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GLOBAL EXISTENCE AND LARGE TIME BEHAVIOR OF
STRONG SOLUTIONS FOR NONHOMOGENEOUS HEAT

CONDUCTING NAVIER-STOKES EQUATIONS WITH LARGE
INITIAL DATA AND VACUUM∗
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Abstract. We are concerned with an initial boundary value problem of two-dimensional nonho-
mogeneous heat conducting Navier-Stokes equations in bounded domains. Applying delicate energy
estimates and Desjardins’ interpolation inequality, we derive the global existence and uniqueness of
strong solutions. Furthermore, we also show large-time decay rates of the solution. Note that the
initial data can be arbitrarily large and the initial density allows vacuum states.
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1. Introduction
Let Ω⊂R2 be a bounded smooth domain. We study nonhomogeneous heat con-

ducting Navier-Stokes equations (see [18, p. 23])
ρt+div(ρu)=0,

(ρu)t+div(ρu⊗u)−µ∆u+∇P =0,

cv[(ρθ)t+div(ρuθ)]−κ∆θ=2µ|D(u)|2,
divu=0,

(1.1)

with the initial condition

(ρ,ρu,ρθ)(x,0)=(ρ0,ρ0u0,ρ0θ0)(x), x∈Ω, (1.2)

and the boundary condition

u=0,
∂θ

∂n
=0, x∈∂Ω, t>0, (1.3)

where n is the unit outward normal to ∂Ω. Here ρ,u,θ,P are the fluid density, velocity,
absolute temperature, and pressure, respectively. D(u) denotes the deformation tensor
given by

D(u)=
1

2
(∇u+(∇u)tr).

The positive constant µ is the viscosity coefficient of the fluid, while cv and κ are the
heat capacity and the ratio of the heat conductivity coefficient over the heat capacity,
respectively.
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Nonhomogeneous Navier-Stokes equations describe a fluid which is obtained by
mixing two miscible fluids that are incompressible and that have different densities. It
may also describe a fluid containing a melted substance. Due to their prominent roles
in modeling many phenomena in physics, the nonhomogeneous Navier-Stokes equations
have been extensively studied, mathematically. Given 0≤ρ0∈L∞, and u0 satisfying
divu0=0,

√
ρ0u0∈L2, Lions [16] proved that there exists a global weak solution (see

also [20] and the references therein for an overview of results on weak solutions). For the
initial density allowing vacuum, Choe and Kim [3] proposed a compatibility condition
on the initial data and investigated the local existence of strong solutions, which was
later improved by the authors [13,14] without using such a compatibility condition. The
global (with general large data) existence of strong solutions with nonnegative density
on two-dimensional (2D) bounded domains and in the whole space R2 was established
by Huang and Wang [11] and Lü, Shi, and Zhong [19], respectively. Meanwhile, there
are also very interesting investigations about the global existence of strong solutions to
the 3D nonhomogeneous Navier-Stokes equations under some smallness assumptions,
please refer to [4, 5, 10, 12, 17, 26]. The mathematical studies on the nonhomogeneous
Navier-Stokes equations between 2D and 3D case appear highly different.

Recently, some attention was focused on the nonhomogeneous heat conducting
Navier-Stokes Equations (1.1). We refer the reader to [18, Chapter 2] for the detailed
derivation of such a system. Cho and Kim [2] proved the local existence of strong solu-
tions for such a model with vacuum under compatibility conditions. Later, Zhong [27]
showed global strong solutions of 3D initial boundary value problems with vacuum, pro-
vided that some smallness condition holds true. Then Wang et al. [22] improved [27] for
the system with the external force. At the same time, Xu and Yu [23,24] extended the
global existence result in [27] to the 3D nonhomogeneous heat conducting Navier-Stokes
equations with density-temperature-dependent viscosity and vacuum. Since global well-
posedness to the nonhomogeneous heat conducting Navier-Stokes equations with general
large data in three dimensions is still an open problem, the goal of this paper is to estab-
lish the global existence and large-time behavior of strong solutions to the 2D problem
(1.1)–(1.3) with general large initial data. The initial density is allowed to vanish.

Before stating our main result, we first explain the notations used throughout this
paper. For 1≤p≤∞ and integer k≥0, the standard Sobolev spaces are denoted by{

Lp=Lp(Ω), W k,p=W k,p(Ω), Hk =Hk,2(Ω),

H1
0 ={u∈H1|u=0 on ∂Ω}, H2

n={u∈H2|∇u ·n=0 on ∂Ω}.

Our main result reads as follows.
Theorem 1.1. For constant q∈ (2,∞), assume that the initial data (ρ0≥0,u0,θ0≥0)
satisfies

ρ0∈W 1,q(Ω), u0∈H1
0 (Ω), θ0∈H2

n(Ω), divu0=0, (1.4)

then the problem (1.1)–(1.3) has a unique global strong solution (ρ≥0,u,θ≥0) such that
for any 0<τ <T <∞ and 2≤ r<q,

ρt∈L∞(0,T ;Lr), ρ∈L∞(0,T ;W 1,q),

∇u∈L∞(0,T ;L2)∩L∞(τ,T ;H1)∩L2(τ,T ;H2),

∇θ∈L∞(τ,T ;H1)∩L2(τ,T ;H2),

∇P ∈L∞(τ,T ;L2)∩L2(τ,T ;H1),
√
ρθ, t∇θ∈L∞(0,T ;L2), t∇u∈L∞(0,T ;H1),

t
√
ρut, t

√
ρθt∈L∞(0,T ;L2)∩L2(0,T ;L2),

e
σ
2
t∇u, t∇ut, t∇θt, ∇θ∈L2(0,T ;L2),

(1.5)
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where σ≜ µ
d2∥ρ0∥L∞ with d being the diameter of Ω. Moreover, there exists a positive

constant C depending only on Ω, µ, cv, κ, q, and the initial data such that, for t≥1,{
∥u(·,t)∥2H2 +∥∇P (·,t)∥2L2 +∥√ρut(·,t)∥2L2 ≤Ce−σt,

∥∇θ(·,t)∥2L2 +∥√ρθt(·,t)∥2L2 ≤Ct−2.
(1.6)

Remark 1.1. Our Theorem 1.1 holds for arbitrarily large initial data which is in
sharp contrast to [27] where some smallness condition on the initial data is needed in
order to obtain the global existence of strong solutions to the 3D nonhomogeneous heat
conducting Navier-Stokes equations.

Remark 1.2. Compared with nonhomogeneous Navier-Stokes equations without heat
effect [11], we remove the classical compatibility condition used in [11] via appropriate
time-weighted techniques. Furthermore, we can obtain decay estimates of the solu-
tion. We emphasize that it seems difficult to show large-time behavior by applying the
methods used in [11].

We now make some comments on the key ingredients of the analysis in this paper.
The local existence and uniqueness of strong solutions to the problem (1.1)–(1.3) follows
from the works in the literature such as [13] (see Lemma 2.1). Thus our efforts are
devoted to establishing global a priori estimates on strong solutions to the system
(1.1) in suitable higher-order norms. It should be pointed out that compared with the
related works in the literature, the proof of Theorem 1.1 is much more involved due to
the absence of the positive lower bound for the initial density as well as the absence of
the smallness and the compatibility conditions for the initial data. Consequently, some
new ideas are needed to overcome these difficulties.

First, applying the upper bounds on the density (see (3.2)) and the Poincaré in-
equality, we derive that ∥√ρu∥2L2 decays with the rate of e−σt for some σ>0 depending
only on µ,∥ρ0∥L∞ , and the diameter of Ω (see (3.10)). Next, we need to obtain the
bound of ∥∇u∥2L2 . However, the presence of vacuum prevents us from achieving this
goal. To overcome this difficulty, we make use of Desjardins’ interpolation inequality
(see Lemma 2.4) to obtain time-weighted estimate on the L∞(0,T ;L2)-norm of the gra-
dient of the velocity (see (3.11) and (3.12)). Indeed, the time-weighted estimate is a
crucial technique in dropping the compatibility condition on the initial data (see [19]
for example). Next, due to the structure of the system (1.1), the basic energy estimate
provides us with ∫ (

cvρθ+
1

2
ρ|u|2

)
dx=

∫ (
cvρ0θ0+

1

2
ρ0|u0|2

)
dx,

and there isn’t any useful dissipation estimate on θ. To overcome this difficulty, we

recover the crucial dissipation estimate of the form
∫ T

0
∥∇θ∥2L2dt (see Lemma 3.3), which

is needed to get the time-weighted estimate on ∥∇θ∥2L2 (see (3.42)), while this time-
weighted estimate on ∥∇θ∥2L2 in turn affects the derivation of time-weighted estimate
of ∥√ρθt∥2L2 (see (3.51)). Next, with time-weighted estimates on the velocity at hand,
we can then obtain that ∥√ρut∥2L2 decays as t−2 for large time (see (3.28)). In fact, all
these decay-in-time rates play an important role in obtaining the desired uniform bound
(with respect to time) on the L1(0,T ;L∞)-norm of ∇u (see (3.48)). Finally, using these
a priori estimates, we establish the time-independent higher order estimates on the
solution (ρ,u,P,θ), see Lemmas 3.5 and 3.7 for details.
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The rest of this paper is organized as follows. In Section 2, we collect some elemen-
tary facts and inequalities that will be used later. Section 3 is devoted to the a priori
estimates. Finally, we give the proof of Theorem 1.1 in Section 4.

2. Preliminaries
In this section, we will recall some known facts and elementary inequalities that

will be frequently used later.
We begin with the local existence and uniqueness of strong solutions whose proof

can be performed by using standard energy methods (see, e.g., [13]).

Lemma 2.1. Assume that (ρ0,u0,θ0) satisfies (1.4). Then there exist a small time
T >0 and a unique strong solution (ρ,u,θ) to the problem (1.1)–(1.3) in Ω×(0,T ].

Next, the following Gagliardo-Nirenberg inequality (see [9, Theorem 10.1, p. 27])
will be useful in the next section.

Lemma 2.2. Let Ω⊂R2 be a bounded smooth domain. Assume that 1≤ q,r≤∞, and
j,m are arbitrary integers satisfying 0≤ j <m. If v∈Wm,r(Ω)∩Lq(Ω), then we have

∥Djv∥Lp ≤C∥v∥1−a
Lq ∥v∥aWm,r ,

where

−j+
2

p
=(1−a)

2

q
+a

(
−m+

2

r

)
,

and

a∈

{
[ j
m ,1), if m−j− 2

r is a nonnegative integer,

[ j
m ,1], otherwise.

The constant C depends only on m,j,q,r,a, and Ω. In particular, we have

∥v∥4L4 ≤C∥v∥2L2∥v∥2H1 , (2.1)

which will be frequently used in the next section.

Next, we give some regularity properties for the following Stokes system:
−µ∆u+∇P =F, x∈Ω,

divu=0, x∈Ω,

u=0, x∈∂Ω.

(2.2)

Lemma 2.3. Suppose that F∈Lr(Ω) with 1<r<∞. Let (u,P )∈H1
0 ×L2 be the

unique weak solution to the problem (2.2), then (u,P )∈W 2,r×W 1,r and there exists a
constant C depending only on Ω and r such that

∥u∥W 2,r +∥P∥W 1,r/R≤C∥F∥Lr .

Proof. See [1, Proposition 4.3].

Finally, the following interpolation inequality was first obtained by Desjardins [6,
Lemma 1] for periodic domains. Later, following Desjardins’ idea, Ye [25, Lemma 2.2]
extended it to the bounded domains.

Lemma 2.4. Let Ω⊂R2 be a bounded smooth domain. Suppose that 0≤ρ≤ ρ̄ and
u∈H1

0 (Ω), then we have

∥√ρu∥2L4 ≤C(ρ̄,Ω)(1+∥√ρu∥L2)∥∇u∥L2

√
ln(2+∥∇u∥2L2). (2.3)
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3. A priori estimates
In this section, we will establish some necessary a priori bounds for strong solutions

(ρ,u,θ) to the problem (1.1)–(1.3) to extend the local strong solution. Thus, let T >0
be a fixed time and (ρ,u,θ) be the strong solution to (1.1)–(1.3) on Ω×(0,T ] with initial
data (ρ0,u0,θ0) satisfying (1.4). In what follows, we write∫

·dx=
∫
Ω

·dx.

Sometimes we use C(f) to emphasize the dependence on f .
Before proceeding, we rewrite another equivalent form of the system (1.1) as the

following 
ρt+u ·∇ρ=0,

ρut+ρu ·∇u−µ∆u+∇P =0,

cv[ρθt+ρu ·∇θ]−κ∆θ=2µ|D(u)|2,
divu=0.

(3.1)

We begin with the following standard energy estimate and the L∞-norm estimate
of the density.

Lemma 3.1. It holds that

sup
0≤t≤T

∥ρ∥L∞ ≤∥ρ0∥L∞ , (3.2)

and

sup
0≤t≤T

(
cv∥ρθ∥L1 +∥√ρu∥2L2 +eσt∥√ρu∥2L2

)
+

∫ T

0

eσt(µ∥∇u∥2L2)dt

≤2cv∥ρ0θ0∥L1 +2∥√ρ0u0∥2L2 , (3.3)

where σ≜ µ
d2∥ρ0∥L∞ with d being the diameter of Ω.

Proof.
(1) Since (3.1)1 is a transport equation, we then directly obtain the desired (3.2). More-

over, applying standard maximum principle (see [8, p. 43]) to (3.1) along with
ρ0,θ0≥0 shows

inf
Ω×[0,T ]

ρ(x,t)≥0, inf
Ω×[0,T ]

θ(x,t)≥0.

(2) Multiplying (3.1)2 by u and integrating (by parts) over Ω, we derive that

1

2

d

dt

∫
ρ|u|2dx+µ

∫
|∇u|2dx=0. (3.4)

Integrating (3.1)3 with respect to the spatial variable and using (1.3) give rise to

cv
d

dt

∫
ρθdx−2µ

∫
|D(u)|2dx=0. (3.5)

By virtue of (3.1)4 and integration by parts, we have

2µ

∫
|D(u)|2dx= µ

2

∫
(∂iu

j+∂ju
i)(∂iu

j+∂ju
i)dx=µ

∫
|∇u|2dx, (3.6)
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which, together with (3.5) and (3.4), yields

d

dt

∫ (
cvρθ+

1

2
ρ|u|2

)
dx=0. (3.7)

Integrating (3.7) with respect to time leads to∫ (
cvρθ+

1

2
ρ|u|2

)
dx=

∫ (
cvρ0θ0+

1

2
ρ0|u0|2

)
dx. (3.8)

(3) It follows from the Poincaré inequality (see [21, (A.3), p. 266]) and (3.2) that

∥√ρu∥2L2 ≤∥ρ∥L∞∥u∥2L2 ≤∥ρ0∥L∞d2∥∇u∥2L2 ,

where d is the diameter of Ω. Hence, we get

1

d2∥ρ0∥L∞
∥√ρu∥2L2 ≤∥∇u∥2L2 . (3.9)

Consequently, letting σ≜ µ
d2∥ρ0∥L∞ , then we derive from (3.4) and (3.9) that

d

dt
∥√ρu∥2L2 +σ∥√ρu∥2L2 +µ∥∇u∥2L2 ≤0.

This implies that

d

dt
eσt∥√ρu∥2L2 +eσtµ∥∇u∥2L2 ≤0.

Integrating the above inequality over [0,T ] leads to

sup
0≤t≤T

(
eσt∥√ρu∥2L2

)
+

∫ T

0

eσt(µ∥∇u∥2L2)dt≤∥√ρ0u0∥2L2 , (3.10)

which, combined with (3.8), gives (3.3).

Next, the following lemma concerns the key time-weighted estimates on the
L∞(0,T ;L2)-norm of the gradient of the velocity.

Lemma 3.2. Let σ be as in Lemma 3.1, then there exists a positive constant C
depending only on Ω, µ, ∥ρ0∥L∞ , and ∥∇u0∥L2 such that for i∈{0,1,2},

sup
0≤t≤T

(
ti∥∇u∥2L2

)
+

∫ T

0

ti∥√ρut∥2L2dt≤C, (3.11)

sup
0≤t≤T

(
eσt∥∇u∥2L2

)
+

∫ T

0

eσt∥√ρut∥2L2dt≤C. (3.12)

Proof.
(1) Multiplying (3.1)2 by ut and integrating the resulting equation over Ω, we get that

µ

2

d

dt

∫
|∇u|2dx+

∫
ρ|ut|2dx=−

∫
ρu ·∇u ·utdx. (3.13)
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By Hölder’s and Gagliardo-Nirenberg inequalities, we have∣∣∣∣−∫
ρu ·∇u ·utdx

∣∣∣∣≤ 1

2
∥√ρut∥2L2 +

1

2
∥√ρu∥2L4∥∇u∥2L4

≤ 1

2
∥√ρut∥2L2 +C∥√ρu∥2L4∥∇u∥L2∥u∥H2 . (3.14)

Substituting (3.14) into (3.13), we derive that

µ
d

dt
∥∇u∥2L2 +∥√ρut∥2L2 ≤C∥√ρu∥2L4∥∇u∥L2∥u∥H2 . (3.15)

Recall that (u,P ) satisfies the following Stokes system
−µ∆u+∇P =−ρut−ρu ·∇u, x∈Ω,

divu=0, x∈Ω,

u=0, x∈∂Ω.

(3.16)

Applying Lemma 2.3 with F=−ρut−ρu ·∇u, we obtain from (3.2) that

∥u∥H2 +∥∇P∥L2 ≤C (∥ρut∥L2 +∥ρu ·∇u∥L2)

≤C∥√ρut∥L2 +C∥√ρu∥L4∥∇u∥L4

≤C∥√ρut∥L2 +C∥√ρu∥L4∥∇u∥
1
2

L2∥u∥
1
2

H2

≤C∥√ρut∥L2 +C∥√ρu∥2L4∥∇u∥L2 +
1

2
∥u∥H2 ,

and thus

∥u∥H2 +∥∇P∥L2 ≤C∥√ρut∥L2 +C∥√ρu∥2L4∥∇u∥L2 . (3.17)

Inserting (3.17) into (3.15) and applying Cauchy-Schwarz inequality, we deduce that

d

dt
∥∇u∥2L2 +∥√ρut∥2L2 ≤C∥√ρu∥4L4∥∇u∥2L2 +C∥∇u∥4L2 , (3.18)

and so by virtue of (2.3) and (3.3), we have

d

dt
∥∇u∥2L2 +∥√ρut∥2L2 ≤C∥∇u∥2L2∥∇u∥2L2

(
1+ln(2+∥∇u∥2L2)

)
. (3.19)

Setting

f(t)≜2+∥∇u∥2L2 ,

then we deduce from (3.19) that

f ′(t)≤C∥∇u∥2L2f(t)+C∥∇u∥2L2f(t)lnf(t),

which yields that

(logf(t))′≤C∥∇u∥2L2 +C∥∇u∥2L2 log(f(t)).
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This, combined with Gronwall’s inequality and (3.3), leads to

sup
0≤t≤T

∥∇u∥2L2 ≤C. (3.20)

Integrating (3.19) with respect to t together with (3.20) and (3.3) leads to∫ T

0

∥√ρut∥2L2dt≤C.

For i∈{1,2}, we can obtain similar results. Here we omit the details for simplicity.

(2) Multiplying (3.19) by eσt and applying (3.20), we derive that

d

dt

(
eσt∥∇u∥2L2

)
+eσt∥√ρut∥2L2 ≤Ceσt∥∇u∥2L2 +σeσt∥∇u∥2L2 ≤Ceσt∥∇u∥2L2 . (3.21)

Integrating (3.21) over [0,T ] together with (3.10) leads to (3.12).

Remark 3.1. It follows from (2.3), (3.8), and (3.11) that

sup
0≤t≤T

∥√ρu∥2L4 ≤C. (3.22)

Next, we improve the regularity of the temperature θ as follows.

Lemma 3.3. There exists a positive constant C depending only on Ω, µ, cv, κ, and
the initial data such that

sup
0≤t≤T

∥√ρθ∥2L2 +

∫ T

0

∥∇θ∥2L2dt≤C. (3.23)

Proof. Multiplying (3.1)3 by θ and integrating the resulting equation over Ω yield

cv
d

dt
∥√ρθ∥2L2 +2κ∥∇θ∥2L2 ≤C

∫
|∇u|2θdx

≤C∥θ∥L4∥∇u∥L2∥∇u∥L4

≤C∥θ∥H1∥∇u∥L2∥∇u∥
1
2

L2∥∇u∥
1
2

H1

≤C∥θ∥H1∥∇u∥
3
2

L2

(
∥√ρut∥

1
2

L2 +∥∇u∥
1
2

L2

)
(3.24)

due to Sobolev’s inequality, (2.1), (3.17), and (3.22). To estimate ∥θ∥H1 , denote by
θ̄≜ 1

|Ω|
∫
θdx (the average of θ), then we obtain from (3.2) and the Poincaré inequality

that

|θ̄|
∫

ρdx≤
∣∣∣∣∫ ρθdx

∣∣∣∣+ ∣∣∣∣∫ ρ(θ− θ̄)dx

∣∣∣∣≤∥ρθ∥L1 +C∥∇θ∥L2 ,

which, together with (3.8) and the fact that
∣∣∫ vdx

∣∣+∥∇v∥L2 is an equivalent norm to
the usual one in H1(Ω), implies that

∥θ∥H1 ≤C+C∥∇θ∥L2 , (3.25)

∥θ∥H1 ≤C∥√ρθ∥L2 +C∥∇θ∥L2 . (3.26)
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Hence, we obtain from (3.24), (3.26), and (3.11) that

cv
d

dt
∥√ρθ∥2L2 +2κ∥∇θ∥2L2 ≤C

(
∥√ρθ∥L2 +∥∇θ∥L2

)
∥∇u∥

3
2

L2

(
∥√ρut∥

1
2

L2 +∥∇u∥
1
2

L2

)
≤ε∥∇θ∥2L2 +C∥√ρut∥2L2 +C∥∇u∥2L2∥

√
ρθ∥2L2 +C∥∇u∥2L2 ,

which implies after choosing ε suitably small that

d

dt
∥√ρθ∥2L2 +∥∇θ∥2L2 ≤C∥∇u∥2L2∥

√
ρθ∥2L2 +C∥√ρut∥2L2 +C∥∇u∥2L2 . (3.27)

Hence, we obtain the desired (3.23) from (3.27), Gronwall’s inequality, (3.10), and (3.11).

Lemma 3.4. There exists a positive constant C depending only on Ω, µ, cv, κ, and
the initial data such that for i∈{1,2},

sup
0≤t≤T

[
ti
(
∥√ρut∥2L2 +∥∇θ∥2L2

)]
+

∫ T

0

ti
(
∥∇ut∥2L2 +∥√ρθt∥2L2

)
dt≤C. (3.28)

Moreover, for σ as that in Lemma 3.1, one has, for ζ(T )≜min{1,T}, that

sup
ζ(T )≤t≤T

[
eσt

(
∥√ρut∥2L2

)]
+

∫ T

ζ(T )

eσt∥∇ut∥2L2dt≤C. (3.29)

Proof.
(1) Differentiating (3.1)2 with respect to t, we arrive at

ρutt+ρu ·∇ut−µ∆ut=−∇Pt+ρt (ut+u ·∇u)−ρut ·∇u. (3.30)

Multiplying (3.30) by ut and integrating (by parts) over Ω and using (1.1)1 yield

1

2

d

dt

∫
ρ|ut|2dx+µ

∫
|∇ut|2dx=

∫
div(ρu)|ut|2dx+

∫
div(ρu)u ·∇u ·utdx

−
∫

ρut ·∇u ·utdx≜J1+J2+J3. (3.31)

By virtue of Hölder’s inequality, Sobolev’s inequality, (3.2), and (3.11), we deduce
that

|J1|=
∣∣∣∣−∫

ρu ·∇|ut|2dx
∣∣∣∣

≤2∥ρ∥
1
2

L∞∥u∥L6∥√ρut∥L3∥∇ut∥L2

≤C∥ρ∥
1
2

L∞∥∇u∥L2∥√ρut∥
1
2

L2∥
√
ρut∥

1
2

L6∥∇ut∥L2

≤C∥ρ∥
3
4

L∞∥∇u∥L2∥√ρut∥
1
2

L2∥∇ut∥
3
2

L2

≤µ

6
∥∇ut∥2L2 +C∥∇u∥2L2∥

√
ρut∥2L2 ;

|J2|=
∣∣∣∣−∫

ρu ·∇(u ·∇u ·ut)dx

∣∣∣∣
≤
∫ (

ρ|u||∇u|2|ut|+ρ|u|2|∇2u||ut|+ρ|u|2|∇u||∇ut|
)
dx
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≤C∥u∥L∞∥∇u∥2L4∥
√
ρut∥L2 +C∥u∥2L∞∥∇2u∥L2∥√ρut∥L2

+C∥u∥2L∞∥∇u∥L2∥∇ut∥L2

≤C∥u∥L∞∥∇u∥L2∥∇u∥H1∥√ρut∥L2

+C∥u∥L2∥u∥H2∥∇2u∥L2∥√ρut∥L2 +C∥u∥H2∥∇ut∥L2

≤µ

6
∥∇ut∥2L2 +C∥u∥2H2∥

√
ρut∥2L2 +C∥u∥2H2 ;

|J3|≤∥∇u∥L2∥√ρut∥2L4 ≤C∥∇u∥L2∥√ρut∥
1
2

L2∥
√
ρut∥

3
2

L6

≤C∥ρ∥
3
4

L∞∥∇u∥L2∥√ρut∥
1
2

L2∥∇ut∥
3
2

L2

≤µ

6
∥∇ut∥2L2 +C∥∇u∥2L2∥

√
ρut∥2L2 .

Substituting the above estimates into (3.31), we derive that

d

dt
∥√ρut∥2L2 +µ∥∇ut∥2L2 ≤C∥u∥2H2∥

√
ρut∥2L2 +C∥u∥2H2 . (3.32)

By (3.17), (3.10), (3.11), (3.3), and (2.3), we have that, for i∈{1,2},∫ T

0

∥u∥2H2dt≤C

∫ T

0

∥√ρut∥2L2dt+C

∫ T

0

∥∇u∥2L2dt≤C, (3.33)∫ T

0

ti∥u∥2H2dt≤C

∫ T

0

ti∥√ρut∥2L2dt+C

∫ T

0

ti∥∇u∥2L2dt≤C. (3.34)

Then we obtain from (3.32) multiplied by ti (i∈{1,2}), Gronwall’s inequality, (3.33),
(3.34), and (3.11) that

sup
0≤t≤T

(
ti∥√ρut∥2L2

)
+

∫ T

0

ti∥∇ut∥2L2dt≤C. (3.35)

(2) Multiplying (3.1)3 by θt and integrating the resulting equation over Ω yield that

κ

2

d

dt

∫
|∇θ|2dx+cv

∫
ρ|θt|2dx=−cv

∫
ρ(u ·∇θ)θtdx+2µ

∫
|D(u)|2θtdx

≜ I1+I2. (3.36)

By Hölder’s inequality and (3.2), we get that

|I1|≤ cv∥ρ∥
1
2

L∞∥√ρθt∥L2∥u∥L∞∥∇θ∥L2 ≤ cv
2
∥√ρθt∥2L2 +C∥u∥2H2∥∇θ∥2L2 . (3.37)

From (3.25), Hölder’s inequality, (2.1), and (3.11), one has

I2=2µ
d

dt

∫
|D(u)|2θdx−2µ

∫
(|D(u)|2)tθdx

≤2µ
d

dt

∫
|D(u)|2θdx+C

∫
θ|∇u||∇ut|dx

≤2µ
d

dt

∫
|D(u)|2θdx+C∥θ∥L4∥∇u∥L4∥∇ut∥L2

≤2µ
d

dt

∫
|D(u)|2θdx+C∥θ∥H1∥∇u∥

1
2

L2∥∇u∥
1
2

H1∥∇ut∥L2
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≤2µ
d

dt

∫
|D(u)|2θdx+C∥∇ut∥2L2 +C∥∇θ∥4L2 +C∥∇u∥2H1 . (3.38)

Substituting (3.37) and (3.38) into (3.36), we obtain that

B′(t)+cv∥
√
ρθt∥2L2 ≤C

(
∥∇θ∥2L2 +∥u∥2H2

)
∥∇θ∥2L2 +C∥∇ut∥2L2 +C∥∇u∥2H1 ,

(3.39)
where

B(t)≜
∫ (

κ|∇θ|2−4µ|D(u)|2θ
)
dx

satisfies

κ

2
∥∇θ∥2L2 −C∥∇u∥2L2 −C∥√ρut∥2L2 ≤B(t)≤C∥∇θ∥2L2 +C∥∇u∥2L2 +C∥√ρut∥2L2 ,

(3.40)
due to

4µ

∫
|D(u)|2θdx≤C∥θ∥L2∥∇u∥2L4

≤C∥θ∥H1∥∇u∥L2∥∇u∥H1

≤C(1+∥∇θ∥L2)∥∇u∥L2(∥√ρut∥L2 +∥∇u∥L2)

≤ κ

2
∥∇θ∥2L2 +C∥∇u∥2L2 +C∥√ρut∥2L2 .

Multiplying (3.39) by ti (i∈{1,2}) together with (3.40) leads to

d

dt
(tiB(t))+cvt

i∥√ρθt∥2L2

≤C
(
∥∇θ∥2L2 +∥u∥2H2

)
(ti∥∇θ∥2L2)+Cti∥∇ut∥2L2 +Cti∥∇u∥2H1

+Citi−1
(
∥∇θ∥2L2 +∥∇u∥2L2 +∥√ρut∥2L2

)
, (3.41)

which, combined with Gronwall’s inequality, (3.40), (3.35), (3.11), (3.23), (3.10),
and (3.34), yields

sup
0≤t≤T

(
ti∥∇θ∥2L2

)
+

∫ T

0

ti∥√ρθt∥2L2dt≤C. (3.42)

This along with (3.35) gives rise to the desired (3.28).

(3) Multiplying (3.32) by eσt, we get from (3.17) and (3.22) that

d

dt

(
eσt∥√ρut∥2L2

)
+µeσt∥∇ut∥2L2

≤C∥u∥2H2

(
eσt∥√ρut∥2L2

)
+Ceσt∥u∥2H2 +σeσt∥√ρut∥2L2

≤C∥u∥2H2

(
eσt∥√ρut∥2L2

)
+Ceσt∥∇u∥2L2 +Ceσt∥√ρut∥2L2 .

This, combined with Gronwall’s inequality, (3.33), (3.10), and (3.12), implies (3.29).

Lemma 3.5. Let q be as in Theorem 1.1, then there exists a positive constant C
depending only on Ω, µ, cv, κ, q, and the initial data such that for r∈ [2,q),

sup
0≤t≤T

(
∥ρ∥W 1,q +∥ρt∥Lr

)
≤C. (3.43)



1204 GLOBAL STRONG SOLUTIONS FOR NAVIER-STOKES EQUATIONS

Proof.
(1) It follows from Sobolev’s embedding theorem, Lemma 2.3, and (3.2) that

∥∇u∥L∞ ≤C∥u∥W 2,3 ≤C (∥ρut∥L3 +∥ρu ·∇u∥L3)≤C∥ρut∥L3 +C∥u∥2H2 . (3.44)

By Hölder’s inequality, Sobolev’s inequality, and (3.2), we have

∥ρut∥L3 ≤∥ρ∥
1
2

L∞∥√ρut∥
1
2

L2∥
√
ρut∥

1
2

L6 ≤C∥√ρut∥
1
2

L2∥∇ut∥
1
2

L2 ,

which, together with Hölder’s inequality, implies for any 0≤a<b<∞,∫ b

a

∥ρut∥L3dt≤C

∫ b

a

t−
3
8 ∥√ρut∥

1
2

L2 · t
3
8 ∥∇ut∥

1
2

L2dt

≤C
[∫ b

a

t−
1
2 ∥√ρut∥

2
3

L2dt
] 3

4 ×
[∫ b

a

t
3
2 ∥∇ut∥2L2dt

] 1
4

. (3.45)

As a consequence, if T ≤1, we obtain from (3.45) and (3.35) that∫ T

0

∥ρut∥L3dt

≤C
[∫ T

0

t−
1
2 · t− 1

3 t
1
3 ∥√ρut∥

2
3

L2dt
] 3

4 ×
[∫ T

0

t
1
2 ∥∇ut∥L2 · t∥∇ut∥L2dt

] 1
4

≤C
(

sup
0≤t≤T

t∥√ρut∥2L2

) 1
4
(∫ T

0

t−
5
6 dt

) 3
4
(∫ T

0

t∥∇ut∥2L2dt
) 1

8
(∫ T

0

t2∥∇ut∥2L2dt
) 1

8

≤CT
1
8 ≤C. (3.46)

If T >1, one deduces from (3.46), (3.45), and (3.35) that∫ T

0

∥ρut∥L3dt

=

∫ 1

0

∥ρut∥L3dt+

∫ T

1

∥ρut∥L3dt

≤C+C
[∫ T

1

t−
1
2 ∥√ρut∥

2
3

L2dt
] 3

4 ×
[∫ T

1

t
1
2 ∥∇ut∥L2 · t∥∇ut∥L2dt

] 1
4

≤C+C
(

sup
1≤t≤T

t2∥√ρut∥2L2

) 1
4
(∫ T

1

t−
1
2 · t− 2

3 dt
) 3

4
(∫ T

1

t∥∇ut∥2L2dt
) 1

8

×
(∫ T

1

t2∥∇ut∥2L2dt
) 1

8

≤C+C
(
1−T− 1

6

) 3
4 ≤C. (3.47)

Hence, we derive from (3.44), (3.46), (3.47), and (3.33) that∫ T

0

∥∇u∥L∞dt≤C. (3.48)

(2) Taking spatial derivative ∇ of the transport Equation (3.1)1 leads to

∂t∇ρ+u ·∇2ρ+∇u ·∇ρ=0.
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Thus standard energy methods yield for any q∈ (2,∞),

d

dt
∥∇ρ∥Lq ≤C(q)∥∇u∥L∞∥∇ρ∥Lq ,

which, combined with Gronwall’s inequality and (3.48), gives

sup
0≤t≤T

∥∇ρ∥Lq ≤C. (3.49)

Noticing the following fact

∥ρt∥Lr =∥u ·∇ρ∥Lr ≤∥∇ρ∥Lq∥u∥
L

qr
q−r

≤∥∇ρ∥Lq∥∇u∥L2 ,

which, together with (3.49) and (3.11), yields

sup
0≤t≤T

∥ρt∥Lr ≤C. (3.50)

Thus, the desired (3.43) follows from (3.2), (3.49), and (3.50).

Lemma 3.6. Let q be as in Theorem 1.1, then there exists a positive constant C
depending only on Ω, µ, cv, κ, q, and the initial data such that

sup
0≤t≤T

(
t2∥√ρθt∥2L2

)
+

∫ T

0

t2∥∇θt∥2L2dt≤C. (3.51)

Proof. Differentiating (3.1)3 with respect to t and using (1.1)1, we arrive at

cv[ρθtt+ρu ·∇θt]−κ∆θt= cvdiv(ρu)θt−cvρtu ·∇θ−cvρut ·∇θ+2µ(|D(u)|2)t. (3.52)

Multiplying (3.52) by θt and integrating (by parts) over Ω yield

cv
2

d

dt

∫
ρ|θt|2dx+κ

∫
|∇θt|2dx

= cv

∫
div(ρu)|θt|2dx+cv

∫
div(ρu)(u ·∇θ)θtdx−cv

∫
ρ(ut ·∇θ)θtdx

+2µ

∫
(|D(u)|2)tθtdx

≜ J̄1+ J̄2+ J̄3+ J̄4. (3.53)

Similarly to (3.26), one deduces

∥θt∥H1 ≤C∥√ρθt∥L2 +C∥∇θt∥L2 . (3.54)

By Hölder’s inequality, Sobolev’s inequality, (2.1), (3.2), (3.54), (3.17), (3.11), and
(3.43), we have

|J̄1|=
∣∣∣∣−cv

∫
ρu ·∇|θt|2dx

∣∣∣∣
≤2cv∥ρ∥

1
2

L∞∥u∥L∞∥√ρθt∥L2∥∇θt∥L2

≤κ

8
∥∇θt∥2L2 +C∥u∥2H2∥

√
ρθt∥2L2 ;
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|J̄2|≤cv

∫
|ρt||u||∇θ||θt|dx

≤cv∥ρt∥
L

2(q−1)
q−2

∥u∥L∞∥∇θ∥L2∥θt∥L2(q−1)

≤C∥u∥H2∥∇θ∥L2

(
∥√ρθt∥L2 +∥∇θt∥L2

)
≤κ

8
∥∇θt∥2L2 +C∥√ρθt∥2L2 +C∥∇θ∥2L2∥u∥2H2 ;

|J̄3|≤∥ρ∥L∞∥∇θ∥L2∥θt∥L4∥ut∥L4

≤C∥∇θ∥L2 (∥√ρθt∥L2 +∥∇θt∥L2)∥∇ut∥L2

≤κ

8
∥∇θt∥2L2 +C∥√ρθt∥2L2 +C∥∇θ∥2L2∥∇ut∥2L2 ;

|J̄4|≤C

∫
|∇u||∇ut|θtdx

≤C∥∇u∥L4∥∇ut∥L2∥θt∥L4

≤C∥∇u∥H1∥∇ut∥L2(∥√ρθt∥L2 +∥∇θt∥L2)

≤C
(
∥√ρut∥L2 +1

)
∥∇ut∥L2(∥√ρθt∥L2 +∥∇θt∥L2)

≤κ

8
∥∇θt∥2L2 +C∥√ρut∥2L2∥∇ut∥2L2 +C∥∇ut∥2L2 +C∥√ρθt∥2L2 .

Substituting the above estimates into (3.53), we derive that

cv
d

dt
∥√ρθt∥2L2 +κ∥∇θt∥2L2 ≤C∥u∥2H2∥

√
ρθt∥2L2 +C

(
∥√ρut∥2L2 +∥∇θ∥2L2

)
∥∇ut∥2L2

+C∥√ρθt∥2L2 +C∥∇ut∥2L2 +C∥∇θ∥2L2∥u∥2H2 . (3.55)

Multiplying (3.55) by t2 yields

cv
d

dt

(
t2∥√ρθt∥2L2

)
+κt2∥∇θt∥2L2

≤C∥u∥2H2

(
t2∥√ρθt∥2L2

)
+Ct

(
∥√ρut∥2L2 +∥∇θ∥2L2

)(
t∥∇ut∥2L2

)
+Ct2∥√ρθt∥2L2 +Ct2∥∇ut∥2L2 +C

(
t2∥∇θ∥2L2

)
∥u∥2H2 +2cvt∥

√
ρθt∥2L2 , (3.56)

which, combined with Gronwall’s inequality, (3.33), (3.35), and (3.42), leads to the
desired (3.51).

Lemma 3.7. Let q be as in Theorem 1.1, then there exists a positive constant C
depending only on Ω, µ, cv, κ, q, and the initial data such that

sup
0≤t≤T

[
t2
(
∥u∥2H2 +∥∇P∥2L2

)]
+

∫ T

0

t2
(
∥u∥2H3 +∥∇P∥2H1

)
dt≤C. (3.57)

Moreover, for σ as that in Lemma 3.1 and ζ(T ) as that in (3.29), one has

sup
ζ(T )≤t≤T

[
eσt

(
∥u∥2H2 +∥∇P∥2L2

)]
≤C, (3.58)

and

sup
0≤t≤T

(
t2∥θ∥2H2

)
+

∫ T

0

t2∥θ∥2H3dt≤C(T ). (3.59)
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Proof.
(1) From (3.17) and (3.22), we have

∥u∥2H2 +∥∇P∥2L2 ≤C∥√ρut∥2L2 +C∥∇u∥2L2 . (3.60)

This along with (3.35) and (3.11) yields

sup
0≤t≤T

[
t2
(
∥u∥2H2 +∥∇P∥2L2

)]
≤C. (3.61)

We derive from (3.60), (3.29), and (3.12) that

sup
ζ(T )≤t≤T

[
eσt

(
∥u∥2H2 +∥∇P∥2L2

)]
≤C. (3.62)

We infer from (3.16), (3.2), (3.11), (3.49), and Sobolev’s inequality that

∥u∥2H3 +∥∇P∥2H1

≤C
(
∥ρut∥2H1 +∥ρu ·∇u∥2H1

)
+C∥u∥2H1

≤C∥√ρut∥2L2 +C∥u∥2L∞∥∇u∥2L2 +C∥∇(ρut)∥2L2 +C∥∇(ρu ·∇u)∥2L2 +C∥u∥2H1

≤C∥√ρut∥2L2 +C∥u∥2H2 +C∥∇ut∥2L2 +C∥u∥2H2∥u∥2H2 , (3.63)

which, together with (3.11), (3.34), (3.35), (3.61), and (3.33), yields∫ T

0

t2
(
∥u∥2H3 +∥∇P∥2H1

)
dt≤C. (3.64)

(2) It follows from (3.1)3 and (1.3) that{
−κ∆θ=2µ|D(u)|2−cvρθt−cvρu ·∇θ, in Ω,
∂θ
∂n =0, on ∂Ω.

(3.65)

Hence the standard H2-estimate for Neumann problem to the elliptic equation (see,
e.g., [15]) gives rise to

∥θ∥2H2 ≤C
(
∥|∇u|2∥2L2 +∥ρθt∥2L2 +∥ρu ·∇θ∥2L2 +∥θ∥2H1

)
≤C∥∇u∥4L4 +C∥ρ∥L∞∥√ρθt∥2L2 +C∥ρ∥L∞∥u∥2L4∥∇θ∥2L4 +C∥θ∥2H1

≤C∥∇u∥2L2∥∇u∥2H1 +C∥√ρθt∥2L2 +C∥∇u∥2L2∥∇θ∥L2∥∇θ∥H1 +C∥θ∥2H1

≤C∥∇u∥2H1 +C∥√ρθt∥2L2 +C∥∇θ∥2L2 +C∥√ρθ∥2L2 +
1

2
∥θ∥2H2 ,

due to (2.1), (3.11), and (3.26). Thus, one gets

∥θ∥2H2 ≤C∥∇u∥2H1 +C∥√ρθt∥2L2 +C∥∇θ∥2L2 +C∥√ρθ∥2L2 , (3.66)

which along with (3.61), (3.51), (3.42), and (3.23) yields

sup
0≤t≤T

(
t2∥θ∥2H2

)
≤C(T ). (3.67)

Applying (3.65), regularity theory of elliptic equation, and estimates we have shown,
it is not difficult to obtain that∫ T

0

t2∥θ∥2H3dt≤C(T ). (3.68)

This finishes the proof of Lemma 3.7.
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4. Proof of Theorem 1.1
With the a priori estimates in Section 3 at hand, we are now in a position to prove

Theorem 1.1.
By Lemma 2.1, there exists a T∗>0 such that the problem (1.1)–(1.3) has a unique

local strong solution (ρ,u,θ) on Ω×(0,T∗]. We plan to extend the local solution to all
time.

Set

T ∗=sup{T | (ρ,u,θ) is a strong solution on Ω×(0,T ]}. (4.1)

First, for any 0<τ <T∗<T ≤T ∗ with T finite, one deduces from (3.11), (3.28), (3.57),
(3.59), and [7, Theorem 4, p. 304] that

∇u, ∇θ∈C([τ,T ];H1). (4.2)

Moreover, it follows from (3.43) that

ρ∈C([0,T ];W 1,q). (4.3)

Owing to (3.2) and (3.11), we get

ρut=
√
ρ ·√ρut∈L2(0,T ;L2).

From (3.50), (3.10), and Sobolev’s inequality, one has

ρtu∈L2(0,T ;L2).

Thus, we arrive at

(ρu)t=ρut+ρtu∈L2(0,T ;L2). (4.4)

From (3.2) and (3.8), we have

ρu=
√
ρ ·√ρu∈L∞(0,T ;L2),

which, combined with (4.4), yields

ρu∈C([0,T ];L2). (4.5)

Similarly, we can derive

ρθ∈C([0,T ];L2). (4.6)

Finally, if T ∗<∞, it follows from (4.2), (4.3), and (3.11), that

(ρ,u,θ)(x,T ∗)= lim
t→T∗

(ρ,u,θ)(x,t)

satisfies the initial condition (1.4) at t=T ∗. Thus, taking (ρ,u,θ)(x,T ∗) as the initial
data, Lemma 2.1 implies that one can extend the strong solutions beyond T ∗. This
contradicts the assumption of T ∗ in (4.1). Furthermore, the estimates as those in (1.5)
and (1.6) follow from Lemmas 3.1–3.7. The proof of Theorem 1.1 is complete.
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