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A SHARP CRITICAL THRESHOLD FOR
A TRAFFIC FLOW MODEL WITH LOOK-AHEAD DYNAMICS∗

YONGKI LEE† AND CHANGHUI TAN‡

Abstract. We study a Lighthill-Whitham-Richards (LWR) type traffic flow model, with a nonlocal
look-ahead interaction that has a slow-down effect depending on the traffic ahead. We show a sharp
critical threshold condition on the initial data that distinguishes global smooth solutions and finite-
time wave breakdown. It is well-known that the LWR model leads to a finite-time shock formation,
representing the creation of traffic jams, for generic smooth initial data with finite mass. Our result
shows that the nonlocal slowdown effect can help to prevent shock formations, for a class of subcritical
initial data.
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1. Introduction
We consider the following one-dimensional traffic flow model with a nonlocal flux{

∂tu+∂x
(
u(1−u)e−ū

)
=0, t>0,x∈R,

u(0,x)=u0(x), x∈R.
(1.1)

Here, u(t,x) represents the vehicle density at time t and location x, with value normal-
ized in the interval [0,1]. The velocity of the flow v=(1−u)e−ū becomes zero when
the maximum density is reached. It is also weighted by a nonlocal Arrhenius type slow
down factor e−ū, where

ū(t,x)=(K ∗u)(t,x)=
∫
R
K(x−y)u(t,y)dy, (1.2)

with appropriate choices of the kernel K to be discussed later.
We are interested in the local and global wellposedness of this nonlocal macroscopic

traffic flow model (1.1)-(1.2). The goal is to understand whether smooth solutions
persist in all time, or if there could be a finite-time singularity formation. A typical
type of singularity is the formation of shocks, when ∂xu becomes unbounded at a finite
time. This is known as the wave break-down phenomenon. In the context of traffic flow,
it describes the generation of traffic jams.

1.1. Nonlocal scalar conservation laws. The traffic flow model (1.1) falls
into a class of models in nonlocal scalar conservation laws, which have the form

∂tu+∂xF (u,ū)=0, (1.3)

where the flux F depends on both the local density u, and the nonlocal quantity ū
defined in (1.2). This class of models has a variety of applications, not only in traffic
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flows [25,30,37], but also in dispersive water waves [14,19,34,43], the collective motion
of biological cells [8,16], high-frequency waves in relaxing medium [20,42], the kinematic
sedimentation [5, 26,44], pressureless gas dynamics [6, 31,35], and many more.

The global wellposedness theory for weak solutions of the nonlocal scalar conserva-
tion laws (1.3) is under fast development over the past decades. We refer readers to the
book [15] by Dafermos for the general theory. In particular, the theory of entropic weak
solutions has been established for nonlocal traffic flow models [7, 13, 23, 24], as well as
for extensive numerical investigations [1, 11,18].

One challenging problem is to understand the wave break-down phenomenon. It has
been addressed by Whitham [43, pp. 457]: “the breaking phenomenon is one of the most
intriguing long-standing problems of water wave theory”. A natural question is, whether
smooth solutions of (1.3) persist in all time, or is there a finite-time break-down.

The wave-breakdown phenomenon has been investigated for many nonlocal con-
servation laws in the class (1.3), e.g. a nonlinear water wave equation [21], a one-
dimensional Keller-Segel model [16], the aggregation equations [3,4, 10,40]. In a recent
work [28], the first author studied the wave break-down phenomenon for general non-
local conservation laws (1.3). A sufficient condition on initial data is derived which
guarantees a finite-time blowup. However, whether the equations admit global smooth
solutions for some initial data is much less understood, especially with the presence of
the nonlocality.

1.2. Nonlocal traffic models. We focus on the nonlocal traffic models (1.1)-
(1.2). They are other examples for the nonlocal conservation law (1.3).

When there is no interaction, namely K≡0, the dynamics is the classical Lighthill-
Whitham-Richards (LWR) model [33,36]

∂tu+∂x(u(1−u))=0, (1.4)

with the maximum velocity normalized to 1. For this local model, it is well-known that
there is a finite-time wave break-down for generic smooth initial data.

For uniform interaction K≡1, the nonlocal term

ū(t,x)=

∫
R
u(t,y)dy=

∫
R
u0(y)dy=:m

is a constant, due to the conservation of mass. Then, the dynamics again becomes LWR
model, with velocity v=(1−u)e−m.

Another class of choices of K is called the look-ahead kernel, where

supp(K)⊆ (−∞,0].

Under the assumption, the nonlocal term

ū(x)=

∫ ∞

x

K(x−y)u(t,y)dy

only depends on the density ahead. Sopasakis and Katsoulakis (SK) [37] introduce a
celebrated traffic model with Arrhenius type look-ahead interactions, where

K(x)=

{
1 −1<x<0,

0 otherwise.
(1.5)
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A family of kernels with look-ahead distance L can be generated by the scaling

KL(x)=K
( x
L

)
. (1.6)

Note that when L→0, the system formally reduces to the local LWR model (1.4).
The wave break-down phenomenon for the SK model is observed in [25], through

an extensive numerical study. A different class of linear look-ahead kernels is also
introduced, with

K(x)=

{
2
(
1−(−x)

)
−1<x<0,

0 otherwise.
(1.7)

Numerical examples suggest that wave break-down happens in finite time, for a class
of initial data. However, unlike the LWR model, it is generally unclear for the nonlocal
models whether wave break-down happens for generic smooth initial data.

1.3. Critical threshold and wave break-down. In many examples above,
whether there is a finite-time wave break-down depends on the choice of initial condi-
tions: subcritical initial datum leads to global smooth solution, while supercritical initial
datum leads to a finite-time wave break-down. This is known as the critical threshold
phenomenon, which has been studied in the context of Eulerian dynamics, including the
Euler-Poisson equations [17, 29, 38], the Euler-alignment equations [9, 39, 41], and more
systems of conservation laws.

A critical threshold is called sharp if all initial data lie in either the subcritical
region, or the supercritical region.

For the traffic model (1.1) with nonlocal look-ahead interactions (1.5) or (1.7), a
supercritical region has been obtained in [30]. which leads to a finite-time wave break-
down. The result is further extended in [27] to a larger class of models with nonlocal
convex-concave fluxes. However, the result is not sharp. It is not known whether such
blowup happens for generic smooth initial data, like the LWR model.

A challenging open problem is, whether there exists a class of subcritical initial data,
such that the solution of the nonlocal traffic model is globally regular.

In this paper, we give a positive answer to the question. The nonlocal look-ahead
interaction has a remarkable slowdown effect, which competes with the nonlinearity in
the LWR model, and thus prevents the generation of traffic jams, for a class of initial
data.

1.4. Main result. We study the traffic flow model (1.1) with the following
look-ahead interaction

K(x)=

{
1 −∞<x<0,

0 otherwise.
(1.8)

The kernel can be viewed as a limit of the SK model (1.5) under scaling (1.6), with
look-ahead distance L→∞.

The corresponding nonlocal term

ū(t,x)=

∫ ∞

x

u(t,y)dy. (1.9)

The main result is stated as follow:
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Theorem 1.1 (Sharp critical threshold). Consider the traffic flow model (1.1) with
a nonlocal look-ahead kernel (1.9). Suppose the initial data is smooth, with u0∈L1∩
Hs(R) for s>3/2, and 0≤u0≤1. Then, there exists a function σ : [0,1]→R+, uniquely
defined in (3.3), such that

• if the initial data is subcritical, satisfying

u′
0(x)≤σ(u0(x)), ∀ x∈R, (1.10)

then the solution exists globally in time. Namely, for any T >0, there exists a
unique solution u∈C([0,T ];L1∩Hs(R)).

• if the initial data is supercritical, satisfying

∃ x0∈R s.t. u′
0(x0)>σ(u0(x0)), (1.11)

then the solution must blow up in finite time. More precisely, there exists a
finite time T∗>0, such that

limsup
t→T∗

∥∂xu(t,·)∥L∞ =+∞.

Remark 1.1. To the best of our knowledge, this is the first result for the nonlocal
traffic models where global wellposedness for smooth solutions is obtained for a class
of subcritical initial data. It is a big improvement to the finite-time blowup results in
the existing literature, as it reveals a remarkable property of the nonlocal look-ahead
interaction: preventing the loss of regularity.

An example of subcritical initial data is given in Section 4.2. Global regularity is
verified through numerical simulation. A striking discovery is that, with the same initial
condition, finite-time wave break-downs are observed in both LWR and SK models. This
indicates a unique feature of the kernel (1.9).

Remark 1.2. The critical threshold result in Theorem 1.1 is sharp. For nonlocal
conservation laws, sharp results are generally difficult to obtain, due to the presence of
nonlocality. We utilize a special structure of the kernel (1.9) to obtain a sharp thresh-
old, ∂xū=−u. So, this kernel is in some sense more “local”. We perform a refined
phase-plane analysis, construct a curve σ, and show that it sharply distinguishes global
regularity and finite-time blowup. It is worth noting that the phase-plane dynamics
(3.1) is degenerate around a crucial steady state (0,0) . We introduce new analytical
techniques to overcome such difficulty. The refined analysis around (0,0) plays a crit-
ical role, which allows us to find nontrivial subcritical initial data that lead to global
regularity of the solutions.

It is possible to extend the result to more general kernels. However, for more “non-
local” kernels, sharp results are very difficult to obtain. Instead, an intriguing question
would be, whether there exist subcritical initial data that lead to global regularity. We
will discuss possible generalizations in Section 5.

The rest of the paper is organized as follows. In Section 2, we establish the local
wellposedness theory for our nonlocal traffic model (1.1) with (1.9), as well as a criterion
to preserve smooth solutions. In Section 3, we show the sharp critical threshold, and
prove Theorem 1.1. Some numerical examples are provided in Section 4, which illustrate
the behaviors of the solution under subcritical and supercritical initial data. Finally,
we make some remarks in Section 5, which may lead to future investigations.
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Notations. We denote Hs(R), s≥0 to be the Sobolev space in R, with the norm
∥·∥Hs and the homogeneous semi-norm ∥·∥Ḣs defined as

∥f∥Hs =∥(I−∆)s/2f∥L2 =
∥∥∥F−1

[(
1+ |ξ|2

)s/2Ff
]∥∥∥

L2
,

∥f∥Ḣs =∥(−∆)s/2f∥L2 =
∥∥∥F−1

[
|ξ|sFf

]∥∥∥
L2
,

where F and F−1 are the forward and inverse Fourier transforms in R, respectively.
Note that when s is an integer, we have ∥f∥Ḣs =∥ ds

dxs f∥L2 and ∥f∥2Hs =∥f∥2
Ḣs +∥f∥2L2 .

We use the short-cut notation A≲B to represent that there exists a universal
constant C>0 such that A≤CB. We further denote A≲pB if the constant C=C(p)
depends on parameter p. Throughout the paper, the constant C is repeatedly used,
whose value can change line by line.

We denote ⌈s⌉ to be the smallest integer that is greater or equal to s.
We use f ′ to represent the derivative of f , if f has a single variable; and ḟ denotes

the material derivative of f =f(t,x) along a characteristic path

ḟ(t,X(t))=
d

dt
f(t,X(t))=∂tf+((1−2u)e−ū)∂xf,

where X(t) is defined in (2.4).

2. Local wellposedness and regularity criterion
In this section, we establish the local wellposedness theory for our main system

(1.1).

Theorem 2.1 (Local wellposedness). Let s>3/2. Consider equation (1.1) with
(1.9). Suppose the initial data u0∈L1∩Hs(R), and 0≤u0≤1. Then, there exists a
time T∗=T∗(u0)>0 and a unique solution

u∈C([0,T∗];L
1∩Hs(R)). (2.1)

Moreover, given any time T >0, the solution exists in C([0,T ];L1∩Hs(R)) if and only
if ∫ T

0

∥∂xu(t, ·)∥L∞dt<+∞. (2.2)

The proof is based on standard a priori energy estimates. The main subtlety is on
the nonlocal term. As the kernel K in (1.8) has a jump discontinuity at the origin,
the nonlocal term does not have enough regularity to be treated directly. To this
end, a priori bounds on the nonlocal terms are carefully studied, c.f. Proposition 2.2.
Nontrivial commutator estimates are used to obtain the regularity criterion (2.2).

The rest of this section is devoted to the proof of Theorem 2.1. We focus on the
a priori estimates that can be used to establish Theorem 2.1 in a standard way - for
example using Galerkin approximations or vanishing viscosity.

The proof can be extended to general kernels (1.5) and (1.7) with no extra difficul-
ties.

2.1. Conservation of mass. Assume u is smooth, satisfying (2.1). Integrating
(1.1) in x, we obtain

d

dt

∫
R
u(t,x)dx=−

∫
R
∂x(u(1−u)e−ū)dx=0.
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Therefore, the total mass

m :=

∫
R
u(t,x)dx

is conserved in time.

2.2. Maximum principle. We next show that there is a maximum density for
our traffic model. Rewrite (1.1) as

∂tu+(1−2u)e−ū∂xu+u2(1−u)e−ū=0. (2.3)

Let X(t,x) be the characteristic path originating at x, defined as

d

dt
X(t,x)=(1−2u(t,X(t,x)))e−ū(t,X(t,x)), X(0,x)=x. (2.4)

It is well-known that X is well-defined, and X(t,·) is invertible if solution u is smooth,
in the sense of (2.1). We denote the backward characteristic X−1(t, ·) as the inverse
function of X(t,·). For simplicity, we shall suppress the x-dependence of X throughout
the paper.

From (2.3), we have along each characteristic path

u̇=−u2(1−u)e−ū. (2.5)

The following maximum principle holds.

Proposition 2.1 (Maximum principle). Let u be a smooth solution of (2.3), with
initial condition 0≤u0≤1. Then, 0≤u(t,x)≤1 for any x∈R and t≥0.

Proof. For the upper bound, note that −u2(1−u)e−ū≤0 when u≤1. We imme-
diately get u(t,x)≤u0(X

−1(t,x))≤1.
For the lower bound, we argue by contradiction. Suppose there exist a positive time

t>0 and a characteristic path such that u(t,X(t))<0. Then, there must be a time t0
such that

u(t0,X(t0))=0, u(t0+,X(t0+))<0.

However, equation (2.5) with initial condition u(t0,X(t0))=0 has a unique solution

u(t,X(t))=0, ∀ t≥ t0.

This leads to a contradiction. Hence, u(t,x)>0 for any x and t≥0.

2.3. A priori bounds on the nonlocal term. From the definition of ū (1.9)
and positivity of u, we get the following a priori bound

0≤ ū(t,x)≤m. (2.6)

We now bound the nonlocal term e−ū. First, from (2.6), we have

e−m≤e−ū≤1. (2.7)

This shows the nonlocal weight is bounded from above and below, away from zero.
Next, we compute

∥∂x(e−ū)∥L∞ =∥u ·e−ū∥L∞ ≤1. (2.8)
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For higher derivatives of e−ū, we make use of the following composition estimate.

Lemma 2.1 (Composition estimate). Let s>0. Suppose g∈L∞∩Ḣs(R) and f ∈
C⌈s⌉(Range(g)). Then, the composition f ◦g∈L∞∩Ḣs(R). Moreover, there exists a
constant C>0, depending on s,∥f∥C⌈s⌉(Range(g)) and ∥g∥L∞ , such that

∥f ◦g∥Ḣs ≤C∥g∥Ḣs .

A proof of Lemma 2.1 will be provided in the Appendix for self-consistency.

Proposition 2.2. For s≥1,

∥e−ū∥Ḣs ≲s,m ∥u∥Ḣs−1 .

Proof. We apply Lemma 2.1, with f(x)=ex and g(x)=−ū(t,x). From (2.6), we
know g is bounded, and g(x)∈ [−m,0]. Therefore, ∥f∥C⌈s⌉([−m,0])=1 for any s≥0.

Lemma 2.1 then implies

∥e−ū∥Ḣs ≤C(m,s)∥g∥Ḣs =C(m,s)∥u∥Ḣs−1 .

The last equality is due to the fact that ∂xg=u.

2.4. L2 energy estimate. We perform a standard L2 energy estimate.

1

2

d

dt
∥u(·,t)∥2L2 =

∫
R
u ∂x

(
u(1−u)e−ū

)
dx=−

∫
R
∂xu ·u(1−u)e−ūdx

=

∫
R

1

2
u2 ·∂x(e−ū)dx+

∫
R
u2 ·∂xu ·e−ūdx

≤ 1

2
∥u∥2L2∥∂x(e−ū)∥L∞ +∥∂xu∥L∞∥u∥2L2∥e−ū∥L∞

≲ (1+∥∂xu∥L∞)∥u∥2L2 , (2.9)

where we apply (2.7) and (2.8) in the last inequality.

2.5. Hs energy estimate. Let Λ :=(−∆)1/2 be the pseudo-differential opera-
tor. We perform an energy estimate by acting Λs on (2.3) and integrating against Λsu.
This yields the evolution of the homogeneous Hs semi-norm on u:

1

2

d

dt
∥u(·,t)∥2

Ḣs =

∫
R
Λsu ·Λs

(
−(1−2u)e−ū∂xu−u2(1−u)e−ū

)
dx

=

∫
R
Λsu ·(2u−1)e−ū ·Λs∂xu dx+

∫
Λsu ·

([
Λs,(2u−1)e−ū

]
∂xu

)
dx

−
∫
R
Λsu ·Λs

(
u2(1−u)e−ū

)
dx=I+II+III.

Here, the commutator [Λs,f ]g is defined as

[Λs,f ]g=Λs(fg)−fΛsg.

We shall estimate the three terms one by one.
For the first term, apply integration by parts and get

I=

∫
R

1

2
∂x
(
(Λsu)2

)
·(2u−1)e−ū dx=−1

2

∫
R
(Λsu)2 ·∂x((2u−1)e−ū)dx
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≤ 1

2
∥u∥2

Ḣs∥∂x((2u−1)e−ū)∥L∞ =
1

2
∥u∥2

Ḣs∥(2∂xu+(2u−1)u)e−ū∥L∞ .

Since both u and ū are bounded, we have

∥(2∂xu+(2u−1)u)e−ū∥L∞ ≤2∥∂xu∥L∞ +1.

Therefore,

I≤ (1+∥∂xu∥L∞)∥u∥2
Ḣs . (2.10)

For the second term,

II≤∥u∥Ḣs

∥∥[Λs,(2u−1)e−ū
]
∂xu

∥∥
L2 .

Let us state the following two estimates. Both lemmas can be proved using Littlewood-
Paley theory.

Lemma 2.2 (Fractional Leibniz rule). Let s≥0. There exists a constant C>0,
depending only on s, such that

∥fg∥Ḣs ≤C (∥f∥L∞∥g∥Ḣs +∥f∥Ḣs∥g∥L∞) .

A proof of the fractional Leibniz rule can be found in [2, Corollary 2.86].

Lemma 2.3 (Commutator estimate). Let s≥1. There exists a constant C>0, de-
pending only on s, such that

∥[Λs,f ]g∥L2 ≤C (∥∂xf∥L∞∥g∥Ḣs−1 +∥f∥Ḣs∥g∥L∞) .

The commutator estimate is due to Kato and Ponce [22]. See e.g. [32, Remark 1.5] for
a version for homogeneous operator Λs.

Apply Lemma 2.3 to the commutator in II. We get∥∥[Λs,(2u−1)e−ū
]
∂xu

∥∥
L2

≲s∥(2u−1)e−ū∥L∞∥∂xu∥Ḣs−1 +∥(2u−1)e−ū∥Ḣs∥∂xu∥L∞ =II1+II2.

Due to maximum principle, |2u−1|≤1. Also, ∥e−ū∥L∞ ≤1 and ∥∂x(e−ū)∥L∞ ≤1 by
(2.7) and (2.8). Therefore, II1 can be easily estimated by

II1≲ (1+∥∂xu∥L∞)∥u∥Ḣs .

For II2, we apply Lemma 2.2 and Proposition 2.2,

II2≲s

(
∥2u−1∥Ḣs∥e−ū∥L∞ +∥2u−1∥L∞∥e−ū∥Ḣs

)
∥∂xu∥L∞

≲s,m (∥u∥Ḣs +∥u∥Ḣs−1)∥∂xu∥L∞ .

Combining the estimates on II1 and II2, we obtain

II≲s,m ∥∂xu∥L∞∥u∥Ḣs∥u∥Hs , (2.11)

where we have used the fact ∥u∥Ḣs−1 ≤∥u∥Hs .
For the third term, we again apply Lemma 2.2 and get

III≲s ∥u∥Ḣs

(
∥u2(1−u)∥Ḣs∥e−ū∥L∞ +∥u2(1−u)∥L∞∥e−ū∥Ḣs

)
.
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Applying Proposition 2.2 to the term ∥e−ū∥Ḣs , and the following estimate

∥u2(1−u)∥Ḣs ≲s 2∥u∥Ḣs∥u∥L∞∥1−u∥L∞ +∥u∥2L∞∥1−u∥Ḣs ≤3∥u∥Ḣs ,

we conclude with

III≲s,m ∥u∥2
Ḣs . (2.12)

Gathering the estimates (2.10), (2.11) and (2.12), we derive

d

dt
∥u(·,t)∥2

Ḣs ≲s,m ∥u∥2
Ḣs +∥∂xu∥L∞∥u∥Ḣs∥u∥Hs .

Together with the L2 estimate (2.9), we get the full Hs estimate

d

dt
∥u(·,t)∥2Hs ≲s,m (1+∥∂xu∥L∞)∥u∥2Hs . (2.13)

2.6. Proof of Theorem 2.1. Let s>3/2, from the Sobolev embedding theorem,
we know ∥∂xu∥L∞ ≲s ∥u∥Hs . Define Y (t)=∥u(t,·)∥2Hs . We deduce from (2.13)

Y ′(t)≲s,m

(
1+Y (t)1/2

)
Y (t).

Clearly, there exists a time T∗, depending on Y (0), such that Y (t) exists and is bounded
for t∈ [0,T∗]. This finishes the local existence proof.

To verify the regularity criterion (2.2), we apply the Grönwall inequality to (2.13)
and get

∥u(T, ·)∥Hs ≤∥u0∥Hs exp

(
C(s,m)

∫ T

0

(1+∥∂xu(t,·)∥L∞)dt

)
.

Clearly, u(t,·)∈Hs for all t∈ [0,T ] as long as (2.2) holds. This concludes the proof of
Theorem 2.1.

3. The critical threshold
In this section, we discuss the global behaviors of the solutions. The main goal is

to understand whether the criterion (2.2) holds for any time T , namely whether ∂xu is
uniformly bounded in time.

We start with expressing the dynamics of d :=∂xu by differentiating (2.3) in x:

∂td+(1−2u)e−ū∂xd+e−ū
(
−2d2+(3u−5u2)d+(u3−u4)

)
=0.

Together with (2.5), we get a coupled dynamics of (d,u) along characteristic paths.{
ḋ=
(
2d2−(3u−5u2)d−u3(1−u)

)
e−ū,

u̇=−u2(1−u)e−ū.
(3.1)

Note that a classical sufficient condition to avoid the breakdown of the characteris-
tics is that the velocity field is Lipschitz.∥∥∂x((1−2u)e−ū

)∥∥
L∞ =

∥∥(−2∂xu+(1−2u)u
)
e−ū

∥∥
L∞ ≤1+2∥∂xu∥L∞ .

Therefore, as long as condition (2.2) holds, the characterstic paths remain valid.
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We now perform a phase plane analysis on (d,u) through each characteristic path.
It is worth noting that e−ū is nonlocal. So the values of (d,u) can not be determined
solely by information along the characteristic path. However, the ratio

ḋ

u̇
=

2d2−(3u−5u2)d−u3(1−u)

−u2(1−u)

is local. Therefore, the trajectories of (d,u) on the phase plane only depend on local
information. If we express a trajectory as a function d=d(u), then it will satisfy the
ODE

d′(u)=
2d2−(3u−5u2)d−u3(1−u)

−u2(1−u)
. (3.2)

Figure 3.1 illustrates the flow map in the phase plane. In particular, (0,0) is a
degenerated hyperbolic point. There is an inward trajectory which separates the plane
into two regions. The left region will flow towards (0,0), and the right region will flow
towards d→∞. This indicates the two differernt behaviors: global boundedness versus
blowup, respectively. This is so called the critical threshold phenomenon.

For the rest of this section, we will show such phenomenon rigorously. This then
leads to a proof of Theorem 1.1.

Fig. 3.1. The flow map and the critical threshold in (d,u)-plane

3.1. The sharp critical threshold. We start with describing the critical
threshold that distinguishes the two regions in Figure 3.1 as d=σ(u). The main subtlety
is to carefully examine the behavior near the degenerate hyperbolic point (0,0).

Before we make a precise definition of the function σ : [0,1]→R, we shall first state
its properties as a motivation. First, σ should be a trajectory in the phase plane which
passes (0,0), namely it should satisfy the following ODE

σ′(x)=
2σ2−(3x−5x2)σ−x3(1−x)

−x2(1−x)
, σ(0)=0.

However, there are infinitely many candidates, since (0,0) is degenerate. We need to
pick the one that reveals the hyperbolicity. For all the candidates, we have the following
relation on σ′(0)

σ′(0)= lim
x→0+

2σ(x)2−(3x−5x2)σ(x)−x3(1−x)

−x2(1−x)

=−2

(
lim

x→0+

σ(x)

x

)2

+3 lim
x→0+

σ(x)

x
=−2σ′(0)2+3σ′(0).
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This implies σ′(0)=1 or σ′(0)=0. It turns out the ones with σ′(0)=0 are not relavant
in the study of the critical threshold phenomenon. On the other hand, the following
theorem shows that there is only one σ among all candidates that satisfies σ′(0)=1.
We will show later that this is the critical threshold curve we are searching for.

Proposition 3.1 (The critical threshold). There exists a unique function σ : [0,1]→
R, such that

σ′(x)=
2σ2−(3x−5x2)σ−x3(1−x)

−x2(1−x)
, σ(0)=0, σ′(0)=1. (3.3)

Proof. We start with the local existence theory. Fix a small ϵ>0. The classical
Cauchy-Peano theorem does not apply directly near x=0, as

F (x,σ) :=
2σ2−(3x−5x2)σ−x3(1−x)

−x2(1−x)

is not uniformly bounded for (x,σ)∈ [0,ϵ]× [−ϵ,ϵ]. Instead, we can consider the region

A=

{
(x,σ) : 0≤σ≤ 5

4
x, 0≤x≤ ϵ

}
.

It is easy to check that if σ
x ∈ [0, 54 ], then

min

{
x,

5−50x

8(1−x)
+x

}
≤F (x,σ)≤ (3−5x)2

8(1−x)
+x.

Hence, if we pick ϵ< 1
10 , we would have

0≤F (x,σ)≤ 5

4
, ∀ (x,σ)∈A. (3.4)

Now, we can build a sequence of approximate solutions {σn(x)} for x∈ [0,ϵ]. This can
be done, for instance, by forward Euler method. Given n∈Z+, define an equi-distance
lattice {xk=

kϵ
n }nk=0.

(i) σn(x)=x, ∀ x∈ [0,x1] .

(ii) σn(x)=σn(xk)+F (xk,σn(xk))(x−xk), ∀ x∈ [xk,xk+1], k=1,·· · ,n−1.

From (3.4), we know (x,σn(x))∈A, for all x∈ [0,ϵ]. Hence, σn(x) is uniformly bounded
and equi-continuous in x∈ [0,ϵ]. By Arzela-Ascoli theorem, σn converges uniformly to
σ, up to an extraction of a subsequence. And by its construction, σ is indeed a solution
of the ODE in (3.3).

It is clear that σ(0)=0 since σn(0)=0 for every n. To verify σ′(0)=1, we show the
following statement: the image of the solution (x,σ(x)) lies inside the cone

{(x,σ) : (1−2ϵ)x<σ≤x, 0≤x≤ ϵ}.

Indeed, we check F at the boundary of the cone

F (x,σ=x)=
1−4x−x2

1−x
≤1,

F (x,σ=(1−2ϵ)x)=
1+2ϵ−4x+(−8ϵ2+10ϵx−x2)

1−x
>1−2ϵ.
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Therefore, σ′(x)∈ (1−2ϵ,1] for all x∈ [0,ϵ]. Taking ϵ→0, we conclude with σ′(0)=1.
Next, we discuss the local uniqueness. Let σ(1) and σ(2) be two different solutions of

(3.3). Let w=σ(1)−σ(2). Note that σ(1) and σ(2) can not cross for x∈ (0,1). Without
loss of generality, we assume w(x)>0 for x∈ (0,ϵ]. (Otherwise, switch σ(1) and σ(2)).
Compute

w′(x)=
−2(σ(1)(x)+σ(2)(x))+(3x−5x2)

x2(1−x)
w(x)≤ −4(1−2ϵ)x+(3x−5x2)

x2(1−x)
w(x)≤0,

for any x∈ (0,ϵ]. Since w(0)=0, it implies w(x)≤0. This leads to a contradiction.
Once we obtain local wellposedness of σ, global existence and uniqueness for x∈

(0,1) follows from the standard Cauchy-Lipschitz theory.

We would like to remark that σ′(0)=1 is critically used to obtain uniqueness. In
particular, the solutions of (3.3) with σ′(0)=0 are not unique. But those curves are
not what we are seeking.

3.2. Global regularity for subcritical initial data. We now prove the first
part of Theorem 1.1. The goal is to show that, if the initial data satisfy (1.10), then
condition (2.2) holds for any time T . Equivalently, we will show d=∂xu is bounded
along all characterstic paths.

First, we show an upper bound of d.

Proposition 3.2 (Invariant region). Let (d,u) satisfy the dynamics (3.1) with initial
condition d0≤σ(u0). Then, d(t)≤σ(u(t)) for any time t≥0.

Proof. We first consider two special cases u0=0 and u0=1. In both cases, u′=0
and hence u does not change in time.

For u0=0, the dynamics of d becomes

ḋ=2d2e−ū. (3.5)

If d0≤σ(0)=0, clearly d(t)≤0 for any t≥0.
For u0=1, the dynamics of d becomes

ḋ=2d(d+1)e−ū. (3.6)

Again, if d0≤σ(1)=0, then d(t)≤0 for any t≥0.
Next, we consider the case u0∈ (0,1). Here, we use the fact that trajectories do

not cross. To be more precise, we argue by a contradiction. Suppose there exists a
time t such that d(t)>σ(u(t)). Then, there must exist a time t0 so that the (d,u) first
exits the region at t0+. By continuity, d(t0)=σ(u(t0)). Starting from (d(t0),u(t0)), the
trajectory satisfies (3.2).

By definition (3.3), d=σ(u) is a solution in the phase plane. The standard Cauchy-
Lipschitz theorem ensures that (3.2) with initial condition (d(t0),u(t0)) has a local
unique solution. Therefore, the solution has to be d(t0+)=σ(u0(t0+)). This contradicts
the assumption that (d,u) exits the region at t0+.

Next, we show a lower bound of d. This can be easily observed from Figure 3.1, as
the flow is moving to the right as long as d<−1.

Proposition 3.3. Let (d,u) satisfy the dynamics (3.1). Then, for any t≥0,

d(t)≥min{−1,d0}.
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Proof. We rewrite

ḋ=2(d−d−)(d−d+)e
−ū, d±=

(3u−5u2)±
√
(3u−5u2)2+8u3(1−u)

4
.

Then, ḋ≥0 if d≤d−. This implies d(t)≥min{d−,d0}. Note that for u∈ [0,1], d−≥−1.
Therefore, we obtain the lower bound.

Combining the two bounds, we know that along each characteristic path, d is
bounded for all times. Collecting all characterstic paths, we obtain ∥∂xu(t,·)∥L∞ is
bounded for any t≥0. Global regularity then follows from Theorem 2.1.

3.3. Finite time breakdown for supercritical initial data. We turn to
prove the second part of Theorem 1.1. Suppose the initial data satisfy (1.11). Then, we
consider the characteristic path originating at x0, namely d0=u′

0(x0) and u0=u0(x0).
So,

d0>σ(u0). (3.7)

For u0=0 or u0=1, finite-time blow up can be easily obtained by the Ricatti-type
dynamics (3.5) and (3.6). Moreover, as 0≤u≤1, we must have d0=0 when u0=0 or
1. Therefore, there is no supercritical data with u0=0 or 1.

We focus on the case when u0∈ (0,1). The main idea is illustrated in Figure 3.2.
For each trajectory starting at a supercritical initial point (d0,u0), u is getting close to
0 as time evolves, unless blowup has already happened. When u becomes close to 0,
the dynamics of d becomes close to (3.5). Then, if d is away from 0, the Ricatti-type
dynamics will lead to a finite-time blowup.

Fig. 3.2. An illustration of typical trajectories with supercritical initial data (d0,u0). Case 1: blow
up happens before the trajectory reaches u1. Case 2: the trajectory passes u1, but blow up eventually
happens in finite time.

To rigorously justify the idea, we first examine the dynamics of u in (3.1).

Proposition 3.4. Let (d,u) be a solution of (3.1) with supercritical initial data
(d0,u0), satisfying (3.7). Then, for any u1∈ (0,u0), there exists a finite time t1 such
that, either d(t)→∞ before t1, or u(t1)≤u1.
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Proof. Using the bound on the nonlocal term (2.7), we get

u̇≤−e−mu2(1−u).

As long as (d,u) is bounded, the characterstic path stays valid.
The following comparison principle holds. Let η=η(t) satisfy the ODE

η′=−e−mη2(1−η), η(0)=u0. (3.8)

Then, u(t)≤η(t). Indeed,

u̇(t)−η′(t)≤e−m
(
−u2(1−u)+η2(1−η)

)
=e−m(−2ξ+3ξ2)(u−η),

where ξ∈ (u,η)⊂ [0,1] and therefore −2ξ+3ξ2∈ [− 1
3 ,1) is bounded. This implies

u(t)−η(t)≤ (u(0)−η(0))e−
1
3 e

−mt=0.

The dynamics η in (3.8) can be solved explicitly(
1

η
+log

1−η

η

)]η(t)
u0

=e−mt.

Therefore, η(t1)=u1 at

t1=em
(

1

u1
+log

1−u1

u1
− 1

u0
− log

1−u0

u0

)
<+∞.

Applying the comparison principle, we end up with u(t1)≤u1.

Proposition 3.4 distinguishes the two cases illustrated in Figure 3.2. Either blowup
happens before u reaches u1, which takes finite time, or the trajectory passes u1. We
shall focus on the latter case from now on.

Next, we argue that by picking a small enough u1>0, the dynamics (3.1) will lead
to a blowup in finite time, as long as d stays away from zero.

Proposition 3.5. Let (d,u) be a solution of (3.1). Suppose d is uniformly bounded
away from zero, namely there exists a C∗>0 such that

d(t)≥C∗, ∀ t≥0. (3.9)

Then, there exists a u1>0, depending on C∗, such that, with the initial condition
(d(t1),u(t1)=u1), the solution has to blow up in finite time.

Proof. As u(t1)=u1, we know u(t)≤u1 for any t≥ t1. Then, we get

ḋ≥e−ū(2d2−3u1d−u3
1)=2e−ū(d−d−)(d−d+), d±=

3±
√
9+8u1

4
u1.

Pick u1=C∗/4, then

d(t1)≥C∗=4u1>2d+.

This implies d(t)>2d+ for all t≥ t1. We can then use (2.7) to bound the nonlocal term
and get

ḋ≥2e−m(d−d−)(d−d+), ∀ t≥ t1. (3.10)



YONGKI LEE AND CHANGHUI TAN 1165

Then, by a comparison principle (similar as the one used in Proposition 3.4), the solution
satisfies

d(t)≥ d−e
2e−m(d+−d−)(t−t1)(d(t1)−d+)−d+(d(t1)−d−)

e2e−m(d+−d−)(t−t1)(d(t1)−d+)−(d(t1)−d−)
,

where the right-hand side is the exact solution of the ODE (3.10) with an equal sign.
It blows up at

T∗= t1+
1

2e−m(d+−d−)
log

d(t1)−d−
d(t1)−d+

<t1+
2em

C∗
<+∞.

Therefore, d has to blow up no later than T∗.

We are left with showing the uniform lower bound on d, i.e. condition (3.9), for
any supercritical initial data. We shall work with trajectories in the phase plane.

Let us denote by d=d(u) the trajectory that goes through (d0,u0). As both d and
σ satisfy (3.2), we compute

(d(u)−σ(u))′=
2(d(u)+σ(u))−(3u−5u2)

−u2(1−u)
(d(u)−σ(u))=:A(u)(d(u)−σ(u)).

Since (d0,u0) satisfy (3.7), we get d(u0)−σ(u0)>0. A(u) is bounded as long as u stays
away from 0 and 1. Therefore, we obtain

d(u)≥σ(u)≥0, ∀ u∈ (0,1).

Moreover, for any u∈ (0,u0), we can estimate A by

A(u)≤ 3−5u

u(1−u)
≤ 3

u
.

Integrating in [u,u0], we get

d(u)≥d(u)−σ(u)=(d0−σ(u0))exp

[
−
∫ u0

u

A(u)du

]
≥ (d0−σ(u0))

u3
0

u3. (3.11)

Unfortunately, this bound is not uniform in (0,u0]. We need an enhanced estimate.
Let u2>0 such that

σ(u)≥ 3

4
u, ∀ u∈ [0,u2]. (3.12)

Note that such u2 exists as σ′(0)=1.
For u∈ (0,u2], using (3.12), we obtain an improved estimate on A as follows.

A(u)≤ 4σ(u)−(3u−5u2)

−u2(1−u)
≤ 3u−(3u−5u2)

−u2(1−u)
=

−5

1−u
≤−5.

Since A(u) is negative, we immediately get

d(u)≥d(u)−σ(u)≥d(u2)−σ(u2), ∀ u<u2, u∈Dom(d).

This, together with (3.11), shows a uniformly lower bound on d

d(u)≥ d0−σ(u0)

u3
0

u3
2, ∀ u≤u0, u∈Dom(d).

Condition (3.9) follows immediately, with C∗=(d0−σ(u0))u
3
0u

−3
2 .
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4. Examples and simulations
In this section, we present examples and numerical simulations to illustrate our

main critical threshold result, Theorem 1.1.
The numerical method we use is the standard finite volume scheme with upwind

flux, in a large enough computational domain. The nonlocal term is calculated using
a quadrature rule. We refer readers to [1, 11, 18, 25] for extensive discussions on the
numerical implementation.

We shall also compare the numerical results for the three different types of nonlocal
interaction kernels. Recall

K(x)=


0, ① LWR model: look-ahead distance L=0,

1[−1,0)(x), ② SK model: look-ahead distance L=1,

1(−∞,0](x), ③ Our model: look-ahead distance L=∞,

1, ④ LWR model: globally uniform kernel.

(4.1)

Here, 1A denotes the indicator function of a set A.

4.1. Supercritical initial data. Many smooth initial data u0 lie in the su-
percritical region (1.11). In particular, we argue that all compactly supported smooth
functions lie in the supercritical region.

Proposition 4.1. Let u0∈C1(R) be non-negative and compactly supported. Then, u0

satisfies the supercritical condition (1.11).

Proof. We argue by contradiction. Suppose u0 lies in the subcritical region. Then,
we have

u′
0(x)≤u0(x), ∀ x∈R. (4.2)

Let xL be the left end point of the support of u0, namely

xL=arginf
x
{u0(x)>0}.

By continuity, we know u0(xL)=0. Solving the ODE (4.2) with initial condition at xL

yields

u0(x)≤0, ∀ x≥xL.

This contradicts with the definition of xL. Hence, u0 can not lie in the subcritical
region. It must be supercritical.

As an example, let us take the following smooth and compactly supported initial
data.

u0(x)=

{
e
− 1

1−x2 , |x|<1,

0, |x|≥1.
(4.3)

Figure 4.1 shows the contour plot of (u′
0(x),u0(x)) in the phase plane for all x∈R.

Clearly, the curve does not lie in the subcritical region. So, u0 is supercritical. Theorem
1.1 then implies a finite-time wave break-down.

Figure 4.2 shows the numerical result for the model with initial data (4.3), together
with the models introduced in (4.1). The wave break-down can be easily observed,
which matches our theoretical result.
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Fig. 4.1. The contour plot of (u′
0(x),u0(x)) in the phase plane where u0 is (4.3). This initial

condition lies in the supercritical region.
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Fig. 4.2. Snapshots of solutions for the dynamics for the four kernels, with supercritical initial
condition (4.3) at time t=0,1,2,3,4.

Note that since

0≤1[−1,0)(x)≤1(−∞,0](x)≤1, ∀ x∈R, (4.4)

model (1) has the fastest wave speed, while model (4) has the slowest. This is indeed
captured in the numerical result.

4.2. Subcritical initial data. We now construct an initial condition u0 that
lies in the subcritical region (1.10).
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Due to Proposition 4.1, u0 can not be compactly supported. Moreover, we need
u0∈L1(R). One valid choice is that u0 decays algebraically when x→−∞, namely
u0(x)∼ (−x)−β for β>1. We can check

lim
x→−∞

u′
0(x)

u0(x)
= lim

x→−∞

β(−x)−β−1

(−x)−β
=0<1.

Therefore, (u′
0(x),u0(x)) should lie in the subcritical region of the phase plane when x

is very negative.
For large x, the choice of u0 is less critical. As long as u′

0(x)≤0, it always lies in
the subcritical region. We can either choose u0 vanishing for large x, or it decays fast
as x→+∞.

Here is a subcritical initial condition

u0(x)=


1/x2, x∈ (−∞,−3],

(3x5+35x4+123x3+81x2−162x+162)/1458, x∈ (−3,0],

e−x/9, x∈ (0,∞).

(4.5)

The middle part is chosen as a polynomial which smoothly connects the two functions,
so that u∈C2(R).

The contour plot of (u′
0(x),u0(x)) is shown in Figure 4.3, which indicates u0 is

subcritical. Therefore, as a consequence of Theorem 1.1, the solution should be globally
regular.

Fig. 4.3. The contour plot of (u′
0(x),u0(x)) in the phase plane where u0 is (4.5). This initial

condition lies in the subcritical region.

Figure 4.4 shows the numerical results for all four models with initial condition
(4.5). We observe that the solution of our model ③ indeed does not generate shocks.

The wave speeds of the four models behave similar as the supercritical case, due
to (4.4). However, very interestingly, our model ③ is the only model where there is
no finite-time wave break-down. Indeed, we plot the quantity ∥∂xu(·,t)∥L∞/∥u(·,t)∥L∞

against time t in Figure 4.5. The quantity blows up in finite time for models ①, ② and
④, but remains bounded for our model ③.

5. Further discussion
We have shown a sharp critical threshold for our traffic model (1.1) with look-ahead

kernel (1.9). We also compare our model with other classical kernels (4.1) through
numerical simulations. The kernel considered in this work has a unique feature that the
solution remains globally regular for initial conditions like (4.5).
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Fig. 4.4. Snapshots of solutions for the dynamics for the four kernels, with subcritical initial
condition (4.5) at time t=0,5,10,15,20.
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Fig. 4.5. Numerical indicators of finite time blowup versus global regularity. With initial condition
(4.5), only our kernel ③ has a global smooth solution.

To understand such behavior, we shall focus on the nonlocal slow down factor e−ū.
From (4.4), we observe that the model considered in this work has a factor which is
neither the largest nor the smallest. Hence, the size of the slow down factor does not
matter.

An important feature of the model in this work is that, the slow down factor is
monotone increasing. Indeed, we have

∂xe
−ū=ue−ū>0, ∀ x s.t. u(x)>0.

This implies that the front crowd does not slow down as much as the back crowd. This
helps avoid the shock formation, as observed in the example.
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For general nonlocal look-ahead kernels, it remains open whether there are sub-
critical initial data which lead to global regularity. If we consider a family of kernels
KL in (1.6), our result indicates that subcritical initial data exist for L=∞. On the
other hand, subcritical initial data does not exist for the LWR model, where L=0. For
L∈ (0,∞), the problem is open. A conjecture is that subcritical initial data exists for
L large enough. This will be left for future investigation.

Acknowledgment. The research of CT is supported by the NSF grants DMS
#1853001 and #2108264, and a UofSC ASPIRE I grant (2020).

Appendix. Composition estimate. In this section, we prove the composition
estimate stated in Lemma 2.1. The estimate is useful to control the nonlocal weight
e−ū for our system. We include a proof for self-consistency, as we have been unable to
find it in the literature.

Proof. (Proof of Lemma 2.1.) We first consider the case when s is an integrer.
Express ∂s

x(f(g(x))) using Faà di Bruno’s formula

∂s
x(f(g(x)))=

∑
α∈Ss

Cα(x)

s∏
r=1

(∂r
xg(x))

αr ,

where

Ss=

{
α=(α1, ·· · ,αs) : ak ∈N,

s∑
r=1

rαr=s,

s∑
r=1

αr≤s.

}
,

and

Cα(x)=s!

s∏
r=1

(
1

αr! ·(r!)αr

)
∂ν(α)
x f(g(x)), ν(α)=

s∑
r=1

αr.

Then,

∥∂s
x(f ◦g)∥L2 ≤

∑
α∈Ss

∥Cα∥L∞

∥∥∥∥∥
s∏

r=1

(∂r
xg)

αr

∥∥∥∥∥
L2

≲∥f∥Cs

∑
α∈Ss

∥∥∥∥∥
s∏

r=1

(∂r
xg)

αr

∥∥∥∥∥
L2

.

Now, we estimate the last term. Applying Hölder’s inequality, we get∥∥∥∥∥
s∏

r=1

(∂r
xg)

αr

∥∥∥∥∥
L2

≤
s∏

r=1

∥(∂r
xg)

αr∥Lpr =

s∏
r=1

∥∂r
xg∥

αr

Lαrpr ,

where {pr}sr=1 is chosen as pr=
2s
rαr

. So we have

s∑
r=1

1

pr
=

1

2s

s∑
r=1

rαr=
1

2
.

For each term ∥∂r
xg∥Lαrpr , we apply the Gagliardo-Nirenberg-Sobolev interpolation in-

equality

∥∂r
xg∥Lαrpr =∥∂r

xg∥L 2s
r
≲∥∂s

xg∥
r
s

L2∥g∥
1− r

s

L∞ .
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Collecting all terms together, we obtain

s∏
r=1

∥∂r
xg∥

αr

Lαrpr ≲∥∂s
xg∥

∑s
r=1αr

r
s

L2 ∥g∥
∑s

r=1αr(1− r
s )

L∞ =∥∂s
xg∥L2∥g∥ν(α)−1

L∞ .

This concludes the proof.
Next, we discuss the case when s is not an integer. For s∈ (0,1), one can directly

apply the chain rule for fractional derivatives [12, Proposition 3.1]

∥f ◦g∥Ḣs ≤C∥∂xf∥L∞∥g∥Ḣs ,

where C is a constant depending on s and ∥g∥L∞ .
For s>1, we can combine the estimate for ⌊s⌋ (the largest integer that is smaller or

equal to s) and the fractional chain rule for s−⌊s⌋. The details are left to the readers.
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