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LACK OF EXACT CONTROLLABILITY OF A HIGHER-ORDER
BBM-SYSTEM∗

OSCAR A. SIERRA FONSECA† AND ADEMIR F. PAZOTO‡

Abstract. The two-way propagation of a certain class of long-crested water waves is governed
approximately by systems of equations of Boussinesq type. These equations have been put forward
in various forms by many authors and their higher-order generalizations arise when modelling the
propagation of waves on large lakes, oceans and in other contexts. Considered here is a class of
such systems which couple two higher-order Benjamin-Bona-Mahony type equations. Our aim is to
investigate the controllability properties of the linearized model posed on a bounded interval. More
precisely, we study whether the solutions can be driven to a given state at a given final time by means
of controls acting on the right endpoint of the interval. We show that the model is approximately
controllable but not spectrally controllable. This means that any state can be steered arbitrarily close
to another state, but no finite linear combination of eigenfunctions, other than zero, can be steered to
zero. Our proofs rely strongly on a careful spectral analysis of the operator associated with the state
equations.

Keywords. Higher order Boussinesq system; controllability; Fourier expansion; nonharmonic
analysis.
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1. Introduction The field of dispersive equations has received increasing atten-
tion since the pioneering works of Stokes, Boussinesq and Korteweg and de Vries in
the nineteenth century. It pertains to a modern line of research which is important
both scientifically and for potential applications. On the one hand, the mathematical
theoretical research of dispersive equations is important for applied sciences since it has
provided solid foundations for the verification and applicability of these models. On the
other hand, this theoretical research has proved to be very valuable for mathematics it-
self. Such equations have presented very difficult and interesting challenges, motivating
the development of many new ideas and techniques within mathematical analysis.

Starting in the latter half of the 1960s, there have been many advances in the study
of the water wave phenomena initially observed by Boussinesq et al. and numerous
other applications have been found since then. For instance, the two-way propagation
of a certain class of long-crested water waves is governed approximately by systems of
Boussinesq type equations. First introduced by Boussinesq in the 1870’s, these equations
have been put forward in various forms by many authors and, in recent years, the
following family of Boussinesq systems was formulated and analyzed by Bona, Chen
and Saut [5, 6]:

ηt+ωx+aωxxx−bηtxx+a1ωxxxxx+b1ηtxxxx=−(ηω)x+b(ηω)xxx−α(ηωxx)x,

ωt+ηx+cηxxx−dωtxx+c1ηxxxxx+d1ωtxxxx

=−ωωx−c(ωωx)xx−(ηηxx)x+βωxωxx+ρωωxxx. (1.1)

Here, the dependent variables η=η(x,t) and w=ω(x,t) are real-valued functions of
the variables x and t and subscripts indicate partial differentiation. The parameters
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a,b,c,d,a1,c1,b1,d1 are required to fulfill the relations

a+b=
1

2
(θ2− 1

3
), c+d=

1

2
(θ2− 1

2
),

a1−b1=−1

2
(θ2− 1

3
)b+

5

24
(θ2− 1

5
)2,

c1−d1=
1

2
(1−θ2)c+ 5

24
(1−θ2)(θ2− 1

5
),

α=a+b− 1

3
, β= c+d−1, ρ= c+d, (1.2)

where θ∈ [0,1]. Conditions (1.2) come from the physics of the problem and we tacitly
assume them to hold throughout the entire paper. Depending on the problem under
study, additional restrictions on the sign of these parameters will be imposed later on.

The original system was derived by Boussinesq to describe the two-way propagation
of small-amplitude, long wavelength, gravity waves on the surface of water in a canal,
but these systems also arise when modeling the propagation of long-crested waves on
large lakes or the ocean and in other contexts. The variable, x, is proportional to the
distance in the direction of propagation while t is proportional to elapsed time. The
quantity η(t,x)+h0 corresponds to the total depth of the liquid at the point x and
at time t, where h0 is the undisturbed water depth. The variable ω(t,x) represents
the horizontal velocity at the point (x,y)=(x,θh0), at time t, where y is the vertical
coordinate, with y=0 corresponding to the channel bottom or sea bed. Thus, ω is the
horizontal velocity field at the height θh0, where θ is a fixed constant in the interval
[0,1].

Notice that, when the parameters given in (1.2) are such that a=a1= c= c1=0,
the resulting system couples two higher order Benjamin-Bona-Mahony (BBM) type
equations. If b= b1=d=d1=0, we have a coupled system of two higher order Korteweg-
de Vries (KdV) type equations.

1.1. Setting the problem. Despite the success in studying dispersive models,
the mathematical theory has been concerned with either the pure initial value problem
posed on the entire real line or the periodic-initial value problem posed on the one-
dimensional torus. A large body of literature has been concerned with the questions of
existence, uniqueness and continuous dependence of solutions corresponding to initial
data. The study of initial-boundary value problems with nonhomogeneous boundary
conditions has not progressed to the same extent.

In this paper, the goal is to advance the study of the initial-boundary value problems
exploring the dynamics of dispersive equations using mathematical analysis from the
controllability point of view. Consideration is given to an initial-boundary value prob-
lem associated to the linearized Boussinesq system (1.1) when the parameters given in
(1.2) are such that a1= c1=0. Our attention, in particular, is given to the following
distributed control system:

ηt+ωx+aωxxx−bηtxx+b1ηtxxxx=0 for x∈ (0,L), t>0,

ωt+ηx+cηxxx−dωtxx+d1ωtxxxx=0 for x∈ (0,L),t>0,

η(t,0)=0, η(t,L)=f1(t) for t≥0,

ω(t,0)=0, ω(t,L)=g1(t) for t≥0,

ηx(t,0)=0, ηx(t,L)=f2(t) for t≥0,

ωx(t,0)=0, ωx(t,L)=g2(t) for t≥0,

η(0,x)=η0(x); ω(0,x)=ω0(x) for x∈ (0,L).

(1.3)
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In (1.3), the external forcing terms fi and gi, i=1,2, are considered as control
inputs. The purpose is to see whether one can force the solutions of the system to have
certain desired properties by choosing appropriate control inputs acting at one end of
the interval. More precisely, we are mainly concerned with the following problems which
are fundamental in control theory:

Given T >0, initial states (η0,ω0) and terminal states (η1,ω1) in a certain space,
can one find appropriate control inputs fi and gi, i=1,2, so that the system (1.3) admits
a solution (η,ω) which satisfies (η(0,·),ω(0, ·))=(η0,ω0) and (η(T, ·),ω(T, ·))=(η1,ω1)?

If one can always find a control input to guide the system described by (1.3) from
any given initial state to any given terminal state, then the system is said to be exactly
controllable. If the set of all reachable states contains all the eigenfunctions associated
to the state operator (A : [H2

0 (0,2π)]
2→ [H2

0 (0,2π)]
2) the system is said to be spectrally

controllable.

Given T >0, ε>0, initial states (η0,ω0) and terminal states (η1,ω1) in a certain
space, can one find appropriate control inputs fi and gi, i=1,2, so that the system (1.3)
admits a solution (η,ω) which satisfies ||(η(T, ·),ω(T, ·))−(η1,ω1)||H <ε, for a certain
space H?

This means that the set of reachable states is dense in H and, in this case, the
system is said to be approximately controllable.

Our analysis does not depend on formulas (1.2) nor on other particular relations
between the coefficients. However, in order to provide the tools needed to deal with the
problem, some sign conditions have to be imposed. More precisely, we shall be mainly
concerned with the case {

b1>0, b≥0, d1>0, d≥0
a= c>0, a1= c1=0.

(1.4)

Assumptions (1.4) allow us to prove well-posedness and controllability results in some
well chosen Sobolev spaces Hs(0,L) and Hs(0,T ), respectively.

1.2. Main results. Observe that exact controllability is an essentially stronger
notion than approximate controllability. In other words, exact controllability always
implies approximate controllability. The converse statement is generally false. In what
concerns system (1.3), our results can be summarized as follows:

• The approximate controllability holds for any T >0. In more details, we prove
that there exist control inputs fi,gi∈H1(0,T ), i=1,2, such that the set of
reachable states is dense in [L2(0,L)]2, for any (η0,ω0)∈ [H−2(0,L)]2 and T >0.

• On the other hand, we give a negative result for the first problem introduced
above.

• System (1.3) is not spectrally controllable if (η0,ω0)∈ [H2
0 (0,L)]

2. This means
that no finite linear nontrivial combination of eigenvectors of the operator as-
sociated with the state equations can be driven to zero in finite time by using
controls fi,gi∈H1(0,T ), i=1,2.

Remark 1.1. The following remarks are in order.

(i) When (η0,ω0)∈ [H−2(0,L)]2, the solution of (1.3) has to be understood in a
weak sense. For instance, it can be defined by transposition. With this ap-
proach, we have to impose that fi,gi∈H1(0,T ), i=1,2 in order to obtain a
well-posedness result.



1246 LACK OF EXACT CONTROLLABILITY OF A HIGHER-ORDER BBM-SYSTEM

(ii) Throughout the work, it will become clear that the lack of exact controllability
of the model comes from the existence of a limit point in the spectrum of the
operator associated with the state equations, a phenomenon already noticed
in [15] for the single linear BBM equation.

By means of a series expansion of the solution in terms of the eigenvectors of the state
operator, the approximate controllability is reduced to a unique continuation problem
of the eigenvectors. In what concerns the lack of exact controllability, it is addressed
through a spectral problem which is solved combining Paley-Wiener theorem and the
asymptotic behavior of the eigenvalues. Such an approach requires a careful spectral
analysis of the operator associated to the state equation. Indeed, it provides important
developments to justify the use of eigenvector expansions for the solutions, as well as,
the asymptotic behavior of the eigenvalues. However, due to the structure of the system,
the eigenvalues can not be computed explicitly. To overcome this difficulty, we prove
that they are close to the eigenvalues of a well chosen differential operator. This is done
by using less common two-dimensional versions of the shooting method and Rouché’s
theorem. Our approach was inspired by the techniques presented in [2] and [17]. In [17],
the same strategy was successfully used to study the stabilization of a linear Boussinesq
system of BBM-BBM type (a=a1= c= c1= b1=d1=0) when a localized damping term
acts on one equation only. By considering homogeneous Dirichlet boundary conditions,
the authors prove that the energy associated to the model converges to zero as time goes
to infinity. In the conservative case, i.e., in the absence of the damping term, the results
obtained in [17] were properly adapted in [2] to study the controllability problems we
address here. This approach does not apply directly in our case, since we are dealing
with a higher order Boussinesq system. Therefore, further developments are required.

Before closing this section we emphasize that the problems we address here remain
open for the corresponding nonlinear models, including for the single BBM equation. To
our knowledge, the only result on the subject was obtained in [20] for the BBM equation
on the torus T=R/(2πZ). The authors show that, when an internal control acting on
a moving interval is applied in the BBM equation, it is locally exactly controllable in
Hs(T), for any s>0, and globally exactly controllable in Hs(T), for any s>1, in a
sufficiently large time depending on the Hs-norms of the initial and terminal states.
More comments and open problems will be given in Section 5.

1.3. State of the art. The study of the controllability properties for Boussinesq
systems was initiated in [16] by considering the following abdc Boussinesq system, also
derived in [5, 6]: {

ηt+ωx+aωxxx−bηtxx=−(ηω)x,

ωt+ηx+cηxxx−dωtxx=−ωωx.
(1.5)

The constants in (1.5) obey the relations

a+b=
1

2
(θ2− 1

3
), c+d=

1

2
(θ2− 1

2
)≥0, where θ∈ [0,1]. (1.6)

The work [16] deals with the internal controllability and stabilization of (1.5) on the
torus. First, the space of the controllable data for the associated linear system is
established for each possible value of the four parameters given in (1.6). Then, when
b,d>0 and a,c<0, the local exact controllability of the nonlinear system is shown to
hold. As an application of the established exact controllability results, some simple
feedback controls are constructed for particular choices of the parameters a,b,c and d,
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such that the resulting closed-loop systems are exponentially stable. Later on, in [19],
the authors investigated the boundary stabilization of the Boussinesq system (1.5) of
KdV-KdV type (b=d=0) posed on a bounded interval. More precisely, they design a
two-parameter family of feedback laws for which the solutions issuing from small data
are globally defined and exponentially decreasing in the energy space. More recently,
in [8], the exact boundary controllability of the linear Boussinesq system (1.5) of KdV-
KdV type was studied. It was discovered that whether the associated linear system is
exactly controllable or not depends on the length of the spatial domain. The extension
of the exact controllability for the Boussinesq system (1.5) is derived in the energy space
in the case of a control of Neumann type. It is obtained by incorporating a boundary
feedback in the control in order to ensure the so-called Kato smoothing effect. In
addition, proceeding as in [19], a local exponential stability result was also derived.

Concerning the Boussinesq system (1.5) of BBM-BBM type (a= c=0), the control-
lability problems addressed here were studied in [2] for the linearized model. As pointed
out above, the results were obtained by making use of the analysis developed in [17] to
study the stabilization of the energy associated to the model when a localized damp-
ing term acts on one equation only. In the same spirit, the work [4] proposes several
dissipation mechanisms leading to systems for which one has both the global existence
of solutions and a nonincreasing energy. Following the analysis developed in [21], the
authors prove that all the trajectories are attracted by the origin provided that the
unique continuation of weak solutions holds. Finally, let us mention the work [18] (see
also [3]) in which the stability properties of the nonlinear system, posed on a periodic
domain, is addressed when generalized damping operators with nonnegative symbols
are introduced in each equation. A similar problem was studied in [9] for the model
posed on the whole real axis.

As far as we know, the controllability problem for the full system (1.1) has been
only addressed in [1] when the model is posed on a periodic domain. General conditions
are given to ensure both the well-posedness and the local exact controllability of the
nonlinear problem by means of a control localized in the interior of the domain and
acting on one equation only. On the contrary, stabilization problems have been studied
in some cases. For instance, in [7] the authors investigate the well-posedness and bound-
ary stabilization of a higher order Boussinesq system of KdV type (b= b1=d=d1=0),
posed on a bounded interval. They design a two-parameter family of feedback laws for
which the system is locally well-posed and the solutions of the linearized system are
exponentially decreasing in time. More recently, a higher order Boussinesq system of
BBM-BBM type (a=a1= c= c1=0) was considered in [3] (see also [18]). The global
well-posedness and time decay rates of solutions were studied when the model is posed
on a periodic domain and a general class of damping operator acts in each equation.
The authors prove that the solutions of the linearized system decay uniformly or not
to zero, depending on the parameters of the damping operators. In the uniform decay
case, the result is extended for the nonlinear system.

The present contribution proceeds as follows. In the next section, we establish the
well-posedness results for system (1.3). In Section 3, we present some basic results on
systems of fourth order differential equations associated to system (1.3). This allows to
analyze the spectral properties of the corresponding state operator. Section 4 provides
proofs for the results stated above. Finally, in Section 5 we present some remarks and
open problems.
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2. Well-posedness
In this section we show the well-posedness of the homogeneous and non-

homogeneous systems associated with (1.3). Throughout this work, the space
[H2

0 (0,L)]
2 will be endowed with the inner product〈(

η
ω

)
,

(
φ
ψ

)〉
=

∫ L

0

(ηφ+ωψ)dx+

∫ L

0

(bηxφx+dωxψx)dx

+

∫ L

0

(b1ηxxφxx+d1ωxxψxx)dx. (2.1)

2.1. The homogeneous system. Let us first consider the following homoge-
neous system

ηt+ωx+aωxxx−bηtxx+b1ηtxxxx=0 for x∈ (0,L), t>0,

ωt+ηx+cηxxx−dωtxx+d1ωtxxxx=0 for x∈ (0,L),t>0,

η(t,0)=η(t,L)=ω(t,0)=ω(t,L)=0 for t≥0,

ηx(t,0)=ηx(t,L)=ωx(t,0)=ωx(t,L)=0 for t≥0,

η(0,x)=η0(x); ω(0,x)=ω0(x) for x∈ (0,L).

(2.2)

System (2.2) can be written in the following vectorial form(
η
ω

)
t

(t)+A
(
η
ω

)
(t)=

(
0
0

)
,

(
η
ω

)
(0)=

(
η0

ω0

)
, (2.3)

where A is the operator belonging to L
(
[H2

0 (0,L)]
2
)
defined by

A=

(
0 (1−b∂2x+b1∂4x)−1(∂x+a∂

3
x)

(1−d∂2x+d1∂4x)−1(∂x+c∂
3
x) 0

)
. (2.4)

Recall that, for α,β>0 the operator (1−α∂2x+β∂4x)−1 is defined in the following way:

(1−α∂2x+β∂4x)−1ϕ=v⇔

{
v−αvxx+βvxxxx=ϕ in (0,L)

∂rxv(0)=∂
r
xv(L)=0, r=0,1.

(2.5)

Then, if ϕ∈L2(0,L), the elliptic equation (2.5) has a unique solution v∈H4(0,L)∩
H2

0 (0,L), the operator (1−α∂2x+β∂4x)−1 is a well-defined, compact operator in L2(0,L).

Remark 2.1. Due to the regularizing effect of the operators

(1−b∂2x+b1∂4x)−1 and (1−d∂2x+d1∂4x)−1

it follows that A takes values in [H3(0,L)∩H2
0 (0,L)]

2 which is compactly embedded in
[H2

0 (0,L)]
2. Hence A is compact.

From the classical semigroup theory, we have the following well-posedness result:

Theorem 2.1. For any (η0,ω0)∈ [H2
0 (0,L)]

2, system (2.2) has a unique classical solu-
tion (η,ω)∈C(R;[H2

0 (0,L)]
2). Moreover, (η,ω)∈Cω(R;[H2

0 (0,L)]
2), the class of analytic

functions in t∈R with values in [H2
0 (0,L)]

2.
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Proof. We first show that A is a skew-adjoint operator in [H2
0 (0,L)]

2. For any
φi,ψi∈H2

0 ∩H4(0,L), i=1,2, and some integrations by parts, we have from (2.1) that〈
A
(
φ1

ψ1

)
,

(
φ2

ψ2

)〉
=

〈(
(1−b∂2x+b1∂4x)−1(∂x+a∂

3
x)ψ1

(1−d∂2x+d1∂4x)−1(∂x+c∂
3
x)φ1

)
,

(
φ2

ψ2

)〉
=

∫ L

0

(∂x+a∂
3
x)ψ1φ2dx+

∫ L

0

(∂x+c∂
3
x)φ1ψ2dx

=−
∫ L

0

ψ1(∂x+a∂
3
x)φ2dx−

∫ L

0

φ1(∂x+c∂
3
x)ψ2dx

=−
∫ L

0

ψ1(1−d∂2x+d1∂4x)(1−d∂2x+d1∂4x)−1(∂x+a∂
3
x)φ2dx

−
∫ L

0

φ1(1−b∂2x+b1∂4x)(1−b∂2x+b1∂4x)−1(∂x+c∂
3
x)ψ2dx

=−
〈(

φ1

ψ1

)
,

(
(1−b∂2x+b1∂4x)−1(∂x+c∂

3
x)ψ2

(1−d∂2x+d1∂4x)−1(∂x+a∂
3
x)φ2

)〉
=−

〈(
φ1

ψ1

)
,A
(
φ2

ψ2

)〉
.

By a density argument, the identity above holds for any φi,ψi∈H2
0 (0,L), i=1,2. Then,

the Stone theorem guarantees that A generates a group of isometries {S(t)}t∈R in
[H2

0 (0,L)]
2, which allows us to obtain the well-posedness result. The second part of

the theorem follows from the fact that A is a compact operator in [H2
0 (0,L)]

2 (see, for
instance, [Theorem 11.4.1, Chap. XI in [14]]).

2.2. The nonhomogeneous system. In this subsection, attention will be
given to the full system (1.3). We begin with the following result:

Theorem 2.2. For any (η0,ω0)∈ [H2
0 (0,L)]

2 and (fi,gi)∈ [C1
0 (0,∞)]2, i=1,2, system

(1.3) has a unique classical solution (η,ω)∈C([0,∞);[H2
0 (0,L)]

2).

Proof. Let φi,ψi∈C∞([0,L]), i=1,2, be functions, such that

φ1(0)=ψ1(0)=φ1x(0)=ψ1x(0)=φ1x(L)=ψ1x(L)=0,

ϕ1(L)=ψ1(L)=−1

and

φ2(0)=ψ2(0)=φ2(L)=ψ2(L)=φ2x(0)=ψ2x(0)=0,

ϕ2x(L)=ψ2x(L)=−1.

For instance,

φ1(x)=ψ1(x)=− 3

L2
x2+

2

L3
x3 and φ2(x)=ψ2(x)=

1

L
x2− 1

L2
x3

satisfy the conditions above. Then, if we consider the change of functions(
z
m

)
=

(
η
ω

)
−
(
u
v

)
+

(
f1(t)φ1(x)+f2(t)φ2(x)
g1(t)ψ1(x)+g2(t)ψ2(x)

)
, (2.6)
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where (u,v)∈C([0,∞);[H2
0 (0,L)]

2) is the solution of the system

ut+vx+avxxx−butxx+b1utxxxx=0 for x∈ (0,L), t>0,

vt+ux+cuxxx−dvtxx+d1vtxxxx=0 for x∈ (0,L),t>0,

u(t,0)=u(t,L)=v(t,0)=v(t,L)=0 for t≥0,

ux(t,0)=ux(t,L)=vx(t,0)=vx(t,L)=0 for t≥0,

u(0,x)=η0(x); v(0,x)=ω0(x) for x∈ (0,L),

(2.7)

given by Theorem 2.1, the couple (z,m) solves the problem

zt+mx+amxxx−bztxx+b1ztxxxx=F for x∈ (0,L), t>0,

mt+zx+czxxx−dmtxx+d1mtxxxx=G for x∈ (0,L),t>0,

z(t,0)=z(t,L)=m(t,0)=m(t,L)=0 for t≥0,

zx(t,0)=zx(t,L)=mx(t,0)=mx(t,L)=0 for t≥0,

z(0,x)=0; m(0,x)=0 for x∈ (0,L),

(2.8)

with F and G given by(
F (t,x)

G(t,x)

)
=

(
f ′1(t)[φ1(x)−bφ(2)

1 (x)+b1φ
(4)
1 (x)]+g1(t)[ψ

′
1(x)+aψ

(3)
1 (x)]

g′1(t)[ψ1(x)−dψ(2)
1 (x)+d1ψ

(4)
1 (x)]+f1(t)[φ

′
1(x)+aφ

(3)
1 (x)]

)

+

(
f ′2(t)[φ2(x)−bφ(2)

2 (x)+b1φ
(4)
2 (x)]+g2(t)[ψ

′
2(x)+aψ

(3)
2 (x)]

g′2(t)[ψ2(x)−dψ(2)
2 (x)+d1ψ

(4)
2 (x)]+f2(t)[φ

′
2(x)+aφ

(3)
2 (x)]

)
∈L1(0,T ;[L2(0,L)]2),

where (i), i=2,3,4, denotes the derivative of order i. With the notation introduced in
the previous section, system (2.8) can be written as an abstract evolution equation as
follows {

Wt+AW =H
W (0)=0,

where W =(z,m) and H=A0(F,G)∈L1(0,∞;[H2
0 ∩H4(0,L)]2), with

A0 : [L
2(0,L)]2−→ [H2

0 ∩H4(0,L)]2 defined by

A0=

(
0 (1−b∂2x+b1∂4x)−1

(1−d∂2x+d1∂4x)−1 0

)
. (2.9)

Since A generates a group of isometries in [H2
0 (0,L)]

2, we have that system (2.8) has
a unique solution W =(z,m)∈C([0,∞);[H2

0 (0,L)]
2). Then, returning to (2.6), we con-

clude the proof.

Using the previous well-posedness results, we will study the existence of solutions
of the system (1.3) in the sense of transposition (see [10,11]):
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Definition 2.1. Let (η0,ω0)∈ [H−2(0,L)]2 and (fi,gi)∈ [H1(0,T )]2, i=1,2. A
solution of system (1.3) is a couple (η,ω)∈C([0,T ];[L2(0,L)]2), such that, for any
(h,k)∈L1(0,T ;[L2(0,L)]2), satisfies∫ T

0

∫ L

0

(ηh+ωk)dxdt+

〈(
η0

ω0

)
,

(
u(0)
v(0)

)〉
[H−2(0,L)]2,[H2

0 (0,L)]2

=

∫ T

0

f1(t)[b1utxxx+cvxx](t,L)dt+

∫ T

0

g1(t)[d1vtxxx+auxx](t,L)dt

−b1
∫ T

0

f2(t)utxx(t,L)dt−d1
∫ T

0

g2(t)vtxx(t,L)dt, (2.10)

where (u,v) is a solution of the adjoint system

ut+vx+cvxxx−butxx+b1utxxxx=h for x∈ (0,L), t>0,

vt+ux+auxxx−dvtxx+d1vtxxxx=k for x∈ (0,L),t>0,

u(t,0)=u(t,L)=v(t,0)=v(t,L)=0 for t≥0,

ux(t,0)=ux(t,L)=vx(t,0)=vx(t,L)=0 for t≥0,

u(T,x)=0; v(T,x)=0 for x∈ (0,L).

(2.11)

The existence of solutions for system (2.11) can be proved following the arguments used
in the proof of Theorem 2.2. Moreover, due to the regularizing effect of the operator
(1−α∂2x+β∂4x)−1, with α,β>0, we obtain the following result:

Theorem 2.3. If (h,k)∈L1(0,T ;[L2(0,L)]2), system (2.11) has a unique solution
(u,v)∈C([0,T ];[H2

0 ). Moreover,

||(u,v)||L1(0,T ;[H2
0∩H3(0,L)]2)+ ||(ut,vt)||L1(0,T ;[H2

0∩H4(0,L)]2)

≤C||(h,k)||L1(0,T ;[L2(0,L)]2), (2.12)

for some constant C>0.

Proof. System (2.11) can be written as an abstract evolution equation as follows{
Wt+AW =F
W (0)=0,

where W =(u,v) and F =A0(h,k)∈L1(0,∞;[H2
0 ∩H4(0,L)]2), with

A0 : [L
2(0,L)]2−→ [H2

0 ∩H4(0,L)]2 defined by (2.9). Since A generates a group
of isometries in [H2

0 (0,L)]
2, we have that system (2.11) has a unique solution W =

(u,v)∈C([0,∞);[H2
0 (0,L)]

2). Moreover, using the equations in (2.11), we deduce that
(ut,vt)∈L1(0,∞;[H2

0 ∩H3(0,L)]2) and estimate (2.12) holds. Indeed, first, observe that
each term of the equations in (2.11) belongs to L2(0,T ;H−2(0,L)). Thus, scaling the
first equation by u and the second by v we obtain

1

2

d

dt
||(u(t,·),v(t,·))||2[H2

0 (0,L)]2 =

∫ L

0

(hu+kv)dx. (2.13)

Integrating the above identity from t up to T , from Young’s inequality it follows that

||(u(t, ·),v(t,·))||2[H2
0 (0,L)]2
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≤C
(
||h||L1(0,T ;L2(0,L))||u||C([0,T ];L2(0,L))+ ||k||L1(0,T ;L2(0,L))||v||C([0,T ];L2(0,L))

)
≤C
(

1

2ϵ
||(h,k)||2L1(0,T ;[L2(0,L)]2)+

ϵ

2
||(u,v)||2C([0,T ];[L2(0,L)]2)

)
, (2.14)

for any ϵ>0, where C is a positive constant. Then, by choosing ϵ>0 sufficiently small
in (2.14) we obtain

||(u,v)||C([0,T ];[H2
0 (0,L)]2)≤C||(h,k)||L1(0,T ;[L2(0,L)]2), (2.15)

for some C>0. On the other hand, due to the regularizing effect of the operator
(1−α∂2x+β∂4x)−1, α,β >0, it follows that

(1−b∂2x+b1∂4x)−1h(t,·),(1−d∂2x+d1∂4x)−1k(t,·)∈H4(0,L)

and the operator A takes values in [H2
0 ∩H3(0,L)]2, which is compactly embedded in

[H2
0 (0,L)]

2. Thus, combining (2.15) and the equations in (2.11), it follows that

||(ut(t, ·),vt(t,·))||[H3(0,L)]2

≤ ||((1−b∂2x+b1∂4x)−1(∂x+a∂
3
x)u,(1−d∂2x+d1∂4x)−1(∂x+a∂

3
x)v)||[H3(0,L)]2

+C||((1−b∂2x+b1∂4x)−1h,(1−d∂2x+d1∂4x)−1k)||[H4(0,L)]2

≤C
(
||((∂x+a∂3x)u,(∂x+a∂3x)v)||[H−1(0,L)]2 + ||(h,k)||[L2(0,L)]2

)
≤C

(
||(u,v)||[H2

0 (0,L)]2 + ||(h,k)||[L2(0,L)]2

)
≤C

(
||(u,v)||C([0,T ];[H2

0 (0,L)]2)+ ||(h,k)||[L2(0,L)]2

)
. (2.16)

By integrating (2.16) on (0,T ) we get (ut,vt)∈L1(0,T ;[H2
0 ∩H3(0,T )]2). On the other

hand, since (u(t,x),v(t,x))=(

∫ t

0

us(s,x)ds,

∫ t

0

vs(s,x)ds), (2.16) allows us to deduce

that (u,v)∈L1(0,T ;[H2
0 ∩H3(0,T )]2) and, therefore, we obtain (2.12).

The next theorem establishes the existence and uniqueness of solutions for system
(1.3) in the sense of transposition.

Theorem 2.4. Let (η0,ω0)∈ [H−2(0,L)]2 and (fi,gi)∈ [H1(0,T )]2, i=1,2. Then,
there exists a unique solution (η,ω)∈C([0,T ];[L2(0,L)]2) of system (1.3) which verifies
(2.10).

Proof. The result is proved in two steps. We first use the Riesz representation
theorem to prove the existence of a solution in L1(0,T ;[L2(0,L)]2). Then, the continuity
in the time variable is proved by using density arguments.

We start by introducing the linear operator T :L1(0,T ;[L2(0,L)]2)−→R as follows

T ((h,k))=−
〈(

η0

ω0

)
,

(
u(0)
v(0)

)〉
[H−2(0,L)]2,[H2

0 (0,L)]2

+

∫ T

0

f1(t)[b1utxxx+cvxx](t,L)dt+

∫ T

0

g1(t)[d1vtxxx+auxx](t,L)dt

−b1
∫ T

0

f2(t)utxx(t,L)dt−d1
∫ T

0

g2(t)vtxx(t,L)dt, (2.17)
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where (u,v) is a solution of (2.11). We have that T is well defined and continuous.
Indeed, proceeding as in the proof of Theorem 2.3, we obtain identity (2.13). Then,
integrating over (0,T ), it follows that

||(u(0),v(0))||[H2
0 (0,L)]2 ≤C||(h,k)||L1(0,T ;[L2(0,L)]2), (2.18)

for some constant C>0. On the other hand, by using the Cauchy-Schwarz inequality,
the Sobolev embedding and estimate (2.12), the following estimate holds∣∣∣∣∫ T

0

f1(t)[b1utxxx+cvxx](t,L)dt+

∫ T

0

g1(t)[d1vtxxx+auxx](t,L)dt

−b1
∫ T

0

f2(t)utxx(t,L)dt−d1
∫ T

0

g2(t)vtxx(t,L)dt

∣∣∣∣
≤C

(
||(f1,g1)||[H1(0,T )]2 + ||(f2,g2)||[L2(0,T )]2

)
||(h,k)||L1(0,T ;[L2(0,L)]2), (2.19)

where C>0. Finally, (2.18) and (2.19) allow us to conclude that T ∈
L(L1(0,T ;[L2(0,L)]2);R).

Then, from the Riesz representation theorem, we obtain the existence of a unique
(η,ω)∈L∞(0,T ;[L2(0,L)]2) satisfying (2.10). Moreover,

||(η,ω)||L∞(0,T ;[L2(0,L)]2)= ||T ||L(L1(0,T ;[L2(0,L)]2);R)

≤C
(
||(η0,ω0)||[H−2(0,L)]2 + ||(f1,g1)||[H1(0,T )]2 + ||(f2,g2)||[L2(0,T )]2

)
. (2.20)

By using density arguments, starting with more regular data, we can also get the
regularity in the time variable. Indeed, since (f1,g1)∈ [H1(0,T )]2,(f2,g2)∈ [L2(0,T )]2

and (η0,ω0)∈ [H−2(0,L)]2 there exist sequences (f1,n,g1,n),(f2,n,g2,n)∈ [D(0,T )]2 and
(η0n,ω

0
n)∈ [D(0,L)]2, such that

(f1,n,g1,n)−→ (f1,g1) in [H1(0,T )]2,

(f2,n,g2,n)−→ (f2,g2) in [L2(0,T )]2,

(η0n,ω
0
n)−→ (η0,ω0) in [H−2(0,L)]2,

when n→∞. Let us denote by (ηn,ωn) the solution of the system (1.3), correspond-
ing to the data (f1,n,g1,n),(f2,n,g2,n) and (η0n,ω

0
n), given by Theorem 2.2. Then,

(ηn,ωn)∈C([0,T ];[L2(0,L)]2) and, for each n∈N, the solution (ηn,ωn) satisfies (2.10).
Thus, if (η,ω) is a solution by transposition of (1.3), it follows that (ηn,ωn)−(η,ω)
is a solution by transposition with data (f1,n,g1,n)−(f1,g1), (f2,n,g2,n)−(f2,g2) and
(η0n,ω

0
n)−(η0,ω0). Hence, by (2.20), we obtain

||(ηn,ωn)−(η,ω)||L∞(0,T ;[L2(0,L)]2)≤C
(
||(η0n,ω0

n)−(η0,ω0)||[H−2(0,L)]2

+ ||(f1,n,g1,n)−(f1,g1)||[H1(0,T )]2 + ||(f2,n,g2,n)−(f2,g2)||[L2(0,T )]2

)
.

When n→∞, from the above inequality, we deduce that (ηn,ωn)→ (η,ω) in
L∞(0,T ;[L2(0,L)]2) and, since (ηn,ωn)∈C([0,T ];[L2(0,L)]2), it follows that (η,ω)∈
C([0,T ];[L2(0,L)]2).
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3. Spectral analysis
This section is devoted to develop a spectral analysis of the operator A introduced in

(2.4). We start by presenting some explicit formula and properties of a family of initial
value problems depending on several parameters. These results allow us to obtain the
asymptotic behavior of the eigenvalues and eigenfunctions of the differential operator
associated to (1.3).

3.1. Study of some initial value problems. Firstly, we study the proper-
ties of the following simple initial value problem, where σ∈C∗ is a complex nonzero
parameter: 

aσνxxx−b1φxxxx=f for x∈ (0,L),

aσφxxx−d1νxxxx=g for x∈ (0,L),

(φ(0),ν(0))=(φ0,ν0),

(φx(0),νx(0))=(φ1,ν1),

(φxx(0),νxx(0))=(φ2,ν2),

(φxxx(0),νxxx(0))=(φ3,ν3).

(3.1)

In (3.1) a,b1 and d1 are positive real numbers. We have the following result.

Lemma 3.1. Given (φ0,φ1,φ2,φ3,ν0,ν1,ν2,ν3)∈C8 and (f,g)∈ [L2(0,L)]2, there ex-
ists a unique solution (φ,ν) to the problem (3.1) given by the formula

(
φ(x)

ν(x)

)
=

 (b1d1)
3
2

[aσ]3

[
sinh( aσx√

b1d1
)− aσx√

b1d1

]
φ3+

b1d
2
1

[aσ]3

[(
cosh( aσx√

b1d1
)−1

)
− [aσ]2

b1d1

x2

2

]
ν3

b21d1

[aσ]3

[(
cosh( aσx√

b1d1
)−1

)
− [aσ]2

b1d1

x2

2

]
φ3+ (b1d1)

3
2

[aσ]3

[
sinh( aσx√

b1d1
)− aσx√

b1d1

]
ν3



+

(
φ2 x2

2 +φ1x+φ0− 1
aσ

∫ x

0
F̄ (s)ds

ν2 x2

2 +ν1x+ν0− 1
aσ

∫ x

0
Ḡ(s)ds

)
(3.2)

where

F̄ (x)=

∫ x

0

∫ s

0

[√
d1
b1

sinh(
aσ(s−r)√

b1d1
)f(r)+

(
cosh(

aσ(s−r)√
b1d1

)−1

)
g(r)

]
drds,

Ḡ(x)=

∫ x

0

∫ s

0

[(
cosh(

aσ(s−r)√
b1d1

)−1

)
f(r)+

√
b1
d1

sinh(
aσ(s−r)√

b1d1
)g(r)

]
drds.

Proof. By setting (φxxx,νxxx)=(φ̃, ν̃) we deduce that(
φ̃x(x)

ν̃x(x)

)
=

(
0 aσ

b1

aσ
d1

0

)(
φ̃(x)

ν̃(x)

)
−

 f(x)
b1

g(x)
d1

 , (
φ̃(0)

ν̃(0)

)
=

(
φ3

ν3

)
;

consequently, (
φ̃(x)

ν̃(x)

)
=eAx

(
φ3

ν3

)
−
∫ x

0

eA(x−s)

 f(x)
b1

g(x)
d1

ds, (3.3)
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where

eAx=

 cosh( aσx√
b1d1

)
√

d1

b1
sinh( aσx√

b1d1
)√

b1
d1

sinh( aσx√
b1d1

) cosh( aσx√
b1d1

)

 .
By integrating the equations in (3.1) we obtain(

φxx(x)

νxx(x)

)
=

(
φ2− d1

aσν
3+ d1

aσ ν̃(x)+
1
aσ

∫ x

0
g(s)ds

ν2− b1
aσφ

3+ b1
aσ φ̃(x)+

1
aσ

∫ x

0
f(s)ds

)
(3.4)

and, from (3.3), it follows that(
φxx(x)

νxx(x)

)
=

φ2+
√
b1d1

aσ sinh( aσx√
b1d1

)φ3+ d1

aσ

(
cosh( aσx√

b1d1
)−1

)
ν3

ν2+ b1
aσ

(
cosh( aσx√

b1d1
)−1

)
φ3+

√
b1d1

aσ sinh( aσx√
b1d1

)ν3



− 1

aσ


∫ x

0

[√
d1

b1
sinh(aσ(x−s)√

b1d1
)f(s)+

(
cosh(aσ(x−s)√

b1d1
)−1

)
g(s)

]
ds∫ x

0

[(
cosh(aσ(x−s)√

b1d1
)−1

)
f(s)+

√
b1
d1

sinh(aσ(x−s)√
b1d1

)g(s)
]
ds

. (3.5)

After integration, we get(
φx(x)

νx(x)

)
=

φ1+ b1d1

[aσ]2

(
cosh( aσx√

b1d1
)−1

)
φ3+ d1

√
b1d1

[aσ]2 sinh( aσx√
b1d1

)ν3

ν1+ b1
√
b1d1

[aσ]2 sinh( aσx√
b1d1

)φ3+ b1d1

[aσ]2

(
cosh( aσx√

b1d1
)−1

)
ν3



+

(
(φ2− d1

aσν
3)x− 1

aσ

∫ x

0
F (s)ds

(ν2− b1
aσφ

3)x− 1
aσ

∫ x

0
G(s)ds

)
, (3.6)

where

F (x)=

∫ x

0

[√
d1
b1

sinh(
aσ(x−s)√

b1d1
)f(s)+

(
cosh(

aσ(x−s)√
b1d1

)−1

)
g(s)

]
ds,

G(x)=

∫ x

0

[(
cosh(

aσ(x−s)√
b1d1

)−1

)
f(s)+

√
b1
d1

sinh(
aσ(x−s)√

b1d1
)g(s)

]
ds.

Finally, by integrating (3.6), we obtain

(
φ(x)

ν(x)

)
=

φ0+ (b1d1)
3
2

[aσ]3 sinh( aσx√
b1d1

)φ3+
b1d

2
1

[aσ]3

(
cosh( aσx√

b1d1
)−1

)
ν3

ν0+
b21d1

[aσ]3

(
cosh( aσx√

b1d1
)−1

)
φ3+ (b1d1)

3
2

[aσ]3 sinh( aσx√
b1d1

)ν3



+

( 1
2 (φ

2− d1

aσν
3)x2+(φ1− b1d1

[aσ]2φ
3)x− 1

aσ

∫ x

0
F̄ (s)ds

1
2 (ν

2− b1
aσφ

3)x2+(ν1− b1d1

[aσ]2 ν
3)x− 1

aσ

∫ x

0
Ḡ(s)ds

)
. (3.7)

Rearranging the terms in (3.7) we obtain (3.2).
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We define the set

Z=

{
z∈C : |z|≥ 1

2
, |R(z)|≤1

}
and show that the following estimates for the solution (φ,ν) of (3.1) hold if σ∈Z.

Lemma 3.2. Let (φ,ν) be the solution of (3.1). There exists a positive constant C>0,
such that the following estimates hold for all x∈ [0,L] and σ∈Z :

2∑
i=0

∣∣∣∣diφdxi (x)
∣∣∣∣≤|φ0|+C

(
|φ1|+ |φ2|

)
+
C2

|σ|

[
|φ3|+ |ν3|+

∫ x

0

|f(s)|+ |g(s)|ds
]
, (3.8)

2∑
i=0

∣∣∣∣diνdxi (x)
∣∣∣∣≤|ν0|+C

(
|ν1|+ |ν2|

)
+
C2

|σ|

[
|φ3|+ |ν3|+

∫ x

0

|f(s)|+ |g(s)|ds
]
, (3.9)

max{|φxxx(x)|,|νxxx(x)|}≤C
[
|φ3|+ |ν3|+

∫ x

0

|f(s)|+ |g(s)|ds
]
. (3.10)

Proof. First, let us note that the following estimates hold for (φ̃, ν̃) given by (3.3):

|φ̃(x)|≤

(
|φ3|+

√
d1
b1

|ν3|

)
e
|R(σ)| ax√

b1d1 +

∫ x

0

e
|R(σ)| a(x−s)√

b1d1

[
1

b1
|f(s)|+ 1√

b1d1
|g(s)|

]
ds

≤

(
|φ3|+

√
d1
b1

|ν3|+
∫ x

0

[
1

b1
|f(s)|+ 1√

b1d1
|g(s)|

]
ds

)
e
|R(σ)| ax√

b1d1

and

|ν̃(x)|≤

(√
b1
d1

|ν3|+ |φ3|

)
e
|R(σ)| ax√

b1d1 +

∫ x

0

e
|R(σ)| a(x−s)√

b1d1

[
1√
b1d1

|f(s)|+ 1

d1
|g(s)|

]
ds

≤

(√
b1
d1

|ν3|+ |φ3|+
∫ x

0

[
1√
b1d1

|f(s)|+ 1

d1
|g(s)|

]
ds

)
e
|R(σ)| ax√

b1d1 ,

which allow us to deduce (3.10). Moreover, taking into account formulas (3.4), we obtain

|φxx(x)|≤ |φ2|+ C

|σ|

[
|φ3|+ |ν3|+

∫ x

0

|f(s)|+ |g(s)|ds
]
,

|νxx(x)|≤ |ν2|+ C

|σ|

[
|φ3|+ |ν3|+

∫ x

0

|f(s)|+ |g(s)|ds
]
.

Then, from the first estimate above and by using that

|φx(x)|≤ |φ1|+
∫ x

0

|φxx(s)|ds,

|φ(x)|≤ |φ0|+
∫ x

0

|φx(s)|ds,

for all x∈ [0,L], we obtain estimate (3.8). This argument also holds for the function v.
Thus, we obtain estimate (3.9).
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Let us now consider the following slightly more complicated system,

−ξ+bξxx−b1ξxxxx+σζx+aσζxxx=0 for x∈ (0,L),

−ζ+dζxx−d1ζxxxx+σξx+aσξxxx=0 for x∈ (0,L),

(ξ(0),ζ(0))=(ξ0,ζ0),

(ξx(0),ζx(0))=(ξ1,ζ1),

(ξxx(0),ζxx(0))=(ξ2,ζ2),

(ξxxx(0),ζxxx(0))=(ξ3,ζ3),

(3.11)

for which we have the following result.

Proposition 3.1. There exists a positive constant C>0, such that

∥(ξ,ζ)∥[W 2,∞(0,L)]2 ≤C

[
2∑

i=0

(
|ξi|+ |ζi|

)
+

1

|σ|
(
|ξ3|+ |ζ3|

)]
, (3.12)

for any σ∈Z and any solution (ξ,ζ) of (3.11).

Proof. Let σ∈Z, and let (ξ,ζ) be a solution of (3.11). Then, (ξ,ζ) satisfies

aσζxxx−b1ξxxxx= ξ−σζx−bξxx for x∈ (0,L),

aσξxxx−d1ζxxxx= ζ−σξx−dζxx for x∈ (0,L),

(ξ(0),ζ(0))=(ξ0,ζ0),

(ξx(0),ζx(0))=(ξ1,ζ1),

(ξxx(0),ζxx(0))=(ξ2,ζ2),

(ξxxx(0),ζxxx(0))=(ξ3,ζ3).

(3.13)

Since (3.13) is a system of type (3.1) with f = ξ−σζx−bξxx and g= ζ−σξx−dζxx, we
obtain from Lemma 3.2, a constant C>0, such that

2∑
i=0

∣∣∣∣ diξdxi (x)
∣∣∣∣≤|ξ0|+C

(
|ξ1|+ |ξ2|

)
+
C2

|σ|
[
|ξ3|+ |ζ3|

]
+
C2

|σ|

∫ x

0

2|σ|
2∑

i=0

(∣∣∣∣ diξdxi (s)
∣∣∣∣+ ∣∣∣∣diζdxi (s)

∣∣∣∣)ds
and

2∑
i=0

∣∣∣∣diζdxi (x)
∣∣∣∣≤|ζ0|+C

(
|ζ1|+ |ζ2|

)
+
C2

|σ|
[
|ξ3|+ |ζ3|

]
+
C2

|σ|

∫ x

0

2|σ|
2∑

i=0

(∣∣∣∣ diξdxi (s)
∣∣∣∣+ ∣∣∣∣diζdxi (s)

∣∣∣∣)ds.
By adding the estimates above, we obtain

2∑
i=0

(∣∣∣∣ diξdxi (x)
∣∣∣∣+ ∣∣∣∣diζdxi (x)

∣∣∣∣)≤C

[
2∑

i=0

(|ξi|+ |ζi|)

]
+
C2

|σ|
(|ξ3|+ |ζ3|)

+C2

∫ x

0

2∑
i=0

(∣∣∣∣ diξdxi (s)
∣∣∣∣+ ∣∣∣∣diζdxi (s)

∣∣∣∣)ds,
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for every x∈ [0,L] and σ∈Z. Then, from Gronwall’s inequality we have that (ξ,ζ) sat-
isfies (3.12).

The following result compares solutions of (3.11) and (3.1).

Proposition 3.2. There exists a positive constant C>0, such that

∥(ξ,ζ)−(φ,ν)∥[W 2,∞(0,L)]2 ≤
(
1+

C2

|σ|

)[ 2∑
i=0

(
|ξi|+ |ζi|

)
+

1

|σ|
(
|ξ3|+ |ζ3|

)]
, (3.14)

for any σ∈Z and any initial data (ξ0,ξ1,ξ2,ξ3,ζ0,ζ1,ζ2,ζ3)∈C8, where (ξ,ζ) and (φ,ν)
are the solutions, with precisely these initial data, of equations (3.11) and (3.1) with
f ≡g≡0, respectively.

Proof. We define θ= ξ−φ, u= ζ−ν and note that (θ,u) is a solution of

aσuxxx−b1θxxxx= ξ−σζx−bξxx for x∈ (0,L),

aσθxxx−d1uxxxx= ζ−σξx−dζxx for x∈ (0,L),

(θ(0),u(0))=(0,0),

(θx(0),ux(0))=(0,0),

(θxx(0),uxx(0))=(0,0),

(θxxx(0),uxxx(0))=(0,0).

(3.15)

Therefore, from Lemma 3.2 we obtain a constant C>0, such that, for every x∈ [0,L]
and σ∈Z,

2∑
i=0

(∣∣∣∣ diθdxi (x)
∣∣∣∣+ ∣∣∣∣diudxi (x)

∣∣∣∣)≤C
2

|σ|

[∫ x

0

(|ξ(s)|+ |ξxx(s)|+ |ζ(s)|+ |ζxx(s)|)ds

+

∫ x

0

|σ|(|ξx(s)|+ |ζx(s)|)ds
]
.

From the estimate above and (3.12) it follows that

2∑
i=0

(∣∣∣∣ diθdxi (x)
∣∣∣∣+ ∣∣∣∣diudxi (x)

∣∣∣∣)≤C
2

|σ|

[
2∑

i=0

(
|ξi|+ |ζi|

)
+

1

|σ|
(
|ξ3|+ |ζ3|

)]

+C2
2∑

i=0

(
|ξi|+ |ζi|

)
+

1

|σ|
(
|ξ3|+ |ζ3|

)
.

Then, the solutions (ξ,ζ) and (φ,ν) satisfy (3.14).

Finally, we consider systems (3.1) and (3.11) with distinct parameters σ. The
difference between the respective solutions are given by the following result.

Proposition 3.3. Let (φ,ν) and (ξ,ζ) be solutions of (3.1) with σ=µ and (3.11)
with σ= µ̃, respectively, and f ≡g≡0. Then, there exists a positive constant C>0, such
that

∥(ξ,ζ)−(φ,ν)∥[W 2,∞(0,L)]2
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≤C

[
2∑

i=0

(
|ξi−φi|+ |ζi−νi|

)
+

1

|µ|
(
|ξ3−φ3|+ |ζ3−ν3|+ |µ− µ̃|(|φ3|+ |ν3|)

)]
. (3.16)

Proof. We define θ= ξ−φ, u= ζ−ν, and note that (θ,u) is a solution of

aµuxxx−b1θxxxx= ξ−µζx−bξxx+a(µ̃−µ)νxxx for x∈ (0,L),

aµθxxx−d1uxxxx= ζ−µξx−dζxx+a(µ̃−µ)φxxx for x∈ (0,L),

(θ(0),u(0))=(ξ0−φ0,ζ0−ν0),

(θx(0),ux(0))=(ξ1−φ1,ζ1−ν1),

(θxx(0),uxx(0))=(ξ2−φ2,ζ2−ν2),

(θxxx(0),uxxx(0))=(ξ3−φ3,ζ3−ν3).

Therefore, from Lemma 3.2 we obtain (3.16).

3.2. Spectral analysis of the operator A. Given b1,d1>0, let us first intro-
duce the operator B : (H2

0 (0,2π))
2→ (H2

0 (0,2π))
2 given by

B=

(
0 (b1∂

4
x)

−1(a∂3x)

(d1∂
4
x)

−1(a∂3x) 0

)
. (3.17)

Recall that, for α>0, the operator (−α∂4x)−1 :L2(0,2π)→L2(0,2π) defined by

(−α∂4x)−1φ=v⇔

{
−αvxxxx=φ

∂rxv(0)=∂
r
xv(L)=0, r=0,1,

is a well-defined, compact operator in L2(0,2π).
In this section, λ∈C is called an eigenvalue of the operator A(B) if there exists

a nontrivial vector Φ=(φ,ν)∈ [H2
0 (0,L)]

2, called an eigenfunction corresponding to λ,
such that AΦ=λΦ (BΦ=λΦ). The following two theorems are devoted to the spectral
analysis of these operators.

Theorem 3.1. The eigenvalues of the operator B defined by (3.17) are λ̃n=1/µ̃n,
where

µ̃n=sgn(n)

√
b1d1
aL

((2|n|+1)π−2εn)i, (3.18)

and εn∈ (0,1), with n∈Z∗. Each eigenvalue λ̃n is double and has two independent eigen-
functions given by

Φ̃1
n=

[√
b1d1
aµ̃n

]3 S( aµ̃n√
b1d1

,x)√
b1
d1
C( aµ̃n√

b1d1
,x)

 , Φ̃2
n=

[√
b1d1
aµ̃n

]3√d1

b1
C( aµ̃n√

b1d1
,x)

S( aµ̃n√
b1d1

,x)

, (3.19)

where

S
(

aµ̃n√
b1d1

,x

)
=sinh(

aµ̃nx√
b1d1

)− aµ̃nx√
b1d1

+

[
aµ̃n√
b1d1

]3
L

([
aµ̃n√
b1d1

L

]2
−4

)−1

x2,

C
(

aµ̃n√
b1d1

,x

)
=

(
cosh(

aµ̃nx√
b1d1

)−1

)

−

[ aµ̃n√
b1d1

]2
−
[
aµ̃n√
b1d1

]4
L2

([
aµ̃n√
b1d1

L

]2
−4

)−1
 x2

2
.
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Moreover, the set
{
Φ̃j

n :n∈Z∗,j∈{1,2}
}

forms an orthogonal basis of [H2
0 (0,L)]

2.

Proof. By using Lemma 3.1, with φ0=φ1=ν0=ν1=0 and f ≡g≡0, we deduce
that (φ,ν) is an eigenfunction of B corresponding to the eigenvalue 1/µ if and only if(

φ(x)

ν(x)

)
=

1

κ3

 [sinh(κx)−κx]φ3+
√

d1

b1

[
(cosh(κx)−1)− [κx]2

2

]
ν3√

b1
d1

[
(cosh(κx)−1)− [κx]2

2

]
φ3+[sinh(κx)−κx]ν3

+

(
φ2 x2

2

ν2 x2

2

)
(3.20)

and (
φ(L)

ν(L)

)
=

(
φx(L)

νx(L)

)
=

(
0

0

)
, (3.21)

where κ=aµ/
√
b1d1. The data (φ2,ν2) can be written as a function of κ and (φ3,ν3).

Indeed, from (3.20) and (3.21) we obtain the following systems[sinh(κL)−κL]φ3+
√

d1

b1

[
(cosh(κL)−1)− [κL]2

2

]
ν3+κ3 L2

2 φ
2=0√

b1
d1

[
(cosh(κL)−1)− [κL]2

2

]
φ3+[sinh(κL)−κL]ν3+κ3 L2

2 ν
2=0

and (cosh(κL)−1)φ3+
√

d1

b1
(sinh(κL)−κL)ν3+κ2Lφ2=0√

b1
d1

(sinh(κL)−κL)φ3+(cosh(κL)−1)ν3+κ2Lν2=0.

Thus, we deduce that (φ2,ν2) should satisfy(
φ2

ν2

)
=

L

[κL]2−4

 2
√

d1

b1
Lκ√

b1
d1
Lκ 2

(φ3

ν3

)
, (3.22)

with κ ̸=±2/L. Replacing (3.22) in (3.20) we obtain(
φ(x)

ν(x)

)
=

1

κ3

 S(κ,x)
√

d1

b1
C(κ,x)√

b1
d1
C(κ,x) S(κ,x)

(φ3

ν3

)
, (3.23)

where

S(κ,x)=sinh(κx)−κx+ [κ3L]

[κL]2−4
x2

C(κ,x)=(cosh(κx)−1)−
(
κ2− [κ4L2]

[κL]2−4

)
x2

2
.

The next steps are devoted to obtaining the eigenvalue associated to the eigenfunction
given by (3.23). First, we note that Sx(κ,L)=κC(κ,L) and Cx(κ,L)=κS(κ,L). Then,
from (3.23) and the boundary conditions (3.21) we have(

φ(L)

ν(L)

)
=

1

κ3

 S(κ,L)
√

d1

b1
C(κ,L)√

b1
d1
C(κ,L) S(κ,L)

(φ3

ν3

)
=

(
0

0

)
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and (
φx(L)

νx(L)

)
=

1

κ2

 C(κ,L)
√

d1

b1
S(κ,L)√

b1
d1
S(κ,L) C(κ,L)

(φ3

ν3

)
=

(
0

0

)
.

The systems above imply that κ is a root of the equation

C(κ,L)2−S(κ,L)2=0, (3.24)

which can be written as

4

[κL]2−4

(
[κL]cosh

(
κL

2

)
−2sinh

(
κL

2

))2

=0. (3.25)

The following result allows us to localize the roots of (3.25).

Lemma 3.3. The nontrivial roots (zn)n∈Z∗ of

f(z)=zcosh
(z
2

)
−2sinh

(z
2

)
(3.26)

satisfy zn= iyn, where (yn)n∈Z∗ ⊂R are the roots of the transcendental equation

tan
(y
2

)
=
y

2
. (3.27)

Proof. First, we show that (3.26) has no roots z with R(z) ̸=0 : Indeed, if z=x+ iy
we have that

f (x+ iy)=f(x,y)=U(x,y)+ iV (x,y)

where

U(x,y)=xcosh
(x
2

)
cos
(y
2

)
−sinh

(x
2

)(
2cos

(y
2

)
+y sin

(y
2

))
,

V (x,y)=cosh
(x
2

)(
ycos

(y
2

)
−2sin

(y
2

))
+xsinh

(x
2

)
sin
(y
2

)
.

For y∈R fixed, we define the nonnegative function Ky(x) := |f(x,y)|2. Then,

• K ′
y(x)

∣∣∣∣
x=0

=xcos(y)−xcosh(x)+ 1
2 (x

2+y2)sinh(x)

∣∣∣∣
x=0

=0,

• K ′′
y (x)=

1
2 (x

2+y2−2)cosh(x)+cos(y)≥0, for all x∈R.
The statement above is proved by noting that x 7→K ′′

y (x) is increasing (decreasing) for

x>0 (x<0) and K ′′
y (0)=

1
2 (y

2−2)+cos(y)≥0, for all y∈R.
Both statements above imply that, for y∈R fixed, the convex function x 7→ |f(x,y)|2

has a global minimum value at (0,y). This shows that (x0,y0) is a root of (3.26) if and
only if x0=0 and y0 is a root of the real-valued function g(y)=ycos

(
y
2

)
−2sin

(
y
2

)
.

Then,

ycos
(y
2

)
−2sin

(y
2

)
=0⇔ tan

(y
2

)
=
y

2
.
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Fig. 3.1. The distance εn between the root xn of the equation tan(x)=x and the asymptotic

x=sgn(n) (2|n|+1)
2

π tends to 0, when |n|→∞.

By analyzing the graphs of the functions tan(x) and x (see Figure 3.1), we deduce

that the points of intersection (xn)n∈Z∗ , can be written as xn=
(2n+1)

2 π−εn, x−n=−xn,
where εn∈ (0,1), for all n≥1.

From the analysis above, we conclude that the roots (Lκn)n∈Z∗ of (3.25) satisfy
Lκn∈ iR and iLκn=−sgn(n)((2|n|+1)π−2εn), for all n∈Z∗. Then, the eigenvalues

(1/µ̃n)n∈Z∗ satisfy µ̃n=sgn(n)
√
b1d1

aL ((2|n|+1)π−2εn)i, where εn∈ (0,1), with n∈Z∗.

Remark 3.1. If 1/µ̃n is an eigenvalue of the operator B, from (3.22) we have that
(φ2,ν2) satisfies(

φ2

ν2

)
=

b1d1L

[aLµ̃n]2−4b1d1

(
2

aLµ̃n

d1

)
φ3+

b1d1L

[aLµ̃n]2−4b1d1

(
aLµ̃n

b1

2

)
ν3.

By using (3.18) we obtain∣∣∣∣∣
(
φ2

ν2

)∣∣∣∣∣≤C ′
(

1

((2|n|+1)π−2εn)2
+

1

((2|n|+1)π−2εn)

)
(|φ3|+ |ν3|)

≤ τ

|µ̃n|
(|φ3|+ |ν3|),

where τ and C ′ are positive constants.

We pass to analyze the spectral properties of the operator A. The main difference
with respect to B is that we do not have an explicit representation formula as (3.19)
for the eigenfunctions of A. Therefore, in order to prove the next theorem, we use a
strategy which combines two-dimensional versions of the shooting method and Rouché’s
theorem.

Theorem 3.2. The eigenvalues of the operator

A=

(
0 (1−b∂2x+b1∂4x)−1(∂x+a∂

3
x)

(1−d∂2x+d1∂4x)−1(∂x+a∂
3
x) 0

)

are purely imaginary numbers (1/µj
n)n∈Z∗,j∈{1,2} with the property that

µj
n= µ̃n+O

(
1

|n|

)
(n∈Z∗,j∈{1,2}). (3.28)
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Moreover, to each eigenvalue 1/µj
n corresponds an eigenfunction Φj

n given by

Φj
n=Φ̃j

n+O
(

1

|n|

)
(n∈Z∗,j∈{1,2}), (3.29)

with the property that the sequence (Φj
n)n∈Z∗,j∈{1,2} forms an orthogonal basis of

[H2
0 (0,L)]

2.

Proof. According to the proof of Theorem 2.1, A is a compact skew-adjoint
operator in [H2

0 (0,L)]
2. Then, it has a sequence of purely eigenvalues tending to zero.

In order to localize these eigenvalues, let us define, for given δ>0 and N ∈N, the sets

Dn(δ)=

{
(µ,γ,β)∈C4 : |µ− µ̃n|2+ |γ|2< δ2

n2
,|β|< τ

|µ|

}
,

Γn(δ)=∂Dn(δ), (|n|>N),

DN =

{
(µ,γ,β)∈C4 : |Rµ|≤1,|Iµ|≤

√
b1d1
aL

((2N+2)π−2εN ),|γ|≤1,|β|≤ τ

|µ|

}
,

ΓN =∂DN ,

where τ is given in Remark 3.1 and β∈C2. Also, let us define the maps F j ,Gj :C4→C4,
j∈{1,2}, by

F j(µ,γ,βj)=

((
φj(µ,γ,βj ,L)
νj(µ,γ,βj ,L)

)
,

(
φj
x(µ,γ,β

j ,L)
νjx(µ,γ,β

j ,L)

))
,

[2mm]Gj(µ,γ,βj)=

((
φ̃j(µ,γ,βj ,L)
ν̃j(µ,γ,βj ,L)

)
,

(
φ̃j
x(µ,γ,β

j ,L)
ν̃jx(µ,γ,β

j ,L)

))
,

(3.30)

where βj =(βj
1,β

j
2)∈C2, for j∈{1,2}, and(

φ1(µ,γ,β1,·)
νj(µ,γ,β1, ·)

)
,

(
φ2(µ,γ,β2,·)
ν2(µ,γ,β2, ·)

)
,

(
φ̃1(µ,γ,β1, ·)
ν̃j(µ,γ,β1, ·)

)
,

(
φ̃2(µ,γ,β2, ·)
ν̃2(µ,γ,β2, ·)

)
are solutions of the initial values problems

−φ1+bφ1
xx−b1φ1

xxxx+µν
1
x+aµν

1
xxx=0 for x∈ (0,L),

−ν1+dν1xx−d1ν1xxxx+µφ1
x+aµφ

1
xxx=0 for x∈ (0,L),

(φ1(0),ν1(0))=(0,0),

(φ1
x(0),ν

1
x(0))=(0,0),

(φ1
xx(0),ν

1
xx(0))=(β1

1 ,β
1
2),

(φ1
xxx(0),ν

1
xxx(0))=(1,γ),

(3.31)



−φ2+bφ2
xx−b1φ2

xxxx+µν
2
x+aµν

2
xxx=0 for x∈ (0,L),

−ν2+dν2xx−d1ν2xxxx+µφ2
x+aµφ

2
xxx=0 for x∈ (0,L),

(φ2(0),ν2(0))=(0,0),

(φ2
x(0),ν

2
x(0))=(0,0),

(φ2
xx(0),ν

2
xx(0))=(β2

1 ,β
2
2),

(φ2
xxx(0),ν

2
xxx(0))=(γ,1),

(3.32)
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aµν̃1xxx−b1φ̃1
xxxx=0 for x∈ (0,L),

aµφ̃1
xxx−d1ν̃1xxxx=0 for x∈ (0,L),

(φ̃1(0), ν̃1(0))=(0,0),

(φ̃1
x(0), ν̃

1
x(0))=(0,0),

(φ̃1
xx(0), ν̃

1
xx(0))=(β1

1 ,β
1
2),

(φ̃1
xxx(0), ν̃

1
xxx(0))=(1,γ),

(3.33)



aµν̃2xxx−b1φ̃2
xxxx=0 for x∈ (0,L),

aµφ̃2
xxx−d1ν̃2xxxx=0 for x∈ (0,L),

(φ̃2(0), ν̃2(0))=(0,0),

(φ̃2
x(0), ν̃

2
x(0))=(0,0),

(φ̃2
xx(0), ν̃

2
xx(0))=(β2

1 ,β
2
2),

(φ̃2
xxx(0), ν̃

2
xxx(0))=(γ,1),

(3.34)

respectively.
According to Theorem 3.1 and Remark 3.1, we observe that 1/µ̃ is an eigenvalue of

B if and only if G1(µ̃,0,β̃1)=0, where β̃1=(β̃1
1 ,β̃

1
2) satisfies

β̃1
1 =

2b1d1L

(aLµ̃)2−4b1d1
and β̃1

2 =
b1aL

2µ̃

(aLµ̃)2−4b1d1
,

or G2(µ̃,0,β̃2)=0, where β̃2=(β̃2
1 ,β̃

2
2) satisfies

β̃2
1 =

d1aL
2µ̃

(aLµ̃)2−4b1d1
and β̃2

2 =
2b1d1L

(aLµ̃)2−4b1d1
.

Moreover, from the definition (3.30) and (3.31)-(3.32), we deduce that 1/µ is an
eigenvalue of A if and only if there exists (γ,β)∈C3, such that F 1(µ,γ,β)=0 or
F 2(µ,γ,β)=0. Hence, we have reduced the problem of finding the eigenvalues of A
to the problem of determining the zeros of the maps (F j)j=1,2. We analyze only the
zeros of the map F 1, since the analysis of those of F 2 is similar. First, we note that the
maps F 1 and G1 are analytic and that

∣∣F 1(µ,γ,β)−G1(µ,γ,β)
∣∣≤ C1

|µ|

(
|Rµ|≤1, |µ|≥ 1

2
, |γ|≤1,|β|≤ τ

|µ|

)
, (3.35)

∣∣G1(µ,γ,β)
∣∣≥ δC2

|µ|
((µ,γ,β)∈Γn(δ)), (3.36)

for some positive constants C1,C2. Indeed, since µ∈Z, |γ|≤1 and |β|≤ τ
|µ| , (3.35) is a

direct consequence of Proposition 3.2. On the other hand, since G1(µ̃n,0,β̃
1
n)=0, we

can find C2>0, such that

|µ||G1(µ,γ,β)|≥ δC2,
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for (µ,γ,β)∈Γn(δ) and we obtain (3.36). It follows from the multidimensional version
of Rouché’s theorem [12, Theorem 1] (see, also, [13, Theorem 3]) that there exist δ>0
and N >0, such that the maps F 1 and G1 have the same number of zeros in Dn(δ), for
each |n|≥N. Since G1 has exactly one zero (µ̃n,0,β̃

1
n) in Dn(δ), then F

1 has a unique
zero (µ1

n,γ
1
n,β

1
n) in Dn(δ). Thus, we have obtained the eigenvalues (1/µ1

n)|n|≥N of A
and proved the corresponding asymptotic estimate (3.28). Arguing as before, we get
the existence of a family of zeros (µ2

n,γ
2
n,β

2
n)|n|≥N for the map F 2. Then, we obtain

the other sequence of eigenvalues (1/µ2
n)|n|≥N of A and the corresponding asymptotic

estimate. To obtain the remaining eigenvalues, we note that, since

S
(

aµ̃n√
b1d1

,L

)
=C

(
aµ̃n√
b1d1

,L

)
=0 for all 1≤|n|≤N,

then, there exists a positive constant C3, such that

min

{∣∣∣∣S( aµ√
b1d1

,L

)∣∣∣∣,∣∣∣∣C( aµ√
b1d1

,L

)∣∣∣∣}≥C3

for µ∈∂
(
|Rµ|≤1, |Iµ|≤

√
b1d1
aL

((2N+2)π−2εN )

)
.

This implies that
∣∣G1(µ,γ,β)

∣∣≥ δC4

|µ| ((µ,γ,β)∈ΓN ) for some C4>0. Combining the

last estimate with (3.35) and applying again the multidimensional Rouché’s theorem,
we obtain the eigenvalues (1/µ1

n)|n|≤N of A in DN . From the analysis of the map F 2

we get the existence of the remaining eigenvalues (1/µ2
n)|n|≤N .

Let us pass to the analysis of the eigenfunctions. To each eigenvalue 1/µj
n cor-

responds a unique normalized eigenfunction Φj
n satisfying (3.31) with γ=γ1n and

β=β1
n=(β1

1,n,β
1
2,n) or (3.32) with γ=γ

2
n and β=β2

n=(β2
1,n,β

2
2,n), respectively. Since

|γjn|≤
δ

|n|
, |µj

n− µ̃n|≤
δ

|n|
and |βj

n− β̃j
n|≤ τ

(
1

|µj
n|

+
1

|µ̃j
n|

)
for j=1,2,

then, from Proposition 3.3, we deduce that (3.29) is verified. Finally, since A is a
skew-adjoint operator, these eigenfunctions are orthogonal in [H2

0 (0,L)]
2.

4. Controllability
In this section we study some boundary controllability properties of the Boussinesq

system. We begin with the following exact controllability problem:

Given T >0 and an initial data (η0,ω0)∈ [H−2(0,L)]2, can we find control inputs
(fi,gi)∈ [H1(0,T )]2, i=1,2, such that the solution (η,ω) of (1.3) satisfies

(η(T,x),ω(T,x))=(0,0) for x∈ (0,L)? (4.1)

We have the following characterization of a control driving system (1.3) to the rest.

Lemma 4.1. The initial data (η0,ω0)∈ [H−2(0,L)]2 is controllable to zero in time
T >0 with controls (fi,gi)∈ [H1(0,T )]2, i=1,2, if and only if〈(

η0

ω0

)
,

(
u(0)
v(0)

)〉
[H−2(0,L)]2,[H2

0 (0,L)]2

=

∫ T

0

f1(t)[b1utxxx+cvxx](t,L)dt+

∫ T

0

g1(t)[d1vtxxx+auxx](t,L)dt
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−b1
∫ T

0

f2(t)utxx(t,L)dt−d1
∫ T

0

g2(t)vtxx(t,L)dt, (4.2)

for any solution (u,v) of the adjoint system

ut+vx+cvxxx−butxx+b1utxxxx=0 for x∈ (0,L), t∈ (0,T ),

vt+ux+auxxx−dvtxx+d1vtxxxx=0 for x∈ (0,L),t∈ (0,T ),

u(t,0)=u(t,L)=v(t,0)=v(t,L)=0 for t∈ (0,T ),

ux(t,0)=ux(t,L)=vx(t,0)=vx(t,L)=0 for t∈ (0,T ),

u(T,x)=uT (x); v(T,x)=vT (x) for x∈ (0,L),

(4.3)

with (uT ,vT )∈ [H2
0 (0,L)]

2.

Proof. Remark that the change of variables t→T − t and x→L−x reduces the
system (4.3) to (1.3) with fi≡gi≡0, for i=1,2. Then, we can apply to (u,v) the well-
posedness results obtained in the previous section.

First, we prove the result for regular solutions. The less regular framework can be
proved using density arguments as in the proof of Theorem 2.4. Let (η,ω) be a solution
of (1.3) and (u,v) solution of (4.3). After some integrations by parts, we have

0=

∫ T

0

∫ L

0

u(ηt+ωx+aωxxx−bηtxx+b1ηtxxxx)dxdt

+

∫ T

0

∫ L

0

v (ωt+ηx+cηxxx−dωtxx+d1ωtxxxx)dxdt

=

∫ L

0

[u(T )η(T )−u(0)η(0)]dx+b
∫ L

0

[ux(T )ηx(T )−ux(0)ηx(0)]dx

+b1

∫ L

0

[uxx(T )ηxx(T )−uxx(0)ηxx(0)]dx

+

∫ L

0

[v(T )ω(T )−v(0)ω(0)]dx+d
∫ L

0

[vx(T )ωx(T )−vx(0)ωx(0)]dx

+d1

∫ L

0

[vxx(T )ωxx(T )−vxx(0)ωxx(0)]dx

+a

∫ T

0

uxx(L)g1dt−b1
∫ T

0

utxx(L)f2dt+b1

∫ T

0

utxxx(L)f1dt

+c

∫ T

0

vxx(L)f1dt−d1
∫ T

0

vtxx(L)g2dt+d1

∫ T

0

vtxxx(L)g1dt.

By using the density of H2
0 (0,T ) in H−2(0,T ), we can pass the identity above to the

limit to obtain〈(
η0

ω0

)
,

(
u(0)
v(0)

)〉
[H−2(0,L)]2,[H2

0 (0,L)]2
=

〈(
η(T )
ω(T )

)
,

(
uT

vT

)〉
[H−2(0,L)]2,[H2

0 (0,L)]2

+

∫ T

0

f1(t)[b1utxxx+cvxx](t,L)dt+

∫ T

0

g1(t)[d1vtxxx+auxx](t,L)dt

−b1
∫ T

0

f2(t)utxx(t,L)dt−d1
∫ T

0

g2(t)vtxx(t,L)dt. (4.4)
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Hence, (η0,ω0) is controllable to zero in time T >0 if and only if (4.2) holds.

The next result is devoted to show that system (1.3) is not spectrally controllable.
This means that no nontrivial finite linear combinations of eigenvectors of the operatorA
defined in (2.4) can be driven to zero in finite time by using controls (fi,gi)∈ [H1(0,T )]2,
i=1,2.

Theorem 4.1. No eigenfunctions of the operator A can be driven to zero in finite
time.

Proof. We first note that, according to Theorem 3.2, the operator A has a se-
quence of purely imaginary eigenvalues (1/µj

n)n∈Z∗,j∈{1,2}. Moreover, the corresponding
eigenfunctions (Φj

n)n∈Z∗,j∈{1,2} form an orthogonal basis of [H2
0 (0,L)]

2. For each k ̸=0,
let us consider

(η0k,ω
0
k)=Φj

k=(φj
k,ν

j
k), j=1,2,

eigenfunctions of the operator A. In a similar way, if we consider(
uTn
vTn

)
=

{
Φj

n n ̸=k
0 n=k,

the corresponding solution of (4.3) can be written as(
un
vn

)
=eiλ

j
n(T−t)Φj

n, where iλjn=− 1

µj
n

,

with 1/µj
n, (j=1,2) being the eigenvalues of the operator A, given by Theorem 3.2.

Moreover,

lim
|n|→∞

λjn=0.

On the other hand, since the sequence (Φj
n)n∈Z∗,j∈{1,2} forms an orthonormal basis of

[H2
0 (0,L)]

2, we get〈(
η0k
ω0
k

)
,

(
un(0)
vn(0)

)〉
[H2

0 (0,L)]2
= δjn,ke

iλj
nT , j=1,2.

Thus, if (η0k,ω
0
k) is controllable to zero in time T >0, from (4.2) it follows that∫ T

0

eiλ
j
n(T−t)

[
f1(t)

(
−iλjnb1φj

n,xxx+aν
j
n,xx

)
(L)+g1(t)

(
−iλjnd1νjn,xxx+aφj

n,xx

)
(L)

+b1f2(t)iλ
j
nφ

j
n,xx(L)+d1g2(t)iλ

j
nν

j
n,xx(L)

]
dt= δjn,ke

iλj
nT , j=1,2. (4.5)

For j=1, the identity above can be written as follows∫ T
2

−T
2

h(t)eiλ
1
n(T

2 −t)dt= δ1n,ke
iλ1

nT , (4.6)

where

h(t)=f1

(
t+

T

2

)(
−iλ1nb1φ1

n,xxx+aν
1
n,xx

)
(L)+g1

(
t+

T

2

)(
−iλ1nd1ν1n,xxx+aφ1

n,xx

)
(L)

+ iλ1nb1f2

(
t+

T

2

)
φ1
n,xx(L)+ iλ

1
nd1g2

(
t+

T

2

)
ν1n,xx(L).
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Since h∈L2(−T
2 ,

T
2 ), if we define F :C−→C by

F (z)=

∫ T
2

−T
2

h(t)eizt,

from the Paley-Wiener theorem, we have that F is an entire function. Moreover, since
lim|n|→∞λjn=0, it follows that F is zero on a set with a finite accumulation point.
Then, F ≡0 and, consequently,

f1(t)
(
−iλ1nb1φ1

n,xxx+aν
1
n,xx

)
(L)+g1(t)

(
−iλ1nd1ν1n,xxx+aφ1

n,xx

)
(L)

+b1f2(t)iλ
1
nφ

1
n,xx(L)+d1g2(t)iλ

1
nν

1
n,xx(L)=0, (4.7)

for all t∈ [0,T ].
For j=2, we can use (4.5) and proceed in a similar way to obtain

f1(t)
(
−iλ2nb1φ2

n,xxx+aν
2
n,xx

)
(L)+g1(t)

(
−iλ2nd1ν2n,xxx+aφ2

n,xx

)
(L)

+b1f2(t)iλ
2
nφ

2
n,xx(L)+d1g2(t)iλ

2
nν

2
n,xx(L)=0, (4.8)

for all t∈ [0,T ].
Thus, by dividing (4.7) and (4.8) by iλ1n and iλ2n, respectively, we deduce that

(f1,g1) and (f2,g2) should satisfy the system{
f1(t)A

1
n+g1(t)B

1
n+f2(t)C

1
n+g2(t)D

1
n=0

f1(t)A
2
n+g1(t)B

2
n+f2(t)C

2
n+g2(t)D

2
n=0,

(4.9)

where

Aj
n=

a

iλjn
νjn,xx(L)−b1φj

n,xxx(L), Bj
n=

a

iλjn
φj
n,xx(L)−d1νjn,xxx(L),

Cj
n= b1φ

j
n,xx(L), and Dj

n=d1ν
j
n,xx(L), for j=1,2.

In order to conclude the proof, the following result will be needed:

Lemma 4.2. For a subsequence, if necessary, the following holds:

lim
|n|→∞

Cj
n= lim

|n|→∞
Dj

n= lim
|n|→∞

A2
n= lim

|n|→∞
B1

n=0, j=1,2, (4.10)

lim
|n|→∞

A1
n= lim

|n|→∞
B2

n= δ0

√
b1d1
L

, for some δ0∈C∗, (4.11)

and ∣∣∣∣∣C
1
n D

1
n

C2
n D

2
n

∣∣∣∣∣∼ −L2b1d1
[(2|n|+1)π−2εn]2+4

, for all n∈Z∗. (4.12)

By using (4.10) and (4.11) in (4.9) we obtain

f1(t)A
1
n+g1(t)B

1
n+f2(t)C

1
n+g2(t)D

1
n→ δ0

√
b1d1
L

f1(t)=0,

f1(t)A
2
n+g1(t)B

2
n+f2(t)C

2
n+g2(t)D

2
n→ δ0

√
b1d1
L

g1(t)=0,
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as |n|→∞. Then, (f1,g1)≡ (0,0) and the system (4.9) becomes simpler:{
f2(t)C

1
n+g2(t)D

1
n=0

f2(t)C
2
n+g2(t)D

2
n=0.

(4.13)

Hence, from (4.12) we deduce that (f1,g1)≡ (f2,g2)≡ (0,0) is the unique solution of the
system (4.9), which contradicts (4.5) and the proof ends.

It remains to prove Lemma 4.2.

Proof. (Proof of Lemma 4.2.) We first consider the solutions of the following
problems (-µ̃nBΦn=Φn)

−aµ̃nν̃
1
n,xxx−b1φ̃1

n,xxxx=0 for x∈ (0,L),

−aµ̃nφ̃
1
n,xxx−d1ν̃1n,xxxx=0 for x∈ (0,L),

(φ̃1(0), ν̃1(0))=(0,0),

(φ̃1
n,x(0), ν̃

1
n,x(0))=(0,0),

(φ̃1
n,xx(0), ν̃

1
n,xx(0))=(β̃1

1,n,β̃
1
2,n),

(φ̃1
n,xxx(0), ν̃

1
n,xxx(0))=(1,0),

(4.14)

and 

−aµ̃nν̃
2
n,xxx−b1φ̃2

n,xxxx=0 for x∈ (0,L),

−aµ̃nφ̃
2
n,xxx−d1ν̃2n,xxxx=0 for x∈ (0,L),

(φ̃2(0), ν̃2(0))=(0,0),

(φ̃2
n,x(0), ν̃

2
n,x(0))=(0,0),

(φ̃2
n,xx(0), ν̃

2
n,xx(0))=(β̃2

1,n,β̃
2
2,n),

(φ̃2
n,xxx(0), ν̃

2
n,xxx(0))=(0,1).

(4.15)

For each µ̃n=−sgn(n)
√
b1d1

aL ((2|n|+1)π−2εn)i (n∈Z∗,εn∈ (0,1)), (β̃1
1,n,β̃

1
2,n) given by

β̃1
1,n=

2b1d1L

(aLµ̃n)2−4b1d1
, β̃1

2,n=− b1aL
2µ̃n

(aLµ̃n)2−4b1d1
(4.16)

and (β̃2
1,n,β̃

2
2,n) such that

β̃2
1,n=− d1aL

2µ̃n

(aLµ̃n)2−4b1d1
, β̃2

2,n=
2b1d1L

(aLµ̃n)2−4b1d1
, (4.17)

the solutions of (4.14) and (4.15) are given by formula (3.19) ( replacing µ̃n by −µ̃n )
and will be denoted by

Φ̃1
n=

(
φ̃1
n

ν̃1n

)
and Φ̃2

n=

(
φ̃2
n

ν̃2n

)
, (4.18)
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respectively. We set κn=− aµ̃n√
b1d1

. Then, from Theorem 3.1, we get S(κn,L)=C(κn,L)=
0, which implies that

sinh(κnL)=κnL− [κnL]
3

[κnL]2−4
=− 4[κnL]

[κnL]2−4
,

cosh(κnL)−1=− 2[κnL]
2

[κnL]2−4
.

Then,

Sxx(κn,L)=κ
2
n

[
sinh(κnL)+

2κnL

[κnL]2−4

]
=−κ3n

[
2L

[κnL]2−4

]
,

Cxx(κn,L)=κ2n
[
(cosh(κnL)−1)+

[κnL]
2

[κnL]2−4

]
=−κ3n

[
κnL

2

[κnL]2−4

]
.

Consequently, the functions Φ̃j
n, j=1,2, satisfy

Φ̃1
n,xx(L)=

(
φ̃1
n,xx(L)

ν̃1n,xx(L)

)
=

−L
[κnL]2−4

 2

κnL
√

b1
d1

 (4.19)

and

Φ̃2
n,xx(L)=

(
φ̃2
n,xx(L)

ν̃2n,xx(L)

)
=

−L
[κnL]2−4

κnL
√

d1

b1

2

, (4.20)

for n∈N∗. Now, we pass to the study of the asymptotic behavior of the eigenvectors
of the operator −A. From the proof of Theorem 3.2 we have that, for each eigenvalue
−1/µj

n, the corresponding eigenfunctions Φ1
n=(φ1

n,ν
1
n) and Φ2

n=(φ2
n,ν

2
n) are solutions

of 

−aµ1
nν

1
n,xxx−b1φ1

n,xxxx=φ
1
n+µ

1
nν

1
n,x−bφ1

n,xx for x∈ (0,L),

−aµ1
nφ

1
n,xxx−d1ν1n,xxxx=ν1n+µ1

nφ
1
n,x−dν1n,xx for x∈ (0,L),

(φ1(0),ν1(0))=(0,0),

(φ1
n,x(0),ν

1
n,x(0))=(0,0),

(φ1
n,xx(0),ν

1
n,xx(0))=(β1

1,n,β
1
2,n),

(φ1
n,xxx(0),ν

1
n,xxx(0))=(1,γ1n),

(4.21)

and 

−aµ2
nν

2
n,xxx−b1φ2

n,xxxx=φ
2
n+µ

2
nν

2
n,x−bφ2

n,xx for x∈ (0,L),

−aµ2
nφ

2
n,xxx−d1ν2n,xxxx=ν2n+µ2

nφ
2
n,x−dν2n,xx for x∈ (0,L),

(φ2(0),ν2(0))=(0,0),

(φ2
n,x(0),ν

2
n,x(0))=(0,0),

(φ2
n,xx(0),ν

2
n,xx(0))=(β2

1,n,β
2
2,n),

(φ2
n,xxx(0),ν

2
n,xxx(0))=(γ2n,1),

(4.22)
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respectively. We also note that, according to Theorem 3.2, the data in (4.21) and (4.22)
satisfies

|γjn|≤
δ

|n|
, |µj

n− µ̃n|≤
δ

|n|
.

Since |βj
n− β̃j

n|→0, as |n|→∞, for j=1,2, we can extract a subsequence, if necessary,
such that

|β1
1,n− β̃1

1,n|≤
δ

|n|2
, |β1

2,n− β̃1
2,n|≤

δ

|n|
,

|β2
1,n− β̃2

1,n|≤
δ

|n|
, |β2

2,n− β̃2
2,n|≤

δ

|n|2
, (4.23)

for a given positive δ. Therefore, from Proposition 3.3, the eigenfunction (φ1
n,ν

1
n) satisfies

|φ1
n,xx(L)− φ̃1

n,xx(L)|+ |ν1n,xx(L)− ν̃1n,xx(L)|

≤C
[(

|β1
1,n− β̃1

1,n|+ |β1
2,n− β̃1

2,n|
)
+

1

|µ1
n|
(
|γ1n|+ |µ1

n− µ̃n|(1+ |γ1n|)
)]

≤C
[(

δ

|n|2
+

δ

|n|

)
+

1

|µ1
n|

(
δ

|n|
+

δ

|n|
(1+

δ

|n|
)

)]
.

Similarly, the eigenfunction (φ2
n,ν

2
n) satisfies

|φ2
n,xx(L)− φ̃2

n,xx(L)|+ |ν2n,xx(L)− ν̃2n,xx(L)|

≤C
[(

δ

|n|2
+

δ

|n|

)
+

1

|µ2
n|

(
δ

|n|
+

δ

|n|
(1+

δ

|n|
)

)]
.

From the estimates above and (4.19)-(4.20), we conclude that(
C1

n

D1
n

)
=

(
b1φ

1
n,xx(L)

d1ν
1
n,xx(L)

)
∼ −L

[κnL]2−4

(
2b1

κnL
√
b1d1

)
(4.24)

and (
C2

n

D2
n

)
=

(
b1φ

2
n,xx(L)

d1ν
2
n,xx(L)

)
∼ −L

[κnL]2−4

(
κnL

√
b1d1

2d1

)
. (4.25)

Thus, ∣∣∣∣∣C
1
n D

1
n

C2
n D

2
n

∣∣∣∣∣∼ L2b1d1
[κnL]2−4

̸=0,

which gives the behavior of the coefficients Cj
n and Dj

n, for j=1,2.
On the other hand, by integrating the equations in (4.21) over (0,L) we obtain the

coefficients A1
n and B1

n:

A1
n=

(
−aµ1

nν
1
n,xx−b1φ1

n,xxx

)
(L)=

∫ L

0

φ1
n(x)dx−aµ1

nβ
1
2,n−b1,

B1
n=

(
−aµ1

nφ
1
n,xx−d1ν1n,xxx

)
(L)=

∫ L

0

ν1n(x)dx−aµ1
nβ

1
1,n−d1γ1n. (4.26)
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The next steps are devoted to study the term on the right-hand side of the equations
in (4.26). First, we note that, from Theorem 3.2,∫ L

0

φ1
n(x)dx=

∫ L

0

φ̃1
n(x)dx+O

(
1

|n|

)
,∫ L

0

ν1n(x)dx=

∫ L

0

ν̃1n(x)dx+O
(

1

|n|

)
.

Then, from formula (3.19) we conclude that

lim
|n|→∞

∫ L

0

φ1
n(x)dx= lim

|n|→∞

∫ L

0

ν1n(x)dx=0. (4.27)

On the other hand, from (4.23) we get

aµ1
nβ

1
1,n=a

(
µ̃1
n+O

(
1

|n|

))(
β̃1
1,n+O

(
1

|n|2

))
=aµ̃1

nβ̃
1
1,n+aµ̃

1
nO
(

1

|n|2

)
+aβ̃1

1,nO
(

1

|n|

)
+aO

(
1

|n|3

)
, (4.28)

and

aµ1
nβ

1
2,n=a

(
µ̃1
n+O

(
1

|n|

))(
β̃1
2,n+O

(
1

|n|

))
=aµ̃1

nβ̃
1
2,n+aµ̃

1
nO
(

1

|n|

)
+aβ̃1

2,nO
(

1

|n|

)
+aO

(
1

|n|2

)
. (4.29)

From (4.16), we note that the right side of (4.28) tends to 0 as |n|→∞, the last two
terms on the right side of (4.29) tend to 0 as |n|→∞ and, finally, the first two terms in
(4.29) satisfy

lim
|n|→∞

aµ̃1
nβ̃

1
2,n=−b1 and lim

|n|→∞
aµ̃1

nO
(

1

|n|

)
= δ0

√
b1d1
L

,

for some δ0∈C∗. Then, from (4.27), (4.28) and (4.29), we conclude that

lim
|n|→∞

A1
n= δ0

√
b1d1
L

and lim
|n|→∞

B1
n=0. (4.30)

In order to conclude the proof, we integrate the equations in (4.22) over (0,L) to obtain

A2
n=

(
−aµ2

nν
2
n,xx−b1φ2

n,xxx

)
(L)=

∫ L

0

φ2
n(x)dx−aµ2

nβ
2
2,n−b1γ2n,

B2
n=

(
−aµ2

nφ
2
n,xx−d1ν2n,xxx

)
(L)=

∫ L

0

ν2n(x)dx−aµ2
nβ

2
1,n−d1.

Then, by arguing as in the previous steps, we deduce that

lim
|n|→∞

A2
n=0 and lim

|n|→∞
B2

n= δ0

√
b1d1
L

.
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Remark 4.1. λ=0 is not an eigenvalue of the operator A. Indeed, if (φ,ν) satisfies
A(φ,ν)=0, then, it shall be the solution of the uncoupled system

νx+aνxxx=0 for x∈ (0,L),

φx+aφxxx=0 for x∈ (0,L),

(φ(0),ν(0))=(φ(L),ν(L))=(0,0),

(φx(0),νx(0))=(φx(L),νx(L))=(0,0).

(4.31)

By setting ν̃=νx we obtain ν̃(x)= c1e
i√
a
x
+c2e

− i√
a
x
, for some constants c1,c2. Then,

from the boundary condition ν̃(0)=0, we deduce that ν̃(x)=2ic1 sin
(

x√
a

)
and the

boundary condition ν̃(L)=0 implies that 2ic1 sin
(

L√
a

)
=0. Thus, if L ̸=

√
aπn, with

n∈Z∗, we have that c1=0 and ν≡ const. Then, from the boundary condition ν(0)=0
we conclude that ν≡0. On the other hand, if L=

√
aπn, for some n∈Z∗, we have that

ν(x)=−2i
√
ac1 cos

(
x√
a

)
and the condition ν(L)=0 implies that c1=0. Hence, ν≡0.

Since the system is uncoupled, we can argue as above to obtain φ≡0.

Now, we pass to study the approximate controllability of the system (1.3). In order
to do that, we introduce the following definition.

Definition 4.1. System (1.3) is said to be approximately controllable in time T >0
if, for every initial data (η0,ω0)∈ [H−2(0,L)]2, the set of reachable states

R

((
η0

ω0

)
,T

)
=

{(
η(T,x)
ω(T,x)

)
:

((
f1
g1

)
,

(
f2
g2

))
∈ [H1(0,T )]2× [H1(0,T )]2

}
is dense in [L2(0,L)]2.

The corresponding approximate controllability result reads as follows.

Theorem 4.2. System (1.3) is approximately controllable in time T >0 with controls
and (fi,gi)∈ [H1(0,T )]2, i=1,2.

Proof. Due to the linearity of the system (1.3), it is sufficient to prove the result for

any T >0 and (η0,ω0)=(0,0). Thus, we will prove the density of the set R

((
0
0

)
,T

)
in [L2(0,L)]2.

Let (η,ω)∈C([0,T ];[L2(0,L)]2) be the corresponding solution of (1.3) given by The-
orem 2.4 and (u,v) be the solution of the adjoint system (4.3). Then, it follows that〈(

η(T,x)
ω(T,x)

)
,

(
uT

vT

)〉
[H−2(0,L)]2,[H2

0 (0,L)]2

=−
∫ T

0

f1(t)[b1utxxx+avxx](t,L)dt−
∫ T

0

g1(t)[d1vtxxx+auxx](t,L)dt

+b1

∫ T

0

f2(t)utxx(t,L)dt+d1

∫ T

0

g2(t)vtxx(t,L)dt. (4.32)

Assume that R

((
0
0

)
,T

)
is not dense in [H2

0 (0,L)]
2. In this case, there exists
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(uT ,vT ) ̸=(0,0) in [H2
0 (0,L)]

2, satisfying〈(
η(T,x)
ω(T,x)

)
,

(
uT

vT

)〉
[H−2(0,L)]2,[H2

0 (0,L)]2
=0,

for all (fi,gi)∈ [H1(0,T )]2, i=1,2. Consequently, from (4.32) we obtain

−
〈(

f1
g1

)
,

(
[b1utxxx+avxx](t,L)
[d1vtxxx+auxx](t,L)

)〉
[L2(0,T )]2

+

〈(
f2
g2

)
,

(
b1utxx(t,L)
d1vtxx(t,L)

)〉
[L2(0,T )]2

=0,

for all (fi,gi)∈ [H1(0,T )]2, i=1,2. Thus,(
[b1utxxx+avxx](t,L)
[d1vtxxx+auxx](t,L)

)
=

(
0
0

)
and

(
b1utxx(t,L)
d1vtxx(t,L)

)
=

(
0
0

)
, ∀t∈ (0,T ). (4.33)

Next, we want to write (4.33) as an infinite sum. From the proof of Theorem 2.1 we
know that A is a skew adjoint operator in [H2

0 (0,L)]
2. Hence, it has a sequence of

eigenvalues (iλn)n∈Z∗ ⊂ iR, each iλn=(µn)
−1 with geometric multiplicity at most Mn.

The corresponding eigenfunctions form an orthonormal basis for [H2
0 (0,L)]

2, which we
denote by ⋃

n∈Z∗

{
Φk

n

}Mn

k=1
.{Φ1

n,...,Φ
Mn
n }.

Then, if (uT ,vT )∈ [H2
0 (0,L)]

2, we have

(uT ,vT )=
∑
n∈Z∗

Mn∑
k=1

αk
nΦ

k
n

(
α1
nΦ

1
n+ ...+α

Mn
n ΦMn

n

)
and the corresponding solution (u,v) can be written as

(u,v)=
∑
n∈Z∗

Mn∑
k=1

αk
nΦ

k
ne

iλn(T−t).
(
α1
nΦ

1
n+ ...+α

Mn
n ΦMn

n

)
eiλn(T−t). (4.34)

Thus, from (4.33) and (4.34), it follows that

0=utxx(t,L)=
∑
n∈Z∗

−iλn
Mn∑
k=1

αk
nφ

k
n,xx(L)e

iλn(T−t).

Since (u,v) is analytic in time (see Theorem 2.1), we can integrate the identity above
over (−S,S), for any S>0. Then, for each m∈Z∗, we deduce that

0= lim
s→+∞

1

S

∫ S

−S

utxx(s,L)e
iλmsds=−iλm

Mm∑
k=1

αk
mφ

k
m,xx(L)e

iλmT ,

hence,

Mm∑
k=1

αk
mφ

k
m,xx(L)=0. (4.35)



OSCAR A. SIERRA FONSECA AND ADEMIR F. PAZOTO 1275

Analogously, from vtxx(t,L)=0, it results that

Mm∑
k=1

αk
mν

k
m,xx(L)=0. (4.36)

On the other hand, from (4.33)-(4.34) we have

0= [b1utxxx+avxx](t,L)=
∑
n∈Z∗

Mn∑
k=1

αk
n

[
−iλnb1φk

n,xxx(L)+aν
k
n,xx(L)

]
eiλn(T−t)

and

0=[d1vtxxx+auxx](t,L)=
∑
n∈Z∗

Mn∑
k=1

αk
n

[
−iλnd1νkn,xxx(L)+aφk

n,xx(L)
]
eiλn(T−t).

Next, we proceed as before and use (4.35) and (4.36) to obtain

0=

Mm∑
k=1

αk
m[−iλmb1φk

m,xxx(L)+aν
k
m,xx(L)]e

iλmT

=

[
−iλmb1

Mm∑
k=1

αk
mφ

k
m,xxx(L)+a

Mm∑
k=1

αk
mν

k
m,xx(L)

]
eiλmT

=−iλmb1
Mm∑
k=1

αk
mφ

k
m,xxx(L)e

iλmT

and

0=

Mm∑
k=1

αk
m[−iλmd1νkm,xxx(L)+aφ

k
m,xx(L)]e

iλmT

=

[
−iλmd1

Mm∑
k=1

αk
mν

k
m,xxx(L)+a

Mm∑
k=1

αk
mφ

k
m,xx(L)

]
eiλmT

=−iλmd1
Mm∑
k=1

αk
mν

k
m,xxx(L)e

iλmT ,

respectively. Then,

Mm∑
k=1

αk
mφ

k
m,xxx(L)=

Mm∑
k=1

αk
mν

k
m,xxx(L)=0. (4.37)

Now, for each m∈Z∗, we consider Φm=(φm,νm) defined as follows

Φm=α1
mΦ1

m+ ...+αMm
m ΦMm

m .

Thus, from (4.35), (4.36) and (4.37) we have that

(φm,xx(L),νm,xx(L))=(φm,xxx(L),νm,xxx(L))=(0,0)
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and Φm=(φm,νm) solves the initial value problem

−φm+bφm,xx−b1φm,xxxx+(iλm)−1νm,x+a(iλm)−1νm,xxx=0 for x∈ (0,L),

−νm+dνm,xx−d1νm,xxxx+(iλm)−1φm,x+a(iλm)−1φm,xxx=0 for x∈ (0,L),

(φm(L),νm(L))=(0,0),

(φm,x(L),νm,x(L))=(0,0),

(φm,xx(L),νm,xx(L))=(0,0),

(φm,xxx(L),νm,xxx(L))=(0,0).

Then, by uniqueness,

Φm=α1
mΦ1

m+ ...+αMm
m ΦMm

m =(0,0).

Since {Φk
m}Mm

k=1 are linearly independent, it follows that

α1
m= ...=αMm

m =0 for all m∈Z∗.

Thus, from (4.34) it follows that (u,v)=(0,0) and, in particular, (uT ,vT )=(0,0). This
is a contradiction and the proof ends.

5. Comments and open problems
We close this paper with some comments and open problems:

• The conditions on the coefficients of the highest order BBM terms (b1>0 and
d1>0) provide a regularizing effect, which is very useful for the well-posedness
of the system (1.3). On the other hand, the absence of the coefficients of the
highest order KdV terms (a1= c1=0) is an impediment for the controllability
properties to hold. Indeed, from the controllability point of view, KdV type
models are known to have a much better behavior (see, for instance, [15, 22]).
Therefore, it is an interesting issue to study what can be done in the presence
of the highest KdV terms (a1>0 and c1>0), including the full system (1.1).

• In the spirit of the problem mention above, the controllability issue also remains
open when b1=d1=0 and a1,c1>0, i.e., in the absence of the highest BBM
terms. The KdV terms should provide good controllability properties, but in
order to study the resulting nonlinear system, more regularity of the solutions
is needed.
As far as we know, the boundary controllability problem was only studied in [8]
for the abcd system (1.5) when b=d=0, i.e., for the lower-order KdV-KdV
system. In what concerns the higher-order KdV model, only the boundary
stabilization problem was addressed [7]. However, it is natural to expect that
boundary conditions similar to those introduced in [7] also lead to positive
exact boundary controllability results, at least for the corresponding linearized
system.

• The spectral analysis developed in the previous sections also leads to the study
of the stabilization problem when the time t is sufficiently large. By consider-
ing homogeneous Dirichlet boundary conditions and a damping term acting in
one equation of (1.3), the asymptotic behavior of the energy associated to the
model can be studied. Indeed, proceeding as in Section 3, a similar spectral
analysis can be developed to construct a Riesz basis of [H2

0 (0,L)]
2 consisting
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of generalized eigenvalues of the corresponding differential operator. Then,
by using arguments similar to those developed in [17], we can conclude that
||(η(·,x),ω(·,x))||[H2

0 (0,L)]2 →0, as t→∞.

• The program of this work was carried out for a particular choice of boundary
control inputs and establishes as a fact that system (1.3) inherits some interest-
ing properties initially observed for the BBM equation. Considerations of this
issue for dispersive equations has received considerable attention, specially the
problems related to the study of the controllability properties. However, the
proof of a general result of lack of spectral controllability for some appropriate
evolution operators associated with a compact operator for the part involving
derivatives in space is a more difficult task which remains open.
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