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GLOBAL REGULARITY AND TIME DECAY FOR THE 2D
MAGNETO-MICROPOLAR SYSTEM WITH FRACTIONAL
DISSIPATION AND PARTIAL MAGNETIC DIFFUSION∗

YUJUN LIU†

Abstract. This paper focuses on the 2D incompressible magneto-micropolar system with the
kinematic dissipation given by the fractional operator (−∆)α, the magnetic diffusion by partial Lapla-
cian and the spin dissipation by the fractional operator (−∆)γ . We prove that this system, with any
0<α<γ<1 and α+γ >1, always possesses a unique global smooth solution (u, b, w)∈Hs(R2)(s≥3)
if the initial data is sufficiently smooth. In addition, we study the large-time behavior of these smooth
solutions and obtain optimal large-time decay rates.
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1. Introduction
The micropolar fluid model is a generalization of the classical Navier-Stokes equa-

tions when the microstructure of the fluid particles is not ignored, which was first
introduced by Eringen in [21]. When one considers the micropolar fluid moving into a
magnetic field, one gets the more complete magnetic-micropolar fluids. The generalized
incompressible magneto-micropolar fluid flow in the whole 3D space is governed by the
following equations,

∂tu+u ·∇u+(µ+χ)(−∆)αu=−∇π+b ·∇b+2χ∇×w,

∂tb+u ·∇b+ν(−∆)βb=b ·∇u,

∂tw+u ·∇w+κ(−∆)γw−λ∇∇·w+4χw=2χ∇×u,

∇·u=0, ∇·b=0,

(1.1)

where u=u(x,t)∈R3 denotes the fluid velocity, b=b(x,t)∈R3 the magnetic field, w=
w(x,t)∈R3 the micro-rotational field and π(x,t) the scalar pressure with x∈R3,t≥0.

The positive parameter µ denotes the kinematic viscosity, χ the vortex viscosity,
1

ν
the

magnetic Reynolds number, κ and λ the angular viscosities. α, β, γ≥0 are the given
constants. The fractional Laplacian operator (−∆)s is defined via the Fourier transform

̂(−∆)sf(ξ)= |ξ|2sf̂(ξ).

When α=β=γ=1, (1.1) becomes the standard magneto-micropolar equations. We
define

u=(u1, u2, 0), b=(b1, b2, 0), w=(0, 0, w),
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then (1.1) becomes the 2D generalized magneto-micropolar fluid flow which can be
stated as 

∂tu+u ·∇u+(µ+χ)(−∆)αu=−∇π+b ·∇b+2χ∇⊥w,

∂tb+u ·∇b+ν(−∆)βb=b ·∇u,

∂tw+u ·∇w+κ(−∆)γw+4χw=2χ∇×u,

∇·u=0, ∇·b=0,

(1.2)

where ∇×u=∂1u2−∂2u1 and ∇⊥=(∂2, −∂1). If we ignore the magnetic field effects
in the fluid motion, i.e. b=0, the 2D magneto-micropolar problem (1.2) reduces to
the micropolar fluid equations. Physically, micropolar fluids represent fluids consist-
ing of rigid, randomly oriented (or spherical) particles suspended in a viscous medium,
where the deformation of fluid particles is ignored. This is a kind of non-Newtonian
fluid model. Magneto-micropolar fluids have been used in modeling a variety of physi-
cal phenomena involving suspensions of rigid particles in fluids, such as human blood,
polymeric suspensions, and so on. It has been applied intensively in physiological and
engineering problems. One can refer to [34, 40] for more information on these type
of fluids and the references therein. The existences of weak and strong solutions were
studied by Galdi and Rionero [25] and Yamaguchi [64]. Lukaszewicz [34] established the
global well-posedness for the micropolar equations with full viscosity. In particular, the
authors in [15,19] investigated the global regularity of solutions to (1.2) with zero angu-
lar viscosity (i.e. α=1 and γ=0) and with only angular viscosity (i.e. α=0 and γ=1),
respectively. Very recently, Dong-Wu-Xu-Ye [18] obtained the global regularity for the
2D micropolar equations with 0<α, β<1 and α+β>1. The global well-posedness and
large-time decay for the 2D micropolar equations were studied by Dong-Li-Wu in [15].
There are many important global regularity results for the 2D micropolar fluid flows
(see, e.g., [13, 15,19,63] and the references therein).

If the micro-rotation field was ignored and the vortex viscosity χ=0, then the system
(1.2) reduces to the 2D generalized magnetohydrodynamic equations (GMHD), which
describe the motion of electrically conducting fluids such as plasmas, liquid metals, and
electrolytes (see e.g., [44]). Very recently, Dong-Li-Wu in [17] obtained the global reg-
ularity for the 2D MHD equations with partial hyperresistivity. The global regularity
and time decay for the 2D magnetohydrodynamic equations with fractional dissipation
and partial magnetic diffusion was established by Dong-Jia-Li-Wu in [16]. The global
regularity of solutions for the classical MHD equations (i.e. α=β=1) has been estab-
lished in [54]. The global regularity issue for the 2D MHD system has attracted much
attention (see, e.g., [4, 7, 31, 55, 66–68]). However, whether or not there exists a global
unique classical solution to generalized magnetohydrodynamic equations (GMHD), with
α=0, β=1 or α=1, β=0 is still a challenging open problem. Recently, 2D GMHD has
been attracted a lot of attention (see, e.g. [4, 22, 31, 55, 57, 58, 70]). In particular, with
the works in [4,22,31], we have known that the 2D GMHD equations with α>0, β >1
and α=0, β >1 have a unique global classical solution. There have been significant
recent developments on the MHD equations with partial or fractional dissipation. For
details, one can refer to, for example, [2, 4–6, 9, 10, 12, 20, 22–24, 28–30, 37, 38, 49, 56–61]
and the references therein.

The magneto-micropolar system (1.2) was considered in [63], which describes the
motion of electrically conducting micropolar fluids in the presence of a magnetic field.
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However, the global regularity of the strong solution with large initial data or finite time
singularity to the 3D magneto-micropolar fluid equations (1.1) with full viscosity (i.e.
α=β=γ=1) is still an open problem. Fortunately, the local existence and uniqueness of
strong solutions, the global existence of strong solutions for small initial data, the global
existence of weak solutions were obtained in [43,45,48]. Recently, the global regularity
for (1.2) with partial dissipation was obtained by Regmi and Wu in [47]. Ma [42]
extended their results to other mixed partial viscosities cases. The global well-posedness
for (1.2) with α=β=1, γ=0 was obtained by Yamazaki in [65] and the initial-boundary
value problem for 2D magneto-micropolar equations with zero angular viscosity was
studied by Wang-Xu-Liu in [62]. Cheng-Liu [14] established the global regularity of
the 2D magnetic micropolar fluid flows with mixed partial viscosity. Shang-Wu [52]
studied the global regularity for system (1.2) with α=2, β=0, γ=0 or α>0, β=γ=1
or α+β≥2, γ=0. Very recently, Shang-Zhao [53] obtained the global regularity for
(1.2) with α=0, β >1, γ=1. The global regularity for the 2D magneto-micropolar
equations with partial and fractional dissipations was investigated by Yuan-Qiao in
[69]. Guterres, Nunes and Perusato [26] obtained the decay rates for the magneto-
micropolar system in L2(Rn)(n=2,3). Lin-Zhang [39] investigated local well-posedness
for 2D incompressible magneto-micropolar boundary layer system. There are some
scholars who have studied the initial-boundary value problem. For example, Jiu-Liu-
Wu and Yu [27] established the initial-and boundary-value problem for 2D micropolar
equations with only angular velocity dissipation. Liu-Wang [35] studied the initial-
boundary value problem for 2D micropolar equations without angular viscosity. There
are other references about the initial-boundary value problem and the references therein.
The global regularity problem and decay estimates for two classes of two-dimensional
magneto-micropolar equations with partial dissipation were obtained by Shang-Gu in
[50]. Regmi [46] studied the global existence and regularity of classical solutions to
the 2D incompressible magneto-micropolar equations with partial dissipation. Global
well-posedness for the 2D incompressible magneto-micropolar fluid system with partial
viscosity established by Lin-Xiang in [36]. Recently, Shang-Wu [52] investigated the
global regularity for 2D fractional magneto-micropolar equations.

In [52], the authors remarked that (1.1) with the fractional Laplacian operators
is physically relevant. Replacing the standard Laplacian operators, these fractional
diffusion operators model the so-called anomalous diffusion, a much studied topic in
physics, probability and finance. In this paper, we focus on the 2D magneto-micropolar
system with fractional dissipation and partial magnetic diffusion. For simplicity, we

take µ=χ=
1

2
and κ=ν=1. More precisely,



∂tu+u ·∇u+(−∆)αu=−∇π+b ·∇b+∇⊥w,

∂tb1+u ·∇b1−∂22b1=b ·∇u1,

∂tb2+u ·∇b2−∂11b2=b ·∇u2,

∂tw+u ·∇w+(−∆)γw+2w=∇×u,

∇·u=0, ∇·b=0,

u(x, 0)=u0(x), b(x, 0)= b0(x), w(x, 0)=w0(x),

(1.3)
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where 0<α<γ<1 and α+γ>1. The first goal of this paper is to establish the global
well-posedness for the system (1.3) with any sufficiently smooth initial data (u0, b0, w0).
The second goal is to study the large-time behavior of these smooth solutions and obtain
optimal large-time decay rates. More precisely, the main results of this paper are stated
as follows:

Theorem 1.1. Consider the system (1.3) with 0<α<γ<1 and α+γ>1. Assume
the initial data (u0, b0, w0)∈Hs(R2) with s≥3 and ∇·u0=∇·b0=0. Then system
(1.3) has a unique global solution (u, b, w) satisfying, for any T >0,

u∈C([0, ∞); Hs(R2))∩L2(0, T ; Hs+α(R2)),

b∈C([0, ∞); Hs(R2)), ∇b∈L2(0, T ; Hs(R2)),

w∈C([0, ∞); Hs(R2))∩L2(0, T ; Hs+γ(R2)).

(1.4)

Theorem 1.2. Consider the system (1.3) with 0<α<
1

2
, 0<γ<1 and α+γ>1.

Assume the initial data (u0, b0, w0)∈Hs(R2) with s≥3 and ∇·u0=∇·b0=0. Let
(u, b, w) be the corresponding solution to the system (1.3) as stated in Theorem 1.1. If
the initial data (u0, b0, w0) satisfies

|û0(ξ)|≤C
√
|ξ|, |ŵ0(ξ)|≤C

√
|ξ|,

∥b̂01(ξ)∥L2
ξ1
≤C

√
|ξ|2, ∥b̂02(ξ)∥L2

ξ2
≤C

√
|ξ|1.

(1.5)

Then (u, b, w) obeys, for any t>0,

∥b(t)∥L2 ≤C(1+ t)− 1
2 , ∥∇b(t)∥L2 ≤C(1+ t)−1;

∥u(t)∥L2 ≤C(1+ t)− 1
2 , ∥∇u(t)∥L2 ≤C(1+ t)− 1

2 ;

∥w(t)∥L2 ≤C(1+ t)− 3
4 , ∥∇w(t)∥L2 ≤C(1+ t)− 3

4 .

(1.6)

The rest of this paper is constructed as follows. In Section 2, we will give some notation
and preliminaries. In Section 3, we will prove Theorem 1.1. Section 4 supplies the proof
of Theorem 1.2.

2. Notation and preliminaries
For convenience, before we prove our main result, we will give some notations which

are used throughout this paper. We denote

∥f∥Lp(R2)=∥f∥p,
∂f

∂xi
=∂if,∫

fdxdy=

∫∫
R2

fdxdy,

and

∥f1,f2, · · ·,fn∥2L2(R2)=∥f1∥22+∥f2∥22+ · · ·+∥fn∥22.

Next, we will give some auxiliary lemmas. First, we recall the classical commutator
estimate (see, e.g., [33]).
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Lemma 2.1. Assume that s>0. Let 1<r<∞ and
1

r
=

1

p 1

+
1

q 1

=
1

p 2

+
1

q 2

with q1,p2∈

(1,∞) and p1,q2∈ [1,∞]. Then,

∥[Λs, f ]g∥r≤C(∥∇f∥p1∥Λs−1g∥q1 +∥Λsf∥p2∥g∥q2), (2.1)

where C is a constant depending on the indices s, r, p1, q1, p2 and q2.
The following lemma can be found in [32].

Lemma 2.2. Assume that 0<s<1 and 1<p<∞. Then,

∥Λs(fg)−fΛsg−gΛsf∥p≤C∥g∥∞∥Λsf∥p. (2.2)

The next lemma is very useful to establish the global bound of ∥∇b∥Lp .

Lemma 2.3. Assume that β>0, t>0. Consider the following equations,
∂tu+(−∆)βu=f,

u(x, 0)=u0(x).

(2.3)

Then its solution can be expressed as

u(x, t)=Kβ(·, t)∗u0+

∫ t

0

Kβ(·, t−τ)∗f(·, τ)dτ,

where the kernel function is defined via the Fourier transform

Kβ(x, t)=

∫
Rn

e−t|ξ|2βeix·ξdξ,

and Kβ(x, t) satisfies the following properties:

(i) For any t>0,

Kβ(x, t)= t
− n

2βKβ(xt
− 1

2β , 1).

(ii) For any integer m>0, 1≤ r≤∞ and any t>0,

∥∇mKβ(x, t)∥Lr(Rn)≤Ct−
m
2β− n

2β (1− 1
r ).

In particular, when β=1, K1(x, t) is the classical heat equation kernel. One can refer
to [41] for the proof. We omit it here.

The following lemma generalizes the Kato-Ponce inequality, which requires m to be
an integer (see, e.g., [32]). It also holds for any real number m≥2. One can refer to [18]
for the proof. We omit it here.

Lemma 2.4. Let 0<s<ϱ<1, m≥2,and p, q, r∈ (1, ∞)3 satisfying
1

p
=

1

q
+

1

r
. Then,

there exists a constant C=C(s,ϱ,m,p,q,r) such that

∥|f |m−2f∥p+∥Λs(|f |m−2f)∥p≤C∥f∥Bϱ
q,p

∥f∥m−2
r(m−2).

(2.4)

Next, we recall the maximal regularity property for the heat operator (see, e.g., [1]).
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Lemma 2.5. Let Gd(x,t), is the heat kernel of d-dimensional heat equation

Gd(x,t)=(4πt)−
d
2 e−

|x|2
4t ,

and define the operator A as

Af =

∫ t

0

∫
Rd

Gd(x,t)∆xf(x−y, t−s)dyds.

Then, for any T >0 and p,q∈ (1, ∞), the operator A maps Lp(0,T ;Lq(Rd)) to
Lp(0,T ;Lq(Rd)).

The next lemma gives the Lp−Lq decay estimates of the heat operator associated
with the fractional Laplacian, and which can be found in [51].

Lemma 2.6. Let α>0, µ>0, 1≤p≤ q≤∞ and m≥0. Then the Lp−Lq estimate on
the semigroup e−µ(−∆)αt is valid for any t>0,

∥∇me−µ(−∆)αt∥q ≤Ct−
m
2α− 1

α ( 1
p−

1
q ). (2.5)

3. Proof of Theorem1.1
In this section, we will prove Theorem 1.1, the global existence and uniqueness of

smooth solution to (1.3). The key component of the proof is the global a priori estimate
of ∥u, b, w∥Hs with s≥3. We will divide it into several steps. The first subsection

will construct the global H1 bound and

∫ T

0

∥w∥∞dt<∞. The second subsection will

establish Lq-bounds for the vorticity Ω=∇×u, ∇w and ∆b for any 1<q<∞. Finally,
we will prove the global bound for ∥∇u∥∞, ∥∇b∥∞ and finish the proof of Theorem
1.1.

3.1. Global H1 bound for (u, b, w). We will establish the global bounds for
∥u, b, w∥H1 .

Proposition 3.1. Assume that α, γ and (u0, b0, w0) satisfy the conditions stated
in Theorem 1.1. Then system (1.3) has a global solution (u, b, w) that satisfies, for
any T >0,

∥u, b, w∥22+
∫ T

0

∥Λαu, ∇b, Λγw∥22dt≤C,

∥Ω, j, ∇w∥22+
∫ T

0

∥ΛαΩ, ∆b, Λ1+γw∥22dt≤C,
(3.1)

where C>0 is a constant, depending on T and the initial data and j=∇×b=∂1b2−
∂2b1 is the current density and Λ=(−∆)

1
2 denotes the Zygmund operator.

Proof. We start with the energy inequality. Multiplying the equations (1.3)1∼4 by
u, b1, b2 and w, respectively and taking the L2 inner product, integrating by parts, using
the divergence-free conditions ∇·u=0 and ∇·b=0, adding the resulting equations
together, yield that

1

2

d

dt
∥u, b, w∥22+∥Λαu, ∇b, Λγw∥22+2∥w∥22
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=2

∫
Ωwdxdy≤C∥Λαu∥2∥Λ1−αw∥2≤

1

2
∥Λαu, Λγw∥22+C∥w∥22, (3.2)

where we have used the condition α+γ>1 and the following facts that∫
b ·∇b ·u dxdy+

∫
b ·∇u ·b dxdy=0,

and

∥∇b∥22≤C∥∂1b2, ∂2b1∥22.

Applying Gronwall’s inequality, we obtain the L2 bound for u, b, w as follows

∥u, b, w∥22+
∫ T

0

∥Λαu, ∇b, Λγw∥22dt≤C. (3.3)

To establish the global H1 bound, we consider the equation of the vorticity Ω=∇×u
and the current density j=∇×b, combining the Equation (1.3)4, which satisfy

∂tΩ+u ·∇Ω+Λ2αΩ+∆w=b ·∇j,

∂tj+u ·∇j−∂111b2+∂222b1=b ·∇Ω+Q(∇u, ∇b),

∂tw+u ·∇w+2w+Λ2γw=Ω,

(3.4)

where

Q(∇u, ∇b)=2∂1b1(∂1u2+∂2u1)−2∂1u1(∂1b2+∂2b1).

Multiplying the equations (3.4)1, (3.4)2 and (3.4)3 by Ω, j and Λ2(2γ−1)w, respectively
and integrating by parts yield

1

2

d

dt
∥Ω, j, Λ2γ−1w∥22+∥ΛαΩ, ∆b, Λ3γ−1w∥22+2∥Λ2γ−1w∥22

=−
∫

∆wΩdxdy+

∫
Q(∇u, ∇b)j dxdy

+

∫
ΩΛ2(2γ−1)wdxdy−

∫
[Λ2γ−1, u ·∇]wΛ2γ−1wdxdy

=I1+I2+I3+I4, (3.5)

where we have used the facts∫
b ·∇j ·Ωdxdy+

∫
b ·∇Ω ·j dxdy=0,

and∫
(−∂111b2+∂222b1)j dxdy=

∫
(−∂111b2∂1b2+∂111b2∂2b1

+∂222b1∂1b2−∂222b1∂2b1)dxdy

=

∫
(|∂11b1|2+ |∂22b1|2+ |∂11b2|2+ |∂22b2|2)dxdy=∥∆b∥22.
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Using Hölder’s and Young’s inequalities, the term I1 can be bounded as

I1=−
∫

∆wΩdxdy≤∥ΛαΩ∥2∥Λ2−αw∥2≤∥ΛαΩ∥2∥w∥
α+3γ−3
3γ−1

2 ∥Λ3γ−1w∥
2−α
3γ−1

2

≤ 1

2
∥ΛαΩ∥22+

1

6
∥Λ3γ−1w∥22+C∥w∥22,

where we need to choose α, γ satisfying α+3γ>3. Due to the divergence-free condition
∇·b=0, applying Hölder’s and the Gagliardo-Nirenberg inequalities, we can estimate
the term I2 as follows

I2=

∫
Q(∇u, ∇b)j dxdy≤∥Ω∥2∥j∥24≤

1

2
∥∆b∥22+C∥Ω∥22∥j∥22.

One can easily check that ∥∇j∥22≤∥∆b∥22. Similarly, I3 can be bounded as the term I1
for γ <2(2γ−1)<3γ−1,

I3=

∫
ΩΛ2(2γ−1)wdxdy≤∥Ω∥2∥Λγw∥

1−γ
2γ−1

2 ∥Λ3γ−1w∥
3γ−2
2γ−1

2

≤ 1

6
∥Λ3γ−1w∥22+C∥Λγw∥22+C∥Ω∥22.

Employing Hölder’s and Sobolev’s inequalities and Lemma 2.1, I4 can be estimated as

I4=−
∫
[Λ2γ−1, u ·∇]wΛ2γ−1wdxdy

≤ (∥∇u∥2∥Λ2γ−1w∥q+∥Λ2γ−1u∥p1
∥∇w∥q1)∥Λ2γ−1w∥r

≤C∥Ω∥2∥Λγw∥2∥Λ3γ−1w∥2≤
1

6
∥Λ3γ−1w∥22+C∥Ω∥22∥Λγw∥22,

where the indices are given by

q=
2

1−γ
, r=

2

γ
, p1=

2

2γ−1
, q1=

2

3−3γ
.

Inserting the estimates for I1∼ I4 into (3.5), yields

d

dt
∥Ω, j, Λ2γ−1w∥22+∥ΛαΩ, ∆b, Λ3γ−1w∥22+∥Λ2γ−1w∥22

≤C∥Λγw, j∥22∥Ω∥22+C∥Λγw∥22,

which together with (3.3) and Gronwall’s inequality imply that

∥Ω, j, Λ2γ−1w∥22+
∫ T

0

∥ΛαΩ, ∆b, Λ3γ−1w∥22dt≤C. (3.6)

Multiplying the Equation (3.4)3 by Λ2(α+γ)w and integrating over R2, we have

1

2

d

dt
∥Λα+γw∥22+∥Λα+2γw∥22+2∥Λα+γw∥22

=

∫
ΩΛ2(α+γ)wdxdy−

∫
[Λα+γ , u ·∇]wΛα+γwdxdy

=I5+I6. (3.7)
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Applying the same method as that for the case of I1, one can easily find that

I5=

∫
ΩΛ2(α+γ)wdxdy≤ 1

4
∥Λα+2γw∥22+C∥ΛαΩ∥22.

Using Hölder’s and Sobolev’s inequalities and Lemma 2.1, for α+2γ>2, one has

I6=−
∫
[Λα+γ , u ·∇]wΛα+γwdxdy

≤C(∥∇u∥ 2
γ
∥Λα+γw∥ 2

1−γ
+∥Λα+γu∥2∥∇w∥∞)∥Λα+γw∥2

≤C(∥ΛαΩ∥2∥Λα+2γw∥2∥Λα+γw∥2

+∥Λα+γ−1Ω∥2∥w∥
α+2γ−2
α+2γ

2 ∥Λα+2γw∥
2

α+2γ

2 ∥Λα+γw∥2)

≤ 1

4
∥Λα+2γw∥22+C∥Ω, ΛαΩ∥22∥Λα+γw∥22+C∥w∥22.

Combining the above two estimates with (3.6), (3.7), applying Gronwall’s inequality,
we infer that

∥Λα+γw∥22+
∫ T

0

∥Λα+2γw∥22dt≤C, (3.8)

where C is a constant only depending on T >0 and the initial data. According to (3.8)
and Sobolev’s inequality, one can find that∫ T

0

∥∇w∥∞dt≤C, (3.9)

for any T >0. Applying the operator ∇ to each side of the Equation (3.4)3 and dotting
with the resulting equation by ∇w leads to

1

2

d

dt
∥∇w∥22+∥Λ1+γw∥22+∥∇w∥22

=

∫
∇Ω∇wdxdy−

∫
∇(u ·∇w)∇wdxdy= I7+I8. (3.10)

Using Hölder’s and Sobolev’s inequalities, one can easily find that

I7=

∫
∇Ω∇wdxdy≤∥Λ1−γΩ∥2∥Λ1+γw∥2≤

1

2
∥Λ1+γw∥22+C∥Ω, ΛαΩ∥22.

By Hölder’s inequality, we have

I8=

∫
∇(u ·∇w)∇wdxdy≤∥∇w∥∞∥∇u∥2∥∇w∥2≤∥∇w∥22+C∥∇w∥2∞∥Ω∥22.

Inserting the estimates of I7∼ I8 and (3.6), (3.9), into (3.10), we obtain

∥∇w∥22+
∫ T

0

∥Λ1+γw∥22dt≤C, (3.11)

which together with (3.6) implies that

∥Ω, j, ∇w∥22+
∫ T

0

∥ΛαΩ, ∆b, Λ1+γw∥22dt≤C.
(3.12)
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3.2. Lq bounds for ∆b, Ω. In this section, we will establish the global bounds
for ∥∆b∥L2

tL
q , ∥Ω∥L∞

t Lq .

Proposition 3.2. Assume that α, γ and (u0, b0, w0) satisfies the conditions stated
in Theorem 1.1. Then system (1.3) has a global solution (u, b, w) satisfying, for any
T >0 and 1<q<∞,

Λ1+αb∈L∞(0, T ;L2(R2)), ∆b∈L2(0, T ;Lq(R2)), Ω∈L∞(0, T ;Lq(R2)). (3.13)

Proof. Multiplying the Equation (1.3)2 and (1.3)3 by Λ2+2αb1 and Λ2+2αb2,
respectively and integrating over R2, we obtain

1

2

d

dt
∥Λ1+αb∥22+∥Λ2+αb∥22=

∫
(b ·∇u−u ·∇b)Λ2+2αbdxdy, (3.14)

where we have used the fact

∥Λ2+αb∥22≤C∥Λ1+α∂1b2, Λ
1+α∂2b1∥22.

Applying Proposition 3.1, Hölder’s and Young’s inequalities, we find that∫
(b ·∇u−u ·∇b)Λ2+2αbdxdy

≤C(∥Λα(b ·∇u)∥2+∥Λα(u ·∇b)∥2)∥Λ2+αb∥2
≤C(∥Λαb∥∞∥∇u∥2+∥b∥∞∥Λα∇u∥2)∥Λ2+αb∥2
+C(∥Λαu∥ 2

α
∥∇b∥ 2

1−α
+∥u∥∞∥Λα∇b∥2)∥Λ2+αb∥2

≤1

4
∥Λ2+αb∥22+C∥b, Λ2b∥22∥Ω∥22+C∥b, Λ1+αb∥22∥ΛαΩ∥22

+
1

4
∥Λ2+αb∥22+C∥u, Λ1+αu∥22∥Λ1+αb∥22+C∥Ω∥22∥Λ1+αb∥22

≤1

2
∥Λ2+αb∥22+C(1+∥ΛαΩ∥22)∥Λ1+αb∥22.

Therefore Gronwall’s inequality gives

∥Λ1+αb∥22+
∫ T

0

∥Λ2+αb∥22dt≤C, (3.15)

where C is a constant depending on any T >0 and the initial data. Furthermore,
Sobolev’s inequality and Proposition 3.1 imply that

∥b∥2∞≤C∥b, Λ1+αb∥22≤C. (3.16)

Next, we will prove the Lq-bounds for ∆b. We will make full use of the special structure
of the nonlinear terms in the equation of b and the integral form of b1 and b2. Due to
the divergence-free conditions ∇·u=∇·b=0, we find that

b ·∇u1−u ·∇b1=∂2(b2u1−u2b1), (3.17)



YUJUN LIU 1221

and

b ·∇u2−u ·∇b2=∂1(b1u2−u1b2). (3.18)

In addition, we write the equations (1.3)2 and (1.3)3 in the integral form which was
previously considered in [16].

b1=

∫
R
G1(y2, t)b01(x1, x2−y2)dy2

+

∫ t

0

∫
R
G1(y2, τ)(b ·∇u1−u ·∇b1)(x1, x2−y2, t−τ)dy2dτ, (3.19)

and

b2=

∫
R
G1(y1, t)b02(x1−y1, x2)dy1

+

∫ t

0

∫
R
G1(y1, τ)(b ·∇u2−u ·∇b2)(x1−y1, x2, t−τ)dy1dτ, (3.20)

We are the first to estimate ∥∂22b1∥L2
tL

q for q∈ (2,∞). Taking the Lq-norm with respect
to x1 and then Lq-norm with respect to x2, we obtain∫ t

0

∥∂22(
∫
R
G1(y2, t)b01(x1, x2−y2)dy2)∥2qdτ

≤
∫ t

0

∥G1(y2, t)∂22b01(x1, x2−y2)dy2∥2q dτ

≤C
∫ t

0

∥G1(y2, t)∥21∥∂22b01∥2qdτ

≤Ct∥b01∥2H3 , (3.21)

where we have used the fact ∥G1(y2, t)∥1=1. Similarly, by Lemma 2.5, we have∫ t

0

∥∥∥∥∂22∫ τ

0

∫
R
G1(y2, s)(b ·∇u1−u ·∇b1)(x1, x2−y2, τ−s)dy2ds

∥∥∥∥2
q

dτ

≤C
∫ t

0

∥b ·∇u1−u ·∇b1∥2qdτ ≤C
∫ t

0

(∥b∥∞∥∇u1∥2q+∥u∥22q∥∇b1∥22q)dτ

≤C
∫ t

0

(∥Ω∥2q+∥u, Ω∥22∥b, ∆b∥22)dτ ≤C
∫ t

0

∥Ω∥2qdτ+C
∫ t

0

(1+∥∆b∥22)dτ

≤C
∫ t

0

∥Ω∥2qdτ+C(t+1), (3.22)

which together with (3.21) yields

∥∂22b1∥L2
tL

q ≤C
∫ t

0

∥Ω∥2qdτ+C(t+1). (3.23)

Due to the special structure of (3.17), we can use a similar method as above to bound
∥∂12b1∥L2

tL
q as follows∫ t

0

∥∂12(
∫
R
G1(y2, t)b01(x1, x2−y2)dy2)∥2qdτ ≤Ct∥b01∥2H3 , (3.24)
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and ∫ t

0

∥∥∥∥∂12∫ τ

0

∫
R
G1(y2, s)(b ·∇u1−u ·∇b1)(x1, x2−y2, τ−s)dy2ds

∥∥∥∥2
q

dτ

=

∫ t

0

∥∥∥∥∫ τ

0

∫
R
G1(y2, s)∂22(∂1(b2u1−u2b1))(x1, x2−y2, τ−s)dy2ds

∥∥∥∥2
q

dτ

≤C
∫ t

0

∥∂1(b2u1−u2b1))∥2qdτ ≤C
∫ t

0

(∥b∥∞∥∇u∥2q+∥u∥22q∥∇b∥22q)dτ

≤C
∫ t

0

(∥Ω∥2q+∥u, Ω∥22∥b, ∆b∥22)dτ ≤C
∫ t

0

∥Ω∥2qdτ+C
∫ t

0

(1+∥∆b∥22)dτ

≤C
∫ t

0

∥Ω∥2qdτ+C(t+1). (3.25)

Combining (3.24) and (3.25), we have

∥∂12b1∥L2
tL

q ≤C
∫ t

0

∥Ω∥2qdτ+C(t+1). (3.26)

Applying similar methods to the Equation (3.20), we obtain

∥∂11b2∥L2
tL

q , ∥∂12b2∥L2
tL

q ≤C
∫ t

0

∥Ω∥2qdτ+C(t+1), (3.27)

which together with (3.23) and (3.26), lead to

∥∆b∥L2
tL

q ≤C(∥∂11b1∥L2
tL

q +∥∂22b1∥L2
tL

q +∥∂11b2∥L2
tL

q +∥∂22b2∥L2
tL

q )

≤C
∫ t

0

∥Ω∥2qdτ+C(t+1). (3.28)

In addition, due to the divergence-free condition ∇·b=0, we have

∥∇j∥L2
tL

q ≤C∥∆b∥L2
tL

q ≤C
∫ t

0

∥Ω∥2qdτ+C(t+1). (3.29)

Clearly, if we have the global bound for ∥Ω∥L2
tL

q , which implies

∥∆b∥L2
tL

q <C(t+1).

Furthermore, Sobolev’s inequality gives

∥∇b∥L1
tL∞ <C(t+1).

Next, we will prove the crucial estimate for ∥Ω∥q. Due to the term ∆w in (3.4)1, we
can not bound ∥∇Ω∥q directly. To overcome this difficulty, we work with the combined
quantity

Z=Ω+Λ2(1−γ)w,

which was considered previously in [18]. For readers’ convenience, we give the details.
Applying Λ2(1−γ) to both sides of the Equation (3.4)3 leads to

∂tΛ
2(1−γ)w+u ·∇Λ2(1−γ)w+Λ2w+2Λ2(1−γ)w=Λ2(1−γ)Ω− [Λ2(1−γ), u ·∇]w.
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Combining the Equation (3.4)1 yields

∂tZ+u ·∇Z+Λ2αZ=−2Λ2(1−γ)w+Λ2(1−γ+α)w

+Λ2(1−γ)Ω− [Λ2(1−γ), u ·∇]w+b ·∇j. (3.30)

Although (3.30) appears to be more complex than (3.4)1, it eliminates the most regu-
larity demanding term ∆w. We can establish the estimate for ∥Z∥q and then obtain

the global bound for ∥Ω∥L1
tL

q . Due to the Proposition 3.1, (3.8) and Z=Ω+Λ2(1−γ)w,
one can easily infer that

∥Z∥2≤∥Ω∥2+∥Λ2(1−γ)w∥2≤∥Ω∥2+C∥w∥
α+3γ−3

α+γ

2 ∥Λα+γw∥
2−2γ
α+γ

2 ≤C. (3.31)

Employing Sobolev’s inequality and noting that ΛαZ=ΛαΩ+Λα+2(1−γ)w, one has∫ t

0

∥ΛαZ∥22dt≤
∫ t

0

∥ΛαΩ∥22dt+
∫ t

0

∥Λα+2(1−γ)w∥22dt

≤
∫ t

0

∥ΛαΩ∥22dt+C
∫ t

0

∥w∥
2(3γ−α−1)

1+γ

2 ∥Λ1+γw∥
2(α+2−2γ)

1+γ

2 dt≤C. (3.32)

Furthermore,

∥Z∥22+
∫ t

0

∥Z∥2 2
1−α

dt≤C. (3.33)

Next, we will prove, for any 2≤ q< 2α

1−γ
, Z obeys

∥Z∥qq+
∫ t

0

∥Z∥q q
1−α

dt≤C. (3.34)

Multiplying the Equation (3.30) by |Z|q−2Z and integrating over R2, we obtain

1

q

d

dt
∥Z∥qq+C1∥Z∥q

Ḃ
2α
q

q,q

+C2∥Z∥q q
1−α

+C3∥Λα(|Z|
q
2 )∥22

≤
∫
(−2Λ2(1−γ)w+Λ2(α+1−γ)w)|Z|q−2Zdxdy+

∫
Λ2(1−γ)Ω|Z|q−2Zdxdy

−
∫
[Λ2(1−γ), u ·∇]w|Z|q−2Zdxdy+

∫
b ·∇j|Z|q−2Zdxdy

=J1+J2+J3+J4, (3.35)

where Ḃs
p,q represents the homogeneous Besov space and we also have used the following

facts, for any 2≤ q<∞ and 0<s<1,∫
Λ2sf |f |q−2f dxdy≥C(s,q)∥Λs(|f |

q
2 )∥22, (3.36)

∫
Λ2sf |f |q−2f dxdy≥C(s,q)∥f∥q q

1−s
, (3.37)
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and ∫
Λ2sf |f |q−2f dxdy≥C(s,q)∥f∥q

Ḃ
2α
q

q,q

. (3.38)

One can refer to [3] for the inequality (3.36) and (3.37) follows from (3.36) via Sobolev’s
inequality. The inequality (3.38) can be found in [8]. Applying Hölder’s inequality and
the Hardy-Littlewood-Sobolev inequality, we have

J1=

∫
(−2Λ2(1−γ)w+Λ2(α+1−γ)w)|Z|q−2Zdxdy

≤C∥Λα(|Z|
q
2 )∥2∥Λ−α((−2Λ2(1−γ)w+Λ2(α+1−γ)w)|Z|

q
2−2Z)∥2

≤C∥Λα(|Z|
q
2 )∥2∥(−2Λ2(1−γ)w+Λ2(α+1−γ)w)|Z|

q
2−2Z∥ 2

1+α

≤C∥Λα(|Z|
q
2 )∥2∥−2Λ2(1−γ)w+Λ2(α+1−γ)w∥ 2

1+α−γ
∥|Z|

q
2−2Z∥ 2

γ

≤C∥Λα(|Z|
q
2 )∥2(∥w∥2+∥Λα+2γw∥2)∥Z∥

q
2−1
q−2
γ

≤ C3

4
∥Λα(|Z|

q
2 )∥22+C∥w, Λα+2γw∥22(∥Z∥

q−2
2 +∥Z∥q−2

q ).

Due to Z=Ω+Λ2(1−γ)w, we can bound J2 as

J2=

∫
Λ2(1−γ)Ω|Z|q−2Zdxdy

=

∫
Λ4(1−γ)w|Z|q−2Zdxdy+

∫
Λ2(1−γ)Z|Z|q−2Zdxdy

=J21+J22.

Obviously, we have 4−4γ<α+2γ. Therefore, we can bound the term J21 similarly as
J1,

J21≤
C3

4
∥Λα(|Z|

q
2 )∥22+C∥w, Λα+2γw∥22(∥Z∥

q−2
2 +∥Z∥q−2

q ).

Next, we will estimate the difficult term J22. For any 2≤ q< 2α

1−γ
, one can easily check

that 2(1−γ)− 2α

q
<

2α

q
. Then we can choose 0<s<σ<1 satisfying

2(1−γ)− 2α

q
<s<σ<

2α

q
.

According to Lemma 2.4, we obtain

J22≤C∥Λ2(1−γ)−sZ∥q∥Λs(|Z|q−2Z)∥ q
q−1

≤C(∥Z∥
Ḃ

2α
q

q,q

+∥Z∥q)∥Z∥Bσ
q,

q
q−1

∥|Z|q−2∥ q
q−2

≤C(∥Z∥
Ḃ

2α
q

q,q

+∥Z∥q)∥Z∥Bσ
q,

q
q−1

∥Z∥q−2
q

≤C(∥Z∥
Ḃ

2α
q

q,q

+∥Z∥q)∥Z∥
B

2α
q

q,q

∥Z∥q−2
q
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≤ C1

2
∥Z∥q

Ḃ
2α
q

q,q

+C∥Z∥qq,

where we have used the facts

Ḃ
2α
q

q,q ↪→Ẇ 2(1−γ)−s,q, B
2α
q

q,q ↪→Bσ
q, q

q−1
.

By Lemma 2.1 and Hölder’s inequality, J3 can be bounded as

J3=−
∫
[Λ2(1−γ), u ·∇]w|Z|q−2Zdxdy≤∥[Λ2(1−γ), u ·∇]w∥q∥|Z|q−2Z∥ q

q−1

≤C∥∇w∥∞∥Λ2(1−γ)u∥q∥Z∥q−1
q ≤C∥u, ΛαΩ∥22(1+∥Z∥qq),

where we have used the fact and (3.9), for α+2γ>2,

∥Λ2(1−γ)u∥q ≤C(∥u∥2+∥ΛαΩ∥2).

Finally, we will estimate J4. Using Hölder’s inequality, one has

J4=

∫
b ·∇j|Z|q−2Zdxdy≤∥b∥∞∥∇j∥q∥Z∥q−1

q .

According to (3.29), we have

J4≤C(∥Ω∥q+1)∥Z∥q−1
q ≤C(∥Z∥q+∥Λ2(1−γ)w∥q+1)∥Z∥q−1

q

≤C∥Z∥qq+C(∥w, Λα+γw∥22+1)∥Z∥q−1
q .

Inserting the estimates for J1∼J4 into (3.35), we find that

1

q

d

dt
∥Z∥qq+

C1

2
∥Z∥q

Ḃ
2α
q

q,q

+C2∥Z∥q q
1−α

+
C3

2
∥Λα(|Z|

q
2 )∥22

≤C(1+∥ΛαΩ, Λα+γw∥22)(1+∥Z∥qq),

which together with Gronwall’s inequality implies

∥Z∥qq+
∫ t

0

∥Z∥q q
1−α

dt≤C. (3.39)

In addition, combining with Z=Ω+Λ2(1−γ)w, one has

∥Ω∥q ≤∥Z∥q+∥Λ2(1−γ)w∥q ≤∥Z∥q+∥w, Λα+γw∥22≤C, (3.40)

which together with (3.29) leads to

∥∆b∥L2
tL

q ≤C(t+1). (3.41)

Furthermore, Sobolev’s inequality gives, for any T >0,∫ T

0

∥∇b∥∞dt≤C.
(3.42)
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3.3. L∞-bound for ∇u. In this section, we will establish the global bound
for ∥∇u∥L1

tL
∞ . This crucial global bound allows us to obtain the global bound for

∥(u, b, w)∥Hs with s>2.

Proposition 3.3. Assume that α, γ and (u0, b0, w0) satisfies the conditions stated
in Theorem 1.1. Then system (1.3) has a global solution (u, b, w) satisfying, for any
T >0,

∥Λ2u, Λ2b, Λ2w∥22+
∫ T

0

∥Λ1+αΩ, Λ2j, Λ2+γw∥22dt≤C. (3.43)

As a special consequence, for any T >0,∫ T

0

∥∇u∥∞dt≤C, (3.44)

where C depends only on T and the initial data.

Proof. Multiplying the Equations (1.3)1∼4 by Λ4u, Λ4b1, Λ
4b2 and Λ4w, respec-

tively and integrating over R2, we have

1

2

d

dt
∥Λ2u, Λ2b, Λ2w∥22+∥Λ1+αΩ, Λ2j, Λ2+γw∥22+2∥Λ2w∥22

=2

∫
ΩΛ4wdxdy+

∫
(b ·∇b)Λ4udxdy+

∫
(b ·∇u)Λ4bdxdy

−
∫
[Λ2, u ·∇]uΛ2udxdy−

∫
[Λ2, u ·∇]bΛ2bdxdy−

∫
[Λ2, u ·∇]wΛ2wdxdy

=K1+K2+K3+K4+K5+K6. (3.45)

Noting that 2<3−α<2+γ, applying Hölder’s inequality, one has

K1=2

∫
ΩΛ4wdxdy≤C∥Λ1+αΩ∥2∥Λ3−αw∥2

≤ 1

4
∥Λ1+αΩ∥22+

1

4
∥Λ2+γw∥22+C∥Λ2w∥22.

By Lemma 2.2, using Hölder’s inequality, we find that

K2=

∫
(b ·∇b)Λ4udxdy=

∫
Λ2(b ·∇b)Λ2udxdy

≤C(∥b∥∞∥Λ2j∥2+∥∇b∥∞∥Λ2b∥2)∥Λ2u∥2

≤ 1

6
∥Λ2j∥22+C∥Λ2u, Λ2b∥22.

Similarly, integrating by parts, we have

K3=

∫
(b ·∇u)Λ4bdxdy

=

∫
((Λ2(b ·∇u)−b ·Λ2∇u−∇b ·Λ2u)+b ·Λ2∇u+∇b ·Λ2u)Λ2bdxdy

≤C(∥∇u∥∞∥Λ2b∥2+∥∇b∥∞∥Λ2u∥2)∥Λ2b∥2+C∥b∥∞∥Λ2j∥2∥Λ2u∥2

≤ 1

6
∥Λ2j∥22+C(1+∥ΛαΩ∥22)∥Λ2u, Λ2b∥22.
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Applying Hölder’s inequality and Lemma 2.1, we can estimate K4 as

K4=−
∫
[Λ2, u ·∇]uΛ2udxdy≤C∥∇u∥ q

1−α
∥Λ2u∥2 2q

α+q−1

≤∥Ω∥ q
1−α

∥u∥
2(αq+α−1)

q(α+2)

2 ∥Λ2+αu∥
2(2q−α+1)

q(α+2
)

2 ≤ 1

4
∥Λ1+αΩ∥22+C.

By Lemma 2.1, one has

K5=−
∫
[Λ2, u ·∇]bΛ2bdxdy

≤C(∥∇u∥ 2
1−α

∥Λ2b∥ 2
α
+∥∇b∥∞∥Λ2u∥2)∥Λ2b∥2

≤C(∥Ω∥ 2
1−α

∥b∥
α
3
2 ∥Λ2j∥

2α
3
2 ∥Λ2b∥2+C∥Λ2u, Λ2b∥22

≤ 1

6
∥Λ2j∥22+C∥Ω∥

6
α
2

1−α

∥b∥22+C∥Λ2u, Λ2b∥22

≤ 1

6
∥Λ2j∥22+C(1+∥Λ2u, Λ2b∥22).

Similarly,

K6=−
∫
[Λ2, u ·∇]wΛ2wdxdy

≤C(∥∇u∥ 2
1−α

∥Λ2w∥ 2
α
+∥∇w∥∞∥Λ2u∥2)∥Λ2w∥2

≤C(∥Ω∥ 2
1−α

∥w∥
α+γ−1
α+γ

2 ∥Λ2+γw∥
1

α+γ

2 ∥Λ2w∥2+C∥∇w∥∞∥Λ2u, Λ2w∥22

≤ 1

4
∥Λ2+γw∥22+C(1+∥∇w∥∞)(∥Λ2u, Λ2w∥22+1).

Inserting the estimates for K1∼K6 into (3.45), we obtain

d

dt
∥Λ2u, Λ2b, Λ2w∥22+∥Λ1+αΩ, Λ2j, Λ2+γw∥22+2∥Λ2w∥22

≤C(1+∥ΛαΩ∥22+∥∇w∥∞)(∥Λ2u, Λ2u, Λ2w∥22+1).

Applying Gronwall’s inequality yields

∥Λ2u, Λ2b, Λ2w∥22+
∫ T

0

∥Λ1+αΩ, Λ2j, Λ2+γw∥22dt≤C, (3.46)

which together with Sobolev’s inequality implies (3.44). Using Proposition 3.1, Propo-
sition 3.2 and Proposition 3.3, we can prove Theorem 1.1. Multiplying the Equations
(1.3)1∼4 by Λ2su, Λ2sb1, Λ

2sb2 and Λ2sw, respectively and taking the L2-inner product
and adding with (3.1)1, we have

1

2

d

dt
∥u, b, w∥2Hs +∥Λαu, ∇b, Λγw∥22+2∥w∥2Hs

=2

∫
ΩΛ2swdxdy+

∫
[Λs, b ·∇]bΛsudxdy+

∫
[Λs, b ·∇]uΛsbdxdy

−
∫
[Λs, u ·∇]uΛsudxdy−

∫
[Λs, u ·∇]bΛsbdxdy−

∫
[Λs, u ·∇]wΛswdxdy
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=L1+L2+L3+L4+L5+L6, (3.47)

where we have used the fact

∥Λs∇b∥22≤C∥Λs∂1b2, Λ
s∂2b1∥22.

Using Hölder’s inequality, one has

L1=2

∫
ΩΛ2swdxdy≤∥Λs−γΩ∥2∥Λs+γw∥2

≤C∥u∥
α+γ−1
α+s

2 ∥Λs+αu∥
s+1−γ
α+s

2 ∥Λs+γw∥2

≤ 1

2
∥Λs+γw∥22+

1

2
∥Λs+αu∥22+C∥u∥2Hs

≤ 1

2
∥Λαu, Λγw∥2Hs +C∥u∥2Hs .

The remaining terms in (3.47) can be bounded by

C(∥∇u∥∞+∥∇b∥∞+∥∇w∥∞)∥u, b, w∥2Hs .

Inserting the estimates for L1∼L6 into (3.47) and applying Gronwall’s inequality yield,
for any T >0,

∥u, b, w∥2Hs +

∫ T

0

∥Λαu, ∇b, Λγw∥22dt≤C. (3.48)

Next, we will prove the uniqueness. One can obtain it by a standard method. We first
find the solution to a regularized system. To this end, we will give some notation as
follows. For ε>0, we denote the standard mollifier by jε, namely

jε(x)=ε
−2j(ε−1|x|),

with

j∈C∞
0 (R2), j(x)= j(|x|), suppj⊂{x||x|<1},

∫
R2

j(x)dx=1.

For any locally integrable function v, we define the mollification Jεv by

Jεv= jε ∗v.

Assume P is the Leray projection. One can establish a solution (uε, bε, wε) to the
following system



∂tu
ε+PJε((Jεu

ε) ·∇(Jεu
ε))+(−∆)αJ 2

ε u
ε=PJε((Jεb

ε) ·∇(Jεb
ε))+∇⊥(Jεw

ε),

∂tb
ε
1+Jε((Jεu

ε) ·∇(Jεb
ε
1))−J 2

ε ∂22b
ε
1=Jε((Jεb

ε) ·∇(Jεu
ε
1)),

∂tb
ε
2+Jε((Jεu

ε) ·∇(Jεb
ε
2))−J 2

ε ∂11b
ε
2=Jε((Jεb

ε) ·∇(Jεu
ε
2)),

∂tw
ε+Jε((Jεu

ε) ·∇(Jεw
ε))+J 2

ε (−∆)γwε+2wε=∇×(Jεu
ε),

∇·uε=0, ∇·bε=0,

uε(x, 0)=u0(x)∗jε, bε(x, 0)= b0(x)∗jε, wε(x, 0)=w0(x)∗jε,
(3.49)
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where 0<α<γ<1 and α+γ>1. According the proofs of Propositions 3.1, 3.2 and 3.3,
one will obtain the global estimate as follows

∥uε(t), bε(t), wε(t)∥2Hs ≤C,

for any t>0. Therefore, the global existence of the classical solution (u, b, w) to the
system (1.3) can be obtained by the standard compactness argument. The uniqueness
can also be obtained by a standard process. We omit the details. This completes the
proof of Theorem 1.1.

4. Proof of Theorem 1.2
In this section, we will prove the Theorem 1.2. The proof of Theorem 1.2 will be

divided into three stages. The first step is to show that

(1+ t)∥∇u(t), ∇b(t), w(t)∥22→0, as t→∞.

The second step will prove the global bounds for b namely,

∥∇b(t)∥2≤C(1+ t)−1, ∥b(t)∥2≤C(1+ t)−
1
2 .

Finally, we will show the decay rates for ∥u(t)∥2 and ∥w(t)∥2.

4.1. L∞-bound for ∇u. In this subsection we will show that
∥∇u(t), ∇b(t), ∇w(t)∥2 decays faster than (1+ t)−

1
2 as t→∞. More precisely, we

will prove the following proposition.

Proposition 4.1. Assume that (u0, b0, w0)∈H1. Then system (1.3) has a global
solution (u, b, w) satisfying,

lim
t→∞

t∥∇u(t), ∇b(t), ∇w(t)∥22=0. (4.1)

Proof. According to Proposition 3.1, for any 0≤ t0≤ t≤∞, we have

∥u(t), b(t), w(t)∥22+
∫ t

t0

∥Λαu, ∇b, Λγw∥22ds≤∥u(t0), b(t0), w(t0)∥22 (4.2)

and

∥Ω(t), j(t), ∇w(t)∥22+
∫ t

t0

∥ΛαΩ, ∆b, Λ1+γw∥22ds

≤∥Ω(t0), j(t0), ∇w(t0)∥22expC(1+∥u0, b0, w0∥2
2) . (4.3)

Furthermore, one has ∫ ∞

0

∥∇b(t)∥22dt≤C∥u0, b0, w0∥22,

and ∫ ∞

0

∥∇u(t)∥22dt≤
∫ ∞

0

∥Λαu(t), ΛαΩ(t)∥22dt≤C∥u0, b0, w0∥2H1 .

By Sobolev’s inequality, we infer that∫ ∞

0

∥∇w(t)∥22dt≤
∫ ∞

0

∥Λγw(t), Λ1+γw(t)∥22dt≤C∥u0, b0, w0∥2H1 .
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In particular, ∫ t

t
2

∥∇u(t), ∇b(t), ∇w(t)∥22ds→0 as t→∞,

which together with (4.3) leads to

t

2
exp−C(1+∥u0, b0, w0∥2

2)∥∇u(t), ∇b(t), ∇w(t)∥22≤
∫ t

t
2

∥∇u(t), ∇b(t), ∇w(t)∥22ds.

Furthermore, we obtain the desired decay rate

lim
t→∞

(1+ t)∥∇u(t), ∇b(t), ∇w(t)∥22=0.

This completes the proof of Proposition 4.1.

4.2. Optimal decay rates for b and ∇b. In this section we will make use of
the special structure of the nonlinear terms in the equation of b and the integral form
of b1, b2 to derive the optimal decay rates for b and ∇b.

Proposition 4.2. Assume the same conditions as those stated in Theorem 1.2. Then
system (1.3) has a global solution (u, b, w) satisfying,

∥b(t)∥2≤C(1+ t)−
1
2 , ∥∇b(t)∥≤C(1+ t)−1. (4.4)

Proof. We write the first equation of (1.3) in the integral form,

u(t)=e−(−∆)αtu0+

∫ t

0

e−(−∆)α(t−τ)(P(b ·∇b−u ·∇u)+∇⊥w)dτ

=e−(−∆)αtu0+

∫ t
2

0

e−(−∆)α(t−τ)(P(b ·∇b−u ·∇u)+∇⊥w)dτ

+

∫ t

t
2

e−(−∆)α(t−τ)(P(b ·∇b−u ·∇u)+∇⊥w)dτ, (4.5)

where P denotes the Leray projection onto divergence-free vector fields. We can elimi-
nate the pressure term by it. We split the time integral into two parts to estimate. For
t≥1, using Plancherel’s theorem and (1.5), we have

∥e−(−∆)αtu0∥2=∥e−|ξ|2αtû0∥2≤C∥e−|ξ|2αt
√
|ξ|∥2≤Ct−

3
4α .

While t<1, one has

∥e−(−∆)αtu0∥2≤∥u0∥2,

therefore,

∥e−(−∆)αtu0∥2≤C(1+ t)−
3
4α , (4.6)

where C only depends on u0. Thanks to Lemma 2.5, we obtain∥∥∥∥∥
∫ t

2

0

e−(−∆)α(t−τ)(P(b ·∇b−u ·∇u)+∇⊥w)dτ

∥∥∥∥∥
2
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=

∥∥∥∥∥
∫ t

2

0

∇e−(−∆)α(t−τ)(P(b⊗b−u⊗u)−w)dτ

∥∥∥∥∥
2

≤C
∫ t

2

0

(t−τ)− 1
α (∥u, b, w∥22+1)dτ.

For any 2<
1

α
<s<

2

α
, integrating by parts and according to Lemma 2.5, we find that∥∥∥∥∥

∫ t

t
2

e−(−∆)α(t−τ)(P(b ·∇b−u ·∇u)+∇⊥w)dτ

∥∥∥∥∥
2

=

∫ t

t
2

(t−τ)− 1
α ( 2+s

2s − 1
2 )∥b ·∇b−u ·∇u∥ 2s

2+s
dτ+

∥∥∥∥∥
∫ t

t
2

∇e−(−∆)α(t−τ)wdτ

∥∥∥∥∥
2

≤C
∫ t

t
2

(t−τ)− 1
sα (∥b∥s∥∇b∥2+∥u∥s∥∇u∥2)dτ+

∫ t

t
2

(t−τ)− 1
α ( 2+s

2s − 1
2 )∥w∥ 2s

2+s
dτ

≤C
∫ t

t
2

(t−τ)− 1
sα (∥b∥

2
s
2 ∥∇b∥2−

2
s

2 +∥u∥
2
s
2 ∥∇u∥2−

2
s

2 +∥w∥
2
s
2 ∥∇w∥1−

2
s

2 )dτ.

Inserting these estimates into (4.5), we obtain

∥u(t)∥2≤C(1+ t)−
3
4α +C

∫ t
2

0

(t−τ)− 1
α (∥u, b, w∥22+1)dτ

+C

∫ t

t
2

(t−τ)− 1
sα (∥b∥

2
s
2 ∥∇b∥2−

2
s

2 +∥u∥
2
s
2 ∥∇u∥2−

2
s

2 +∥w∥
2
s
2 ∥∇w∥1−

2
s

2 )dτ.

(4.7)

Next we will estimate ∥b(t)∥2. We write the integral form of b1 in the Equation (1.3)2,
which was considered in [16]; for readers’ convenience, we give the details as follows

b1(x1, x2, t)=G1(x2, t)∗b01+
∫ t

0

G1(x2, t−τ)∗(b ·∇u1−u ·∇b1)(τ)dτ, (4.8)

where G1 denotes the 1D heat kernel. One can easily check that for t<1,

∥G1(x2, t)∗b01∥2≤∥b01∥2.

For t≥1, using Plancherel’s theorem and (1.5), we find that

∥G1(x2, t)∗b01∥2=∥Ĝ1(ξ2, t)̂b01(ξ1, ξ2)∥2≤C∥Ĝ1(ξ2, t)∥b̂01(ξ1, ξ2)∥L2
ξ1
∥L2

ξ2

≤C∥e−|ξ2|2t
√
|ξ2|∥L2

ξ2 ≤Ct
− 1

2 .

Therefore,

∥G1(x2, t)∗b01(x1, x2)∥2≤C(1+ t)−
1
2 . (4.9)

Applying Hölder’s inequality and Lemma 2.6, we can estimate the second term in (4.8)
as ∥∥∥∥∫ t

0

G1(x2, t−τ)∗(b ·∇u1−u ·∇b1)(x1, x2, τ)dτ
∥∥∥∥
2
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≤C
∫ t

0

∥∥∥∂2G1(x2, t−τ)∥(b2u1−u2b1)(x1, x2, τ)∥L2
x1

∥∥∥
L2

x2

dτ

≤C
∫ t

0

(t−τ)− 1
2 ∥b2u1−u2b1∥2dτ ≤C

∫ t

0

(t−τ)− 1
2 ∥b∥ 2

α
∥u∥ 2

1−α
dτ

≤C
∫ t

0

(t−τ)− 1
2 ∥b∥α2 ∥∇b∥1−α

2 ∥Λαu∥2dτ, (4.10)

which together with (4.9) implies

∥b1(t)∥2≤C(1+ t)−
1
2 +C

∫ t

0

(t−τ)− 1
2 ∥b∥α2 ∥∇b∥1−α

2 ∥Λαu∥2dτ. (4.11)

Using similar methods to the integral form of b2,

b2(x1, x2, t)=G1(x1, t)∗b02+
∫ t

0

G1(x1, t−τ)∗(b ·∇u2−u ·∇b2)(τ)dτ,

one can easily to check

∥b2(t)∥2≤C(1+ t)−
1
2 +C

∫ t

0

(t−τ)− 1
2 ∥b∥α2 ∥∇b∥1−α

2 ∥Λαu∥2dτ. (4.12)

Therefore,

∥b(t)∥2≤C(1+ t)−
1
2 +C

∫ t

0

(t−τ)− 1
2 ∥b∥α2 ∥∇b∥1−α

2 ∥Λαu∥2dτ

≤C(1+ t)− 1
2 +C

∫ t
2

0

(t−τ)− 1
2 ∥b∥α2 ∥∇b∥1−α

2 ∥Λαu∥2dτ

+C

∫ t

t
2

(t−τ)− 1
2 ∥b∥α2 ∥∇b∥1−α

2 ∥u∥1−α
2 ∥∇u∥α2 dτ. (4.13)

Next we will estimate ∥w(t)∥2. Define Ψ=e2tw, applying Duhamel’s principle, we obtain
the integral form of w in the Equation (1.3)4, namely

w(t)=e−2te−(−∆)γtw0+

∫ t

0

e−2(t−τ)e−(−∆)γ(t−τ)(∇×u−u ·∇w)dτ

=e−2te−(−∆)γtw0+

∫ t
2

0

e−2(t−τ)e−(−∆)γ(t−τ)(∇×u−u ·∇w)dτ

+

∫ t

t
2

e−2(t−τ)e−(−∆)γ(t−τ)(∇×u−u ·∇w)dτ. (4.14)

For t≥1, using Plancherel’s theorem and (1.5) leads to

∥e−2te−(−∆)γtw0∥2=∥e−2te−|ξ|2γtŵ0∥2≤Ce−2t∥e−|ξ|2γt
√
|ξ|∥2≤Ct−

3
4γ .

While t<1, one has

∥e−2te−(−∆)γtw0∥2≤e−2t∥w0∥2≤C,
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therefore,

∥e−2te−(−∆)γtw0∥2≤C(1+ t)−
3
4γ . (4.15)

By Lemma 2.6, one has∥∥∥∥∥
∫ t

2

0

e−2(t−τ)e−(−∆)γ(t−τ)(∇×u−u ·∇w)dτ

∥∥∥∥∥
2

≤C

∥∥∥∥∥
∫ t

2

0

e−2(t−τ)∇e−(−∆)γ(t−τ)(u−u⊗w)dτ

∥∥∥∥∥
2

≤C
∫ t

2

0

e−2(t−τ)(t−τ)−
1
γ (1+∥u, w∥22)dτ

≤Ce−t

∫ t
2

0

(t−τ)−
1
γ (1+∥u, b, w∥22)dτ.

Similarly, by Lemma 2.5, for any 2<s<
2

γ
, we infer that∥∥∥∥∥

∫ t

t
2

e−2(t−τ)e−(−∆)γ(t−τ)(∇×u−u ·∇w)dτ

∥∥∥∥∥
2

≤C
∫ t

t
2

(t−τ)−
1
γ ( 2+s

2s − 1
2 )∥∇×u−u ·∇w∥ 2s

s+2
dτ

≤C
∫ t

t
2

(t−τ)−
1
sγ ∥u∥

2
s
2 ∥∇u∥1−

2
s

2 (1+∥∇w∥2)dτ.

Therefore,

∥w(t)∥2≤C(1+ t)−
3
4γ +Ce−t

∫ t
2

0

(t−τ)−
1
γ (1+∥u, b, w∥22)dτ

+C

∫ t

t
2

(t−τ)−
1
sγ ∥u∥

2
s
2 ∥∇u∥1−

2
s

2 (1+∥∇w∥2)dτ. (4.16)

Combining (4.7), (4.13) with (4.16), we obtain

∥u(t)∥2+∥b(t)∥2+∥w(t)∥2

≤C(1+ t)−
3
4γ +C(1+ t)−

1
2 +C

∫ t
2

0

(t−τ)− 1
α (∥u, b, w∥22+1)dτ

+C

∫ t
2

0

(t−τ)− 1
2 ∥b∥α2 ∥∇b∥1−α

2 ∥Λαu∥2dτ

+Ce−t

∫ t
2

0

(t−τ)−
1
γ (1+∥u, b, w∥22)dτ

+C

∫ t

t
2

(t−τ)− 1
sα (∥b∥

2
s
2 ∥∇b∥2−

2
s

2 +∥u∥
2
s
2 ∥∇u∥2−

2
s

2 +∥w∥
2
s
2 ∥∇w∥1−

2
s

2 )dτ

+C

∫ t

t
2

(t−τ)− 1
2 ∥b∥α2 ∥∇b∥1−α

2 ∥u∥1−α
2 ∥∇u∥α2 dτ



1234 REGULARITY AND DECAY FOR THE 2D MAGNETO-MICROPOLAR SYSTEM

+C

∫ t

t
2

(t−τ)−
1
sγ ∥u∥

2
s
2 ∥∇u∥1−

2
s

2 (1+∥∇w∥2)dτ. (4.17)

First, we show that, under the condition 0<α<
1

2
and for any small ε>0, the corre-

sponding solution (u, b, w) to system (1.3) satisfies

∥u(t)∥2+∥b(t)∥2+∥w(t)∥2≤C(1+ t)−
1
2+ε. (4.18)

We will use iterative methods to achieve it. We will first show, for any t≥0,

∥u(t)∥2+∥b(t)∥2+∥w(t)∥2≤C(1+ t)−( 1
2−

α
2 ). (4.19)

For notation convenience, denoting

N1(t)= sup
0≤τ≤t

{(1+τ)( 1
2−

α
2 )∥u(τ)∥2+∥b(τ)∥2+∥w(τ)∥2},

and

ψ(t)= t
1
2 (∥u(t)∥2+∥b(t)∥2+∥w(t)∥2).

Due to (4.17), we have

N1(t)≤C(1+ t)
1
2−

α
2 − 3

4γ +C(1+ t)−
α
2 +C(1+ t)

1
2−

α
2

∫ t
2

0

(t−τ)− 1
α (∥u, b, w∥22+1)dτ

+C(1+ t)
1
2−

α
2

∫ t
2

0

(t−τ)− 1
2 ∥b∥α2 ∥∇b∥1−α

2 ∥Λαu∥2dτ

+C(1+ t)
1
2−

α
2 e−t

∫ t
2

0

(t−τ)−
1
γ (1+∥u, b, w∥22)dτ

+CN1(t)
2
s (1+ t)

1
2−

α
2

∫ t

t
2

(t−τ)− 1
sα (τ−1+ 1

s−
2
s (

1
2−

α
2 )ψ(τ)2−

2
s

+τ−
1
2+

1
s−

2
s (

1
2−

α
2 )ψ(τ)1−

2
s )dτ+CN1(t)(1+ t)

1
2−

α
2

∫ t

t
2

(t−τ)− 1
2 τ−1+α

2 ψ(τ)dτ

+CN1(t)
2
s (1+ t)

1
2−

α
2

∫ t

t
2

(t−τ)−
1
sγ (τ−

1
2+

1
s−

2
s (

1
2−

α
2 )ψ(τ)1−

2
s

+τ−1+ 1
s−

2
s (

1
2−

α
2 )ψ(τ)2−

2
s )dτ

=

8∑
i=1

Mi. (4.20)

One can easily check that M1, M2≤C. For 0<α<
1

2
, we can estimate M3 as

M3=C(1+ t)
1
2−

α
2

∫ t
2

0

(t−τ)− 1
α (∥u, b, w∥22+1)dτ

≤C(∥u0, b0, w0∥22+1)(1+ t)
3
2−

α
2 − 1

α →0 as t→∞. (4.21)
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According to (4.2) and (4.3), applying Hölder’s inequality, M4 can be bounded as

M4=C(1+ t)
1
2−

α
2

∫ t
2

0

(t−τ)− 1
2 ∥b∥α2 ∥∇b∥1−α

2 ∥Λαu∥2dτ

≤C(∥u0, b0, w0∥22)
α
2

(∫ t
2

0

∥∇b∥22dτ

) 1−α
2
(∫ t

2

0

∥Λαu∥22dτ

) 1
2

≤C. (4.22)

Clearly, lim
t→∞

M5=0. Due to
1

sα
>

1

2
and lim

t→∞
ψ(t)=0, one has

lim
t→∞

M6= lim
t→∞

{CN1(t)
2
s (1+ t)

1
2−

α
2

∫ t

t
2

(t−τ)− 1
sα (τ−1+ 1

s−
2
s (

1
2−

α
2 )ψ(τ)2−

2
s

+τ−
1
2+

1
s−

2
s (

1
2−

α
2 )ψ(τ)1−

2
s )dτ}

=0. (4.23)

Similarly, due to
1

sγ
>

1

2
and lim

t→∞
ψ(t)=0, one can easily check that

lim
t→∞

M7= lim
t→∞

M8=0. (4.24)

Combining (4.21)∼ (4.24) with (4.20), we find that

N1(t)≤C+CN1(t)
2
s +

1

2
N1(t)≤C+

1

2
N1(t),

which implies N1(t)≤C. In the second step we will use the estimate (4.19) to show the
higher-order decay, for any t≥0,

∥u(t)∥2+∥b(t)∥2+∥w(t)∥2≤C(1+ t)−( 1
2−

α
2 )(1+α), (4.25)

whose proof is similar as (4.19). For simplicity, we denote ρ=(
1

2
− α

2
)(1+α) and define

N2(t)= sup
0≤τ≤t

{(1+τ)ρ∥u(τ)∥2+∥b(τ)∥2+∥w(τ)∥2}.

Applying similar methods as (4.20), we have

N1(t)≤C(1+ t)ρ−
3
4γ +C(1+ t)−

1
2+ρ+C(1+ t)ρ

∫ t
2

0

(t−τ)− 1
α (∥u, b, w∥22+1)dτ

+C(1+ t)ρ
∫ t

2

0

(t−τ)− 1
2 ∥b∥α2 ∥∇b∥1−α

2 ∥Λαu∥2dτ

+C(1+ t)ρe−t

∫ t
2

0

(t−τ)−
1
γ (1+∥u, b, w∥22)dτ

+CN2(t)
2
s (1+ t)ρ

∫ t

t
2

(t−τ)− 1
sα (τ−1+ 1

s−
2
sρψ(τ)2−

2
s +τ−

1
2+

1
s−

2
sρψ(τ)1−

2
s )dτ

+CN2(t)(1+ t)
ρ

∫ t

t
2

(t−τ)− 1
2 τ−1+α

2 ψ(τ)dτ
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+CN2(t)
2
s (1+ t)ρ

∫ t

t
2

(t−τ)−
1
sγ (τ−

1
2+

1
s−

2
sρψ(τ)1−

2
s +τ−1+ 1

s−
2
sρψ(τ)2−

2
s )dτ.

(4.26)

Combining with the estimate (4.19), most terms on the right-hand side of (4.26) can be
bounded similarly as done previously. We only need to estimate the following term

(1+ t)ρ
∫ t

2

0

(t−τ)− 1
2 ∥b∥α2 ∥∇b∥1−α

2 ∥Λαu∥2dτ.

Using Hölder inequality, we can bound it as

(1+ t)ρ
∫ t

2

0

(t−τ)− 1
2 ∥b∥α2 ∥∇b∥1−α

2 ∥Λαu∥2dτ

≤C(1+ t)ρ(1+ t)− 1
2

(∫ t
2

0

∥b∥22dτ

)α
2
(∫ t

2

0

∥∇b∥22dτ

) 1−α
2
(∫ t

2

0

∥Λαu∥22dτ

) 1
2

≤C(1+ t)−α2

2

(∫ t
2

0

(1+τ)−1+αdτ

)α
2
(∫ t

2

0

∥∇b∥22dτ

) 1−α
2
(∫ t

2

0

∥Λαu∥22dτ

) 1
2

≤C(1+ t)−α2

2 (1+ t)
α2

2

(∫ t
2

0

∥∇b∥22dτ

) 1−α
2
(∫ t

2

0

∥Λαu∥22dτ

) 1
2

≤C.

Combining these estimates with (4.26), we can infer that N2(t)≤C. Doing this process
again and again, for any natural number N , we can show that

∥u(t)∥2+∥b(t)∥2+∥w(t)∥2≤C(1+ t)−( 1
2−

α
2 )(1+α+α2+···+αN ).

Due to

lim
N→∞

(1+α+α2+ · · ·+αN )=
1

1−α
.

Therefore, for given ε>0, we have

∥u(t)∥2+∥b(t)∥2+∥w(t)∥2≤C(1+ t)−
1
2+ε. (4.27)

Next, we will show the improved decay rate for ∥∇b∥2, which can be handled similarly
as [16]. For readers’ convenience, we give the details. Invoking the integral form of b1,
we have

∥∂2b1∥2≤∥∂2G1(x2, t)∗b01∥2+
∫ t

0

∥∂2G1(x2, t−τ)∗(b ·∇u1−u ·∇b1)(τ)∥2dτ

≤∥∂2G1(x2, t)∗b01∥2

+

∫ t
2

0

∥∂22G1(x2, t−τ)∗∥(b2u1−u2b1)(x1, x2, τ)∥L2
x1
∥L2

x2
dτ

+

∫ t

t
2

∥∂22|∂2|−
1
4G1(x2, t−τ)∗∥|∂2|

1
4 (b2u1−u2b1)(x1, x2, τ)∥L2

x1
∥L2

x2
dτ
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=A1+A2+A3.

Using the Plancherel’s theorem and (1.5), one has

A1=∥∂2G1(x2, t)∗b01∥2≤C(1+ t)−1.

Define

φ(t)=(1+ t)
1
2 (∥∇u(t)∥2+∥∇b(t)∥2+∥∇w(t)∥2).

Thanks to Lemma 2.5, for any small ε>0, we can estimate A2 as

A2≤C
∫ t

2

0

(t−τ)−1∥b2u1−u2b1∥2dτ ≤
∫ t

2

0

(t−τ)−1∥u∥
1
2
2 ∥∇u∥

1
2
2 ∥b∥

1
2
2 ∥∇b∥

1
2
2 dτ

≤C
∫ t

2

0

(t−τ)−1(1+τ)−
3
4+

ε
2φ(τ)

1
2 ∥∇b∥

1
2
2 dτ.

Similarly, employing Hölder’s inequality, we have

A3=

∫ t

t
2

∥∂22|∂2|−
1
4G1(x2, t−τ)∗∥|∂2|

1
4 (b2u1−u2b1)(x1, x2, τ)∥L2

x1
∥L2

x2
dτ

≤C
∫ t

t
2

(t−τ)− 7
8 ∥|∂2|

1
4 (b2u1−u2b1)∥2dτ

≤C
∫ t

t
2

(t−τ)− 7
8 (∥|∂2|

1
4u∥4∥b∥4+∥|∂2|

1
4b∥4∥u∥4)dτ

≤C
∫ t

t
2

(t−τ)− 7
8 (∥u∥

1
4
2 ∥∇u∥

3
4
2 ∥b∥

1
2
2 ∥∇b∥

1
2
2 +∥b∥

1
4
2 ∥∇b∥

3
4
2 ∥u∥

1
2
2 ∥∇u∥

1
2
2 )dτ

≤C
∫ t

t
2

(t−τ)− 7
8 ((1+τ)−

3
4+

3ε
4 φ(τ)

3
4 ∥∇b∥

1
2
2 +(1+τ)−

5
8+

3ε
4 φ(τ)

1
2 ∥∇b∥

3
4
2 )dτ.

Combining the estimates for A1, A2, A3, we obtain

∥∂2b1∥2≤ C(1+ t)−1+C

∫ t
2

0

(t−τ)−1(1+τ)−
3
4+

ε
2φ(τ)

1
2 ∥∇b∥

1
2
2 dτ

+C

∫ t

t
2

(t−τ)− 7
8 ((1+τ)−

3
4+

3ε
4 φ(τ)

3
4 ∥∇b∥

1
2
2 +(1+τ)−

5
8+

3ε
4 φ(τ)

1
2 ∥∇b∥

3
4
2 )dτ.

(4.28)
Using similar methods as those used for b1 to the integral form of b2, one can easily
check that ∥∂1b2∥2 has the same bound of (4.28). Due to the divergence-free condition
∇·b=0, we have

∥∇b∥2≤C(∥∂2b1∥2+∥∂1b2∥2), (4.29)

Therefore, define

N3(t)= sup
0≤τ≤t

{(1+τ)∥∇b(τ)∥2},
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which satisfies

N3(t)≤C+CN3(t)
1
2 (1+ t)

∫ t
2

0

(t−τ)−1(1+τ)−
5
4+

ε
2φ(τ)

1
2 dτ

+CN3(t)
1
2 (1+ t)

∫ t

t
2

(t−τ)− 7
8 ((1+τ)−

5
4+

3ε
4 φ(τ)

3
4 dτ

+CN3(t)
3
4 (1+ t)

∫ t

t
2

(1+τ)−
11
8 + 3ε

4 φ(τ)
1
2 dτ

≤C+CN3(t)
1
2 +CN3(t)

3
4 ≤C+

1

2
N3(t),

which implies,

N3(t)≤C or ∥∇b∥2≤C(1+ t)−1.

Furthermore, according to (4.17), we obtain

∥u(t)∥2+∥b(t)∥2+∥w(t)∥2

≤C(1+ t)−
3
4γ +C(1+ t)−

1
2 +C

∫ t
2

0

(t−τ)− 1
α (∥u, b, w∥22+1)dτ

+C

∫ t
2

0

(t−τ)− 1
2 ∥b∥α2 ∥∇b∥1−α

2 ∥Λαu∥2dτ+Ce−t

∫ t
2

0

(t−τ)−
1
γ (1+∥u, b, w∥22)dτ

+C

∫ t

t
2

(t−τ)− 1
sα (∥b∥

2
s
2 ∥∇b∥2−

2
s

2 +∥u∥
2
s
2 ∥∇u∥2−

2
s

2 +∥w∥
2
s
2 ∥∇w∥1−

2
s

2 )dτ

+C

∫ t

t
2

(t−τ)− 1
2 ∥b∥α2 ∥∇b∥1−α

2 ∥u∥1−α
2 ∥∇u∥α2 dτ

+C

∫ t

t
2

(t−τ)−
1
sγ ∥u∥

2
s
2 ∥∇u∥1−

2
s

2 (1+∥∇w∥2)dτ

≤C(1+ t)−
3
4γ +C(1+ t)−

1
2 +C

∫ t
2

0

(t−τ)− 1
α ((1+τ)−1+2ε+1)dτ

+C

∫ t
2

0

(t−τ)− 1
2 (1+τ)−

3
2+

α
2 +εdτ+Ce−t

∫ t
2

0

(t−τ)−
1
γ (1+(1+τ)−1+2ε)dτ

+C

∫ t

t
2

(t−τ)− 1
sα (1+τ)−

1
2+

2ε
s dτ+C

∫ t

t
2

(t−τ)−
1
sγ (1+τ)−

1
2+

2ε
s dτ

≤C(1+ t)− 1
2 . (4.30)

This completes the proof of the Proposition 4.2.
Further, one can use a similar method as Theorem 3.1 in [11] to obtain ∥w∥2≤

C(1+ t)−
3
2 .

Next, we will improve the decay rate for ∥∇w∥2 through three steps.
Firstly, multiplying the equations (1.3)1∼4 by (1+ t)2u, (1+ t)2b1, (1+ t)2b2 and

(1+ t)2w, respectively and taking the L2 inner product, integrating by parts, using the
divergence-free conditions∇·u=0 and∇·b=0, adding the resulting equations together
and integrating from 0 to t, yield that∫ t

0

(1+τ)2∥Λαu, ∇b, Λγw∥22dτ ≤C(1+ t)−1. (4.31)
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Secondly, multiplying the equations (3.4)1∼3 by (1+ t)2Ω, (1+ t)2j and (1+

t)2Λ2(2γ−1)w, respectively and taking the L2 inner product, integrating by parts, adding
the resulting equations together and integrating from 0 to t, combining with (4.31), one
has ∫ t

0

(1+τ)2∥ΛαΩ, ∆b, Λ3γ−1w∥22dτ ≤C(1+ t)−1, (4.32)

where we have used the fact ∥Ω∥22≤C∥Λαu,ΛαΩ∥22.
In the end, multiplying the equations (3.10) by (1+ t)3∇w, respectively and taking

the L2 inner product, adding the resulting equations together and integrating from 0 to
t, combining with (4.31),(4.32), one has

(1+ t)3∥∇w∥22+
∫ t

0

(1+τ)3∥Λ1+γw,∇w∥22dτ ≤C. (4.33)

Furthermore, using Proposition 4.1 and Proposition 4.2, we complete the proof of The-
orem 1.2.
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