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INITIAL MIXED-BOUNDARY VALUE PROBLEM
FOR ANISOTROPIC FRACTIONAL DEGENERATE

PARABOLIC EQUATIONS∗

GERARDO HUAROTO† AND WLADIMIR NEVES‡

Abstract. We consider an initial mixed-boundary value problem for anisotropic fractional type
degenerate parabolic equations posed in bounded domains. Namely, we consider that the boundary
of the domain splits into two parts. In one of them, we impose a Dirichlet boundary condition and
in the other part a Neumann condition. Under this mixed-boundary condition, we show the existence
of solutions for measurable and bounded non-negative initial data. The nonlocal anisotropic diffusion
effect relies on an inverse of a s−fractional type elliptic operator, and the solvability is proved for any
s∈ (0,1).
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1. Introduction
We are concerned in this paper with an initial mixed-boundary value problem for

a class of anisotropic fractional type degenerate parabolic equations. To this end, let
Ω⊂Rn be a bounded open set with smooth (C2) boundary Γ, and denote by ν the
outward unit normal vector field on it. We assume that Γ is divided into two parts Γ0,
Γ1. Then, we consider the following initial mixed-boundary value problem

∂tu+divq=0 in ΩT ,

u|{t=0}=u0 in Ω,

u=0 on (0,T )×Γ0,

q ·ν=0 on (0,T )×Γ1,

(1.1)

where ΩT =(0,T )×Ω, for any real number T >0, u(t,x) is a real function, which could
be interpreted as a density (concentration, population, etc.) or the thermodynamic
temperature, q=−u A(x)∇Ksu is the diffusive fractional flux, and Ks is the inverse
of the s-fractional elliptic operator Ls

B, (0<s<1), see Section 2. The matrix A(x)=
(aij(x))n×n is assumed symmetric and satisfies

aij ∈C(Ω)∩C0,1
loc (Ω), (i,j=1,. ..,n), (1.2)

n∑
i,j=1

aij(x)ξiξj ≥Λ1|ξ|2, (1.3)

for all ξ∈Rn and each x∈Ω, for some ellipticity constant Λ1>0. Moreover, the ini-
tial data u0∈L∞(Ω) is a non-negative given function, and we consider homogeneous
Dirichlet and Neumann boundary conditions, respectively on Γ0, Γ1. This assumption,
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‡Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro,
Brazil (wladimir@im.ufrj.br).

1279

mailto:gerardo.cardenas@im.ufal.br
mailto:gerardo.cardenas@im.ufal.br
mailto:wladimir@im.ufrj.br


1280 FRACTIONAL ANISOTROPIC EQUATIONS

the mixed-boundary condition, brings some difficulties which are discussed through this
paper, see for instance, Section 3.1.

The diffusive non-local flux q in the initial mixed-boundary value problem (1.1) is
motivated by the so-called General Fractional Fick’s law

q(x,u) :=−κ(x,u) ∇Fu

provided κ(·,u) is positive (non-negative in general) defined, where F is the inverse of
a fractional elliptic operator. The first attempt is to consider

q(x,u) :=−g(u)A(x)∇Ksu

with g(u)=u or g(u)=u(1−u), which from the maximum principle ensures that, κ(·,u)
is non-negative defined. For the second case, g(u)=u(1−u), it should be also assumed
that, 0≤u0≤1, but we leave this option to future work (see [13]). Moreover, the
assumption here κ(x,u)=uA(x) makes it clear that the coefficients (aij), (i,j=1,. ..,n)
describe the anisotropic and the heterogeneous nature of the medium. This is very
important to a great many physical theories, for instance, let us mention applications in
physical-chemical reactions and biological processes. Although, it is essential to mention
that, in another context of porous media diffusion model, Caffarelli and Vazquez [5]
introduced for the first time the model (1.1) for a given fractional potential pressure law,
that is to say, they considered q(u)=−u∇Ku, where K is the inverse of the s−fractional
Laplacian in Rn. Hence that paper established a Fractional Darcy’s law and under
some conditions, they proved existence of weak (non-negative) solutions for the Cauchy
problem.

Concerning the elliptic linear operator Lu :=−div(A(x)∇u), which is the building
block for the construction of the fractional operator Ls

B, we were motivated by the pa-
per of Caffarelli and Stinga [7]. In that paper the authors reproduce Caccioppoli type
estimates (for the Dirichlet and also Neumann boundary conditions), which allow them
to develop the interior and boundary regularity theory, depending on the smoothness of
the matrix A(x) and the source terms. Albeit, we should mention that, different from
that paper, here we are focused on the minimal regularity for the matrix A(x), such
that, the eigenfunctions {φk} of the problem (2.3) have enough regularity to define con-
veniently the operator Ks, and also to give a sense of the Neumann boundary condition
on Γ1, that is to say, for each function γ∈H1

0 (0,T ;H
1
Γ0
(Ω))

ess lim
τ→0+

∫ T

0

∫
Γ1

q(Ψτ (r),u(t,Ψτ (r))) ·ντ (Ψτ (r)) γ(t,r)drdt=0,

where Ψτ (r) := r−τν(r), and ντ is the unit outward normal field on Ψτ (Γ), see the
Appendix. Recall that A(x) is (uniformly) continuous up to the boundary, therefore
it is bounded in Ω and its restriction on Γ makes sense. This is also important to the
LB operator’s domain definition, see Equation (2.2). Moreover, due to the regularity
of the matriz A in C0,1

loc (Ω), the eigenfunctions φk ∈H2(Ω′), for all k≥1 and every Ω′

compactly contained in Ω, see Ambrosio, Carlotto, and Massaccesi [1]. We remark
that, it is not possible to ensure H2(Ω) regularity even if the diffusive matriz A has
C0,1(Ω) smoothness. Indeed, we are considering mixed-boundary conditions and hence
Nirenberg’s type methods do not apply, since φk=0 on Γ0 but not necessarily zero on
Γ1.

Since the paper [5], there exists a considerable list of important correlated results,
to mention a few [2,4,6,14,16,20–22]. In particular, along the same problem, Caffarelli,
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Soria, and Vazquez establish the Hölder regularity of such weak solutions for the case
s ̸=1/2 in [4], and the case s=1/2 has been proved by Caffarelli and Vazquez in [6]. All
of these above cited papers are posed in Rn. On the other hand, the authors considered
in [12] again q(u)=−u∇Ku, but now in the context of heat equation (Fractional Fourier
law), and they considered homogeneous Dirichlet boundary condition. Thus the problem
was posed in a bounded open subset of Rn. One of the main tasks of that paper was
how the boundary condition should be assumed, and it was important to deal with
traces at the boundary for any s∈ (0,1). The problem here has different difficulties, and
a different context. In this way we consider a formulation different from that presented
in [12]. Indeed, an important pragmatism concerning the mixed-boundary conditions
is that, the (homogeneous) Dirichlet boundary conditions are taken into account in the
test functions, and the Neumann boundary conditions are taken into account in the
linear form due to boundary integrals. Hence we follow this strategy and direct the
reader to Section 3, where the main ideas are well-explained and also Section 4, where
the solvability of the initial mixed-boundary value problem (1.1) is shown.

Finally, we would like to stress that the uniqueness property is not established
in this paper. First, let us remark that, no uniqueness result has been proven even
for the Rn case with q(u)=−u∇Ku. Moreover, along the same model we direct the
reader to Serfaty and Vázquez [19] (and references therein), where a counterexample to
comparison of densities is constructed, see Section 6.5 (Lack of comparison principle).
Hence we may consider a selection principle (or admissibility criteria) in order to attack
the issue of uniqueness for (1.1).

1.1. Functional space. From now on, by Ω we denote a bounded open set
in Rn with smooth (C2) boundary Γ. We assume that Γ=Γ0∪Γ1, Γ0 is a closed set
and Hn−1(Γ0)>0, where Hθ is the usual θ−Hausdorff measure. Moreover, Γ0∩Γ1 is a
submanifold of codimension greater than 1. Then, we define

H1
Γ0
(Ω) :=

{
v∈H1(Ω) :v=0 on Γ0 in the sense of trace

}
,

endowed with the norm

∥v∥H1
Γ0

(Ω) :=

(∫
Ω

|∇v(x)|2 dx

)1/2

, for each v∈H1
Γ0
(Ω). (1.4)

Since the trace is a continuous operator, we have that H1
Γ0
(Ω) is a Hilbert space with

the norm ∥·∥H1(Ω), which is equivalent to (1.4). Moreover, we define the set

C∞
Γ0
(Ω) :=

{
v∈C∞(Ω); v=0 on Γ0

}
, (1.5)

which is dense in H1
Γ0
(Ω).

Now, we follow Lions and Magenes [15] for the definition of the spaces Hs(Ω), with
s∈ (0,1). Indeed, by interpolation between H1(Ω) and L2(Ω), we have

Hs(Ω)= [H1(Ω),L2(Ω)]1−s.

According to this definition, this space is a Hilbert space with the natural norm given
by the interpolation. Moreover, we can define the space Hs

0(Ω) by

Hs
0(Ω)=C∞

c (Ω)
∥·∥Hs(Ω)

.
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Since Ω has a regular boundary, the set Hs
0(Ω) could be written as an interpolation

(see Theorem 11.6 of [15]),

Hs
0(Ω)= [H1

0 (Ω),L
2(Ω)]1−s,

for each s∈ (0,1)\{1/2}. The particular case s=1/2 generates the so-called Lions-

Magenes space H
1/2
00 (Ω), which is defined by

H
1/2
00 (Ω) := [H1

0 (Ω),L
2(Ω)]1/2,

which has the following characterization

H
1/2
00 (Ω)=

{
u∈H1/2(Ω);

∫
Ω

u(x)2

dist(x,Γ)
dx<∞

}
.

Furthermore, we define the space Hs
Γ0
(Ω) by

Hs
Γ0
(Ω)= closure of C∞

Γ0
(Ω̄) in Hs(Ω).

In particular, for 0<s≤1/2 and since Γ is Lipschitz, we have Hs
Γ0
(Ω)=Hs(Ω), which

is due to the fact that C∞
0 (Ω) is dense in Hs(Ω) (see [15] Theorem 11.1). On the other

hand, if 1/2<s<1 and Γ is Lipschitz, then the spaces Hs
Γ0
(Ω) have a characterization

via trace operator (Theorem 9.4 [15]), hence

Hs
Γ0
(Ω)≡{u∈Hs(Ω) :u=0 on Γ0 in the sense of trace}. (1.6)

The proof is based on similar arguments as those considered in Theorem 11.5 [15].

Finally, since Ω has a Lipschitz boundary, there exists an equivalent definition
given via interpolation. Indeed, due to H1

0 (Ω)⊂H1
Γ0
(Ω)⊂H1(Ω), it follows that, for all

s∈ (0,1)

[H1
0 (Ω),L

2(Ω)]1−s⊂ [H1
Γ0
(Ω),L2(Ω)]1−s⊂ [H1(Ω),L2(Ω)]1−s.

Therefore, we have

Hs
0(Ω)⊂ [H1

Γ0
(Ω),L2(Ω)]1−s⊂Hs(Ω), s∈ (0,1)\{1/2}

H
1/2
00 (Ω)⊂ [H1

Γ0
(Ω),L2(Ω)]1/2⊂H1/2(Ω), s=1/2.

(1.7)

In particular, when 0<s<1/2 we obtain

[H1
Γ0
(Ω),L2(Ω)]1−s=Hs(Ω).

On the other hand, using the idea of Theorem 11.6 [15] we may obtain

[H1
Γ0
(Ω),L2(Ω)]1−s=Hs

Γ0
(Ω), for all s∈ (1/2,1).

2. Dirichlet-Neumann spectral fractional elliptic operators
In this section, we study some results of Dirichlet-Neumann spectral fractional

elliptic operators. We mainly provide the proofs of the new results, in particular we
stress Proposition 2.3. One can refer to [3, 7], and [12] for an introduction.

We are mostly interested in fractional powers of a strictly positive self-adjoint op-
erator defined in a domain, which is dense in a (separable) Hilbert space. Therefore,
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we are going to consider the linear operator Lu=−div(A(x)∇u) equipped with homo-
geneous mixed Dirichlet-Neumann boundary data, that is to say B(u)=0 on Γ, where
the boundary operator B is defined as follows

B(u)=

{
u on Γ0,

(A∇u) ·ν on Γ1,
(2.1)

where A(x) is the symmetric matrix satisfying (1.2) and (1.3).

For convenience, let us denote by LB, the operator L subject to Dirichlet-Neumann
boundary condition given by (2.1). Observe that LB is nonnegative and selfadjoint in

D(LB) :=
{
u∈H1(Ω) :div(A∇u)∈L2(Ω),with B(u)=0 on Γ

}
. (2.2)

Therefore, by the spectral theory, there exists a complete orthonormal basis {φk}∞k=1 of
L2(Ω), where φk satisfies {

Lφk=λkφk, in Ω,

B(φk)=0, on Γ.
(2.3)

It is easy to check that {φk}∞k=1 is also an orthogonal basis of H1
Γ0
(Ω). Moreover, due

to the regularity of the matrix A(x), the eigenfunctions φk ∈H2(Ω′), for all k≥1 and
every Ω′ compactly contained in Ω, see Ambrosio et al. [1].

For each k≥1, it follows that φk is an eigenfunction corresponding to λk, where
one repeats each eigenvalue λk according to its (finite) multiplicity

0<λ1≤λ2≤λ3≤···≤λk≤··· , λk→∞ as k−→∞.

Then, we have

D(LB )={u∈L2(Ω);

∞∑
k=1

λ2
k |⟨u,φk⟩|2<∞},

LB u=

∞∑
k=1

λk ⟨u,φk⟩ φk, for each u∈D(LB).

Now, applying functional calculus, we define for each s>0, the following fractional
elliptic operator Ls

B, given by

Ls
Bu :=

∞∑
k=1

λs
k ⟨u,φk⟩ φk,

and it is well defined in the space of functions

D
(
Ls

B
)
=
{
u∈L2(Ω) :

∞∑
k=1

λ2s
k |⟨u,φk⟩|2<+∞

}
, (2.4)

which is a Hilbert space with the inner product

⟨u,v⟩s := ⟨u,v⟩+
∫
Ω

Ls
Bu(x)Ls

B v(x)dx.
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In particular, the norm | · |s is defined by

|u|2s=∥u∥2L2(Ω)+∥Ls
Bu∥2L2(Ω). (2.5)

Analogously, we can also define L−s
B :D

(
L−s

B
)
⊂L2(Ω)→L2(Ω). The next propo-

sition gives us the main properties of the operators defined above. In particular, we
observe that D

(
L−s

B
)
=L2(Ω).

Proposition 2.1. Let Ω⊂Rn be a bounded open set with Lipschitz boundary, s∈ (0,1),
and consider the operators Ls

B, and L−s
B . Then, we have:

(1) The operator Ls
B and L−s

B are self-adjoint. Also (Ls
B)

−1=L−s
B .

(2) If 0≤s1<s2≤1, then

D(Ls2
B ) ↪→D(Ls1

B ), and D(Ls2
B ) is dense in D(Ls1

B ).

(3) For each s, σ>0 and u∈D(Ls
B) we have L−σ

B u∈D(Ls+σ
B ).

Proof. The proof proceeds analogously to that of Proposition 2.1 in [12] and hence
we omit it.

Now, we state a Poincare-type inequality for the Ls
B, and an equivalent norm for

D
(
Ls

B
)
.

Corollary 2.1 (Poincare-type inequality). Let Ω⊂Rn be a bounded open set with
Lipschitz boundary. Then for each s>0, we have

∥u∥L2(Ω)≤λ−s
1 ∥Ls

Bu∥L2(Ω), for all u∈D
(
Ls

B
)
.

Moreover, the norm defined in (2.5) and

∥u∥2s :=
∫
Ω

|Ls
Bu(x)|2 dx (2.6)

are equivalent.

Remark 2.1. As a consequence of the above results, we can consider the inner
product in D

(
Ls

B
)
, as follows

⟨u,v⟩s=
∫
Ω

Ls
Bu(x) Ls

B v(x) dx. (2.7)

Now, the aim is to characterize (via interpolation) the space D(Ls
B). To begin, we

consider u∈D
(
LB

)
, hence since L1/2

B is self-adjoint and from the definition of LB we
have ∫

Ω

|L1/2
B u(x)|2 dx=

∫
Ω

L1/2
B u(x) L1/2

B u(x) dx=

∫
Ω

LBu(x) u(x) dx

=

∫
Ω

−div(A(x)∇u(x))u(x) dx=

∫
Ω

A(x)∇u(x) ·∇u(x) dx.

On the other hand, using the uniform elliptic condition (see (1.3)), we obtain

Λ1

∫
Ω

|∇u(x)|2 dx≤
∫
Ω

A(x)∇u(x) ·∇u(x) dx≤Λ2

∫
Ω

|∇u(x)|2 dx,
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where Λ2=∥A∥∞. Therefore

Λ1∥u∥2H1
Γ0

(Ω)≤∥L1/2
B u∥2L2(Ω)≤Λ2∥u∥2H1

Γ0
(Ω), (2.8)

which means the norm ∥·∥1/2 is equivalent to the norm ∥·∥H1
Γ0

(Ω). Consequently, from

the density ofD
(
LB

)
inD

(
L1/2

B
)
, and also inH1

Γ0
(Ω), it follows thatD

(
L1/2

B
)
=H1

Γ0
(Ω).

Similarly, we have the following

Proposition 2.2. Let Ω⊂Rn be a bounded open set with Lipschitz boundary. If
s∈ (0,1/2], then

D
(
Ls

B
)
=


H2s(Ω), if 0<s<1/4,[
H1

Γ0
(Ω),L2(Ω)

]
1/2

, if s=1/4,

H2s
Γ0
(Ω), if 1/4<s≤1/2.

(2.9)

Proof. The proof follows by applying the discrete version of J-Method for inter-
polation, see [3] and also [11].

Now, for each s∈ (0,1) we define conveniently the operators

Ks :=L−s
B and Hs :=L−s/2

B ≡K1/2
s .

Then we consider the following:

Lemma 2.1. Let Ω⊂Rn be a bounded open set with Lipschitz boundary, s∈ (0,1) and
u∈D(LB ), then Ksu∈D(LB ). In particular, we have in trace sense

Ksu=0 on Γ0 and A∇Ksu ·ν=0 on Γ1.

Proof. The proof follows directly from Proposition 2.1, item (3).

Here, and subsequently, we denote L2(Ω)=
(
L2(Ω)

)n
. Then we have the following

important result.

Proposition 2.3. Let Ω⊂Rn be a bounded open set with Lipschitz boundary.

(1) If u∈H1
Γ0
(Ω), then ∇Ksu∈L2(Ω) and there exists CΩ>0 such that∫

Ω

|∇Ksu(x)|2 dx≤CΩ

∫
Ω

|∇u(x)|2 dx. (2.10)

Similarly, if u∈H1
Γ0
(Ω), then ∇Hsu∈L2(Ω) and∫

Ω

|∇Hsu(x)|2 dx≤C
1/2
Ω

∫
Ω

|∇u(x)|2 dx. (2.11)

(2) If u∈H1
Γ0
(Ω), then

Λ1

∫
Ω

|∇Hsu|2 dx≤
∫
Ω

A(x)∇Ksu ·∇u dx≤Λ2

∫
Ω

|∇Hsu|2 dx.
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Proof. (1) First, since u∈H1
Γ0
(Ω), it is enough to consider u∈D(LB ) and thus

apply a standard density argument. To show item (1), from (2.8) we have∫
Ω

|∇Ksu(x)|2dx≤Λ−1
1

∫
Ω

|L1/2
B Ksu(x)|2dx=Λ−1

1

∞∑
k=1

λk|⟨Ksu,φk⟩|2

=Λ−1
1

∞∑
k=1

λk|λ−s
k ⟨u,φk⟩|2≤Λ−1

1 λ−2s
1

∞∑
k=1

λk|⟨u,φk⟩|2

=Λ−1
1 λ−2s

1

∫
Ω

|L1/2
B u(x)|2dx≤Λ−1

1 Λ2 λ−2s
1

∫
Ω

|∇u(x)|2dx<∞,

and analogously for ∇HAu.

(2) Now, we prove item (2). Integrating by parts, we obtain∫
Ω

−div(A(x)∇Ksu(x))u(x)dx

=

∫
Ω

A(x)∇Ksu(x) ·∇u(x)dx−
∫
Γ

u(r)A(r)∇Ksu(r) ·ν(r)dr.

We claim that, the boundary term is zero in the above equation. Let us recall that
Γ=Γ0∪Γ1, also since u∈D(LB), we have that u=0 on Γ0. Moreover, from Lemma 2.1
it follows that A∇Ksu ·ν=0 on Γ1. Hence we conclude that the boundary term is zero.
Therefore, we obtain∫

Ω

−div
(
A(x)∇Ksu(x)

)
u(x)dx=

∫
Ω

A(x)∇Ksu(x) ·∇u(x)dx. (2.12)

On the other hand, we observe that∫
Ω

−div
(
A(x)∇Ksu(x)

)
u(x)dx=

∫
Ω

LB (Ksu(x)) u(x)dx

=

∫
Ω

L1−s
B u(x)u(x)dx, (2.13)

where we have used the definition of LB and Ks. Then from (2.12), (2.13) and since
L1−s
B is self-adjoint (Proposition 2.1), it follows that∫

Ω

A(x)∇Ksu(x) ·∇u(x)dx=

∫
Ω

|L(1−s)/2
B u(x)|2dx.

Therefore, using the equivalence norm (2.8) together with the definition of Hsu, we have

Λ1

∫
Ω

|∇Hsu(x)|2 dx≤
∫
Ω

A(x)∇Ksu(x) ·∇u(x)dx≤Λ2

∫
Ω

|∇Hsu(x)|2 dx.

3. Initial mixed-boundary value problem
The main issue of this section is to present the definition of weak solutions for the

initial mixed-boundary value problem (1.1), and then discuss in details in which sense
the initial mixed-boundary data will be considered, for any s∈ (0,1).
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Definition 3.1. Given an initial data u0∈L∞(Ω) and 0<s<1, a function

u∈L2
(
(0,T );D

(
L(1−s)/2
B

))
∩L∞(ΩT )

is called a weak solution of the initial mixed-boundary value problem (1.1), when u
satisfies ∫∫

ΩT

u(t,x) (∂tϕ−A(x)∇Ksu(t,x) ·∇ϕ)dxdt+

∫
Ω

u0(x)ϕ(0)dx=0, (3.1)

for each test function ϕ∈C∞
c

(
[0,T );C∞

Γ0
(Ω̄)

)
.

One observes that, the above definition makes sense. Indeed, the first and the last
term in (3.1) is well defined, which is due to the fact that, u and u0 are bounded. The
second term also works, it is enough to recall that A(x) is bounded, and since for almost

all t∈ (0,T ), u(t)∈D
(
L(1−s)/2

B
)
, thus from item (3) in Proposition 2.1 and Proposition

2.2, Ksu(t)∈H1
Γ0
(Ω). Therefore, due to Proposition 2.3

∇Ksu(t)∈L2(Ω).

3.1. On the initial mixed-boundary data interpretation. The aim of this
section is to study the initial mixed-boundary datum interpretation, from the definition
of weak solutions as presented by Definition 3.1. We start with the study of the mixed-
boundary condition, and then the initial data will be treated at the end of this section.

To follow, we remark first that our definition of weak solutions is given for any
s∈ (0,1), and hence it is not always possible to recover the boundary conditions in the
trace sense. Let us be more precise. The definition of a weak solution

u∈L2
(
(0,T );D

(
L(1−s)/2

B
))

∩L∞(ΩT )

for (1.1) is given by the integral equation (3.1), where it used a convenient space for
the test functions, which give us some information about the mixed-boundary condi-
tion. Indeed, the homogeneous Dirichlet boundary condition is obtained by the space

D
(
L(1−s)/2

B
)
, and the Neumann boundary condition will be state via Coarea and Area

Formulas.

Let u be a solution of (1.1) in the sense of Definition 3.1. Firstly, we discuss the
Dirichlet condition, and it will be divided into three main steps:

(1) If 0<s<1/2 we have

u∈L2
(
(0,T );H1−s

Γ0
(Ω)

)
,

thanks to Proposition 2.2. In particular, this space naturally encompasses the
Dirichlet boundary condition u=0 on Γ0, since the trace is well defined, see (1.6).

(2) Now, we consider 1/2<s<1. In this case, from Proposition 2.2, we have

u∈L2
(
(0,T );H1−s(Ω)

)
.

Here, the trace of u on Γ is not well defined, but we could give an interesting
characterization. Indeed, applying Theorem 11.2 in [15], see p. 57, since for each
x∈Ω, dist(x,Γ)≤ dist(x,Γ0), there exists a positive constant C, such that∫

Ω

|u(·,x)|2

(dist(x,Γ0))2(1−s)
dx≤ C

2(1−s)
∥u(·)∥2H1−s(Ω). (3.2)
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Now, since Γ is a C2−boundary, there exists a sufficiently small δ>0 such that,
each point x∈Ωδ :={x∈Ω: dist(x,Γ)<δ} has a unique projection r=r(x) on the
boundary Γ. Moreover, for every x∈Ωδ the Jacobian of the change of variables

Ωδ ∋x↔ (r,τ)∈Γ×(0,δ) is equal to
D(x)

D(r,τ)
=1+O(δ),

where τ = dist(x,Γ). Therefore, we obtain from (3.2)∫ δ

0

∫
Γ0

|u(·,(r,τ))|2

(dist((r,τ),Γ0))2(1−s)
drdτ+

∫ δ

0

∫
Γ1

|u(·,(r,τ))|2

(dist((r,τ),Γ0))2(1−s)
drdτ

≤ C

2(1−s)
∥u(·)∥2H1−s(Ω), (3.3)

and applying the Coarea Formula, there exists a set of full measures contained in
(0,δ), such that, for each τ in this set∫

Γ

|u(·,(r,τ))|2

(dist((r,τ),Γ0))2(1−s)
dr≤ C

2(1−s)
∥u(·)∥2H1−s(Ω).

Moreover, for any r∈Γ0 it follows that, dist((r, ·),Γ0)<δ. Hence we obtain from
(3.3)

lim sup
δ→0+

(
δ2s−1 1

δ

∫ δ

0

∫
Γ0

|u(·,(r,τ))|2drdτ
)
≤C,

for some constant C>0. Thus defining the following characterization

H1−s
Γ0(1−2s)

(Ω) :=

{
f ∈H1−s(Ω);

1

τ

∫ τ

0

∫
Γ0

|f(r,τ ′)|2drdτ ′=O(τ1−2s)

}
, (3.4)

we have for almost all t∈ (0,T ) that, u(t)∈H1−s
Γ0(1−2s)

(Ω), for any 1/2<s<1.

(3) The case s=1/2 is more delicate, since we do not have a precise identification of

the domain D
(
L1/4

B
)
. Actually, from Proposition 2.2 and the second equation in

(1.7), we obtain

H
1/2
00 (Ω)⊂D

(
L1/4

B
)
⊂H1/2(Ω).

First, we observe that the space H1/2(Ω) does not have a well defined trace sense.
On the other hand, there exists a notion of weak trace (see Theorem 11.7 in [15])

for H
1/2
00 (Ω), but the spaces H

1/2
00 (Ω) and D

(
L1/4

B
)
are not necessarily equal. Al-

though, we may follow the same strategy of item (2) above, and define the following
characterization

H
1/2
Γ00

(Ω) :=

{
f ∈H1/2(Ω);

1

τ

∫ τ

0

∫
Γ0

|f(r,τ ′)|2drdτ ′=O(1)

}
.

Indeed, it is enough to observe that D
(
L1/4
B

)
is contained in H1−s(Ω) for any

s∈ [1/2,1) and the right-hand side of (3.3) is uniformly bounded up to s=1/2.

Therefore for almost all t∈ (0,T ), u(t)∈H
1/2
Γ00

(Ω).
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To finish the first part of this discussion, we study the Neumann boundary condition
q(x,u) ·ν=0 on Γ1, see (1.1), which is really complicated because it is composed of
two terms, that is u and A∇Ksu ·ν. In particular, we observe that q(x,u) ·ν does
not have trace on Γ1 for any 0<s<1. For instance, if 0<s<1/2, it follows that
u(t)∈H1−s

Γ0
(Ω)⊂H1−s(Ω) a.e. in (0,T ), which implies that u has trace on Γ1 (not

necessarily zero). Although, there is no guarantee that A(x)∇Ksu ·ν has trace on Γ,
since Ksu is not sufficiently regular. Similarly, if 1/2<s<1 then Ksu is sufficiently
regular to have trace on Γ, but as observed before we do not have trace for u. Thus the
Neumann boundary condition is not well defined in the strong sense in any case.

On the other hand, Definition 3.1 is sufficiently robust to give a sense of the Neu-
mann boundary condition on Γ1. More precisely, we state this boundary condition in
a weak sense, written as limits of integrals on (0,T )×Γ1. Indeed, we prove that any
solution u in the sense of Definition 3.1, satisfies

ess lim
τ→0+

∫ T

0

∫
Γ1

q(Ψτ (r),u(t,Ψτ (r))) ·ντ (Ψτ (r)) ϕ(t,r)drdt=0,

where Ψτ (r) := r−τν(r), and ντ is the unit outward normal field on Ψτ (Γ), see the
Appendix.

To prove the above sentence, we consider the following sets: Let F be a countable
dense subset of C∞

c

(
(0,T );C1

Γ0
(Ω̄)

)
. For each γ∈F , we define the set of full measure

in (0,1) by

Fγ =
{
τ ∈ (0,1)/τ is a Lebesgue point of J(τ)

}
,

where J(τ) is given by∫ T

0

∫
Γ1

q(Ψτ (r),u(t,Ψτ (r))) ·ντ (Ψτ (r))J [Ψτ (r)]γ(t,r)dr dt,

where J [Ψτ ] is the Jacobian of Ψτ . Then, we consider

F :=
⋂
γ∈F

Fγ ,

which is also a set of full measure in (0,1).

Proposition 3.1 (Neumann condition). Let u be a weak solution for the initial
mixed-boundary value problem (1.1), in the sense of Definition 3.1. Then, for each
γ∈H1

0 (0,T ;H
1
Γ0
(Ω))

ess lim
τ→0+

∫ T

0

∫
Γ1

q(Ψτ (r),u(t,Ψτ (r))) ·ντ (Ψτ (r))γ(t,r)drdt=0,

where Ψτ (r) := r−τν(r) and ντ is the unit outward normal field in Ψτ (Γ).

Proof. First, we define S :=Ψ(F ×Γ) and consider

ϕ(t,x)=

γ(t,Ψ−1
h(x)(x))ζj(h(x)), for x∈S,

0 , for x∈Ω\S,
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where γ∈F , ζj(τ)=Hj(τ+τ0)−Hj(τ−τ0), with τ0∈F . Therefore, from (3.1) with
ϕ(t,x) as test function, and applying the Coarea Formula for the function h, we have∫ 1

0

ζj(τ)

∫ T

0

∫
Ψτ (Γ)

u(t,r)∂tγ(t,Ψ
−1
τ (r))dHn−1(r)dtdτ

=

∫ 1

0

ζj(τ)

∫ T

0

∫
Ψτ (Γ)

q(r,u(t,r)) ·∇γ(t,Ψ−1
h(x)(x))(r)dH

n−1(r)dtdτ

+

∫ 1

0

ζ ′j(τ)

∫ T

0

∫
Ψτ (Γ)

q(r,u(t,r)) ·ντ (r)γ(t,Ψ−1
τ (r))dHn−1(r)dtdτ,

where we have used (A.1) and ∇h is parallel to ντ Hn−1 a.e on Ψτ (Γ).

Then, using the Area formula for the function Ψτ and passing to the limit in the
above equation as j→∞, recall that τ0 is a Lebesque point of J(τ), moreover ζj(t)
converges pointwise to the characteristic function of the interval [−τ0,τ0) and γ(t,·)=0
on Γ0, we obtain

J(τ0)=

∫ τ0

0

Φ(τ)dτ, (3.5)

for all τ0∈F and γ∈F , where Φ(τ) is given by∫ T

0

∫
Ψτ (Γ)

u(t,r)
(
∂tγ(t,Ψ

−1
τ (r))−A(r)∇Ksu(t,r) ·∇γ(t,Ψ−1

h(·)(·))(r)
)
dHn−1(r)dt.

On the other hand, since F is dense in C∞
c

(
(0,T );C1

Γ0
(Ω̄)

)
, we have that (3.5) holds for

γ∈C∞
c

(
(0,T );C1

Γ0
(Ω̄)

)
. Then, for each τ ∈F we have

|J(τ)|≤C |Ψ((0,τ)×Γ)| ,

where C is a positive constant, which does not depend on τ . Moreover, we know
that J [Ψτ ]→1 as τ →0+. Therefore, applying the Dominated Convergent Theorem we
obtain

ess lim
τ→0+

∫ T

0

∫
Γ1

q(Ψτ (r),u(t,Ψτ (r))) ·ντ (Ψτ (r))γ(t,r)drdt=0,

which completes the proof.

To finish this section, we characterize the initial boundary condition from Definition
3.1. For this purpose, let E be a countable dense subset of C1

Γ0
(Ω̄). For each ζ ∈E , we

define the set of full measure in (0,T ) by

Eζ :=
{
t∈ (0,T )/t is a Lebesgue point of I(t)=

∫
Ω

u(t,x)ζ(x)dx
}
,

and consider

E :=
⋂
ζ∈E

Eζ ,

which is a set of full measure in (0,T ).
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Proposition 3.2 (Initial condition). Let u be a weak solution for the initial mixed-
boundary value problem (1.1), in the sense of Definition 3.1. Then for all ζ ∈L1(Ω)

ess lim
t→0+

∫
Ω

u(t,x)ζ(x)dx=

∫
Ω

u0(x)ζ(x)dx. (3.6)

Proof. We give only the main ideas of the proof (for more details see [12]). Let
us consider ϕ(t,x)=γj(t)ζ(x), γj(t)=Hj(t+ t0)−Hj(t− t0) for any t0∈E (fixed), and
ζ ∈E . Then, substituting ϕ into (3.1) and passing to the limit as j→∞, (t0 is Lebesque
point of I(t)), we obtain

I(t0)=

∫
Ω

u0(x)ζ(x)dx−
∫ t0

0

∫
Ω

u(x)A(x)∇Ksu(x) ·∇ζ(x)dxdt, (3.7)

where we have used the Dominated Convergence Theorem. Since t0∈E is arbitrary,
and in view of the density of E in L1(Ω), the proof follows.

4. Main result
The main result of this section is to show a weak solution of (1.1). To this end, we

have the following:

Theorem 4.1 (Main Theorem). Let u0∈L∞(Ω) be a non-negative function. Then,

there exists a weak solution u∈L2
(
(0,T );D

(
L(1−s)/2

B
))

∩L∞(ΩT ) of the initial mixed-
boundary value problem (1.1).

The proof of this result is given in the next sections.

4.1. Anisotropic parabolic approximation. In this subsection, we introduce
and study the approximate parabolic problem with δ,µ∈ (0,1), given by

∂tuµ,δ−δ div(A(x)∇uµ,δ)=div(qµ(x,uµ,δ)) inΩT , (4.1)

uµ,δ =u0δ in{t=0}×Ω, (4.2)

uµ,δ =0 on(0,T )×Γ0, (4.3)

δA∇uµ,δ ·ν=−qµ(x,uµ,δ) ·ν on (0,T )×Γ1, (4.4)

where qµ(x,u) :=(µ+u)A(x)∇Ksu, and u0δ is a non-negative regularized initial data
such that

u0,δ →u0 strongly in L1(Ω) as δ→0, ∥u0,δ∥L∞ ≤∥u0∥L∞ ,

and satisfying suitable compatibility conditions.

Now, we make use of the well known results of existence, uniqueness and uniform L∞

bounds for parabolic problems with mixed boundary conditions. Therefore, applying
Theorem A.1 from the Appendix, for each δ, µ>0, there exists a unique, namely here
strong solution,

uµ,δ ∈C([0,T );H1
Γ0
(Ω))∩L2((0,T );H2(Ω′))∩L∞(ΩT ),

∂tuµ,δ ∈L2 (ΩT ) ,

for each Ω′ compactly contained in Ω. Moreover, one observes that conditions (4.3) and
(4.4) are satisfied in the sense of trace.
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The following theorem investigates the properties of the solution uµ,δ to the
(anisotropic) parabolic perturbation (4.1)–(4.4) for fixed δ,µ∈ (0,1).

Theorem 4.2. For each µ,δ>0, let u=uµ,δ be the unique strong solution of (4.1)–
(4.4). Then, u satisfies:

(1) For all ϕ∈C∞
c ([0,T ) :C∞

Γ0
(Ω̄)),∫∫

ΩT

(u(t,x)∂tϕ(t,x)−δA(x)∇u ·∇ϕ(t,x)) dxdt+

∫
Ω

u0δ(x) ϕ(0,x) dx

=

∫∫
ΩT

(µ+u(t,x))A(x)∇Ksu(t,x) ·∇ϕ(t,x) dxdt. (4.5)

(2) For all (t,x)∈ΩT , we have

0≤u(t,x)+µ≤∥u0∥L∞ , (4.6)

and the conservation of the “total mass”∫
Ω

u(t,x) dx=

∫
Ω

u0δ(x) dx≤∥u0∥L∞ |Ω|. (4.7)

Proof. (1) Let us show (4.5). First, we observe that, the Equation (4.1) is
verified for almost all points (t,x)∈ (0,T )×Ω′, for each Ω′ compactly contained in Ω.
Therefore, we multiply (4.1) by ϕ(t,x)(1−ζj(h(x))) and integrate in ΩT , where ϕ∈
C∞

c ([0,T );C∞
Γ0
(Ω̄)), and ζj(h(x)) is taken as in the proof of Proposition 3.1. We are

not going to reproduce here all the details given in Section 3.1, and from now on we
omit this procedure. One remarks that, the support of (1−ζj(h(x)))⊂Ω. Then, after
integration by parts we obtain∫ T

0

∫
Ω

{
−u∂tϕ+δA(x)∇u ·∇ϕ+(µ+u)A(x)∇Ksu ·∇ϕ

}
(1−ζj) dxdt

=

∫
Ω

u0δ ϕ(0)(1−ζj) dx+

∫ T

0

∫
Γ

ϕ(1−ζj) (δA(r)∇u+qµ(r,u)) ·νdrdt

+

∫ 1

0

(−ζ ′j(τ))

∫ T

0

∫
Ψτ (Γ)

ϕ(δA(r)∇u+qµ(r,u)) ·ντ (r)drdtdτ,

where we have used the Coarea Formula for the function h in the third integral in the
right-hand side of the above equation. Thus, applying the Area formula for the function
Ψτ , passing to the limit as j→∞ and making τ0→0+, we have∫ T

0

∫
Ω

{
−u∂tϕ+δA(x)∇u ·∇ϕ+(µ+u)A(x)∇Ksu ·∇ϕ

}
dxdt

=

∫
Ω

u0δ ϕ(0) dx+2

∫ T

0

∫
Γ

ϕ (δA(r)∇u+qµ(r,u)) ·νdrdt.

Finally, we stress that the boundary term∫ T

0

∫
Γ

ϕ (δA(r)∇u+qµ(r,u)) ·νdrdt=0.
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Indeed, due to Γ=Γ0∪Γ1, ϕ=0 on Γ0, and (δA(r)∇u+qµ(r,u)) ·ν=0 on Γ1, see (1.5)
and (4.4) respectively.

(2) To show the assertion (4.6), we multiply (4.1) by φ′
ε(u) and integrate in Ωt=

(0,t)×Ω, 0<t≤T , where

φε(z)=

{(
(z+µ)2+ε2

)1/2−ε, for z≤−µ,

0, for z≥−µ,

which converges to |z+µ|− :=min{z+µ,0} as ε→0+. Hence from the properties of φε,
we obtain ∫

Ω

φε(u(t))dx+

∫∫
Ωt

φ′′
ε (u)(µ+u(x))A(x)∇Ksu ·∇u dxdτ

+δ

∫∫
Ωt

φ′′
δ (uε)A(x)∇u ·∇udxdτ =0,

where we have used that, u0≥0, the boundary conditions in (4.3)-(4.4), and φ′
ε(0)=0.

On the other hand, we observe

φ′′
ε (u)(µ+u(x))A(x)∇Ksu ·∇u+δA(x)∇u ·∇uφ′′

ε (u)

≥
{
−|µ+u(x)||A(x)∇Ksu||∇u|+δΛ1|∇u|2

}
φ′′
ε (u)

≥− 1

4δΛ1
(µ+u)2|A(x)∇Ksu|2φ′′

ε (u)

≥− ε

4δΛ1
|A(x)∇Ksu|2,

where we have used the uniform ellipticity and (u+µ)2φ′′
ε (u)≤ε. Consequently,∫

Ω

φε(u(t))dx≤
ε

4δΛ1

∫
Ωt

|A(x)∇Ksu(τ,x)|2dxdτ.

Then passing the limit as ε→0+, we get∫
Ω

|u(t,x)+µ|− dx≤0,

thus |u(t,x)+µ|−=0. Similarly, we can show that |u(t,x)+µ−∥u∥∞|+=0, therefore
(4.6) is proved.

(3) It remains to prove (4.7). We multiply (4.1) by ξk(x) (see the Appendix), and
integrate over Ω. Then, after integration by parts and due to ξk=0 on Γ, we have

∂

∂t

∫
Ω

u(t,x)ξk(x)dx=−
∫
Ω

δ A(x)∇u(t,x) ·∇ξk(x) dx

−
∫
Ω

(µ+u(t,x))A(x)∇Ksu(t,x) ·∇ξk(x) dx.

Now, we integrate the above equation over (0,t)∫
Ω

(
u(t,x)−u0,δ(x)

)
ξk(x) dx=−

∫ t

0

∫
Ω

δ A(x)∇u(t,x) ·∇ξk(x) dx
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−
∫ t

0

∫
Ω

(µ+u(t,x))A(x)∇Ksu(t,x)) ·∇ξk(x) dxdt
′

=−I1−I2, (4.8)

with the obvious notation. Let us observe the I2 term, we have

|I2|≤ (∥u∥∞+1)∥A∥∞
(∫∫

ΩT

|∇Ksu(t,x)|2dxdt
)1/2(∫∫

ΩT

|∇ξk(x)|2dxdt
)1/2

,

where we have used Hölder’s inequality and the uniform estimates for u(t,x), A(x).
Therefore, applying Lemma A.1 we obtain

lim
k→∞

I2=0.

Similarly, we have that I1 goes to zero as k→∞. Then, passing to the limit as k→∞
in (4.8), and again applying Lemma A.1 we get (4.7). Hence the proof of the Theorem
4.2 is complete.

Now, let us consider two important estimates of the solution uδ,µ for the initial
mixed-boundary valued problem (4.1)–(4.4), with fixed δ,µ∈ (0,1).

Proposition 4.1 (First energy estimate). Let u=uµ,δ be the unique strong solution
of (4.1)–(4.4). Then, for all t∈ (0,T ),∫

Ω

η(u(t))dx+Λ1δ

∫ t

0

∫
Ω

|∇u|2

µ+u
dxdt+Λ1

∫ t

0

∫
Ω

|∇Hsu|2dxdt≤
∫
Ω

η(u0δ)dx, (4.9)

where η(λ) :=(λ+µ)log(1+(λ/µ))−λ, (λ≥0).

Proof. First, we multiply (4.1) by η′(u) and integrate on Ω. Then, after integration
by parts, we have

∂

∂t

∫
Ω

η(u)dx=−δ

∫
Ω

1

µ+u
A(x)∇u ·∇u dx−

∫
Ω

A(x)∇Ksu ·∇udx

+

∫
Γ

η′(u(r)) (δA(r)∇u(r)+qµ(r,u)) ·ν dr.

One observes that, the boundary terms are zero. Indeed, the proof is similar to Theorem
4.2, where the important point here is that η′(0)=0 and u=0 on Γ0. Therefore, the
boundary terms are zero. Then, we integrate over (0,t), for all 0<t<T , to obtain∫

Ω

η(u(t))dx+δ

∫ t

0

∫
Ω

1

µ+u(t,x)
A(x)∇u(t,x) ·∇u(t,x) dxdt

+

∫ t

0

∫
Ω

A(x)∇Ksu(t,x) ·∇u(t,x)dxdt=

∫
Ω

η(u0) dx.

On the other hand, due to the uniform ellipticity condition, we have

Λ1

∫ t

0

∫
Ω

|∇u(t,x)|2

µ+u(t,x)
dxdt≤

∫ t

0

∫
Ω

1

µ+u(t,x)
A(x)∇u(t,x) ·∇u(t,x) dxdt.

For the third term in the left-hand side, we use Proposition 2.3 (u∈H1
Γ0
(Ω)), which

establishes the first energy estimate.
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As a consequence of this last result, we obtain

Corollary 4.1. Under the assumptions of the Proposition 4.1, we have that u=uδ,µ

satisfies

δ∥∇u∥2L2(ΩT )≤∥u0∥∞ η(∥u0∥∞) |Ω| Λ−1
1 , and

∥∇Hsu∥2L2(ΩT )≤η(∥u0∥∞) |Ω| Λ−1
1 ,

(4.10)

where |Ω| is the Lebesgue measure of the set Ω.

Proof. We only provide the proof for the first inequality in (4.10), the proof of the
other one is similar. From (4.9) we have

Λ1δ

∥u0∥∞

∫ t

0

∫
Ω

|∇u(t,x)|2dxdt≤
∫
Ω

η(u0δ(x))dx,

where we have used (4.6). Moreover, since η′(λ)>0, (λ≥0), it follows that η(λ) is an
increasing function, hence η(u0δ(x))≤η(∥u0∥∞) for almost all x∈Ω. Consequently, we
obtain ∫

Ω

η(u0δ(x))dx≤η(∥u0∥∞)|Ω|,

which completes the proof.

Proposition 4.2 (Second energy estimate). Under the conditions stated above, we
have that u=uµ,δ satisfies

1

2

∫
Ω

|Hsu(t2,x)|2dx+Λ1δ

∫ t2

t1

∫
Ω

|∇Hsu|2dxdt

+Λ1

∫ t2

t1

∫
Ω

(µ+u) |∇Ksu|2 dxdt≤
1

2

∫
Ω

|Hsu(t1,x)|2 dx, (4.11)

for all 0≤ t1<t2<T .

Proof. First, we multiply (4.1) by Ksu, and integrate in Ω. Then, we have∫
Ω

∂u

∂t
Ksu dx=−δ

∫
Ω

A(x)∇u ·∇Ksu dx−
∫
Ω

(µ+u)A(x)∇Ksu ·∇Ksudx

+

∫
Γ

Ksu (δA(r)∇u+qµ(r,u)) ·ν dr.

One observes that, u(t)∈H1
Γ0
(Ω) for each t∈ [0,T ), thus by Proposition 2.1 it follows

that Ksu(t)=0 on Γ0. Hence, from the same ideas used above, we have that the
boundary terms are zero. Then, integrating over 0≤ t1<t2<T , we obtain

1

2

∫
Ω

|Hsu(t2,x)|2dx+δ

∫ t2

t1

∫
Ω

A(x)∇u ·∇Ksudxdt

+

∫ t2

t1

∫
Ω

(µ+u)A(x)∇Ksu ·∇Ksudxdt=
1

2

∫
Ω

|Hsu(t1,x)|2dx.
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From the uniform ellipticity condition, we have an estimate for the third term of the
left-hand side

Λ1

∫ t2

t1

∫
Ω

(µ+u)|∇Ksu|2 dx≤
∫ t2

t1

∫
Ω

(µ+u)A(x)∇Ksu ·∇Ksu dx

and for the second term, we use Proposition 2.3 (u∈H1
Γ0
(Ω)). Therefore we get the

second energy estimate (4.11).

Finally, we consider the following:

Proposition 4.3. Under the above conditions, we have for all v∈H1
Γ0
(Ω)∫ T

0

⟨∂tu(t),v⟩dt=−δ

∫∫
ΩT

A(x)∇u ·∇vdxdt+

∫∫
ΩT

(µ+u)A(x)∇Ksu ·∇vdxdt (4.12)

where ⟨·,·⟩ denotes the pairing between
(
H1

Γ0
(Ω)

)∗
and H1

Γ0
(Ω).

Proof. The proof follows by applying the same techniques considered before, so it
is omitted.

4.2. Proof of main theorem. Here we pass to the limit in (4.5), as the two
parameters δ, µ go to zero. To this end, we use the first and the second energy estimates
together with the Aubin-Lions’ Theorem.

4.2.1. Limit transition δ→0+. As a first step, we define uδ :=uµ,δ (fixing
µ>0). The main result in this section is the following

Proposition 4.4. Let {uδ}δ>0 be the strong solutions of (4.1)–(4.3). Then,
there exists a subsequence of {uδ}δ>0, which weakly converges to some function u∈
L2

(
(0,T );D

(
L(1−s)/2
B

))
∩L∞(ΩT ), satisfying∫∫
ΩT

u(t,x)∂tφ(t,x)+

∫
Ω

u0(x)φ(0,x)dx

=

∫∫
ΩT

(µ+u(t,x))A(x)∇Ksu(t,x) ·∇φ(t,x)dxdt, (4.13)

for all test functions φ∈C∞
c ([0,T );C∞

Γ0
(Ω̄)).

The proof’s idea of (4.13) is to pass to the limit in (4.5) as δ→0+. First, we consider
the following lemmas.

Lemma 4.1. Under the hypothesis of Theorem 4.2, there exists a subsequence of
{uδ}δ>0 such that

uδ →u weakly-⋆ in L∞(ΩT ),

where u∈L∞(ΩT ).

Proof. From (4.6), it follows that {uδ}δ>0 is (uniformly) bounded in L∞(ΩT ).
This proves the lemma.

Lemma 4.2. Under the hypothesis of Theorem 4.2, there exist subsequences of
{∇Ksuδ}δ>0 and {uδ}δ>0 such that

∇Ksuδ →∇Ksu, weakly in L2(ΩT ),

uδ →u, weakly in L2
(
(0,T );D

(
L(1−s)/2
B

))
,
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where u∈L2
(
(0,T );D

(
L(1−s)/2
B

))
.

Proof. From Proposition 4.2, we have∫∫
ΩT

|∇Ksuδ|2dxdt≤
C

µ
,

where C is a positive constant which does not depend on δ. Therefore, the right-hand
side is (uniformly) bounded in L2(ΩT ) w.r.t. δ. Thus we obtain (along a suitable
subsequence) that, ∇Ksuδ converges weakly to v in L2(ΩT ).

The next step is to show that v=∇Ksu in L2(ΩT ). First, we prove the regularity
of u. From the equivalent norm (2.8) we deduce that∫∫

ΩT

∣∣∣L(1−s)/2
B uδ(t,x)

∣∣∣2dxdt≤Λ2

∫∫
ΩT

|∇Hsuδ(t,x)|2dxdt.

On the other hand, from Corollary 4.1, we obtain that ∇Hsuδ is (uni-
formly) bounded in L2(ΩT ) w.r.t. δ. Thus {uδ} is (uniformly) bounded in

L2
(
(0,T );D

(
L(1−s)/2
B

))
. Consequently, it is possible to select a subsequence, still de-

noted by {uδ}, converging weakly to u in L2
(
(0,T );D

(
L(1−s)/2
B

))
, where we have used

the uniqueness of the limit. Therefore, using again (2.8) and the Poincare-type inequal-
ity (Corollary 2.1), it follows that∫∫

ΩT

|∇Ksu(t,x)|2dxdt≤Λ−1
1 λ−s

1

∫∫
ΩT

|L(1−s)/2
B u(t,x)|2dxdt,

where λ1 is the first eigenvalue of L. Thus, we obtain that ∇Ksu∈L2(ΩT ), and hence
∇Ksuδ converges weakly to ∇Ksu in L2(ΩT ).

Lemma 4.3. Under the hypothesis of Theorem 4.2, there exists a subsequence of
{uδ}δ>0 such that,

uδ →u strongly in L2(ΩT ),

where u∈L2
(
(0,T );D

(
L(1−s)/2
B

))
.

Proof. Here we apply the Aubin-Lions compactness theorem. First, from Lemma
4.2 we have

uδ →u, weakly in L2
(
(0,T );D

(
L(1−s)/2
B

))
.

On the other hand, from Propositions 4.1, 4.2 and 4.3, together with the (uniform)
boundedness of ∇Ksuδ in L2(ΩT ), we have∫ T

0

∥∂tuδ∥2H−1(Ω)dt≤C (∥u0∥∞+µ). (4.14)

One observes that, at this point µ>0 is fixed. Thus, the right-hand side of (4.14) is
bounded in L2((0,T );H−1(Ω)) w.r.t. δ. Therefore, there exists a subsequence such
that ∂tuδ converges weakly to ∂tu in L2(0,T ;H−1(Ω)). Then, applying the Aubin-Lions
compactness theorem (see [17], Lemma 2.48) it follows that, uδ converges to u (along a
suitable subsequence) strongly in L2(ΩT ) as δ goes to zero.
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Proof. (Proof of Proposition 4.4.) The idea of the proof of (4.13) is to pass to
the limit in (4.5) as δ→0+. From Lemma 4.1 it is enough to pass to the limit in the
first integral in the left-hand side of (4.5). We can proceed in a similar way as before
for the sequence u0,δ.

On the other hand, by Corollary 4.1 and the Hölder inequality, we have that the
second integral in the left-hand side of (4.5) is zero, given that A∈L∞(Ω) and ϕ∈L2(Ω).

Now, we study the convergence of the integral in right-hand side of (4.5). First, since
A(x) is symmetric, it is sufficient to show (µ+uδ)∇Ksuδ converges weakly in L2(ΩT ).
Indeed, by Lemmas 4.2 and 4.3, we obtain that (µ+uδ)∇Ksuδ converges weakly to
(µ+u)∇Ksu as δ→0+. Hence, the equality (4.13) follows.

Corollary 4.2. Let u be the function given by Proposition 4.4, then it satisfies:

(1) For almost all (t,x)∈ΩT

0≤u(t)+µ≤∥u0∥∞, and (4.15)

∫
Ω

u(x,t)dx=

∫
Ω

u0(x)dx. (4.16)

(2) First energy estimate: For η(λ) :=(λ+µ)log(1+(λ/µ))−λ, (λ≥0), and almost all
t∈ (0,T ), ∫

Ω

η(u(t))dx+Λ1

∫ t

0

∫
Ω

|∇Hsu|2 dxdt′≤
∫
Ω

η(u0) dx. (4.17)

(3) Second energy estimate: For almost all 0<t1<t2<T ,

1

2

∫
Ω

|Hsu(t2)|2dx+Λ1

∫ t2

t1

∫
Ω

(µ+u)|∇Ksu|2dxdt≤
1

2

∫
Ω

|Hsu(t1)|2dx. (4.18)

(4) For each v∈H1
Γ0
(Ω),∫ T

0

⟨∂tu,v⟩dt=
∫∫

ΩT

(µ+u)A(x)∇Ksu ·∇vdxdt, (4.19)

where ⟨·, ·⟩ denotes the pairing between
(
H1

Γ0
(Ω)

)∗
and H1

Γ0
(Ω).

Proof. (1) To show (4.15), recall that uδ converges strongly to u in L2(ΩT ) and
therefore (for a subsequence) uδ converges a.e. to u in ΩT , then passing the limit in
(4.6) as δ→0+, we obtain the (4.15). Assertion (4.16) is obtained by (4.7) together
with the Dominated Convergence Theorem.

(2) To prove the first energy estimate (4.17), we pass to the limit in (4.9) as δ→0+.
As uδ converges almost everywhere to u in ΩT , and η is a continuous function, it follows
that η(uδ) converges almost everywhere to η(u) in ΩT . Moreover, uδ is bounded in
L∞(ΩT ) w.r.t. δ, then for almost all t∈ (0,T )

lim
δ→0+

∫
Ω

η(uδ(t)) dx=

∫
Ω

η(u(t)) dx,

where we have used the Dominated Convergence Theorem. We can proceed in a similar
way as before for the sequence u0,δ.
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On the other hand, using the idea of the proof of Lemma 4.2 it is possible to show
that (for a subsequence) ∇Hsuδ converges weakly to ∇Hsu in L2(ΩT ). Then, we have∫ t

0

∫
Ω

|∇Hsu|2dxdt′≤ liminf
δ→0+

∫ t

0

∫
Ω

|∇Hsuδ|2dxdt′

for almost all t∈ (0,T ). Also observe that the second integral in the left-hand side of
(4.9) is positive, hence we throw it out. Therefore passing to the limit in (4.9) as δ
tends to zero, we obtain the assertion.

(3) To show the second energy estimate (4.18), we pass to the limit in (4.11) as δ
goes to zero. First, we have to study the convergence of each integral in (4.2). One notes
that, due to the continuity in L2(ΩT ) and Lemma 4.3, it follows that Hsuδ strongly
converges to Hsu in L2(ΩT ). Consequently, it is possible to select a subsequence, still
denoted by Hsuδ(t) such that, for almost all t∈ (0,T )

lim
δ→0+

∫
Ω

|Hsuδ(t,x)|2dx=
∫
Ω

|Hsu(t,x)|2dx.

On the other hand, since second integral in the left-hand side of (4.11) is positive for
all δ>0, we throw it out. Finally, the convergence of the third integral follows from
Lemmas 4.2 and 4.3. Then, passing to the limit in (4.11) as δ→0+, we obtain (4.18).

(4) Assertion (4.19) follows by similar ideas, so we pass to the limit in (4.12) as
δ→0+, and the proof is concluded.

Remark 4.1. The function u obtained above depends on the fixed parameter µ. For
each µ>0, we write from now on uµ instead of u.

4.2.2. Limit transition µ→0+. Here, we prove the existence of weak solutions
for the initial mixed-boundary value problem (1.1). To show this, we consider the
sequence {uµ}µ>0, obtained in Proposition 4.4, which satisfies Corollary 4.2 for each
µ>0, (4.13)–(4.19).

Proof. (Proof of Theorem 4.1.) To show the existence of solutions we pass to the
limit in (4.13) as µ→0+. From (4.15) and µ∈ (0,1), we see that {uµ}µ>0 is (uniformly)
bounded in L∞(ΩT ) w.r.t µ. Hence, it is possible to select a subsequence, still denoted
by {uµ}, converging weakly-⋆ to u in L∞(ΩT ), which is enough to pass to the limit in
the first integral in the left-hand side of (4.13).

Now, we study the convergence of the integral in right-hand side of (4.13). First,
since A(x) is symmetric, it is sufficient to show (µ+uµ)∇Ksuµ converges weakly in
L2(ΩT ). On the other hand, we recall that, for each λ≥0,

η(λ)=(λ+µ)log(1+λ/µ)−λ,

=(λ+µ)log(λ+µ)−(λ+µ)logµ−λ.

Then, from (4.16) and (4.17) we obtain for almost all t∈ (0,T )

Λ1

∫ t

0

∫
Ω

|∇Hsuµ|2 dxdt+

∫
Ω

(uµ(t)+µ)log(uµ(t)+µ) dx

≤
∫
Ω

(u0+µ)log(u0+µ) dx. (4.20)
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Since f =f+−f−, where f±=max{±f,0}, it follows from (4.20) that

Λ1

∫ t

0

∫
Ω

|∇Hsuµ|2 dxdt+

∫
Ω

(uµ(t)+µ)log+(uµ(t)+µ) dx

≤
∫
Ω

(u0+µ)log(u0+µ) dx+

∫
Ω

(uµ(t)+µ)log−(uµ(t)+µ)dx.

We observe that the right-hand side of the above inequality is bounded w.r.t. µ
(small enough), because uµ is bounded in L∞(ΩT ) w.r.t. µ, and∫

Ω

(uµ(t)+µ)log−(uµ(t)+µ)dx,

is bounded w.r.t. µ (small enough). Consequently, we have that ∇Hsuµ is (uniformly)
bounded in L2(ΩT ).

On the other hand, using (2.8) and the Poincaré inequality (Corollary 2.1), we
obtain that ∫∫

ΩT

|∇Ksuµ(t,x)|2dxdt≤Λ−1
1

∫∫
ΩT

∣∣∣L1/2−s
B uµ(t,x)

∣∣∣2dxdt
≤Λ−1

1 λ−s
1

∫∫
ΩT

|L1/2−s/2
B uµ(t,x)|2dxdt

≤Λ−1
1 λ−s

1 Λ2

∫∫
ΩT

|∇Hsuµ(t,x)|2dxdt.

Therefore, ∇Ksuµ is (uniformly) bounded in L2(ΩT ) w.r.t. µ>0, and thus we obtain
(along a suitable subsequence) that ∇Ksuµ converges weakly to v in L2(ΩT ). It remains
to show that v=∇Ksu. Moreover, applying the same ideas as in the proof of the
Proposition 4.4, it is possible to select a subsequence, still denoted by {uµ}, converging
weakly to u in L2

(
0,T ;D

(
L(1−s)/2
B

))
, such that

v=∇Ksu in L2(ΩT ).

Hence ∇Ksuδ converges weakly to ∇Ksu in L2(ΩT ).

Now, we prove strong convergence for {uµ}µ>0 in L2(ΩT ). To show this, we apply
again the Aubin-Lions compactness theorem. Since the coefficients of the matrix A(x)
are in C(Ω)∩C0,1

loc (Ω), together with the boundedness of ∇Ksuµ in L2(ΩT ), and the
uniform limitation of uµ, we have from (4.19) that∫ T

0

∥∂tuµ∥2H−1(Ω)dt≤C, (4.21)

where C is a positive constant which does not depend on µ. Then, passing to a subse-
quence (still denoted by {uµ}), we obtain that

∂tuµ converges weakly to ∂tu in L2(0,T ;H−1(Ω)).

Applying the Aubin-Lions compactness theorem, it follows that uµ converges strongly to
u (along a suitable sequence) in L2(ΩT ). Consequently, we obtain that (µ+uµ)∇Ksuµ
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converges weakly to u ∇Ksu as µ→0+. Then, we are ready to pass to the limit in
(4.13) as µ→0+ to get∫∫

ΩT

u(t,x)
(
∂tφ(t,x)−A(x)∇Ks(u(t,x)) ·∇φ(t,x)

)
dxdt+

∫
Ω

u0(x)φ(0,x)dx=0,

for all φ∈C∞
c ([0,T );C∞

Γ0
(Ω̄)).

Corollary 4.3. The solution u of the initial mixed-boundary value problem (1.1) given
by Theorem 4.1, satisfies:

(1) For almost all t∈ (0,T ), we have

∥u(t)∥∞≤∥u0∥∞, and (4.22)∫
Ω

u(x,t)dx=

∫
Ω

u0(x) dx. (4.23)

(2) First energy estimate: For almost all t∈ (0,T ),

Λ1

∫ t

0

∫
Ω

|∇Hsu|2 dxdt′+

∫
Ω

u(t)log(u(t)) dx≤
∫
Ω

u0 log(u0) dx. (4.24)

(3) Second energy estimate: For almost all 0<t1<t2<T ,

1

2

∫
Ω

|Hsu(t2)|2 dx+Λ1

∫ t2

t1

∫
Ω

u|∇Ksu|2dxdt≤
1

2

∫
Ω

|Hsu(t1)|2dx. (4.25)

Proof. In order to show (4.22)-(4.25), we may follow similar lines as in the proof
of Corollary 4.2. Therefore, we omit them here.
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Appendix. Let us fix here some notation and background used in this paper,
we first consider the notion of C1-(admissible) deformations, which is used to give the
correct notion of traces. One can refer to [18].

Definition A.1. Let Ω⊂Rn be an open set. A C1-map Ψ: [0,1]×Γ→Ω is said to be
a C1 admissible deformation, when it satisfies the following conditions:

(1) For all r∈Γ, Ψ(0,r)= r.

(2) The derivative of the map [0,1]∋ τ 7→Ψ(τ,r) at τ =0 is not orthogonal to ν(r), for
each r∈Γ.

Moreover, for each τ ∈ [0,1], we denote: Ψτ the mapping from Γ to Ω, given by
Ψτ (r) :=Ψ(τ,r); ντ the unit outward normal field in Ψτ (Γ). In particular, ν0(x)=ν(x)
is the unit outward normal field in Γ.

It must be recognized that domains with C2 boundaries always have C1 admissible
deformations. Indeed, it is enough to take Ψ(τ,r)= r−ϵτν(r) for sufficiently small ϵ>0.
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Now, we define a level set function h associated with the deformation Ψτ . For δ>0
sufficiently small we define

h(x) :=

{
min{τ,δ}, if x∈Ω,

−min{τ,δ}, if x∈Rn \Ω,

which is Lipschitz continuous in Rn, and C1 on the closure of {x∈Rn : |h(x)|<δ},
moreover

|∇h(x)|=

{
1 for 0≤h(x)<δ,

0 for h(x)= δ.
(A.1)

Lemma A.1. Let Ω⊂Rn be an open bounded domain with C2 boundary. For each
k∈N, and all x∈Rn, consider

ξk(x) :=1−exp(−k h(x)). (A.2)

Then, the sequence {ξk} satisfies

lim
k→+∞

∫
Ω

|1−ξk|2dx=0, and lim
k→+∞

∫
Ω

|∇ξk|2dx=0. (A.3)

Proof. For more details see Málek, Necas, Rokyta and Ruzicka [17], p. 129.

Last but not least, let us consider the following approximating sequences. Choose a
non-negative function γ∈C1

c (R), with support contained in [0,1], such that,
∫
γ(t)dt=1.

Then, we consider the sequences {δj}j∈N, and {Hj}j∈N, defined by

δj(t) := j γ(jt), Hj(t) :=

∫ t

0

δj(s) ds.

Thus, H ′
j(t)= δj(t), and clearly the sequence δj(t) converges, as j→∞, to the Dirac

δ-measure in D′(R), while the sequence Hj(t) converges pointwise to the Heaviside
function

H(t)=

{
1, if t≥0,

0, if t<0.

To finish this section, we show the existence and uniqueness of uµ,δ for the ap-
proximate parabolic problem (4.1)–(4.4). To this end, we first apply the Banach Fixed
Point Theorem to prove the local-in-time existence of the solution, and thus applying
a contradiction argument we extend it to be global in time. Since (4.1) is a fractional
non-standard parabolic equation, we present the important details and omit the usual
ones.

Theorem A.1. Let u0δ be a non-negative regularized initial data. Then the problem
(4.1)–(4.4) admits a unique strong solution

uµ,δ ∈C([0,T );H1
Γ0
(Ω))∩L2((0,T );H2(Ω′))∩L∞(ΩT ),

∂tuµ,δ ∈L2 (ΩT ),

for each Ω′ compactly contained in Ω.

Proof. The proof will be divided into four steps.
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(1) First, for each ũ∈L∞(ΩT )∩L2(0,T ;D(L1−s
B )), the following problem

∂tuµ,δ−δ div(A(x)∇uµ,δ)=div(qµ(x,ũ)) inΩT ,

uµ,δ =u0δ in{t=0}×Ω,

uµ,δ =0 on(0,T )×Γ0,

δA∇uµ,δ ·ν=−qµ(x,ũ) ·ν on (0,T )×Γ1,

(A.4)

has a unique weak solution

uµ,δ ∈L2
(
(0,T );H1

Γ0
(Ω)

)
∩C

(
[0,T );L2(Ω)

)
∩L∞(ΩT ).

Indeed, since ũ∈L∞(ΩT )∩L2(0,T ;D(L1−s
B )), it follows that

qµ(x,ũ)∈L2((0,T );H1
Γ0
(Ω)).

Then applying the parabolic theory, see Theorem 11.8 in Chipot [8], (also Chipot,
Rougirel [9]), there exists a unique weak solution

uµ,δ ∈L2
(
(0,T );H1

Γ0
(Ω)

)
∩C

(
[0,T );L2(Ω)

)
∩L∞(ΩT )

of the problem (A.4).

(2) Now, we show the local-in-time existence of the solution to (4.1)–(4.4). To prove
that, we define the following map

uµ,δ(t,x)=T (ũ)(t,x) :=

∫
Ω

K(t,x,y) u0,δ(y)dy

+

∫ t

0

∫
Ω

(ũ(t′,y)+µ)∇yK(t− t′,x,y) ·∇Ksũ(t
′,y)dydt,

where K(t,x,y), (x,y∈Ω), is the heat kernel of the operator Lu=−div(A(·)∇u)
with mixed Dirichlet-Neumann boundary data, see [10]. Moreover, for t>0 suffi-
ciently small, it is not difficult to show that T is a contraction. Then, applying the
Banach Fixed Point Theorem, there exists a unique local-in-time weak solution

uµ,δ ∈L2
(
(0,TM );H1

Γ0
(Ω)

)
∩C

(
[0,TM );L2(Ω)

)
∩L∞(ΩTM

),

where TM denotes the maximal time of existence.

(3) We claim that the local solution uµ,δ satisfies

uµ,δ ∈C
(
[0,TM );H1

Γ0
(Ω)

)
∩L2

(
(0,TM );H2(Ω′)

)
∩L∞(ΩTM

),

∂tuµ,δ ∈L2 (ΩTM
) .

(A.5)

Indeed, since uµ,δ ∈L2
(
(0,TM );H1

Γ0
(Ω)

)
∩C

(
[0,TM );L2(Ω)

)
∩L∞(ΩTM

), we have

div((uµ,δ+µ)A(x)∇Ksuµ,δ) ∈ L2
(
(0,TM );L2(Ω)

)
.

Therefore, from Equation (4.1) and the standard parabolic regularity theory (see
[1]), we obtain (A.5). Consequently, uµ,δ satisfies the partial differential Equation
(4.1) in the strong sense, that is, for almost all (t,x)∈ (0,TM )×Ω′.
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(4) Finally, we claim that TM =T , for any T >0. Conversely, let us suppose that,
TM <T . Then, there exists an increasing sequence {tj}∞j=1, such that, tj →T−

M as
j→∞ and

lim
j→∞

∥uµ,δ(tj ,·)∥L∞(Ω)=+∞. (A.6)

Although, due to a similar proof given to (4.6), we may show that

0≤uµ,δ(t,x)+µ≤∥u0δ∥L∞(Ω),

for each t∈ (0,TM ) and almost all x∈Ω, which contradicts (A.6).
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