
0 [B](Q;RK)

}
⊂Lq(Q;RK×R)

is convex and closed, hence by [5, Theorem 3.7], it is weakly closed. Thus, we conclude
that v0∈W q

0 [B](Q), which implies that g∈W q
0 [B](Q), i.e. W q

0 [B](Q) is closed with
respect to the Lq norm, and also (3.8) too, as desired.

We next claim that

cl(CB(Q))Lq ⊃W q
0 [B](Q). (3.10)

We prove (3.10) by following the arguments used in [14, Theorem 2, Page 125]. Let
g∈W q

0 [B](Q) be given. That is, there exists v∈W q
0 [B](Q;RK), ∥v∥L∞(Q)≤1, and

g=B∗v. From the definition of W q[B](Q), there exists {vn}∞n=1⊂C∞
c (Q;RK) such

that

∥vn−v∥W q [B](Q)→0. (3.11)

Next, define the truncated function

v̄n(x) :=


1, if vn(x)≥1,

vn(x), if −1≤vn(x)≤1,

−1, if vn(x)≤−1,

(3.12)

and we note that

v̄n→v a.e., and B∗v̄n⇀B∗v0 weakly in Lq(Q). (3.13)

Using an argument similar to that from the proof of Proposition 2.1, combined with the
fact that v̄n→v a.e., we obtain

liminf
n→∞

∥B∗v̄n∥Lq(Q)≥∥B∗v0∥Lq(Q) .

On the other hand, by (3.12), we have

∥B∗v̄n∥Lq(Q)≤∥B∗v0∥Lq(Q) ,

and hence

lim
n→∞

∥B∗v̄n∥Lq(Q)=∥B∗v0∥Lq(Q) .

Combining with the second part in (3.13), and using [5, page 124, Exercise 4.19, 1],
gives

lim
n→∞

∥B∗v̄n−B∗v0∥Lq(Q)=0.

We next modify the sequence {v̄n}∞n=1 so that {B∗v̄n}ε>0⊂C∞
c [B](Q). From the ar-

guments used in Theorem 2.1, we obtain a sequence of sets Vk, k∈N, and a partition
of unity ζk ∈C∞

c (Q). Next, for each k, we choose εk small enough such that

spt(ηεk ∗(v̄n ζk))⊂Vk, (3.14)

∥ηεk ∗(v̄n ζk)− v̄n ζk∥Lq(Q)<ε/2k+1, (3.15)
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∥ηεk ∗(B∗(v̄nζk))−B∗(v̄nζk)∥Lq(Q)<ε/2k+1, (3.16)

and

εk≤dist(∂Q,spt(v̄n))/8. (3.17)

Here spt(·) denotes the support of the function. Then, we define

vε,n :=

∞∑
k=1

ηεk ∗(v̄nζk),

and (3.17) gives that vε,n∈C∞
c (Q). Following the same arguments in [14, Theorem 2,

Page 125], we have that

lim
ε→0

∥vε,n− v̄n∥W q [B](Q)=0,

which, combined with (3.11), allows us to construct, by a diagonal argument, a sequence
{vεn}

∞
n=1 such that

lim
ε→0

∥vεn −v∥W q [B](Q)=0.

Moreover, we observe that

|vεn |≤

∣∣∣∣∣
∞∑
k=1

ηεk ∗(v̄nζk)

∣∣∣∣∣≤|v̄n|≤1,

which shows that {B∗vεn}
∞
n=1⊂C∞

c [B](Q), and hence (3.10), and the proof is complete.

Now we ready to prove Theorem 3.2.

Proof. (Proof of Theorem 3.2.) We first claim that the convex conjugate of
PVB, say PV ∗

B, has the form

PV ∗
B(v)= IW q

0 [B](Q)(v)=:

{
0 if v∈W q

0 [B](Q),

+∞ if v /∈W q
0 [B](Q).

By Definition 3.2 and Proposition 3.4, we have that

I∗W q
0 [B](Q)(u)=PVB(u).

Next, since the seminorm PVB and the indicator function Icl(CB(Q))Lq(Q)
are both convex

and lower semi-continuous, we have

PV ∗
B(v)=(I∗W q

0 [B](Q))
∗= IW q

0 [B](Q).

Finally, in view of Proposition 3.3,

u∗∈∂PVB(u)

holds if and only if

PVB(u)+PV ∗
B(u∗)= ⟨u,u∗⟩ ,
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concluding the proof.

Remark 3.1. In view of Proposition 3.4, we have actually showed that, for any
v∈W p

0 [B](Q), with ∥v∥L∞(Q)≤1, it holdsˆ
Q

uB∗vdx≤PVB(u).

Theorem 3.3 (The point-wise characterization of ∂PVB). Let u∈Lp(Q)∩BVB(Q),
p>1, be given. Let v∈W p

0 [B](Q) be such that B∗v∈∂PVB(u). Then we have

v=σu a.e. x∈Q,

where σu is the density of Bu with respect to |Bu| (see Remark 2.1).

Proof. Let u∈Lp(Q)∩BVB(Q) be given, and let v∈W p
0 [B](Q) be the function

obtained from Theorem 3.2. Then, by the definition of W p
0 [B](Q), we could obtain a

sequence {vn}∞n=1⊂C∞
c [B∗](Q) such that B∗vn→B∗v strongly in Lp(Q).

We claim that

∥σu−vn∥Lp(Q,|Bu|)→0. (3.18)

From the definition of PVB and Theorem 2.1, we have thatˆ
Q

uB∗vndx=

ˆ
Q

vn ·σud|Bu| . (3.19)

On the other hand, since {vn}∞n=1⊂C∞
c [B∗](Q), we have ∥vn∥L∞(Q)≤1 and hence,

together with the fact that |σu|=1 |Bu| a.e., we observe that

1−(σu ·vn)=
1

2
|σu|2−(σu ·vn)+

1

2
|vn|2+

1

2
|σu|2−

1

2
|vn|2

=
1

2
|σu−vn|2+

1

2
|σu|2−

1

2
|vn|2≥

1

2
|σu−vn|2≥0.

Therefore, we could compute thatˆ
Q

|vn−σu|d|Bu|=
ˆ
Q

1 · |vn−σu|d|Bu|

≤
(ˆ

Q

1 ·d |Bu|
)1/2

·
(ˆ

Q

|vn−σu|2d|Bu|
)1/2

≤ [PVB(u)]
1/2 ·

(ˆ
Q

1−(σu ·vn)d |Bu|
)1/2

. (3.20)

Next, from (3.19), we have that

lim
n→∞

ˆ
Q

vn ·σud|Bu|=
ˆ
Q

uB∗vdx=PVB(u)=

ˆ
Q

1 ·d |Bu| .

This, combined with (3.20), gives (3.18), as desired.

Proposition 3.5. Let u∈BVB(Q) and V ⊂⊂Q be given. Then, for u∗∈∂PVB(u)
and u∗

V ∈∂PVB(u)⌊V , we have

u∗(x)=u∗
V (x) for |Bu|-a.e. x∈V.

Proof. Let v and vV ∈W p
0 [B](Q;RK) be such that Assertions 1 and 2 hold for

PVB(u) and PVB(u)⌊V , respectively. Then, by Theorem 3.3, both v(x) and vV (x) can
be represented by the density of Bu with respect to |Bu|, concluding the proof.
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4. Learning the optimal operator B in image processing problems
In this section we use the bilevel training scheme introduced in Section 1 to deter-

mine the optimal setting of PVB for a given training pair (uc,uη), where uη ∈L2(Q)
and uc∈BV (Q) represent the corrupted and clean images, respectively.

4.1. The bilevel training scheme with the PVB regularizer. We collect
few notations first.

Notation 4.1. Recall the definition of B from Notation 2.1.

(1) We denote by Σ the collection of operators B such that

Σ:={B : |B|ℓ∞ ≤1}.

(2) We denote the Training Ground T by

T :=cl(R+)×Σ.

We state below the definition of training scheme T and associated notations.

Definition 4.1. We define the training scheme T with underlying training ground T
by

Level 1. (αT,BT)∈A[T] :=argmin
{
∥uc−uα,B∥2L2(Q) : (α,B)∈T

}
, (T -L1)

Level 2. uα,B :=argmin
{
∥u−uη∥2L2(Q)+αPVB(u), u∈L1(Q)

}
. (T -L2)

In particular, for the case that α=+∞, we define

u+∞ :=argmin
{
∥u−uc∥2L2(Q) : u∈N

}
where N :=conv

( ⋃
B∈Σ

N (B)

)
. (4.1)

Here conv denotes the convex envelope. In (T -L1), we denoted by A[T] the collection of
optimal solution(s) of T with underlying training ground T, and (αT,BT)∈A[T] is an
optimal solution obtained from the training ground T.

We first show that the Level 2 problem (T -L2) admits a unique solution.

Proposition 4.1. Let α∈R+ and B∈Σ be given. Then, there exists a unique
uα,B ∈BVB(Q) such that

uα,B =argmin
{
∥u−uη∥2L2(Q)+αPVB(u) : u∈L1(Q)

}
.

Proof. The proof can be obtained by Proposition 2.2 and the fact that PVB is
convex.

Theorem 4.1. Let the training ground T be given. Then the training scheme T admits
at least one solution (αT,BT)∈T, and provides an associated optimally reconstructed
image uαT,BT ∈BVBT(Q).

Proof. Let {αn,Bn}∞n=1⊂T be a minimizing sequence obtained from (T -L1).
Then, by the boundedness and closedness of Σ in ℓ∞, up to a (not relabeled) subse-
quence, there exists (αT,BT)∈ cl(R+)×Σ such that αn→αT in R, Bn→BT in ℓ∞, and

lim
n→∞

∥uc−uαn,Bn∥
2
L2(Q)→m := inf

{
∥uc−uα,B∥2L2(Q) : (α,B)∈T

}
. (4.2)
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We divide our arguments into three cases.

Case 1: αT>0. By Theorem 3.1 and the properties of Γ-convergence, we have

uαn,Bn
⇀uαT,BT weakly in L2(Q), (4.3)

where uαn,Bn and uαT,BT are obtained from (T -L2). Thus, we deduce that

∥uαT,BT −uc∥L2(Q)≤ liminf
n→∞

∥uαn,Bn
−uc∥L2(Q)=m,

as desired.

Case 2: αT=0. Then by (4.2), up to a subsequence, there exists ū∈L2(Q) such that
uαn,Bn

⇀ū weakly in L2(Q). We claim that uαn,Bn
→uη strongly in L2(Q). Extend

uη by zero outside Q, and define

uε
η :=uη ∗ηε

where ηε is some suitable mollifier, whose particular expression is not relevant. For
instance, a possible choice for such ηε can be a Gaussian distribution with mean zero
and variance 1/ε2. Then we have uε

η ∈C∞
c (RN ) and uε

η →uη strongly in L2(RN ). By
the optimality condition of (T -L2), we have

∥uαn,Bn −uη∥2L2(Q)+αnPVBn(uαn,Bn)

≤
∥∥uε

η−uη

∥∥2
L2(Q)

+αnPVBn
(uε

η)

≤
∥∥uε

η−uη

∥∥2
L2(Q)

+αnN
d
∥∥uε

η

∥∥
Wd,1(RN )

.

That is, we have

∥uαn,Bn −uη∥2L2(Q)≤
∥∥uε

η−uη

∥∥2
L2(Q)

+αnN
d
∥∥uε

η

∥∥
Wd,1(RN )

,

and we conclude by letting αn→0 and ε→0.

Case 3: αT=+∞. By arguing as in Case 2, we have again the existence of ū∈L2(Q)
such that

uαn,Bn
⇀ū and PVBT(ū)=0.

Then, by (4.1), we have

m=liminf
n→∞

∥uαn,Bn
−uc∥L2(Q)≥∥ū−uc∥L∞(Q)≥∥u+∞−uc∥L2(Q) ,

as desired.

4.2. Numerical realization and finite approximation of scheme T . For
the numerical realization of training scheme T , we impose the extra requirement that
the training ground T satisfies also the following assumption.

Assumption 4.1. Let the order d∈N be given.

(1) We assume the intensity parameter α satisfies the box-constraint (see e.g. [2, 11]).
That is, there exists a constant P ∈R+, chosen by the user, such that α∈ [0,P ].

(2) We assume the collection Σ of operator B satisfies the following two conditions.
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(a) Each operator B∈Σ has at most order d (i.e., a box-constraint on the order of
B);

(b) For any B1, B2∈Σ, the continuity assumptions

|PVB1
(u)−PVB2

(u)|≤O(|B1−B2|ℓ∞)PVB1
(u) (4.4)

and

|PVB1
(u)−PVB2

(u)|≤O(|B1−B2|ℓ∞)PVB2
(u) (4.5)

hold.
The following corollary is a direct consequence of Theorem 4.1.

Corollary 4.1. The training scheme T , with an underlying training ground T,
satisfies Assumption (4.1). It admits at least one solution (αT,BT)∈T, and provides
an associated optimally reconstructed image uαT,BT ∈BVBT(Q).

Proof. The proof is identical to that used for Cases 1 and 2 in Theorem 4.1.

Recall the definition of the assessment operator from (1.4) that

A(α,B) :=∥uc−uα,B∥2L2(Q) , for (α,B)∈T.

As discussed in Section 1, the Level 1 problem (T -L1) for scheme T is equivalent to
finding global minimizers of A(α,B) in the training ground T. However, in view of
the counter-example provided in [23], the assessment function A(·) is not convex, and
hence the traditional methods like Newton’s descent or Line search could be trapped
into local minima.

We overcome this issue by using a finite approximation method originally introduced
in [23]. Recall the constant P >0 given in the box-constraint, as stated in Assumption
4.1.

Definition 4.2 (The Finite Training Ground and Finite Grid). Let l∈N be given.

(1) We define the step size δl by

δl :=P/l.

(2) We define the finite set

Tl[P ]⊂ [0,P ], Tl[P ] :={0, δl, 2δl, .. ., iδl,. ..,P} .

(3) We define the finite set

Tl[Σ]⊂Σ, Tl[Σ] :=
⋃
k≥1

Tk[Σ]

where each Tk[Σ] is a singleton containing one operator B∈Σ and defined recur-
sively in the following steps.

Step 1. Define

B0∈argmin{∥B∥ : B∈Σ} , T0[Σ]={B0}, and Σ0 :=Σ.

We also denote by Ql[B0]⊂Σ0 the cube centered at B0 with side length ∆l.
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Step 2. Define

Σ1 :=Σ0 \Ql[B0], B1∈argmin{|B| : B∈Σ1} ,

and

T1[Σ] :={B1} ;

...
Step j. Define

Σk :=Σk−1 \Ql[Bk−1], Bj ∈argmin{∥B∥ : B∈Σj} ,

and

Tk[Σ] :={Bj}.

Repeat until Σk=∅.
(4) Define the Finite Training Ground Tl at step l∈N by

Tl :=Tl[α]×Tl[Σ].

(5) For i, j∈N, we define the (i,j)-th Finite Grid at step l by

Gl(i,j) := [i∆l,(i+1)∆l]×Ql[Bj ]. (4.6)

Remark 4.1. From the definition of Σk and Ql, we have, for fixed l∈N, the exis-
tence of an upper bound M ∈N, depending on l, such that ΣM =∅. That is, we have
H0 (Tl[B])<+∞, and hence

H0 (Tl)<+∞, for each l∈N fixed.

Then, the optimal parameters of scheme T (global minimizers of A(·,·)) over finite
training ground Tl

(αTl
,BTl

)∈A[Tl] :=argmin
{
∥uα,B−uc∥2L2(Q) : (α,B)∈Tl

}
,

can be determined exactly by evaluating A(·) over each element of Tl.

The main result of Section 4.2 reads as follows.

Theorem 4.2 (Finite approximation and error estimation). Let a training ground T
that satisfies Assumption 4.1 be given, and Tl⊂T be constructed as in Definition 4.2.
Then the following assertions hold.

(1) First,

lim
l→∞

dist(A[T],A[Tl])=0. (4.7)

(2) Second, let δ>0 be given. Then, for each l∈N,

A(αTl
,BTl

)−A(αT,BT)≤4KP [O(P/l)+1/l]
1/2∥uη∥1/2Wd,1(Q)

/δd+δ/2, (4.8)

for any (αT,BT)∈A[T] and (αTl
,BTl

)∈A[Tl].

We split our argument into Sections 4.2.1 and 4.2.2, where we will discuss the
properties of the reconstructed image uα,B with fixed B∈Σ and α∈R+, respectively.
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4.2.1. Properties of reconstructed image uα,B with respect to α∈R+.
Since B∈Σ is fixed, we abbreviate uα,B and PVB by uα and PV , respectively, in
Section 4.2.1.

Proposition 4.2. We collect two auxiliary results in this proposition.

(1) The function g(α) :=PV (uα) is continuous and decreasing.

(2) Assume in addition that

PV (uη)>PV (uc). (4.9)

Then, there exists α>0 such that

∥uα−uc∥L2(Q)<∥uη−uc∥L2(Q) . (4.10)

Proof. We show Assertion 1 first. The continuity of g(α) can be deduced from
Theorem 3.1. Next, let 0≤α1<α2<+∞ be given, we observe, from the optimality
condition of (T -L2), that

∥uα1
−uη∥2L2(Q)+α1PV (uα1

)≤∥uα2
−uη∥2L2(Q)+α1PV (uα2

)

and

∥uα2
−uη∥2L2(Q)+α2PV (uα2

)≤∥uα1
−uη∥2L2(Q)+α2PV (uα1

).

Adding up the previous two inequalities yields

α1PV (uα1
)+α2PV (uα2

)≤α1PV (uα2
)+α2PV (uα1

),

which implies that PV (uα2
)≤PV (uα1

), as desired.

Now we claim Assertion 2. From Theorem 3.2, we have that ∂PV (uα), the sub-
differential of PV at uα, is well defined. We observe that, for any α>0,

∥uη−uc∥2L2(Q)−∥uα−uc∥2L2(Q)

=2⟨uη−uα,uα−uc⟩+∥uη−uα∥2L2(Q)

=2α⟨∂PV (uα),uα−uc⟩+∥uη−uα∥2L2(Q)

=2α⟨∂PV (uα),uα⟩−2α⟨∂PV (uα),uc⟩+∥uη−uα∥2L2(Q)

≥2α [PV (uα)−PV (uc)]+∥uη−uα∥2L2(Q) ,

where, at the last inequality we used the definition of sub-differential. Thus

∥uη−uc∥2L2(Q)−∥uα−uc∥2L2(Q)≥2α [PV (uα)−PV (uc)]+∥uη−uα∥2L2(Q) . (4.11)

Next, in view of Assertion 1, we have that PV (uα) is continuous and decreasing. Hence,
combined with (4.9), we infer the existence of ᾱ>0 such that

PV (uᾱ)−PV (uc)≥
1

4
[PV (uη)−PV (uc)]>0. (4.12)

Hence, we conclude (4.10) by combining (4.11) and (4.12).
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Proposition 4.3. Let α1 and α2∈R+ be given. Then we have

∥uα1
−uα2

∥2L2(Q)≤|α1−α2|(PV (uα1
)+PV (uα2

)).

Proof. Without loss of generality, we assume that α1<α2. In view of Theorem
3.2, and the optimality condition of (T -L2), we have

uα1
−uη =−α1∂PV (uα1

) and uα2
−uη =−α2∂PV (uα2

).

Subtracting one from another, then multiplying by uα1
−uα2

, and finally integrating
over Q, gives

∥uα1
−uα2

∥2L2(Q)=α1 ⟨∂PV (uα2
)−∂PV (uα1

),uα1
−uα2

⟩

+(α2−α1)⟨∂PV (uα2
),uα1

−uα2
⟩. (4.13)

Since the seminorm PV is proper, lower semi-continuous, and convex, ∂PV is a mono-
tone maximal operator, thus

⟨∂PV (uα2)−∂PV (uα1),uα2 −uα1⟩≥0.

Combining with (4.13) and Assertion 1 from Proposition 4.2 gives

∥uα1
−uα2

∥2L2(Q)≤ (α2−α1)⟨∂PV (uα2
),uα1

−uα2
⟩

≤ (α2−α1)PV (uα1
−uα2

)≤ (α2−α1)[PV (uα1
)+PV (uα2

)],

where, at the second last inequality we used Remark 3.1, concluding the proof.

4.2.2. Properties of the reconstructed image uα,B with respect to B∈Σ.
Similarly to Section 4.2.1, we still abbreviate uα,B by uB, for α∈R+ fixed. Recall the
structure of B from Notation 2.1.

Moreover, we further restrict the corrupted image uη ∈L2(Q), by requiring it to
satisfy the following additional assumption: There must exist 0<M1<M2<+∞ such
that

0<M1≤uη(x)≤M2<+∞, for a.e. x∈Q. (4.14)

In this way, we have that the reconstructed image

uB =argmin
{
∥u−uη∥2L2(Q)+PVB(u) : u∈L1(Q)

}
also satisfies that

M1≤uB(x)≤M2, for a.e. x∈Q. (4.15)

We recall the following result regarding Lebesgue points.

Theorem 4.3 (Lebesgue-Besicovitch differentiation theorem). Let µ be a Radon
measure on RN and f ∈L1

loc(RN ,µ). Then

lim
r→0

 
B(x,r)

f dµ=f(x)

for µ a.e. x∈RN .
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Proposition 4.4. Given uη ∈L2(Q) satisfying (4.14), and operators B1 and B2∈Σ,
it holds

∥uB1
−uB2

∥2L2(Q)≤O(|B1−B2|ℓ∞)[PVB1
(uB1

)+PVB1
(uB2

)],

where uB is defined in (T -L2).

Proof. By Theorem 3.2, the sub-differentials ∂PVB1
and ∂PVB2

are well defined.
Then, by the optimality condition of (T -L2) we have that

uB1
−uη =−∂PVB1

(uB1
) and uB2

−uη =−∂PVB2
(uB2

),

Subtracting one from another gives

uB1
−uB2

=∂PVB2
(uB2

)−∂PVB1
(uB1

)

=∂PVB2
(uB2

)−∂PVB2
(uB1

)+∂PVB2
(uB1

)−∂PVB1
(uB1

).

Multiplying both sides by uB1
−uB2

and integrating over Q gives

∥uB2
−uB1

∥2L2(Q)=−⟨∂PVB2
(uB2

)−∂PVB2
(uB1

),uB2
−uB1

⟩

+⟨∂PVB2
(uB1

)−∂PVB1
(uB1

),uB1
−uB2

⟩ . (4.16)

Since PVB is convex, ∂PVB is a monotone maximal operator. Therefore,

⟨∂PVB2
(uB2

)−∂PVB2
(uB1

),uB2
−uB1

⟩≥0. (4.17)

We next estimate the second part of (4.16). First, by the definition of sub-gradient, we
have

⟨∂PVB2(uB1)−∂PVB1(uB1),uB1⟩=PVB2(uB1)−PVB1(uB1)≤ cPVB1(uB1). (4.18)

where

c=O(|B1−B2|ℓ∞)

is the constant used in (4.4). Moreover, from (4.4) we also deduce that

−c|B2uB1
|≤ |B2uB1

|(V )−|B1uB1
|(V )≤ c|B2uB1

|. (4.19)

Next, let vB1 and vB2 be obtained from Proposition 3.2 as sub-gradients of PVB1(uB1)
and PVB2

(uB1
), respectively. Then, by Proposition 3.5, for any open set V ⊂Q we have

that

|B2uB1 |(V )=

ˆ
V

uB1 [B
∗
2vB2 ]dx and |B1uB1 |(V )=

ˆ
V

uB1 [B
∗
1vB1 ]dx.

Combining with (4.19) gives

−c

ˆ
V

uB1 [B
∗
2vB2 ]dx≤

ˆ
V

uB1 [B
∗
2vB2 ]dx−

ˆ
V

uB1 [B
∗
1vB1 ]dx≤ c

ˆ
V

uB1 [B
∗
1vB1 ]dx.

Thus, we could further write, by taking Q(x,δ) := [x−δ,x+δ]N , a cube centered at x
with side length 2δ, that

−c

 
Q(x,δ)

uB1
[B∗

2vB2
]dx≤

 
Q(x,δ)

(uB1
[B∗

2vB2
]−uB1

[B∗
1vB1

])dx
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=

 
Q(x,δ)

uB1
[B∗

2vB2
]dx−

 
Q(x,δ)

uB1
[B∗

1vB1
]dx

≤ c

 
Q(x,δ)

uB1
[B∗

1vB1
]dx.

By Assertion 2 of Theorem 3.2, we have B∗
1vB1

∈L1(Q). Since uB1
∈L∞(Q), we have

uB1
B∗

1vB1
∈L1(Q). Thus, we could apply Theorem 4.3 and take δ→0 to conclude that

−cuB1
[B∗

2vB2
]≤uB1

[B∗
2vB2

]−uB1
[B∗

1vB1
]≤ cuB1

[B∗
1vB1

],

for a.e. x∈Q. That is, we have

−cuB1 [B
∗
2vB2 ]≤uB1 [B

∗
2vB2 −B∗

1vB1 ]≤ cuB1 [B
∗
1vB1 ],

and, combined with the fact that uB1
≥1 (see (4.15)), we deduce that

−c[B∗
2vB2

]≤ [B∗
2vB2

−B∗
1vB1

]≤ c[B∗
1vB1

] , (4.20)

for a.e. x∈Q.

On the other hand, again by (4.15), we have −uB1 +2M2>1, and hence

⟨∂PVB2
(uB1

)−∂PVB1
(uB1

),−uB2
⟩

= ⟨∂PVB2
(uB1

)−∂PVB1
(uB1

),−uB2
+2M2−2M2⟩

= ⟨∂PVB2
(uB1

)−∂PVB1
(uB1

),−uB2
+2M2⟩+⟨∂PVB2

(uB1
)−∂PVB1

(uB1
),−2M2⟩

≤ c⟨[B∗
1vB1

],−uB2
+2M2⟩+⟨∂PVB2

(uB1
)−∂PVB1

(uB1
),−2M2⟩. (4.21)

Note that, as vB1
∈W p

0 [B1](Q), by Remark 3.1 we observe that

⟨B∗
1vB1

,−uB2
+2M2⟩≤PVB1

(−uB2
+2M2)=PVB1

(uB2
), (4.22)

and, since constants belong to the kernel of PVB2 ,

⟨∂PVB2(uB1)−∂PVB1(uB1),−2M2⟩=0. (4.23)

Therefore, by combining (4.21), (4.22), and (4.23), we obtain that

⟨∂PVB2
(uB1

)−∂PVB1
(uB1

),−uB2
⟩≤ cPVB1

(uB2
).

Combining with (4.16), (4.17), and (4.18), concludes the proof.

4.2.3. L2-distance estimate of the reconstructed image uα,B. We start
with a relaxation result regarding the corrupted image uη.

Proposition 4.5. Let uη ∈L2(Q) be given. Let
{
uε
η

}
ε>0

⊂L2(Q) such that uε
η →uη

strongly in L2. For arbitrary (α,B)∈T, define

uε
α,B :=argmin

{∥∥u−uε
η

∥∥2
L2 +αPVB(u) : u∈L1(Q)

}
. (4.24)

Then we have ∥∥uα,B−uε
α,B

∥∥
L2(Q)

≤
∥∥uε

η−uη

∥∥
L2(Q)

(4.25)
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and

lim
ε→0

PVB(uε
α,B)=PVB(uα,B), (4.26)

where uα,B is defined in (T -L2).

Proof. From the optimality condition of (4.24) and (T -L2), we have

uα,B−uε
α,B+uε

η−uε=α∂PVB(uε
α,B)−α∂PVB(uα,B).

Multiplying by uα,B−uε
α,B on both the sides gives∥∥uα,B−uε

α,B

∥∥2
L2(Q)

+
〈
uε
η−uε,uα,B−uε

α,B

〉
=α

〈
∂PVB(uε

α,B)−∂PVB(uα,B),uα,B−uε
α,B

〉
≤0,

where, at the last inequality we used the fact that ∂PVB is a maximal monotone oper-
ator, and we conclude (4.25), as desired.

We next show (4.26). We assume that α∈R+, otherwise there is nothing to prove.
By (4.25),

uα,B →uε
α,B strongly in L2(Q). (4.27)

Together with Proposition 2.1, we deduce that

liminf
ε→0

PVB(uε
α,B)≥PVB(uα,B). (4.28)

On the other hand, in view of the optimality condition of (4.24) again, we have∥∥uε
α,B−uε

η

∥∥2
L2(Q)

+αPVB(uε
α,B)≤

∥∥uα,B−uε
η

∥∥2
L2(Q)

+αPVB(uα,B),

i.e.,

αPVB(uε
α,B)≤

∥∥uα,B−uε
η

∥∥2
L2(Q)

−
∥∥uε

α,B−uε
η

∥∥2
L2(Q)

+αPVB(uα,B).

Hence, by (4.27), we have that

limsup
ε→0

αPVB(uε
α,B)

≤ limsup
ε→0

[∥∥uα,B−uε
η

∥∥2
L2(Q)

−
∥∥uε

α,B−uε
η

∥∥2
L2(Q)

]
+αPVB(uα,B)

=αPVB(uα,B).

Combining with (4.28) allows us to infer (4.26), as desired.

We next show an improved version of Proposition 4.4, in which we remove the
requirement that uη needs to satisfy the boundedness assumption (4.14).

Corollary 4.2. Let uη ∈L2(Q), α∈R+, and B1, B2∈Σ be given. Then the follow-
ing estimation holds.

∥uα,B1
−uα,B2

∥2L2(Q)≤α ·O(|B1−B2|ℓ∞)[PVB1
(uα,B1

)+PVB1
(uα,B2

)],

where uα,B is defined in (T -L2).
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Proof. Let M ∈N be given, and define

uM
η (x) :=


M, if uη(x)≥M,

uη(x), if −M ≤uη(x)≤M,

−M, if uη(x)≤−M.

Also, define

uM
α,B :=argmin

{∥∥u−uM
η

∥∥2
L2(Q)

+αPVB(u) : u∈L1(Q)
}
, (4.29)

and

ūM
α,B :=argmin

{∥∥u−(uM
η +2M)

∥∥2
L2(Q)

+αPVB(u) : u∈L1(Q)
}
. (4.30)

We claim that

ūM
α,B =uM

α,B+2M. (4.31)

We observe that ∥∥ūM
α,B−

(
uM
η +2M

)∥∥2
L2(Q)

+αPVB

(
ūM
α,B

)
≤
∥∥uM

α,B+2M−
(
uM
η +2M

)∥∥2
L2(Q)

+αPVB

(
uM
α,B+2M

)
=
∥∥uM

α,B−uM
η

∥∥2
L2(Q)

+αPVB

(
uM
α,B

)
≤
∥∥ūM

α,B−2M−uM
η

∥∥2
L2(Q)

+αPVB

(
ūM
α,B−2M

)
=
∥∥ūM

α,B−
(
uM
η +2M

)∥∥2
L2(Q)

+αPVB

(
ūM
α,B

)
,

where, at the first inequality we used the optimality condition in (4.30), and at the last
inequality we used the optimality condition in (4.29). Thus,∥∥ūM

α,B−(uM
η +2M)

∥∥2
L2(Q)

+αPVB(ūM
α,B)

=
∥∥uM

α,B+2M−(uM
η +2M)

∥∥2
L2(Q)

+αPVB(uM
α,B+2M),

and we conclude (4.31) due of the uniqueness of the minimizer. Thus,∥∥uM
α,B1

−uM
α,B2

∥∥
L2(Q)

=
∥∥ūM

α,B1
− ūM

α,B2

∥∥
L2(Q)

.

Therefore, we could assume, without loss of generality, uM
η ≥M>0. That is, uM

η satisfies
(4.14).

Next, by the optimality condition in (4.29), we have that

1

α
(uM

α,B1
−uη)=−∂PVB1

(uM
α,B1

) and
1

α
(uM

α,B2
−uη)=−∂PVB2

(uM
α,B2

).

Following the exact same arguments from Proposition 4.4 (in (4.21) we use 2M instead
of M2), we obtain

1

α

∥∥uM
α,B1

−uM
α,B2

∥∥2
L2(Q)

≤O(|B1−B2|ℓ∞)
[
PVB1

(uM
α,B1

)+PVB2
(uM

α,B1
)
]
.
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Finally, we note that

1

α
∥uα,B1

−uα,B2
∥2L2(Q)

≤ 1

α

∥∥uM
α,B1

−uM
α,B2

∥∥2
L2(Q)

+
1

α

∥∥uα,B1 −uM
α,B1

∥∥2
L2(Q)

+
∥∥uα,B2 −uM

α,B2

∥∥2
L2(Q)

≤O(|B1−B2|ℓ∞)
[
PVB1

(uM
α,B1

)+PVB2
(uM

α,B1
)
]

+
1

α

∥∥uα,B1 −uM
α,B1

∥∥2
L2(Q)

+
∥∥uα,B2 −uM

α,B2

∥∥2
L2(Q)

.

Then, using Proposition 4.5, with uε
η replaced by uM

η , we conclude the proof by sending
M↗+∞ in the above inequality.

Proposition 4.6. Let (α1,B1) and (α2,B2)∈T be given. Then we have

∥uα1,B1 −uα2,B2∥
2
L2(Q)

≤4[α1O(|B1−B2|ℓ∞)+ |α1−α2|][PVB1
(uα1,B1

)+PVB2
(uα1,B2

)].

Proof. Direct computations give

∥uα1,B1
−uα2,B2

∥2L2(Q)≤2∥uα1,B1
−uα1,B2

∥2L2(Q)+2∥uα1,B2
−uα2,B2

∥2L2(Q)

≤2α1O(|B1−B2|ℓ∞)[PVB1
(uα1,B1

)+PVB1
(uα1,B2

)]+4 |α1−α2|PVB2
(uα1,B2

)

≤ [2α1O(|B1−B2|ℓ∞)+4 |α1−α2|][PVB1
(uα1,B1

)+PVB1
(uα1,B2

)]. (4.32)

Moreover, from (4.5), we have

|PVB1(uα1,B2)−PVB2(uα1,B2)|≤O(|B1−B2|ℓ∞)PVB2(uα1,B2).

Combining with (4.32) gives

∥uα1,B1
−uα2,B2

∥2L2(Q)

≤4[2α1O(|B1−B2|ℓ∞)+ |α1−α2|][PVB1
(uα1,B1

)+PVB2
(uα1,B2

)],

as desired.

We close this section by proving Theorem 4.2.

Proof. (Proof of Theorem 4.2.) Assertion 1 is a direct consequence of Theorem
3.1.

We next claim (4.8). We first assume that u∈C∞(Q̄). Indeed, for any (α,B)∈T,
we could extract a sequence {(αl,Bl)}∞l=1⊂T, where for each l∈N, (αl,Bl)∈Tl, such
that (αl,Bl)→ (α,B). We observe that, by Proposition 4.6,

|A(αl,Bl)−A(α,B)|

=
∣∣∣∥uαl,Bl

−uc∥L2(Q)−∥uα,B−uc∥L2(Q)

∣∣∣≤∥uαl,Bl
−uα,B∥L2(Q)

≤2[αl2O(|B1−B2|ℓ∞)+ |αl−α|]1/2 [PVBl
(uαl,Bl

)+PVB(uαl,B)]
1/2

≤4K [αl2O(|Bl−B|ℓ∞)+ |αl−α|]1/2∥uη∥1/2Wd,1(Q)
. (4.33)

Here K is the optimal constant, which might depend on the L2 norm of uη, such that

[PVBl
(uαl,Bl

)]
1/2≤K ∥uη∥1/2Wd,1(Q)

.
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Next, take any optimal solution (αT,BT) from (4.7), and by Assertion 1 we could obtain
a sequence {(αTl

,BTl
)}∞l=1, where, at each step l∈N, (αTl

,BTl
)∈Tl is determined in

(4.7), such that

(αTl
,BTl

)→ (αT,BT).

Also, at each step l∈N, we let the grid Gl(il,jl) be such that

(αT,BT)∈Gl(il,jl), (4.34)

where Gl(il,jl) is defined in (4.6). Then, in view of (4.33), we have that

max{A(α,B) : (α,B)∈Gl(il,jl)}−min{A(α,B) : (α,B)∈Gl(il,jl)}

≤4KP [O(P/l)+1/l]
1/2∥uη∥1/2Wd,1(Q)

. (4.35)

We have the following two cases.

Case 1: Assume that, at step l, it holds (αTl
,BTl

)∈Gl(il,jl). In this case we could
directly deduce

A(αTl
,BTl

)−A(αT,BT)≤max{A(α,B) : (α,B)∈Gl(il,jl)}−A(αTl
,BTl

)

≤max{A(α,B) : (α,B)∈Gl(il,jl)}−min{A(α,B) : (α,B)∈Gl(il,jl)} ;

Case 2: Assume that, at step l, it holds (αTl
,BTl

) /∈Gl(il,jl). In this case, in view of
the definition of (αTl

,BTl
), we must have

max{A(α,B) : (α,B)∈Gl(il,jl)∩Tl}≥A(αTl
,BTl

), (4.36)

as the opposite would imply that (αTl
,BTl

) is not a global minimizer over Tl, which is
a contradiction. Therefore, by (4.36), we have again

A(αTl
,BTl

)−A(αT,BT)≤max{A(α,B) : (α,B)∈Gl(il,jl)∩Tl}−A(αT,BT)

≤max{A(α,B) : (α,B)∈Gl(il,jl)}−min{A(α,B) : (α,B)∈Gl(il,jl)} ,

where, at the last inequality we used (4.34). Combining the two cases discussed above
with (4.35) gives

A(αTl
,BTl

)−A(αT,BT)

≤max{A(α,B) : (α,B)∈∂Gl(il,jl)}−min{A(α,B) : (α,B)∈Gl(il,jl)}

≤4KP [O(P/l)+1/l]
1/2∥uη∥1/2Wd,1(Q)

, (4.37)

and hence the thesis.

Now we remove the assumption uη ∈C∞(Q̄). Let uε
η ∈C∞(Q̄) be defined as in Case

2 of the proof of Theorem 4.1. Define

uε
α,B :=argmin

{∥∥u−uε
η

∥∥2
L2(Q)

+αPVB(u) : u∈L1(Q)
}
.

Then by Proposition 4.5 we have that∥∥uα,B−uε
α,B

∥∥
L2(Q)

≤
∥∥uε

η−uε

∥∥
L2(Q)

,
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for any (α,B)∈T. Then, for any fixed δ>0, we could choose ε>0 small enough such
that ∥∥uε

η−uε

∥∥
L2(Q)

<δ/4 and
∥∥uε

η

∥∥
Wd,1(Q)

≤∥uη∥L1(Q)/δ
d.

This, together with (4.37), gives

A(αTl
,BTl

)−A(αT,BT)≤4KP [O(P/l)+1/l]
1/2∥uη∥1/2Wd,1(Q)

+δ/2

≤4KP [O(P/l)+1/l]
1/2∥uη∥1/2Wd,1(Q)

/δd+δ/2,

as desired.

4.3. Examples of Training ground. In this section we give some examples
of collection Σ that satisfy Assumption 4.1. Recall the structure of operator B from
Notation 2.1.

4.3.1. Operator B with invertible matrix. Let P ∈R+ from Assumption
4.1 be given. We define the collection ΣP by

ΣP :=
{
B :

∣∣(Bh)−1
∣∣≤P, for each 1≤h≤d

}
. (4.38)

We define the h-order total variation, say TV h, of u by

TV h(u)=
∣∣Hhu

∣∣
Mb(Q;MNh )

.

where Hh is the h-order Hessian operator defined in Notation 2.1. We also define the
space BV d(Q) by

BV d(Q) :=
{
u∈L1(Q) : TV d(u)<+∞

}
,

endowed with norm

∥u∥BV d(Q) :=∥u∥L1(Q)+TV d(u).

Proposition 4.7. Let B∈ΣP be given. Then the space BVB(Q) is equivalent to the
space BV d(Q).

Proof. Without loss of generality, we assume that u∈BV d(Q)∩C∞(Q), and in
view of the structure of operator B, we have

PVB(u)=

d∑
h=1

∣∣BhHhu
∣∣dx≤ d∑

h=1

∣∣Bh
∣∣∣∣Hhu

∣∣dx
≤

d∑
h=1

TV h(u)≤C
(
∥u∥L1(Q)+TV d(u)

)
, (4.39)

where the estimate is due to Sobolev inequality.

On the other hand,

TV d(u)=

ˆ
Q

∣∣Hdu
∣∣dx=ˆ

Q

∣∣(Bd)−1BdHdu
∣∣dx≤ ∣∣(Bd)−1

∣∣
ℓ∞

ˆ
Q

∣∣BdHdu
∣∣dx≤PVB(u).

This, together with (4.39), allows us to conclude the proof.
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In the following proposition we show that ΣP satisfies Assertion 2 of Assumption
4.1.

Proposition 4.8. Let B1 and B2∈ΣP , and u∈BV d(Q) be given. Then we have

|PVB1
(u)−PVB2

(u)|≤

√K |B1−B2|ℓ∞
∑
h≤d

∣∣(Bh
1 )

−1
∣∣
ℓ∞

PVB1
(u), (4.40)

and

|PVB1
(u)−PVB2

(u)|≤

√K |B1−B2|ℓ∞
∑
h≤d

∣∣(Bh
2 )

−1
∣∣
ℓ∞

PVB2
(u). (4.41)

Proof. Assume first that u∈C∞(Q̄). Direct computations give

|PVB1(u)−PVB2(u)|=
∣∣∣∣ˆ

Q

|B1u|dx−
ˆ
Q

|B2u|dx
∣∣∣∣≤ˆ

Q

|B1u−B2u|dx.

Next, we observe that, for x∈Q,

(B1−B2)u(x)=
∑
h≤d

(Bh
1 −Bh

2 )H
hu(x)=

∑
h≤d

(Bh
1 −Bh

2 )(B
h
1 )

−1Bh
1H

hu(x),

and

ˆ
Q

|(B1−B2)u|dx≤

∑
h≤d

∣∣(Bh
1 −Bh

2 )
∣∣
ℓ∞

∣∣(Bh
1 )

−1
∣∣
ℓ∞

∑
h≤d

∣∣Bh
1H

hu
∣∣
Mb(Q;RNh )

≤
√
K

∑
h≤d

∣∣(Bh
1 −Bh

2 )
∣∣
ℓ∞

∣∣(Bh
1 )

−1
∣∣
ℓ∞

ˆ
Q

|B1u|dx.

Thus,

|PVB1
(u)−PVB2

(u)|≤
ˆ
Q

|B1u−B2u|dx

≤

√K |B1−B2|ℓ∞
∑
h≤d

∣∣(Bh
1 )

−1
∣∣
ℓ∞

PVB1
(u). (4.42)

To conclude, we use an approximation sequence {uε}ε>0⊂C∞(Q̄) from Corollary 2.1,
such that uε→u in L1(Q) and

PVB1(uε)→PVB1(u) and PVB2(uε)→PVB2(u).

Combining with (4.42) gives (4.40), as desired. Finally, we remark that (4.41) is obtained
in the same way, and the proof is complete.

Remark 4.2. By (4.38), (4.40), and (4.41), we conclude that

|PVB1(u)−PVB2(u)|≤
[
d
√
KP |B1−B2|ℓ∞

]
PVB1(u),
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and

|PVB1
(u)−PVB2

(u)|≤
[
d
√
KP |B1−B2|ℓ∞

]
PVB2

(u).

Thus, by setting

O(|B1−B2|ℓ∞)=d
√
KP |B1−B2|ℓ∞ ,

we conclude that ΣP satisfies Assumption 4.1.

5. Experimental insights, further extensions, and upcoming works

5.1. Numerical simulations. We remark that the reconstructed image uα,B

defined in (T -L2), for a given (α,B)∈T, can be computed using the primal-dual algo-
rithm presented in [6]. Indeed, we could recast the minimizing problem (T -L2) as the
min-max problem

min
{
max

{
∥u−uη∥2L2(Q)+α⟨u,B∗φ⟩ : φ∈C∞

c (Q;RK)
}
: u∈L1(Q)

}
,

and then the primal-dual method presented in [6] can be applied.

Next, we present a practical application of Theorem 4.2.

Let uc∈L2(Q),uη ∈L2(Q) be given. Let an acceptable error threshold ε>0 be given.

• Initialization: Choose ε>0, and the box-constraint constant P >0.

• Step 1: Let δ=ε/2, and increase step l∈N until the training error, given in
Assertion 2 of Theorem 4.2, does not exceed ε/2.

• Step 2: Determine one global minimizer (αTl
,BTl

) of assessment function
A(α,B) over the finite training ground Tl. Then, by Theorem 4.2,

|A(αTl
,BTl

)−A(αT,BT)|≤ε,

• Step 3: The reconstructed image uαTl ,BTl
is then a desired optimal recon-

structed result within the acceptable error range.

To make an appropriate comparison, we apply our proposed training scheme T
((T -L1)-(T -L2)) on the image in Figure 5.1, with the following training grounds

T0 := [0,1]×{B0}, where B0 := [1,0;0,1], (5.1)

T1 := [0,1]×{Bs : −0.5≤s≤0.5} , where Bs := [1,s;0,1], (5.2)

T2 := [0,1]×{Bs,t : −0.5≤s,t≤0.5} , where Bs,t := [1,s;t,1], (5.3)

where we use the super-script to avoid confusion with the finite training ground Tl.
Note that the training ground T0 gives the original training scheme B ((B-L1)-(B-L2))
with TV regularizer only. We perform numerical simulations on the images shown
in Figure 5.1: The first image represents a clean image uc, whereas the second one
is a noisy version uη. We summarize our simulation results in Table 5.1 below. We
observe that, from Table 5.1, as the training ground expanded, the minimum value
of assessment function A(α,B) decreased. That is, our new regularizer PVB really
provides an improved reconstructed result compared to TV . However, we remark that
while the extension of training ground results in a considerably larger amount of CPU
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Training ground optimal solution minimum assessment value
T0 αT0 =0.048 14.8575
T1 αT1 =0.052, sT1 =0.4 12.8382
T2 αT2 =0.052, sT2 =−0.2, tT2 =0.5 12.2369

Table 5.1. Minimum assessment value for scheme T over the training grounds defined in (5.1),
(5.2), and (5.3).

Fig. 5.1. From left to right: clean image uc; corrupted image uη (with heavy artificial Gaussian
noise); the optimally reconstructed image at αT0 ; the optimally reconstructed image at (αT2 ,BT2 ).

time, this is a minor issue in real applications, since it is only computed once for a
given data set, and the structure of finite training ground Tl allows us to use parallel
computing very efficiently, hence reducing CPU usage.

We remark that the introduction of PVB regularizers into the training scheme is only
meant to expand the training choices, rather than to provide a superior seminorm with
respect to the standard TV . Whether the optimal regularizer is TV , or an intermediate
one, is completely dependent on the training image uη =uc+η. Moreover, we remark
that the results in this article are not restricted to image processing problems. They
can be generally applied to parameter estimation problems of variational inequalities,
as long as a suitable assessment function can be found.
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