COMMUN. MATH. SCI. @ 2022 International Press
Vol. 20, No. 5, pp. 1243-1278

LACK OF EXACT CONTROLLABILITY OF A HIGHER-ORDER
BBM-SYSTEM*

OSCAR A. SIERRA FONSECAT AND ADEMIR F. PAZOTO%

Abstract. The two-way propagation of a certain class of long-crested water waves is governed
approximately by systems of equations of Boussinesq type. These equations have been put forward
in various forms by many authors and their higher-order generalizations arise when modelling the
propagation of waves on large lakes, oceans and in other contexts. Considered here is a class of
such systems which couple two higher-order Benjamin-Bona-Mahony type equations. Our aim is to
investigate the controllability properties of the linearized model posed on a bounded interval. More
precisely, we study whether the solutions can be driven to a given state at a given final time by means
of controls acting on the right endpoint of the interval. We show that the model is approximately
controllable but not spectrally controllable. This means that any state can be steered arbitrarily close
to another state, but no finite linear combination of eigenfunctions, other than zero, can be steered to
zero. Our proofs rely strongly on a careful spectral analysis of the operator associated with the state
equations.

Keywords. Higher order Boussinesq system; controllability; Fourier expansion; nonharmonic
analysis.
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1. Introduction The field of dispersive equations has received increasing atten-
tion since the pioneering works of Stokes, Boussinesq and Korteweg and de Vries in
the nineteenth century. It pertains to a modern line of research which is important
both scientifically and for potential applications. On the one hand, the mathematical
theoretical research of dispersive equations is important for applied sciences since it has
provided solid foundations for the verification and applicability of these models. On the
other hand, this theoretical research has proved to be very valuable for mathematics it-
self. Such equations have presented very difficult and interesting challenges, motivating
the development of many new ideas and techniques within mathematical analysis.

Starting in the latter half of the 1960s, there have been many advances in the study
of the water wave phenomena initially observed by Boussinesq et al. and numerous
other applications have been found since then. For instance, the two-way propagation
of a certain class of long-crested water waves is governed approximately by systems of
Boussinesq type equations. First introduced by Boussinesq in the 1870’s, these equations
have been put forward in various forms by many authors and, in recent years, the
following family of Boussinesq systems was formulated and analyzed by Bona, Chen
and Saut [5,6]:

Mt +Wx + AWggx — bntza: +alwa:wmvm + bl Naexzx = _(nw)w + b(nw)ma:x - a(nwzx)a:a
Wt + nz + ana::r - dwta:x + clnmzzzx + dlwta::r:v:c

=Wy — c(wwr)rz - (nnmr)r + 5wxwzz +pwwzzm~ (11)

Here, the dependent variables n=n(z,t) and w=w(x,t) are real-valued functions of
the variables x and ¢ and subscripts indicate partial differentiation. The parameters

*Received: January 10, 2021; Accepted (in revised form): November 13, 2021. Communicated by
Alberto Bressan.

fInstitute of Mathematics, Federal University of Rio de Janeiro, UFRJ, P.O. Box 68530, CEP
21941-909, Rio de Janeiro, RJ, Brazil (oasierraf@im.ufrj.br).

fInstitute of Mathematics, Federal University of Rio de Janeiro, UFRJ, P.O. Box 68530, CEP
21941-909, Rio de Janeiro, RJ, Brazil (ademir@im.ufrj.br).

1243


mailto:oasierraf@im.ufrj.br
mailto:ademir@im.ufrj.br

1244 LACK OF EXACT CONTROLLABILITY OF A HIGHER-ORDER BBM-SYSTEM

a,b,c,d,ay,c1,b1,dy are required to fulfill the relations

1.5 1 _1 9 1
a+b—2(9 3), c+d—2(0 2),
L Ly 5 e Lo
al bl— 2(9 3)b+24(0 5) )
I Y S v 1
c1 d1_2(1 0 )c+24(1 0)(6 5),
a:a+b7é,ﬂ:c+d71,p:c+d, (1.2)

where 6 €[0,1]. Conditions (1.2) come from the physics of the problem and we tacitly
assume them to hold throughout the entire paper. Depending on the problem under
study, additional restrictions on the sign of these parameters will be imposed later on.

The original system was derived by Boussinesq to describe the two-way propagation
of small-amplitude, long wavelength, gravity waves on the surface of water in a canal,
but these systems also arise when modeling the propagation of long-crested waves on
large lakes or the ocean and in other contexts. The variable, x, is proportional to the
distance in the direction of propagation while ¢ is proportional to elapsed time. The
quantity 7(t,z)+ho corresponds to the total depth of the liquid at the point x and
at time ¢, where hg is the undisturbed water depth. The variable w(t,z) represents
the horizontal velocity at the point (z,y) = (x,0hp), at time ¢, where y is the vertical
coordinate, with y =0 corresponding to the channel bottom or sea bed. Thus, w is the
horizontal velocity field at the height 6hg, where 6 is a fixed constant in the interval
[0,1].

Notice that, when the parameters given in (1.2) are such that a=ay=c=¢; =0,
the resulting system couples two higher order Benjamin-Bona-Mahony (BBM) type
equations. If b=b; =d=d; =0, we have a coupled system of two higher order Korteweg-
de Vries (KdV) type equations.

1.1. Setting the problem. Despite the success in studying dispersive models,
the mathematical theory has been concerned with either the pure initial value problem
posed on the entire real line or the periodic-initial value problem posed on the one-
dimensional torus. A large body of literature has been concerned with the questions of
existence, uniqueness and continuous dependence of solutions corresponding to initial
data. The study of initial-boundary value problems with nonhomogeneous boundary
conditions has not progressed to the same extent.

In this paper, the goal is to advance the study of the initial-boundary value problems
exploring the dynamics of dispersive equations using mathematical analysis from the
controllability point of view. Consideration is given to an initial-boundary value prob-
lem associated to the linearized Boussinesq system (1.1) when the parameters given in
(1.2) are such that a; =c¢; =0. Our attention, in particular, is given to the following
distributed control system:

Nt +wz + oWz — bT/tTr +b177t77:7‘7‘ =0 for x S (0,[/)7 t> 0,
Wt +771 +anzz - dwtzz +d1wtzcvzz =0 fOI‘ x e (0,L),t > O,

n(t,0)=0, n(t,L)=fi(t) for ¢>0,
w(t,0)=0, w(t,L)=gi(t) for ¢>0, (1.3)
Nz(t,0)=0, n.(t,L)= f2(t) for t>0,
wz(t,0)=0, ws(t,L)=g2(t) for t>0,

n(0,2) =n°(x); w(0,2)=w"(x) for z € (0,L).
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In (1.3), the external forcing terms f; and g;, i=1,2, are considered as control
inputs. The purpose is to see whether one can force the solutions of the system to have
certain desired properties by choosing appropriate control inputs acting at one end of
the interval. More precisely, we are mainly concerned with the following problems which
are fundamental in control theory:

Given T >0, initial states (n°,w®) and terminal states (n,w') in a certain space,
can one find appropriate control inputs f; and g;, i=1,2, so that the system (1.3) admits
a solution (n,w) which satisfies (n(0,-),w(0,)) = (n°,w®) and (n(T,-),w(T,")) = (n',w!)?

If one can always find a control input to guide the system described by (1.3) from
any given initial state to any given terminal state, then the system is said to be exactly
controllable. If the set of all reachable states contains all the eigenfunctions associated
to the state operator (A:[HZ(0,27)]?> — [HZ(0,27)]?) the system is said to be spectrally
controllable.

Given T >0, >0, initial states (n°,w") and terminal states (n',w') in a certain
space, can one find appropriate control inputs f; and g;, i=1,2, so that the system (1.3)
admits a solution (n,w) which satisfies ||(n(T,-),w(T,-)) — (n',wb)||ug <e, for a certain
space H?

This means that the set of reachable states is dense in H and, in this case, the
system is said to be approximately controllable.

Our analysis does not depend on formulas (1.2) nor on other particular relations
between the coefficients. However, in order to provide the tools needed to deal with the
problem, some sign conditions have to be imposed. More precisely, we shall be mainly
concerned with the case

{b1>0,bzo,d1>0,d20 (14)

a=c>0,a;=c;=0.

Assumptions (1.4) allow us to prove well-posedness and controllability results in some
well chosen Sobolev spaces H*(0,L) and H*(0,T), respectively.

1.2. Main results. Observe that exact controllability is an essentially stronger
notion than approximate controllability. In other words, exact controllability always
implies approximate controllability. The converse statement is generally false. In what
concerns system (1.3), our results can be summarized as follows:

e The approximate controllability holds for any 7'> 0. In more details, we prove
that there exist control inputs f;,g; € H'(0,T), i=1,2, such that the set of
reachable states is dense in [L?(0,L)]?, for any (n°,w?®) € [H~2(0,L)]? and T > 0.

e On the other hand, we give a negative result for the first problem introduced
above.

e System (1.3) is not spectrally controllable if (n°,w®) € [H3(0,L)]?. This means
that no finite linear nontrivial combination of eigenvectors of the operator as-

sociated with the state equations can be driven to zero in finite time by using
controls fi,g; € H*(0,T), i=1,2.

REMARK 1.1. The following remarks are in order.

(i) When (n°,w%) € [H~2(0,L)]?, the solution of (1.3) has to be understood in a
weak sense. For instance, it can be defined by transposition. With this ap-
proach, we have to impose that f;,g;€ H'(0,T), i=1,2 in order to obtain a
well-posedness result.
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(ii) Throughout the work, it will become clear that the lack of exact controllability
of the model comes from the existence of a limit point in the spectrum of the
operator associated with the state equations, a phenomenon already noticed
in [15] for the single linear BBM equation.

By means of a series expansion of the solution in terms of the eigenvectors of the state
operator, the approximate controllability is reduced to a unique continuation problem
of the eigenvectors. In what concerns the lack of exact controllability, it is addressed
through a spectral problem which is solved combining Paley-Wiener theorem and the
asymptotic behavior of the eigenvalues. Such an approach requires a careful spectral
analysis of the operator associated to the state equation. Indeed, it provides important
developments to justify the use of eigenvector expansions for the solutions, as well as,
the asymptotic behavior of the eigenvalues. However, due to the structure of the system,
the eigenvalues can not be computed explicitly. To overcome this difficulty, we prove
that they are close to the eigenvalues of a well chosen differential operator. This is done
by using less common two-dimensional versions of the shooting method and Rouché’s
theorem. Our approach was inspired by the techniques presented in [2] and [17]. In [17],
the same strategy was successfully used to study the stabilization of a linear Boussinesq
system of BBM-BBM type (a=a; =c=c¢; =b; =d; =0) when a localized damping term
acts on one equation only. By considering homogeneous Dirichlet boundary conditions,
the authors prove that the energy associated to the model converges to zero as time goes
to infinity. In the conservative case, i.e., in the absence of the damping term, the results
obtained in [17] were properly adapted in [2] to study the controllability problems we
address here. This approach does not apply directly in our case, since we are dealing
with a higher order Boussinesq system. Therefore, further developments are required.

Before closing this section we emphasize that the problems we address here remain
open for the corresponding nonlinear models, including for the single BBM equation. To
our knowledge, the only result on the subject was obtained in [20] for the BBM equation
on the torus T=R/(27Z). The authors show that, when an internal control acting on
a moving interval is applied in the BBM equation, it is locally exactly controllable in
H#5(T), for any s>0, and globally exactly controllable in H*(T), for any s>1, in a
sufficiently large time depending on the H®-norms of the initial and terminal states.
More comments and open problems will be given in Section 5.

1.3. State of the art.  The study of the controllability properties for Boussinesq
systems was initiated in [16] by considering the following abdc Boussinesq system, also
derived in [5,6]:

Ui +wx+awrxa¢*bntmr:*(nw)za (1 5)
Wt +Ng + CNyzz — AWize = —WWg. '
The constants in (1.5) obey the relations
1, 1 1, 1
a—i—b:i(ﬂ —g), c+d:§(9 —5)207 where 6 €10,1]. (1.6)

The work [16] deals with the internal controllability and stabilization of (1.5) on the
torus. First, the space of the controllable data for the associated linear system is
established for each possible value of the four parameters given in (1.6). Then, when
b,d>0 and a,c<0, the local exact controllability of the nonlinear system is shown to
hold. As an application of the established exact controllability results, some simple
feedback controls are constructed for particular choices of the parameters a,b,c and d,
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such that the resulting closed-loop systems are exponentially stable. Later on, in [19],
the authors investigated the boundary stabilization of the Boussinesq system (1.5) of
KdV-KdV type (b=d=0) posed on a bounded interval. More precisely, they design a
two-parameter family of feedback laws for which the solutions issuing from small data
are globally defined and exponentially decreasing in the energy space. More recently,
in [8], the exact boundary controllability of the linear Boussinesq system (1.5) of KdV-
KdV type was studied. It was discovered that whether the associated linear system is
exactly controllable or not depends on the length of the spatial domain. The extension
of the exact controllability for the Boussinesq system (1.5) is derived in the energy space
in the case of a control of Neumann type. It is obtained by incorporating a boundary
feedback in the control in order to ensure the so-called Kato smoothing effect. In
addition, proceeding as in [19], a local exponential stability result was also derived.

Concerning the Boussinesq system (1.5) of BBM-BBM type (a=c¢=0), the control-
lability problems addressed here were studied in [2] for the linearized model. As pointed
out above, the results were obtained by making use of the analysis developed in [17] to
study the stabilization of the energy associated to the model when a localized damp-
ing term acts on one equation only. In the same spirit, the work [4] proposes several
dissipation mechanisms leading to systems for which one has both the global existence
of solutions and a nonincreasing energy. Following the analysis developed in [21], the
authors prove that all the trajectories are attracted by the origin provided that the
unique continuation of weak solutions holds. Finally, let us mention the work [18] (see
also [3]) in which the stability properties of the nonlinear system, posed on a periodic
domain, is addressed when generalized damping operators with nonnegative symbols
are introduced in each equation. A similar problem was studied in [9] for the model
posed on the whole real axis.

As far as we know, the controllability problem for the full system (1.1) has been
only addressed in [1] when the model is posed on a periodic domain. General conditions
are given to ensure both the well-posedness and the local exact controllability of the
nonlinear problem by means of a control localized in the interior of the domain and
acting on one equation only. On the contrary, stabilization problems have been studied
in some cases. For instance, in [7] the authors investigate the well-posedness and bound-
ary stabilization of a higher order Boussinesq system of KdV type (b=b; =d=d; =0),
posed on a bounded interval. They design a two-parameter family of feedback laws for
which the system is locally well-posed and the solutions of the linearized system are
exponentially decreasing in time. More recently, a higher order Boussinesq system of
BBM-BBM type (a=a; =c=c; =0) was considered in [3] (see also [18]). The global
well-posedness and time decay rates of solutions were studied when the model is posed
on a periodic domain and a general class of damping operator acts in each equation.
The authors prove that the solutions of the linearized system decay uniformly or not
to zero, depending on the parameters of the damping operators. In the uniform decay
case, the result is extended for the nonlinear system.

The present contribution proceeds as follows. In the next section, we establish the
well-posedness results for system (1.3). In Section 3, we present some basic results on
systems of fourth order differential equations associated to system (1.3). This allows to
analyze the spectral properties of the corresponding state operator. Section 4 provides
proofs for the results stated above. Finally, in Section 5 we present some remarks and
open problems.
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2. Well-posedness

In this section we show the well-posedness of the homogeneous and non-
homogeneous systems associated with (1.3).  Throughout this work, the space
[HZ(0,L)]? will be endowed with the inner product

< <Z) ’ (i) > /OL(anrww)deF/OL(bﬁz%+dwx1/1,r)dx

L
+/ (blnxa:@xa:+dlwxxwxm)dx- (21)
0

2.1. The homogeneous system. Let us first consider the following homoge-
neous system

N+ Wy + QWgpzz — bntac:c + blnt:c;cacar =0 for x € (O,L), t>0,
Wt +77$ + chECDI - dwth + dlwtzzzx = 0 fOr x e (07L),t > 07

n(t,0)=n(t,L)=w(t,0)=w(t,L)=0 for t>0, (2.2)
Ne(t,0) =nz(t, L) =wy(¢,0) =w,(t,L)=0 for t>0,
n(0,2) =n%(z); w(0,z)=uw’(x) for z € (0,L).

System (2.2) can be written in the following vectorial form

(Z>t(t)+“4<2)(t):(8)’ (Z)(O):<Z?)>, (2.3)

where A is the operator belonging to £ ([Hg (0,L)]2) defined by

0 (1-b02+b103) "1 (0, +ad2)
A= ( :

(2.4)
1—do2+d103) =1 (0, +c02) 0

Recall that, for a,3> 0 the operator (1 —ad?+39%)~! is defined in the following way:

V— QUgy +ﬁvmxzz = (b in (O7L)

2.5
drv(0)=0rv(L)=0, r=0,1. (2:5)

(la&erBa;l)lqbv@{

Then, if ¢ € L?(0,L), the elliptic equation (2.5) has a unique solution v& H*(0,L)N
HZ(0,L), the operator (1 —ad?+ 89%)~! is a well-defined, compact operator in L?(0,L).

REMARK 2.1. Due to the regularizing effect of the operators
(1—-002+b,03)"" and (1—dd?+d,02)"
it follows that A takes values in [H3(0,L) N H3(0,L)]? which is compactly embedded in
[H2(0,L)]2. Hence A is compact.
From the classical semigroup theory, we have the following well-posedness result:

THEOREM 2.1.  For any (n°,w°) € [HZ(0,L)]?, system (2.2) has a unique classical solu-
tion (n,w) € C(R;[HE(0,L)]?). Moreover, (n,w) € C*(R;[HZ(0,L)]?), the class of analytic
functions in t €R with values in [H3(0,L)]%.
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Proof.  We first show that A is a skew-adjoint operator in [HZ(0,L)]?. For any
wi,th; € HENH*(0,L), i=1,2, and some integrations by parts, we have from (2.1) that

Al (22 \\ [/ ((1=b07+b103)7 (0 +adf)thn P2
P1 )\ e B (1—dd2+d103) 1 (0x+c02)p1 )\ 2
L L
z/ (8m+a3§’)z/}1<p2dx+/ (81+08§)<p11/}2dx
0 0
L L
:—/ 1/11(8x+a8§’)<p2dx—/ 01(Ds + 0% )y da
0 0
L
:—/ 1 (1—dd? +d102) (1 —do? +d102) (0, 4 ad2) padx
0

L
—/ o1(1— b0 +510%)(1— b0 +510%) 1 (0, + 0P )bod
0
_ /(¢ (1 =002 +019;) " (92 + 02 )12
- Y1 )\ (1—=dO2+d1073) (0, +ad3) o
_ $1 A P2
() 4(2))
By a density argument, the identity above holds for any ;,v; € HZ(0,L), i=1,2. Then,
the Stone theorem guarantees that generates a group of isometries t) jter 1IN
he S hy hat A f i ies {S(t)} i
[HZ(0,L)]?, which allows us to obtain the well-posedness result. The second part of

the theorem follows from the fact that A is a compact operator in [HZ(0,L)]? (see, for
instance, [Theorem 11.4.1, Chap. XTI in [14]]). d

2.2. The nonhomogeneous system. In this subsection, attention will be
given to the full system (1.3). We begin with the following result:

THEOREM 2.2.  For any (n°,w®) € [HZ(0,L)]? and (fi,9:) € [C}(0,00)])%, i=1,2, system
(1.3) has a unique classical solution (n,w) € C([0,00);[HE(0,L)]?).

Proof.  Let p;,1; € C>([0,L]), i=1,2, be functions, such that
©1(0) =11(0) = 012(0) =12 (0) = 012 (L) =91.(L) =0,
o1(L) =11 (L)=~1
and

©2(0) =12(0) = (L) =tp2(L) = p2(0) =12, (0) =0,
¢2x(L) = ¢2x(L) =-1L

For instance,

o1(2) =41 (1) = — g+ g and pa(e) =4(a)= 107~ 2z

satisfy the conditions above. Then, if we consider the change of functions

(2)=(0)-()+ (o e, 20
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where (u,v) € C([0,00);[HZ(0,L)]?) is the solution of the system

Ut + Vg + AUpgr — OUigr + 01Ut pgze =0 for z€(0,L), t>0,

Vi + Uy + Clpry — Aty + d1Viggzs =0 for x€(0,L),t>0,
u(t,0)=wu(t,L)=v(t,0)=v(t,L)=0 for t>0, (2.7)
Uy (¢,0) =ug (6, L) = v, (¢,0) =v, (¢,L)=0 for ¢t>0,

uw(0,2) =n%x); v(0,2)=w’(z) for x€(0,L),

given by Theorem 2.1, the couple (z,m) solves the problem

2+ My + Mgy — D2tpr + 01 2topes = F for z€ (0,L), t>0,
mg + 2y + CZrax — dmtmx + dlmtzzxm = G fOI‘ HAS (Oa L),t > Oa

z(t,0)=z(t,L)=m(t,0)=m(t,L)=0 for t>0, (2.8)
25 (t,0) =25 (t, L) =my(t,0) =my(¢t,L)=0 for t>0,
z(0,2)=0; m(0,2)=0 for x€(0,L),

with F' and G given by

<F<t,x>> _ ( H0)ler(@) = bt (@) +brot" ()] + 91 (D[ (2) + avi” ()] )
) G (D1 () — d® (@) + di bt ()] + f1.() [ (2) + gt ()]

+ ( £ lpa(@) —bps? () + b5 ()] + g2 () W (x) + ayp® ()] )
g (1) o (@) — d$? () + dibS ()] + fa(£) [ph () + apl? (2)]
€ L*(0,T;[L*(0,1)]%),
where (i), 1=2,3,4, denotes the derivative of order i. With the notation introduced in

the previous section, system (2.8) can be written as an abstract evolution equation as
follows

W (0)=0,
where W = (2,m) and H = Ay(F,G) € L*(0,00;[HZ N H*(0,L)]?), with
Ag:[L2(0,L)]2 — [H2 N H*(0,L)]? defined by

0 (1—b02+b,03)~1
Ao= . (2.9)
(1—-doZ2+dy02)~! 0

Since A generates a group of isometries in [HZ(0,L)]?, we have that system (2.8) has
a unique solution W= (z,m) € C([0,00);[H3(0,L)]?). Then, returning to (2.6), we con-
clude the proof. ]

Using the previous well-posedness results, we will study the existence of solutions
of the system (1.3) in the sense of transposition (see [10,11]):
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DEFINITION 2.1. Let (n°,w®) € [H2(0,L)]* and (fi,g:) €[H'(0,T)]?, i=1,2. A

solution of system (1.3) is a couple (n,w)€C([0,T];[L?(0,L)]?), such that, for any
(h,k)€ L1(0,T;[L*(0,L))?), satisfies

T (L n° u(0)
/ / (nh+wk)dxdt+<( 0))( 0 )>
o Jo w v(0) [H-2(0,0)]2,[H2(0,L)]?

T T
- / F1(8) b1 tazmn + Cvna] (1, L)t + / 01 (1) [dyvrms + attaa] (L) dt
0 0

T T
b / Fo(#) o (b, L)dt —dy / 02(t)vrae (1, L) dt, (2.10)
0 0
where (u,v) is a solution of the adjoint system

Ut Vg + CUpp — butrz +blutr1rm =h fOT’ Te (OvL)a t> 07
U+ Ug + QUpry — AVigr + d1Vigzee =k for x€(0,L),t>0,

u(t,0)=u(t,L)=v(t,0)=v(t,L)=0 for t>0, (2.11)
Ug (£,0) =ug (t,L) =v,(t,0) =v5(t,L) =0 for t>0,
w(T,z)=0; v(T,z)=0 for z€(0,L).

The existence of solutions for system (2.11) can be proved following the arguments used
in the proof of Theorem 2.2. Moreover, due to the regularizing effect of the operator
(1—ad?+ o)=L, with o, 8>0, we obtain the following result:

THEOREM 2.3.  If (h,k)€ L' (0,T;[L%(0,L))?), system (2.11) has a unique solution
(u,v) € C([0,T);[H). Moreover,
|\(U»U)||L1(0,T;[HgmH3(o,L)]2) + ||(ut7vt)||L1(O,T;[H§F1H4(O,L)]2)
<ClI(h, k)|l L1 0,132 (0,2)12)» (2.12)
for some constant C' > 0.

Proof.  System (2.11) can be written as an abstract evolution equation as follows

W, + AW =F
W(0)=0,

where W = (u,v) and F = Ag(h,k) € L*(0,00;[HZ N H*(0,L)]?), with

Ao :[L%(0,L)])?> — [HENH*(0,L)]? defined by (2.9). Since A generates a group
of isometries in [HZ(0,L)]?, we have that system (2.11) has a unique solution W =
(u,v) € C([0,00);[HZ(0,L)]?). Moreover, using the equations in (2.11), we deduce that
(ug,v,) € L1 (0,00;[HZNH3(0,L)]?) and estimate (2.12) holds. Indeed, first, observe that
each term of the equations in (2.11) belongs to L?(0,7;H~2(0,L)). Thus, scaling the
first equation by w and the second by v we obtain

1d L
331110t g0y = | (et ko (213)

Integrating the above identity from ¢ up to T, from Young’s inequality it follows that

||<’U,(t, '>7U(t7 '))||[2H02(0,L)]2
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<O (Il raseupllullegorzso.n +lorzoolllepmon

1 €
<0 (GBI airizaomm + 510D B ) (214)

for any € >0, where C' is a positive constant. Then, by choosing € >0 sufficiently small
n (2.14) we obtain
1(w, )l eo,miaz 0,2)12) < CH(RE) |1 (0,722 (0,)]2) (2.15)

for some C' > 0. On the other hand, due to the regularizing effect of the operator
(1—ad?+ o1, a,8>0, it follows that
(1—b02+b103)"'h(t,"),(1—dd2+d103) "k(t,-) € H*(0,L)

and the operator A takes values in [H3N H?3(0,L)]?, which is compactly embedded in
[H2(0,L)]2. Thus, combining (2.15) and the equations in (2.11), it follows that

(e (t,-),ve ()| ar2 0,12

< (1 =002 +b,02)~ (6w+a8§)u,(1fdaﬁ+d16§)’1(8x+a6§)v)\|[H3(O,LH2
+C[|(1=b02+b105) " h,(1—dO2 + d103) ™ k)| (714 0,112

<C (I1((0s +ad2)u, (9, +ad2)0)l -1 0,002 + 1| (o) z2(0,2072)

<C (1w )l mzco. ey + 110 )l z20,0002)

<C (Il o)lleqorrmo e + IR llnao.op) - (2.16)

By integrating (2.16) on (0,7) we get (u¢,v;) € L*(0,T;[HZNH3(0,T)]?). On the other
t t

hand, since (u(t,x),v(t,x)):(/ us(s,x)ds,/ vs(s,2)ds), (2.16) allows us to deduce
0 0

that (u,v) € LY(0,T;[HENH?3(0,T)]?) and, therefore, we obtain (2.12). |

The next theorem establishes the existence and uniqueness of solutions for system
(1.3) in the sense of transposition.

THEOREM 2.4.  Let (n°,w®)€[H~2(0,L)]? and (fi,g:) €[H*(0,T)]?, i=1,2. Then,
there exists a unique solutwn (n,w) € C([0,T);[L*(0,L)]?) of system (1.3) which verifies
(2.10).

Proof.  The result is proved in two steps. We first use the Riesz representation
theorem to prove the existence of a solution in L'(0,T;[L?(0,L)]?). Then, the continuity
in the time variable is proved by using density arguments.

We start by introducing the linear operator 7 : L' (0,T;[L?(0,L)]?) — R as follows

T((hk)) < (ZZ) ’ (2‘283) > L2 (0, L))%, (H3 (0. L)

T T
[ ) brusens +cvsa) (8, L)t + / 91 ()]s 0paae +atin] (£, L)t
0 0

T T
—bl‘/o f2(t)utzz(taL)dt_d1/0 gg(t)'l}txx(t,L)dt, (217)
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where (u,v) is a solution of (2.11). We have that 7 is well defined and continuous.
Indeed, proceeding as in the proof of Theorem 2.3, we obtain identity (2.13). Then,
integrating over (0,7"), it follows that

1[(w(0),v(0))[|1m2 0,2y < ClI(h: K[| 10,1322 (0,2)12) 5 (2.18)

for some constant C'>0. On the other hand, by using the Cauchy-Schwarz inequality,
the Sobolev embedding and estimate (2.12), the following estimate holds

T T
Fu(8) [Brtsans +cona) (1, L)t + / 91 ()]s Opmae +atin] (£, L)t
0 0

T T
br [ o)t (b L)t — / 05 (V) ves (1, L)t
0 0
<C<|(flagl)H[Hl(O,T)]z+||(f2792)|[LQ(O,T)]2>||(hvk)||L1(0,T;[L2(O,L)]2)v (2.19)

where C>0. Finally, (2.18) and (2.19) allow us to conclude that T €
L(LY0,T5[L*(0,L)]*);R).

Then, from the Riesz representation theorem, we obtain the existence of a unique
(n,w) € L*(0,T;[L?(0,L)]?) satisfying (2.10). Moreover,

|\(mw)||Loo(o,T;[L2(o,L)]2) =||T] \L(Ll(o,T;[L'f!(o,L)P);R)
<C (1) zr-2(0,y2 + 1 (Fr,90) a1 0,092 + 11 (F2,92) N [£20,712) - (2.20)

By using density arguments, starting with more regular data, we can also get the
regularity in the time variable. Indeed, since (f1,91)€[H'(0,7)]?,(f2,92) € [L*(0,T)]?
and (n°,w?) € [H2(0,L)]* there exist sequences (f1,n,91.1):(f2.n,92.n) € [D(0,7)]* and
(n2,w%) € [D(0,L)]?, such that

(fl,nagl,n)ﬁ(flvgl) in [ ( T)}27
(f2n:92,n) — (f2,92) in [L ( T)]27
(Mpswn) — (n°,0°) in [H2(0,L)]%,

when n—oo. Let us denote by (n,,w,) the solution of the system (1.3), correspond-
ing to the data (f1,,91.n),(fo.n,92.0) and (n2,w?), given by Theorem 2.2. Then,
(Nn,wn) € C([0,T];[L3(0,L)])?) and, for each n €N, the solution (1,,w,) satisfies (2.10).
Thus, if (n,w) is a solution by transposition of (1.3), it follows that (9,,w,)— (n,w)
is a solution by transposition with data (f1,,91.n)—(f1,91), (f2,n,92.n) — (f2,92) and
(n9,w?) — (n°,w°). Hence, by (2.20), we obtain

[ ) = (0,0) || Loe (0.73122 0,12 <C(|I(nm n) = (0"w) 720,12

s g1m) = Frag) i oy +|<f2,n,g2,n>(fz,gz>||[L2<o,T>]2>.

When n—oo, from the above inequality, we deduce that (7,,w,)—(n,w) in
L>(0,T3[L?(0,L)]?) and, since (n,,wn,)€ C([0,T];[L*(0,L)]?), it follows that (n,w)€
C([0,T[L*(0,L)]?). 0
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3. Spectral analysis

This section is devoted to develop a spectral analysis of the operator A introduced in
(2.4). We start by presenting some explicit formula and properties of a family of initial
value problems depending on several parameters. These results allow us to obtain the
asymptotic behavior of the eigenvalues and eigenfunctions of the differential operator
associated to (1.3).

3.1. Study of some initial value problems. Firstly, we study the proper-
ties of the following simple initial value problem, where ¢ € C* is a complex nonzero
parameter:
aoVyze —b1Puzas = f for z€(0,L),

A0 Prre — A1 Vagze =9 for z€(0,L),

((0),7(0)) = (¢%,1°),

(02(0),v2(0)) = (¢*,21),
(22(0),v22(0 %
(

Prrx ( ) Vyzax

(3.1)

In (3.1) a,b; and d; are positive real numbers. We have the following result.

LEMMA 3.1.  Given (¢°,01,¢% 030001, 02 03) €C® and (f,g) € [L?(0,L)]?, there ex-
ists a unique solution (p,v) to the problem (3 1) given by the formula

2

3
(b1d1)2 T aocx bld? aox lac]® 22
(@(@) ol [Slnh( /—bldl) b1d1:| T [(cosh( o) — 1) —loe] 7} 3

b d o ao g
[M]lg, [(cosh = 1) [bld]l 2 }tp + (b[ld]S [smh( le)— %} V3

. (cp R ar R ECLE N F(S)d8> (3.2)

N Y 0L [FG(s)ds

/ / b/ismh ar\f/(%”) )f(r)+ (Cosh(ai/(;i;i:)) — 1> g(r)] drds,
G(x) /Ow/os [(Cosh((%) - 1> fr)+ \/Zilsmh(mj/(%(_jf))g(r)] drds.

Proof. By setting (¢uza,Vazs) = (@,7) we deduce that

Co)- (D) -(8) (o))
) o () &) "\ 5(0) V)

consequently,

where

ds, (3.3)

/N
T B
—
8 8
~—
~__—
Il

@

b

8
/N
RS
W oW
~—
h&z
2

8

w

la ~
—~ O~
S G
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where

d
s cosh(j%) 5 sinh( ab"fll)
7-sinh( \/“%) cosh( \/a%)

By integrating the equations in (3.1) we obtain

<<Pm(x)> B <np2—j;1/3+$ﬁ(x)+;foxg(s)ds) (54)
Veo(r) ) \ 2= 2?1 () + L [ f(s)ds '

and, from (3.3), it follows that

(gpm (z) ) _ p? + Y0 ginh( j%)go?’ + 4 (COSh( 9oL ) 1) v3

Vbidy
Vgc:z(ﬂ?) y2 + sle (COSh(\;%) _ 1) <,0 4 \/mbmh( \/a%)yg

1 fo [\/Tsmh ‘“\’/(%;f))f(s)—i- (cosh(af/%—ls))_1>g(8)} ds

(z—s) b (z—s) (3.5)
(,l(T r—S . aoc(r—s
ag \ [= [(cosh N )—1) f(s)+1/ gt sinh( NG )g(s)} ds
After integration, we get
(@m($)> Sol—’_ [balg]l2 (COSh( a/boafi )_1> @3+d1[a:]12d1 Sil’lh( a/b(::;l )V3
ve(x) p1 -+ B i (422 )5 4 P12 ((cosh(-522) 1) 1
(@2—5—;1/3)1“—% mF(S)dS
+< , Jo (3.6)
(= 5 ¢%)— o5 fy G(s)
where
F(x)f/$ N lsmh(ag(xs))f(s)+<cosh(aa(xS))1>g(s) ds,
0 by Vbidy bidy
v ac(x—s) by ., ac(x—3s)
G(z :/ (cosh —1) §)+4/——sinh s)|ds
@)= [ (T =1) )+ ghsin (D)
Finally, by integrating (3.6), we obtain
0 (bldl)% h aocx bld h aocx -1 3
(‘P(x)> o foo’ sinh( 759" + fops (cosh () —1) v
v(x) WO+ P (cosh(\/‘lﬂ)—l)q) +(b[1d1]3 sinh (422 ),/
(M R
A A '

Rearranging the terms in (3.7) we obtain (3.2).
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We define the set

7= {ZG(C FES N )<1}

and show that the following estimates for the solution (¢,v) of (3.1) hold if o € Z.

LEMMA 3.2.  Let (p,v) be the solution of (3.1). There exists a positive constant C >0,
such that the following estimates hold for all x €[0,L] and o € Z :

2

>[4

2 x
<11+ C (It [+ 19?]) + C| [|s03|+|v3|+/0 |f(8)|+|9(8)|d5}, (3.8)

pae dwz

| div 0 1 C* [ 3, 3 ¢

XQW WO+ P [ alas] 69)

max {|peee (T)|, [Veze (7))} <C |:|‘P3|+|V3|+/w|f(5)|+|g(5)ds]' (3.10)
0

Proof. First, let us note that the following estimates hold for (¢,7) given by (3.3):

1
mm(s)@ s

('“’ '+[ 71 [ [ 101 o] ds> N

R(o TRy Me=2 ]
o)< Ie"l+ 3|) I [b|f<s>|+
0 1

by L IR = 1
< B+ 0P \/ﬁ+/ Vordy —|g(s)|| ds
)| < d1| | +1e |> ; mlf( )+ g 19l

* 1 1 PR (o) ] —2x
b1 5 3 Tords
< v+ + s)|+ s)|{ds |e brdy
_< d1| |+1¢°| /0 { /7b1d1|f( )| 4 lg( )|] >

which allow us to deduce (3.10). Moreover, taking into account formulas (3.4), we obtain

(fral2)] < |s02|+|0| [|so3|+|v3+/w|f<s>|+g<s>|ds} ,
& ltent [l sas).

Vo ()| < 2|+ 7

Then, from the first estimate above and by using that
er@| <!+ [ lona(ollds
@I <lel+ [ lestlds,

for all 2 €0, L], we obtain estimate (3.8). This argument also holds for the function v.
Thus, we obtain estimate (3.9). |
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Let us now consider the following slightly more complicated system,
&+ 080 —b1€anan+0Ce + 00y =0 for z€(0,L),

—C+dlup — d1Copaa + 0 + 0080, =0 for x€(0,L),

(£(0),¢(0)) = (£°,¢"),
(62(0),¢a(0)) = (£1,¢1),
(§22(0), G (0 ))=(€2 ),
(Eaw2(0), Gaaa (0) = (€2,C%),

for which we have the following result.

(3.11)

PROPOSITION 3.1.  There exists a positive constant C >0, such that
2

. . 1
1€ w20, <C | D (1E1+1¢) + i (€11 | (3.12)

par o]

for any o € Z and any solution (£,¢) of (3.11).

Proof. Let o€ Z, and let (§,¢) be a solution of (3.11). Then, (&,() satisfies
a0 Cuzz — b1&ssee =€ —0Co —b€sn  for z€(0,L),
a08aze — d1Caave =C — 08 — dCee  for z€(0,L),
(£(0),¢(0)) = (OCO)
(£2(0),¢2(0)) = (€4,¢1),
(€22(0), o (0) :( ),
(€zz2(0), Caza (0 )2(53 ¢?).

Since (3.13) is a system of type (3.1) with f=¢—0(, —bf,, and g=(—0&,; — d(ys, We
obtain from Lemma 3.2, a constant C' >0, such that

di¢
Z

@ <I (1) + €1+
=0

02 T 2 dzg dZC
+|0|/0 20';(‘d9&i(8)‘+ dxi(s)Dds

(3.13)

and
2 2
Z )| <IC1+C(IC+1¢3) + ||[I§3|+|C3I]
i=0
02 x 2 dzg dzc
*w/o 2"’§< i O] )]

2

> €+

=0

By adding the estimates above, we obtain
C2
+=(1€1+1¢%)

E%( Zf( )‘+‘Z;€<x>)<0 -
+02/0m;:<‘3;§(3)’+ j;§<s> )ds,
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for every z €[0,L] and o € Z. Then, from Gronwall’s inequality we have that (£,¢) sat-

isfies (3.12). d
The following result compares solutions of (3.11) and (3.1).

PRrROPOSITION 3.2.  There exists a positive constant C >0, such that

1€:0) = () w2 0,12 < (1+> lz [€1+1¢71) f(|§3\+\43l) (3.14)
=0

for any o € Z and any initial data (£°,6%,€2,¢3,¢0,¢1,¢2,¢3) € C8, where (€,¢) and (p,v)
are the solutions, with precisely these initial data, of equations (3.11) and (3.1) with
f=g=0, respectively.

Proof. We define 0 =¢ — ¢, u=(—v and note that (0,u) is a solution of

a0Ugzy — 0100000 =§ —0C, — b€y, for z€(0,1),
0000 — diUppye =( — 08 —dCy  for x€(0,L),
0(0),u(0)) =(0,0),

02(0),uz(0)) = (0,0),

022(0),u22(0)) = (0,0),

0222(0),uz22(0)) = (0,0).

Therefore, from Lemma 3.2 we obtain a constant C >0, such that, for every x €0,L)]
and o€ Z,

(e

1=

(3.15)

o~ o~ o~ o~

di
d:cZ ‘

@) <5 |01+ a0+ s

<
v/ I|o<|§m<s>+<m<s>|>ds]

From the estimate above and (3.12) it follows that

(| de d'u C? [~ o s
;(dﬂ@cw ) <o > (111 + 7 (+16°)
1
OV (6+1cT) + o7 (711671
i=0
Then, the solutions (£,¢) and (p,v) satisfy (3.14). d

Finally, we consider systems (3.1) and (3.11) with distinct parameters o. The
difference between the respective solutions are given by the following result.

PRrROPOSITION 3.3.  Let (¢,v) and (§,() be solutions of (3.1) with c=p and (3.11)
with o = fi, respectively, and f =g=0. Then, there exists a positive constant C >0, such
that

1(€,0) = () w2 0,2
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2

<C Z;(Ifi—so%lci—v"l) +ﬁ (1€ =1 +1C = v* |+ u=Al(19°+ °D) | - (3.16)
Proof. We define 0 =¢ — ¢, u=(—v, and note that (6,u) is a solution of

aptizzy — 103500 =& — plo — oo +a(ft— p)Vage  for z€(0,L),

apzze — d1Uszze = C — pe — dCoz +a(fi— p1)Paze  for z€(0,L),

(6(0),u(0)) = (8" —¢°,¢? =),

(02(0),u(0)) = (£ — ', ¢t —=v1),

(022 (0), 20 (0)) = (62— *,(* —1?),

(Oa22(0), ez (0)) = (6% — %, ¢ —1%).

Therefore, from Lemma 3.2 we obtain (3.16). d

3.2. Spectral analysis of the operator A. Given by,d; >0, let us first intro-
duce the operator B: (HZ(0,27))% — (HZ(0,27))? given by
( 0 (515;1)_1(@32)>

(3.17)

(d193) "1 (ad3) 0
Recall that, for a> 0, the operator (—ad?)~1:L?(0,27) — L?(0,27) defined by

(—a3§)1s0=v<:>{

—QUggry =P
drv(0)=0rv(L)=0,r=0,1,

is a well-defined, compact operator in L?(0,27).

In this section, A€ C is called an eigenvalue of the operator A(B) if there exists
a nontrivial vector ® = (p,v) € [H3(0,L)]?, called an eigenfunction corresponding to A,
such that AP =AP (B®=AP). The following two theorems are devoted to the spectral
analysis of these operators.

THEOREM 3.1.  The eigenvalues of the operator B defined by (3.17) are Ay =1/fin,
where

vbid;
alL

and e, € (0,1), with n € Z*. Each eigenvalue Ay, is double and has two independent eigen-
functions given by

fin = sgn(n) (2n]+1)7 —2¢e,)1, (3.18)

3 afin 3 [di py_ajin
él _ |:\/ b1d1:| S(\/bldl ,Z‘) éZ _ |:\/ 1d1:| HC( /blidl 7x) (3 19)
(1 b afin ’ n i [ '
UHn o C(s ) AHn S( 7tz x)
where

~ _ . JUR N 2 -1
afln . apn® apn® apln afln 2
S ,x | =sinh — —|—[ ] L { L] —4 x,
( bidy ) (\/bldl) Vbid Vbidy ( Vbidy
Qfbn afln®
C < ,:c) = <COSh — 1>
Vbidy (\/bldl)

(] ] (] ) )

:
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Moreover, the set {&){l:neZ*,j € {1,2}} forms an orthogonal basis of [HZ(0,L)]?.

Proof By using Lemma 3.1, with ¢ =¢!'=10=p1 =0 and f=¢=0, we deduce
that (p,v) is an eigenfunction of B corresponding to the eigenvalue 1/p if and only if

<<p(x)> 1 [sinh(kz) — K]+ \/d:[ cosh(kz)—1)— @] 3 . <<p2”;>
v(x) K3 \/ZT[(cosh(lm)—l) [mc] }(p + [sinh(kz) — ko] 3 2

(3.20)

(49)- (2 9)- (%) o
v(L) vy (L) 0

where k=au/v/b1d;. The data (¢?,v?) can be written as a function of x and (¢?,0?).
Indeed, from (3.20) and (3.21) we obtain the following systems

and

[sinh(kL) — kL] o>+ [(cosh(mL) 1)— M] V3+K3Lj<p2:0
\/%{(cosh(mL)—l) [“L] ](p +[sinh(kL) — kL]v? + K 71/2_0
and
(cosh(kL)—1)p®+ (smh(nL) kL) V3 +K2Lp? =0
b (sinh(kL) — kL) ¢® + (cosh(kL) — 1) v + k2 L2 =0.

Thus, we deduce that (¢?,v?) should satisfy

d
L R w2 (3.22)
2 [KL]Z—4 %Ln 5 U3 ) )

with k#+2/L. Replacing (3.22) in (3.20) we obtain

T S(k,x Lok, 3
(m)zl (m2) /fCe2) <@) -

v(x) K2 %C(m,x) S(k,x) v
where
pE
S(k,x) =sinh(kz) — Kz + [/i[L]QL—]ALmQ
C(k,x)=(cosh(kz)—1)— (mQ - [n[lZ]QL—]4> %

The next steps are devoted to obtaining the eigenvalue associated to the eigenfunction
given by (3.23). First, we note that Sy(k,L)=rC(k,L) and Cy(k,L)=rS(k,L). Then,
from (3.23) and the boundary conditions (3.21) we have

(@(L))_l S(k,L)  \[EC(k,L) <¢3>_<0>
uL)) &\ Jeewn) Skl v 0
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(wmm)_l C(r.L) \/38(m.L) (&)_(o)
va(L) ) W\ \[erS(r,L)  C(x,L) V3 0)

The systems above imply that & is a root of the equation

and

C(k,L)*—=S(k,L)*=0, (3.24)

which can be written as

[’{L%_Zl ([/{L]cosh ("“QL) — 9ginh (“;))2—0. (3.25)

The following result allows us to localize the roots of (3.25).

LEMMA 3.3.  The nontrivial roots (z,)nez+ of

f(z):zcosh(g) —QSinh(g) (3.26)
satisfy zp = tn, where (Yn)nezr CR are the roots of the transcendental equation
Y Y
tan () =2 3.27
an (5 5 ( )

Proof.  First, we show that (3.26) has no roots z with R(z) #0: Indeed, if z=z+iy
we have that

flz+iy)=f(z,y) =U(z,y) +iV (z,y)

where

U(z,y) =xzcosh (%) cos (%) —sinh (;) (2005 (%) +ysin (%)) ,
V(x,y) = cosh (g) (ycos (%) —2sin (g)) +zsinh (g) sin (%) .

For y € R fixed, we define the nonnegative function K, (z):=|f(x,y)|?. Then,
o K, () =xzcos(y) —zcosh(z) + 1 (22 +y?)sinh(z) =0,
=0 =0
. K;J/(l’) = %(372 +y? —2)cosh(x) +cos(y) >0, for all z €R.
The statement above is proved by noting that x+ K/(z) is increasing (decreasing) for
2>0 (z<0) and K/(0) = (y* —2) +cos(y) >0, for all y €R.

Both statements above imply that, for y € R fixed, the convex function z+— | f(x,y)
has a global minimum value at (0,y). This shows that (z¢,yo) is a root of (3.26) if and
only if 29=0 and yo is a root of the real-valued function g(y)=gycos(%)—2sin(¥).
Then,

| 2

Y\ oein (Y vy _Y
ycos(2) 251n<2)—0<:>tan(2) 5"
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.

Fic. 3.1. The distance ey, between the Toot xy, of the equation tan(x) =x and the asymptotic

@lnl+1)
(n)=5—

x=sgn(n 7 tends to 0, when |n| — co.

By analyzing the graphs of the functions tan(z) and x (see Figure 3.1), we deduce
that the points of intersection (2, )nez+, can be written as z,, = (2n+1) —En, T =—Xp,
where &, € (0,1), for all n>1.

From the analysis above, we conclude that the roots (Lky)nez« of (3.25) satisfy
Lky €iR and iLk, =—sgn(n)((2|n|+1)7 —2¢,), for all n€Z*. Then, the eigenvalues
(1/fin)nez satisfy fi, =sgn(n )m((2|n| +1)m —2¢, )i, where €, € (0,1), with n e Z*.

O

REMARK 3.1. If 1/f, is an eigenvalue of the operator B, from (3.22) we have that
(©?,1?) satisfies

Lln
P\_ bdil 2 iy il T s
v? ) [aLjin]?=4bidy \ 2L [aLfin]? —4bid; \ 2 '

By using (3.18) we obtain

@ , 1 1 3 3
‘(w)‘“ (e @iz ) (410

(e[ +1%),

=T nI
where 7 and C’ are positive constants.

We pass to analyze the spectral properties of the operator A. The main difference
with respect to B is that we do not have an explicit representation formula as (3.19)
for the eigenfunctions of A. Therefore, in order to prove the next theorem, we use a
strategy which combines two-dimensional versions of the shooting method and Rouché’s
theorem.

THEOREM 3.2. The eigenvalues of the operator

0 (1—b02%+b,0%) (0, +0ad?)
C\ (1=do2+d, 041 (0, +ad?) 0

are purely imaginary numbers (1/p)) ez jeq1,2y with the property that

uf;mo('nl') (nez' je{1,2}). (3.28)
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Moreover, to each eigenvalue 1/ul, corresponds an eigenfunction ®J, given by
) =PJ +(9<| |> (nezZ*,je{1,2}), (3.29)

with the property that the sequence (®)ncz- je{i,2y forms an orthogonal basis of
[H3(0,L)]°.

Proof. According to the proof of Theorem 2.1, A is a compact skew-adjoint
operator in [HZ(0,L)]2. Then, it has a sequence of purely eigenvalues tending to zero.
In order to localize these eigenvalues, let us define, for given § >0 and N €N, the sets

L N ey

a(§)=0D0(0), (nl>N),

Vbidy
alL

DN:{(,u 7,8) €CH: |Ru| <1,|3u| < (2N +2)m—2en), |y <1, |5|_‘ |}
I'y=0Dy,

where 7 is given in Remark 3.1 and 8 € C2. Also, let us define the maps F7,G7:C* — C*,
J€{1,2}, by

: (¢80 (¢4 (s, 87,L)
Fﬂ(ﬂa”}/,ﬁ])<< (M,yﬁj L))’(%(M,’Yﬁ L)))a (3.30)
i i ) 7 L Ni ’ L '
6 ()= (G700 0 ) (S50 ),
where 57 =(57,83) € C?, for j € {1,2}, and
(s@?(umﬁﬂ-)) <<p2(umﬁ27-)> < @' (v, B, )) (@2(/17%62«))
VJ(M)'Y’Bla') ’ VQ(M777B27') ’ ( s ﬁl ) ’ 52(/%%62")
are solutions of the initial values problems
— 0+ bpr, =01 Pppe + Yy +apV,, =0 for z€(0,L),
_V1+d1/;:c_dll/;za:a:—’—u(pi—i_au(p;mz:o fOIJ}E(O,L),
1 1 _
(2(0),74(0)) = (0,0),
(22(0),72,(0)) = (B1,53),
_(p2+b<piz_b1(pga:mz +MV§+G/~I’V§$$:0 for Z‘E(O,L),
7V2+dygac7d1y§acaﬁx+u@i+aﬂ§0§w¢:0 fOI‘;EE(U,L),
2
(¢2(0).%(0)) = (0,0), )
(¢2(0),77(0)) = (0,0),
(soix( )a zm(o)) (517ﬂ2)
(#222(0),72,,(0) = (7,1),
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alu‘ zz:v b1¢zmrx:0 for ’JIG(O,L),

ap@l ., —divt,.. =0 for z€(0,L),

(¢'(0),7%(0))=(0,0), (3.33)
(2(0),72(0)) = (0,0),

(P22(0),74,(0)) = (81, 2),

( :1E:EI( )’szm(o)):(177)a

apv, xzz bl(pzzxm 0 for I'E(O,L),

a:ugp.l,xx_dl TTITT =0 for xE(O,L),

(2(0),72(0))= (0.0, .
(#2(0),72(0))=(0,0),

(£22(0),72,(0)) = (8%, 83),

(P222(0), 724, (0)) = (7,1),

respectively.
According to TheoreNm 3.1 and Remark 3.1, we observe that 1/ is an eigenvalue of
B if and only if G1(f1,0,5%) =0, where Bl= (61,52) satisfies

. 2bydy L . braL?]i

1 101 1 1 n
o . d  ————————————
(aLi)?—dbrd, & (aLf1)?2 —4byd;’

or GQ(ﬂ,O,ﬁz) 0, where 52 = (ﬁl,ﬁQ) satisfies

) dlaLQ;] =9 2b1d1L

Pr=arpr—and, ™ 2= G — b,
Moreover, from the definition (3.30) and (3.31)-(3.32), we deduce that 1/p is an
eigenvalue of A if and only if there exists (v,8)€C3, such that F!(u,v,8)=0 or
F?(u,7,8)=0. Hence, we have reduced the problem of finding the eigenvalues of A
to the problem of determining the zeros of the maps (Fj)j:1’2. We analyze only the
zeros of the map F'!', since the analysis of those of F? is similar. First, we note that the
maps F! and G! are analytic and that

P (07.8) =G (7.6 < (|mu|<1|u|> FESNEER |) (3.35)

0Cy
|G1(/1'7’775)|2|7| ((Nv'}/aﬂ)ern(a))v (336)
for some positive constants Cy,C5. Indeed, since p€ Z,|v| <1 and |5]| < ik (3.35) is a
direct consequence of Proposition 3.2. On the other hand, since G (ji,,0, ﬂn)
can find Cs >0, such that

=0, we

|/’LHG1 (/1’7’776” 26023



OSCAR A. SIERRA FONSECA AND ADEMIR F. PAZOTO 1265

for (u,7,8) €T, (d) and we obtain (3.36). It follows from the multidimensional version
of Rouché’s theorem [12, Theorem 1] (see, also, [13, Theorem 3]) that there exist § >0
and N >0, such that the maps F! and G' have the same number of zeros in D,,(d), for
each |n|> N. Since G' has exactly one zero (fin,0,3%) in D, (8), then F! has a unique
zero (puy,vp,05) in Dy (8). Thus, we have obtained the eigenvalues (1/u),)jn>n of A
and proved the corresponding asymptotic estimate (3.28). Arguing as before, we get
the existence of a family of zeros (u%,vi,ﬂ%)sz for the map F2. Then, we obtain
the other sequence of eigenvalues (1/ Mi)\mz ~ of A and the corresponding asymptotic
estimate. To obtain the remaining eigenvalues, we note that, since

Qfin Qfbn
S <,L> =C <,L> =0 forall 1<|n|<N,
Vbidy Vbidy Il

then, there exists a positive constant C3, such that

) ap ap
min< |S| —,L | |,|C ,L >C
{‘ (vb1d1 ) (vb1d1 )’} ’
Vbid;

for peod (|9‘i,u| <1,|3pu < aL((2N+2)7r—25N)> .

)

This implies that |G1(,u,’y,ﬂ)| > 5‘5‘4 ((t,7,8) €T ) for some C4>0. Combining the
last estimate with (3.35) and applying again the multidimensional Rouché’s theorem,
we obtain the eigenvalues (1/4),<n of A in Dy. From the analysis of the map F?
we get the existence of the remaining eigenvalues (1/p2)jn<n-

Let us pass to the analysis of the eigenfunctions. To each eigenvalue 1/uJ, cor-

responds a unique normalized eigenfunction ®7 satisfying (3.31) with y=+} and
B=B4=(81,,85,) or (3.32) with y=n; and 8= ;= (57,03 ,,), respectively. Since

s S R 1 1 )
ol <7 lwh =il < and B =B)|<7| —+ | for j=12,

then, from Proposition 3.3, we deduce that (3.29) is verified. Finally, since A is a
skew-adjoint operator, these eigenfunctions are orthogonal in [HZ (0, L)]?. 0

4. Controllability
In this section we study some boundary controllability properties of the Boussinesq
system. We begin with the following exact controllability problem:

Given T >0 and an initial data (n°,w®) € [H~2(0,L)]?, can we find control inputs
(fi,gi) € [HY(0,T)]?, i=1,2, such that the solution (n,w) of (1.3) satisfies

(n(T,z),w(T,z))=(0,0) for x€(0,L)? (4.1)

We have the following characterization of a control driving system (1.3) to the rest.

LEMMA 4.1.  The initial data (n°,w®)€[H2(0,L)]? is controllable to zero in time
T >0 with controls (fi,g;) €[H(0,T)]?, i=1,2, if and only if

((5)-Cw))
w v(0) )/ tm-2(0,. 2,112 (0,L2

T T
- / F1(8) brtamas +cvna] (1, L)dt + / 01 (8)[dyvrnns + atiaa] (£, L) dt
0 0
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T T
by /O Fot)taan (£, L)dt — dy /0 Go(t)vsaa(t, D) dt,

for any solution (u,v) of the adjoint system

with (u”

Up + Vg + CVUzzz — DUigr +b1Utzzer =0 forxe(0,L), te(0,T),
Ve Uy + QUggy — AVtze + d1Vtgzpe =0 for xe(0,L),t€(0,T),
u(t,0)=wu(t,L)=v(t,0)=v(t,L)=0 for t€(0,T),
U (t,0) =1y (6,L) =v,(t,0) =0, (¢, L) =0 for t€(0,T),
w(T,z)=u(z); v(T,r)=v"(x) for x€(0,L),

vT) e [HF(0,L)]°.

(4.2)

Proof. Remark that the change of variables t T —¢ and x — L —x reduces the
system (4.3) to (1.3) with f;=g¢; =0, for i=1,2. Then, we can apply to (u,v) the well-
posedness results obtained in the previous section.

First, we prove the result for regular solutions. The less regular framework can be
proved using density arguments as in the proof of Theorem 2.4. Let (n,w) be a solution
of (1.3) and (u,v) solution of (4.3). After some integrations by parts, we have

T L
0 :/ / u (nt twy t+awpey — bntzz + blntfcmxz) dxdt
0 0

T ,L
+ / / v (OJt + Nz + Cllyzx — dwtww + dlwtwwaxr) d.’Edt
0 0

L L
:/0 [U(T)U(T)*U(O)W(O)}dwrb/o [ta (T) 02 (T) = 2 (0)7:(0)] ez

L
01 [ s ()00 (1) = 2 (O (0))
LO L
+/0 [v(T)w(T) v(O)w(O)]dx+d/0 [V2(T)wq (T) — v (0)w, (0)] d
L
+d, / 02 (T (T) — Vg (0)erm (0)] dt
('1)1 T T
ta /0 won(D)grdt by /0 ttaa (L) foddt + by /O o (L) frdt

T T T
+C/ Uzw(L)fldt_dl/ vtwm(L)Qth+dl/ Utwwz(L)gldt
0 0 0

By using the density of HZ(0,T) in H=2(0,T), we can pass the identity above to the
limit to obtain

)-(0)) ~((0)-())
v0) ) /20,y 20,02 W) )\ [ o,y 20,0

T T
+/ fl(t)[blutr:c:c+Cvrr}(t7L)dt+/ g1 (t)[dlvtrrx+aurx}(t7L)dt
0 0

(2

—b

T T
/ Fo(t)trna (£, L)t — dy / 05 () vums (1, L) dt.
0 0
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Hence, (n%,w") is controllable to zero in time T >0 if and only if (4.2) holds. O

The next result is devoted to show that system (1.3) is not spectrally controllable.
This means that no nontrivial finite linear combinations of eigenvectors of the operator A
defined in (2.4) can be driven to zero in finite time by using controls (f;,g;) € [H*(0,7)]?,
1=1,2.

THEOREM 4.1.  No eigenfunctions of the operator A can be driven to zero in finite
time.

Proof.  We first note that, according to Theorem 3.2, the operator A has a se-
quence of purely imaginary eigenvalues (1/p,)ncz- je{1,2}- Moreover, the corresponding
eigenfunctions (®/,),ez+ jeq1,23 form an orthogonal basis of [H§(0,L)]*. For each k#0),
let us consider

(mp,wp) =04 = (o1,v1), j=1,2,

eigenfunctions of the operator A. In a similar way, if we consider

<u£)_ ®I n#k
v ) )0 n=k,

the corresponding solution of (4.3) can be written as

(u">:ei’\zl(T_t)<I>fl, where i\ =——

Un

with 1/pd, (j=1,2) being the eigenvalues of the operator A, given by Theorem 3.2.
Moreover,

lim M\ =0.

|n|—o0

On the other hand, since the sequence (®,),cz- je{1,2} forms an orthonormal basis of
[H§(0,L)]?, we get

0 .
() ()} s 30
Wi vn( ) [H2(0,L))? ’
Thus, if (n,wy) is controllable to zero in time 7' >0, from (4.2) it follows that
T j . . . . . .
/ eikil(T_t) |:f1 (t) (_Z)‘gnbl (pgn,a:ww + a/V’I‘ZL,ZEI) (L) +0 (t) (_i)‘zzdll/%@m + a@zz,zx) (L)
0

+b1f2(t)1)‘31g0‘7]7,,1x(‘[’)+dlg2(t)2)‘grzygt,a:m(l’) dt:éiz,kei/\iT7 -7:172 (45)

For j=1, the identity above can be written as follows

T
/ ] h(t)ern (=) qr =61 en T (4.6)
where
T T
h(t) :fl <t+ 2) (_Z>‘71’Lb1(p711,:v:m: +a’y711,:nz> (L) +g1 <t+ 2) (_/L)\’}ldl V’}L,III J'_a’(p?lz,m:v) (L)

T T



1268 LACK OF EXACT CONTROLLABILITY OF A HIGHER-ORDER BBM-SYSTEM

Since he L*(—%,1), if we define F:C—C by

P(z)= [ ® hye,

T
2

from the Paley-Wiener theorem, we have that F' is an entire function. Moreover, since
lim|,| 00 A}, =0, it follows that F' is zero on a set with a finite accumulation point.
Then, F'=0 and, consequently,

F() (iAnb10n e+ 0V 20) (L) +91.(1) (—iAnda v e+ 005 ) (L)
+b1 fo(£)iN @ w (L) +d1ga ()i vy 4 (L) =0, (4.7)
for all t€[0,T.
For j=2, we can use (4.5) and proceed in a similar way to obtain
1) (—iX2b19) 4w AV} ) (L) +01(t) (—iNA A1V} 4 +agr ,) (L)
+b1 fo()iN PR 4 (L) +d1g2 ()i, vy 40 (L) =0, (4.8)
for all t€[0,77.

Thus, by dividing (4.7) and (4.8) by i\l and i\

-, respectively, we deduce that
(f1,91) and (f2,g2) should satisfy the system

{fl(t)A}m+gl(t)B%+f2(t)c7%+92(t)D717,_0 (4.9)

f1(t) A2 +g1(t) B2 + fo(t)C2 + go(t) D% =0,

where

vl (L) =01, (D), Bh=—ph (L) = a1 1, (D),
ix, ’ X, ’
C’ﬁ;:bupihm(L), and D%:dll/ﬁ’m(L), for j=1,2.

j =
In order to conclude the proof, the following result will be needed:

LEMMA 4.2.  For a subsequence, if necessary, the following holds:

lim CJ= lim D= lim A2= lim B}=0, j=1,2, (4.10)

lim Al = lim Bﬁzéovbldl

, for some 6y€C”, (4.11)

and
Cc! p!
Cr Dy

—L%bydy
~ ll Z. 4.12
@[+ )r— 25,2+ 4’ for all ne (4.12)

By using (4.10) and (4.11) in (4.9) we obtain

AL+ 01 (0B + 12010+ 0a(0)Dh 802 i (1)

R4+ 01 (0B + (002 + 26D =021 (1)

0,

0,
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as |n| — oo. Then, (f1,91)=(0,0) and the system (4.9) becomes simpler:

{fz(t)a% +92() D}, =0 (4.13)

fo()C3 +g2(t) D} =0.
Hence, from (4.12) we deduce that (f1,91) = (f2,92) =(0,0) is the unique solution of the
system (4.9), which contradicts (4.5) and the proof ends. d

It remains to prove Lemma 4.2.

Proof. (Proof of Lemma 4.2.) We first consider the solutions of the following
problems (-fi, 8%, =®,)

—finTp gpe =01 Pr e =0 for 2 €(0,L),
—finPr, awe — 1Py gage =0 for z € (0, L),
('(0),7'(0))=(0,0), (4.14)
(&n.2(0), 7 - (0)) = (0,0),
(@20 (0): 7 50 (0)) = (B s B3,
(n,222(0), 7 20 (0)) = (1,0)
and
U e 0P =0 for 2€OLL),
—fin G2 iy — 1Ty =0 for z€ (0,L),
(2%(0),7(0)) = (0,0), (4.15)
(#7.2(0),7 .(0))=(0,0),
(@5 20(0), 7 50 (0) = (BT 12 55,0
(7, 222(0), 77 202(0)) = (0,1).

For each i, = —sgn(n) Y25 ((2|n|+ 1)1 —2¢,)i (R€ Z* e, €(0,1)), (B%n,ﬁén) given by

~ 2b1d1L ~ blaLQﬁ
1 1 2 4.16
Fin (aLjin)? —4bidy’ Pan (aLjin)? —4bd; (4.16)
and (B%n,ﬁgn) such that
~ diaL? i ~ 2b1d L
2 1 Hn 2 1d1
_ _ R Sl S 4.17
Fin (aLfin)? —4b1d; Pzn (aLfin)? —4b1d; (4.17)

the solutions of (4.14) and (4.15) are given by formula (3.19) ( replacing fi, by —fin )

and will be denoted by
=1 =2
. Pn ~ Pn
Pl = ( . ) and 2 = ( I ) , (4.18)
V’I’L V’I’L
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respectively. We set k,, = —%. Then, from Theorem 3.1, we get S(ky,,L) =C(ky,L)=
0, which implies that

. . [lﬁlnL]S . 4[K/RL}
sinh(k, L) =#rn,L— [inLl]2—4  [knL]2—4
‘ B 2[kn L)
cosh(k,L)—1= —m-

Then,
2kn L 2L
12 o g —
Sealin 1) = [+ 25 | = ot g

Cow(in, L) =12 [(cosh(/inL) —1)+ %] S— [[KZL]’—;ZJ .

Consequently, the functions i)ﬁl, j=1,2, satisfy

-1 9
PraelB)= | o0 T TRaLP—14 4.19
. (ﬂ;,m@)) e P (1.19)

and

@2 (L)<¢H’M(L)>[ L (i) (4.20)
Kn 2

72 (L) L]?—4

n,rx

for ne N*. Now, we pass to the study of the asymptotic behavior of the eigenvectors
of the_operator —A. From the proof of Theorem 3.2 we have that, for each eigenvalue
—1/p,, the corresponding eigenfunctions @), = (¢l,v}) and ®2 = (apn7 v2) are solutions
of

_augly'rlz,www - blgo’}l,l.L.L‘L = <p7lz +M§ly7ll7l - b<p7ll,LL for x € (Oa L)7

_a/"L}L(p’}Z,CEmI - dll/}z,xzrx = l/rlL + /1’71190111,1 - dV}z,xm for z € (03 L)7

‘pl (0),1/1 (0)) = (O’O>7

en,2(0),77 5 (0))=(0,0),

90711,301( )7 nza:(o)) ( 1, n’ﬂén%

(4.21)

and

_a’lugzygz,zwz - bl(p%,wwzx :QP% —‘r,U,iV% T _b(p% TT for z € (0’L>7
7@}1%(,072) TTT 7d1yr2z rrrr iz +/u‘n90n x 7dl/n Tx for x € (OaL)7
¢*(0),2%(0))=(0,0),

, (4.22)
P (0 )’ m( ))=1(0,0),

2

( 1nvﬂ2n)
,II(E( )7 na::rz( )) (’y’ﬂ’ )7

(
(
(
(
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respectively. We also note that, according to Theorem 3.2, the data in (4.21) and (4.22)
satisfies

, ) , )
< — pd =, < —.

Since |3 — 35| —0, as |n| — oo, for j=1,2, we can extract a subsequence, if necessary,
such that

|51n 51n|—| |27 |B2n B2n|—| ‘

- | |’
for a given positive 8. Therefore, from Proposition 3.3, the eigenfunction (¢?,v}) satisfies
- - 1 ~
€| (18 =Bt al+188n = B3l + T (214 i = Aal(1+ 1AD)

el () o)

Similarly, the eigenfunction (p2,12) satisfies

1) 1) 1 1) 1) 1)
<o[(+)+ (+1+ )}
e ) T\l TR

From the estimates above and (4.19)-(4.20), we conclude that

(Di) - (dlyn m(L)) " TrnL]2—4 (an\/b1d1> (4.24)

and
cr D197 20 (L) L [ FaLVbidy
(Di) B (d m<L>> [P ( 20 ) ' 2
Thus,
C! D} 2
Cg Dg - [miLb}l?d—lél 0

which gives the behavior of the coefficients C and Dy, for j=1,2.
On the other hand, by integrating the equations in (4.21) over (0,L) we obtain the
coefficients A}, and B}:

L
A717 ( alu’n n,rx blgpn z:mc) (L) 7/0 @;(I)d‘r*auiﬁé,n 7b17

L
Brlz = (_au’}LSD’Il’L,:EZ _dly'rlL,a:m:c) (L) :/ V,rll((L‘)d.’E - au}lﬁll,n - dlly'rlz (426)
0
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The next steps are devoted to study the term on the right-hand side of the equations
n (4.26). First, we note that, from Theorem 3.2,

/OL¢;(x)da:=/0L Lz )dm—i—(’)( |)
/OLV}L(x)dx:/OLD}L(a:)dx—i—O (n> .

Then, from formula (3.19) we conclude that
L L
lim o (x)dr=lim vl (z)dz=0. (4.27)

[n]—o0 /g [n]—o0 Jo

On the other hand, from (4.23) we get

aitu=a(i+o(5)) (Aaro(g))

- 1 1
—ob a0 (o) +ata0 () +e0 (7). a2

auzﬁs,fa( +O(| |>) ('82"+0(|1>>

ot oo (i) rodtao () vao (). e

From (4.16), we note that the right side of (4.28) tends to 0 as |n| — oo, the last two
terms on the right side of (4.29) tend to 0 as |n| — co and, finally, the first two terms in
(4.29) satisfy

and

> 1 Vbid
lim ailpBs, =—b; and lim ailO < > So~——1,

for some &g € C*. Then, from (4.27), (4.28) and (4.29), we conclude that
Vbid
lim Al =4, Ll L and lim B! =0. (4.30)

In order to conclude the proof, we integrate the equations in (4.22) over (0,L) to obtain
L
A= (2 e =012 ) (D)= [ G =i 53, b
0

L
BYZL = (_aﬂi@%,xa: - dlyz,x;cac) (L) :/0 Vi(x)dx—aﬂiﬁin - dl

Then, by arguing as in the previous steps, we deduce that

lim AQ—O and lim 32 do bldl.
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REMARK 4.1. A=0 is not an eigenvalue of the operator A. Indeed, if (p,v) satisfies
A(p,v) =0, then, it shall be the solution of the uncoupled system

Vg +aVgpr =0 for z€(0,L),

+aPzee =0 for x€(0,L),
Po+ap (0,L) (4.31)
(¢(0),v(0)) = (

p(L),v(L))=(0,0),
(02(0),v2(0)) = (pa (L), v2(L)) = (0,0).

By setting 7 =1, we obtain #(z)=cieva"+cpe” va", for some constants c1,co. Then,
from the boundary condition 7(0)=0, we deduce that v(x)=2ic; sin(%) and the
a

boundary condition 7(L)=0 implies that 2ic; sm(\f) =0. Thus, if L#+/amn, with

n€7Z*, we have that ¢; =0 and v =const. Then, from the boundary condition »(0)=0
we conclude that ¥ =0. On the other hand, if L =+/amn, for some n € Z*, we have that

v(z) =—2i\/acy cos (%) and the condition v(L)=0 implies that ¢; =0. Hence, v =0.

Since the system is uncoupled, we can argue as above to obtain ¢ =0.

Now, we pass to study the approximate controllability of the system (1.3). In order
to do that, we introduce the following definition.

DEFINITION 4.1.  System (1.3) is said to be approximately controllable in time T >0
if, for every initial data (n°,w°) € [H=2(0,L)]?, the set of reachable states

w((8) ) =1 (E2)- () () oo

is dense in [L?(0,L)]?.
The corresponding approximate controllability result reads as follows.

THEOREM 4.2. System (1.3) is approzimately controllable in time T >0 with controls
and (fi,g:) € [H*(0,T)]?, i=1,2.

Proof.  Due to the linearity of the system (1.3), it is sufficient to prove the result for
any T >0 and (n°,w") =(0,0). Thus, we will prove the density of the set R( (O) ,T)

0
in [L?(0,L)]?.
Let (n,w) € C([0,T];[L?(0,L)]?) be the corresponding solution of (1.3) given by The-
orem 2.4 and (u,v) be the solution of the adjoint system (4.3). Then, it follows that

<<77(T,x)) (UT)>
) T
w(T,x) v [H=2(0,L)]2,[H2 (0,L)]2
T T
_/ fl(t)[blutxmr+avxI](t7L)dt_/ gl(t)[dlvtzxaz“r‘aumm}(t?L)dt
0 0
T T
+b; f2(t)uth(t7L)dt+d1/ 92(t)Vtaa (t, L)dL. (4.32)
0 0

0

Assume that R< <0

>,T> is not dense in [H3(0,L)]?. In this case, there exists
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(u?' 1) #(0,0) in [H2(0,L)]?, satisfying

UT
() () -
[H-2(0, L)), [HE (0, L)]?

for all (fi,9:) € [H'(0,7)]?, i=1,2. Consequently, from (4.32) we obtain
< (fl) < [blutxa:m +avzx] (t»L) ) >
g1 ’ [dlvtzma: +aua::r] (taL) [L2(0,T)]2
g2 ’ dl”tmx(taL) [L2(0,T)]? ’

for all (f;,9:) € [H'(0,T)]?, i=1,2. Thus,

[bl Utzza + avwz} (t7 L) _ 0 bl Utz (t,L) _ 0
(el @ D)= (0) ana (Gt =(5). weewn. @
Next, we want to write (4.33) as an infinite sum. From the proof of Theorem 2.1 we
know that A is a skew adjoint operator in [HZ(0,L)]?. Hence, it has a sequence of
eigenvalues (i\,)nez+ CiR, each i\, = (u,)~! with geometric multiplicity at most M,,.
The corresponding eigenfunctions form an orthonormal basis for [HZ(0,L)]?, which we
denote by

Mn
U {@sh @, @
nez*

Then, if (u”,vT) €[HE(0,L)]?, we have

(u” ZZ& <I>k a Lol 4. +aM”<I>M")

nez* k=1

and the corresponding solution (u,v) can be written as

My
v)= Z Zaﬁ@ﬁe“‘"(T 6 (a OL 4. 4 “<I>M") n(T=1), (4.34)
nezZ* k=1

Thus, from (4.33) and (4.34), it follows that

0=1Utz(t, L) = Z Z)‘nZa7L<an An(T—t),

nez*

Since (u,v) is analytic in time (see Theorem 2.1), we can integrate the identity above
over (—5,5), for any S >0. Then, for each m € Z*, we deduce that

1 e Ams -Mmkk: Am T
O*SBTOOE/ Ut (8, L)€ ds:fz)\m];am<pmﬂ(L)e ,

hence,

> akek, L (L)=0. (4.35)
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Analogously, from v, (t,L) =0, it results that

Zam vE, 2a(L)=0. (4.36)

On the other hand, from (4.33)-(4.34) we have

=[b1Utgzs + V] (t, L) = Z Zoz i)\nblgafmm(lj)—I—auf‘{,mj(L)] e (T—1)
neZ* k=1

and
= [d1Vtzms + aUsz) (8, L) = Z Zaﬁ —idndiE wm(L)—i—agofl’M(L)] eAn(T=1),
nezZ* k=1
Next, we proceed as before and use (4.35) and (4.36) to obtain

M7Yl
0= ak [~idnb1gh, pou(D)+avk, (D)€ T

M”n.
. ko k AT
= | —iAmb1 Z am@m,zz'x + a Z am m z'p €
k=1
M,
. k k iAm T’
=—iAmb1 Z Qo Pm,zza (L)eZ
k=1
and
M"n
k iAm, T’
0="> ah [~iAmdiV), p0 (L) +agh, ., (L))’
M””. M””.

=|—iA dlzam mrr% )+azafncpfn,T'r(L) ei)\MT

_ z)\ T
=—1Am d1§ am mxacac )

respectively. Then,
M, M,
Z am@m acacx O‘]:nyfkn,xmc (L) =0. (437)
k=1
Now, for each m € Z*, we consider ®,,, = (@, V) defined as follows
" =0, @), + ... ot o)
Thus, from (4.35), (4.36) and (4.37) we have that

(Pm.ze (L), Vmza (L)) = (Pmzaa (L), Vm zee (L)) = (0,0)
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and ®,, = (¢m,Vm) solves the initial value problem

— @m0 zz — 019m zzze + ((Am) " Wine +a(idm) Wi zze =0 for z € (0,L),
~Vm + Wiz — A1 Vi zzr + (0Am) " omz +a(iAm) " omzee =0  for z € (0,L),
(m(L),vm (L)) =(0,0),

(@m,e(L)sVm,2 (L)) =(0,0),

(¢m,ze(L),Vm,2z(L)) = (0,0),

(¢m,zaa (L) Vm,zae (L)) = (0,0).

Then, by uniqueness,
D, =al L + ..+t dMn =(0,0).
Since {®% }:m are linearly independent, it follows that

al,=..=altm =0 forall meZ*.
Thus, from (4.34) it follows that (u,v)=(0,0) and, in particular, (u?,vT)=(0,0). This
is a contradiction and the proof ends. 0

5. Comments and open problems
We close this paper with some comments and open problems:

e The conditions on the coefficients of the highest order BBM terms (b; >0 and
dy > 0) provide a regularizing effect, which is very useful for the well-posedness
of the system (1.3). On the other hand, the absence of the coefficients of the
highest order KdV terms (a; =c; =0) is an impediment for the controllability
properties to hold. Indeed, from the controllability point of view, KdV type
models are known to have a much better behavior (see, for instance, [15,22]).
Therefore, it is an interesting issue to study what can be done in the presence
of the highest KdV terms (a1 >0 and ¢; >0), including the full system (1.1).

e In the spirit of the problem mention above, the controllability issue also remains

open when b; =d; =0 and aj,c¢1 >0, i.e., in the absence of the highest BBM
terms. The KdV terms should provide good controllability properties, but in
order to study the resulting nonlinear system, more regularity of the solutions
is needed.
As far as we know, the boundary controllability problem was only studied in [8]
for the abed system (1.5) when b=d=0, i.e., for the lower-order KdV-KdV
system. In what concerns the higher-order KdV model, only the boundary
stabilization problem was addressed [7]. However, it is natural to expect that
boundary conditions similar to those introduced in [7] also lead to positive
exact boundary controllability results, at least for the corresponding linearized
system.

e The spectral analysis developed in the previous sections also leads to the study
of the stabilization problem when the time t is sufficiently large. By consider-
ing homogeneous Dirichlet boundary conditions and a damping term acting in
one equation of (1.3), the asymptotic behavior of the energy associated to the
model can be studied. Indeed, proceeding as in Section 3, a similar spectral
analysis can be developed to construct a Riesz basis of [H2(0,L)]? consisting
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of generalized eigenvalues of the corresponding differential operator. Then,
by using arguments similar to those developed in [17], we can conclude that
[(n(,2),w(,2) (20,22 = 0, as t—o0.

e The program of this work was carried out for a particular choice of boundary
control inputs and establishes as a fact that system (1.3) inherits some interest-
ing properties initially observed for the BBM equation. Considerations of this
issue for dispersive equations has received considerable attention, specially the
problems related to the study of the controllability properties. However, the
proof of a general result of lack of spectral controllability for some appropriate
evolution operators associated with a compact operator for the part involving
derivatives in space is a more difficult task which remains open.
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