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GLOBAL STRONG SOLUTION TO
THE CAUCHY PROBLEM OF 2D DENSITY-DEPENDENT
BOUSSINESQ EQUATIONS FOR MAGNETOHYDRODYNAMICS
CONVECTION WITH THERMAL DIFFUSION*

MIN LIUT

Abstract. In this paper, we study the Cauchy problem of density-dependent Boussinesq equations
for magnetohydrodynamics convection on the whole 2D space. We first establish global and unique
strong solution for the 2D Cauchy problem when the initial density includes vacuum state. Furthermore,
we consider that the initial data can be arbitrarily large. We derive a consistent priori estimate by the
energy method, and extend the local strong solutions to the global strong solutions. Finally, we obtain
the large-time decay rates of the gradients of velocity, temperature field, magnetic field and pressure.
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1. Introduction
For this paper, we consider the Cauchy problem of 2D nonhomogeneous incompress-
ible Boussinesq equations for magnetohydrodynamics convection which read as follows:

pe+div(pu) =0,
1
(pu) +div(pu®@u)+ VP — pAu=phes+b-7b— 5V |b]?,

by —vAb+u-\7b—b-yu=0,
Or+u-70—xANO=0,

divu =0, divb=0.

where x=(x1,72) ER? is the spatial coordinate, t>0 is time, p=p(x,t), u=
(u',u?)(z,t), b=(b',b%)(x,t) are the density, velocity and the magnetic field, respec-
tively; 6 =0(z,t) stands for the temperature of the fluid, and P = P(z,t) denotes the
pressure of the fluid; the constant p >0 is the viscosity coefficient; the constant v >0
denotes the electrical resistivity, and the constant x>0 represent the capillary coeffi-
cient. e?=(0,1)7, where T is the transpose. The initial data and far field conditions

are given by

{p(l‘,O) :po(z),pu(a:,O) :/)OUO(I)vb(sz) :b0($)79(x’0) :90(1‘), $€R2,

(pyu,b,0)(z,t) =0, as |z|—o0.

(1.2)

The Equations (1.1) are a combination of the incompressible Boussinesq equations
in fluid dynamics and Maxwell’s equations in electromagnetism, where the displace-
ment current is neglected [13,24]. Specifically, they closely relate to a natural type of
the Rayleigh-Bénard convection, which occurs in a horizontal layer of conductive fluid
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heated from below, with the presence of a magnetic field (see [25]). When the fluid is
not affected by the temperature, that is =0, the system (1.1) becomes the standard
MHD system. Many researchers have studied the MHD equation in the early years. For
details, please refer to [8,10,21,23,27]. Recently, Fan and Li [9] obtained the global
existence of strong solutions to the incompressible magnetohydrodynamic equations in
a bounded domain by combining the regularity criterion and an abstract bootstrap
argument. Under some smallness assumption, Bie-Wang-Yao [4] proved the global well-
posedness of solution to the 3D incompressible magnetohydrodynamic equations with
variable density in the multiplier space of Besov space. Very recently, Zhong [32] showed
the Cauchy problem of the non-barotropic non-resistive magnetohydrodynamic equa-
tions with zero heat conduction on the whole 2D space with vacuum as far field density.
However, when the initial conditions include vacuum, there are few relevant works. For
Equation (1.1) we propose the relationship between magnetic field, fluid temperature
and pressure so as to solve the difficulties caused by vacuum.

If the fluid is not affected by the Lorentz force, that is b=0, the system (1.1) be-
comes the nonhomogeneous Boussinesq system. Boussinesq equation is a simple model
widely used in the modeling of atmospheric and oceanic motions, and it plays an im-
portant role in the atmospheric sciences (see [24]). Many related research results of
the Boussinesq system have emerged. Lorca and Boldrini [19,20] gained the existence
of global weak solutions for Boussinesq equations with small initial values and they
also studied the existence of local strong solutions under general initial conditions. Qiu
and Yao [26] obtained the local existence and uniqueness of strong solutions of multi-
dimensional incompressible density-dependent Boussinesq equations in Besov spaces.
For the initial density allowing vacuum states, Liu [17] proved global existence and
large-time asymptotic behavior of strong solution to the Cauchy problem of 2D density-
dependent Boussinesq equations. Zhong [31] recently showed local existence of strong
solutions of the Cauchy problem in R? by making use of weighted energy estimate tech-
niques. However, there are still very few people studying the Boussineq equation with
a magnetic field in the system (1.1). The temperature field and dissipation term may
bring some positive effects to the magnetic fluid. Meanwhile, the strong coupling of
velocity field and magnetic field will bring new difficulties.

Recently, much attention has been attracted by the density-dependent viscous
MHD-Boussinesq equations. Bian-Gui [1] rigorously justified the stability in a fully
nonlinear, dynamical setting from a mathematical point of view in an unbounded do-
main. Bian-Liu [2] proved the global existence of weak solutions with H?! initial data.
They also obtained a unique global strong solution by imposing a higher regularity as-
sumption on the initial data. Larios and Pei [14] established the local well-posedness
of solutions to the fully dissipative 3D Boussinesq-MHD system, and also the fully in-
viscid, irresistive, non-diffusive Boussinesq-MHD system. Later, Zhao [30] investigated
the well-posedness of the Cauchy problem to the Boussinesq-MHD system with partial
viscosity and zero magnetic diffusion. Very recently, Liu-Biao [18] studied the global ex-
istence and uniqueness of strong and smooth large solutions to the 3D Boussinesq-MHD
system with a damping term. In addition, Bian and Pu [3] proved the global axisymmet-
ric smooth solutions for the 3D Boussinesq-MHD equations without magnetic diffusion
and heat convection. Up to now, there are few results on MHD-Boussinesq equation
when the initial datas can be arbitrarily large. Especially, we have to consider the
situation where velocity, temperature and magnetic field have strong coupling and the
strong nonlinearity of b- Vb. More importantly, the particularity of vacuum state should
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also be considered and temperature also affects the change of density. Therefore, moti-
vated by [23,33], we studied the global existence and large-time asymptotic behavior of
strong solution to the Cauchy problem of nonhomogeneous incompressible Boussinesq
equations for magnetohydrodynamics convection in R2.

Now, let’s go back to (1.1). We note here the notations and conventions employed
throughout the paper. For R>0, set

Br2{zcR?||z| <R}, /fdxé/fdx.
R2

Moreover, for 1 <r <oo, k>1, we denote the standard Lebesgue and Sobolev spaces as
follows:

LT:LT(R2)7 Wk’T:Wk’T(RQ), Hr:Wk:’Q.

Then, we define the strong solution to (1.1) as follows:

DEFINITION 1.1. If all derivatives involved in (1.1) for (p,u,P,b,0) are regular distri-
butions, and Equations (1.1) hold almost everywhere in R? x (0,T), then (p,u, P,b,0) is
called a strong solution to (1.1). Without loss of generality, we assume that the initial
density po satisfies

/podarzl. (1.3)

RZ
(1.3) implies that there exists a positive constant No such that
1 1
dx> = doe=~. 14
[ =5 [z =3 (1)
BNO

Our main result is stated as follows:

THEOREM 1.1.  Suppose the initial data (po,uo) satisfy that for any given numbers
a>1 and ¢g>2,

po>0,p07% € L'NH' NWh9 Vug € L2, /pouo € L?,
boz®? € L?,Vby € L?,00z%/? € L?, V€ L?, (1.5)

diWO = d’ivbo = 0,
where
T2 (e+|z|?) 7 log? (e +|x|?). (1.6)

Then the problem (1.1)—(1.2) has a unique global strong solution (p,u,P,b,0) satisfying
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that for any 0<T < oo,

0<peC([0,T);L*NH nWh),

pT* € L=(0,T; LA NH nWh1),
\/ﬁu,Vu,fflu,\/i\/,But,\/ZVp,\/ZVQUGLOO(O,T;LQ),
b, b2, Vb, /tby N1V, 1VbZY? € L®(0,T; L?),
0,02%2 V0,v/10,,VtV?0,V/tV0z/* € L>(0,T; L?),
Vue L(0,T; HY) N LD/ a0, 7, W), (1.7)
VPeL?(0,T;L*) N L9t/ (0, T; L),

Vbe L*(0,T;H'),b,, Vbz*/? € L*(0,T; L?),

Ve L?(0,T;HY),0,,V0z*/? € L*(0,T; L?),
ViVue L2 (0,T;Wh),

VP VEV U, Vb NIV, VEE s € L2H(R? x (0,T));

and

inf / p(x,t)dx > i, (1.8)

0<t<T
BN1

for some positive constant Ny depending only ||pol|z1, ||v/PotollLz, No and T. Moreover,
(p,u, P,b,0) has the following decay rates, that is, for t>1,

{||Vu(’vt)||L2 +IVBC, ) 22 +IIVO(, ) 2 < CEH2,

(1.9)
IV2u(- ) 2 + [ VPt 2+ B Vbl < Ot

where C depends only on pu, K, ||pollLinre<, [l\/Povollr2, and [[Vuol|zz.

REMARK 1.1. If the capillarity coefficient is zero, i.e. k=0, it should be noted here
that, although the Equations (1.1) degenerate near vacuum, Theorem 1.1 is the same as
that in [33]. We generalize the main result of [33], and extend the local strong solutions
to the global strong solutions.

REMARK 1.2. Note that no compatibility condition (see [5,6]) on the initial data is
required in Theorem 1.1 for the local existence and uniqueness of strong solutions.

2. Preliminaries
For the section, we will recall some known lemmas and inequalities. For given initial
data, the following lemma assumes that there is a unique local strong solution.

LEMMA 2.1.  Assume that (po,uo,bo,00) satisfies (1.5). Then there exists a small time
T >0 and a unique strong solution (p,u, P,b,0) to the problem (1.1)— (1.2) in R% x (0,T)
satisfying (1.7) and (1.8).

LEMMA 2.2 (see the Gagliardo-Nirenberg inequality in [12]). For me[2,00), g€
(1,00), and r € (2,00), there exists some generic constant C >0 which may rely on m,
q, and r such that for f € H*(R?) and g€ L4(R?)N D" (R?), we have

1 2y < ClF 22 |V F I 5 2y (2.1)
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2)/(2r+q(r— 2))HV ”27“/(27“4'(1(7“ 2)) (2.2)

”g”C(R2) C”gHLq(R L7 (R?)

The following weighted L™ bounds for elements in DV?(R?)2 {ve HL (R?)|Vve
L?(R?)} can be found in [12, Theorem 1.1].

LEMMA 2.3 (see [11]). For he[2,00) and A€ (1+h/2,00), there exists a positive
constant C such that for all ve DV?(R?),

|v[" -
(/W(log(e—l—mz)) /\dl’)l/hSCHUHL?(BI)+C||VUHL2(R2)- (2.3)
R2

The Lemma 2.3 combined with the Poincaré inequality gets the following useful
results on weighted bounds, we can also refer to ( [11], Lemma 2.4).

LEMMA 2.4 (see [28]).  We can refer to & in (1.6), and assume that p€ L'(R?*)N
L% (R?) is a non-negative function such that

1ol (Bg) = Moy llpll s w2)nLos r2) < M, (2.4)

for positive constants My, My, and No>1 with By, CR2. Then for a >0, 3>0, there
is a_positive constant C depending only on «, B, My, My, and Ny such that every
ve DV2(R?) satisfies

102 || Loy < Cllp" 0| L2(m2) + C | Vol L2 82, (2.5)
with 8 =min{1,3}.

Finally, let BMO (R?) and H!(R?) represent BMO and Hardy spaces [28, Chapter
4]. In the next section, some facts are more important to prove Lemma 3.2.

LEMMA 2.5 (see [7]).
(i) There is a positive constant C such that

G- M|l3r w2y S ClGllL2@2) [ M || 2 (m2), (2.6)
for all G € L*(R?) and M € L*(R?) satisfying
divG=0, V*-M=0 in D'(R?). (2.7)
(ii) There is a positive constant C such that
[fllBrome) <CIV fllrzme), (2.8)

for all f € D2(R?).

Proof.
(i) Please refer to [7, Theorem II.1] for a detailed proof.

(ii) It follows, together with the Poincaré inequality, that for any ball B C (R?)

ﬁ / |v<x>—|7§| / o(y)dyldz < C( / Vo[22, (2.9)
B B B

which directly gives (2.8). |
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3. Convergence rate of the solution

3.1. Lower order estimates. As divu=0, we have an estimate on the
L>(0,T;L") —norm of p, as follows:

LEMMA 3.1.  There exists a positive constant C depending only on ||pollpinpe~ such
that
sup |pllpinp~ <C. (3.1)
t€[0,T]

Proof. We can see [16, Theorem 2.1]. Then, we will estimate the L°(0,T; L?)-norm
of Vb, VO and Vu. 0

LEMMA 3.2.  There exists a positive constant C depending only on p, v, K, ||pollLe,
Vuollz2, [[v/puollLz, [|bollmr and ||6o| g such that

sup ([Vul|72 +[IV0[|72 + (| Vo[ 72+ (0]l 74)
t€[0,T]

T
+/0 (IvpillZ + 1 26]72 +[| AblI 72 + [[Vb][b]|[72)dt < C. (3.2)

Here 42 d,u+u-Vu. One has

sup t([[Vul 72+ (V0|72 +[| Vo[ 72 +[b]74)
te[0,T]

T
+/0 t(lIVpul Lz + 1 A0N Lz + [ AbII L2 + [ VBI[bl][72)dt < C. (3-3)

Proof. Invoking standard energy estimates, multiplying (1.1), by u and integrating
the resulting equality over R2 lead to

/%(qu)dx+2u/|Vu|2dx
:2/p962~udx+2/b-Vb-udx—/V|b|2~ud:c. (3.4)

Multiplying (1.1); by b and integrating the resulting equality over R?, we get

/%bde—H//\Vb\Qdm—F/u-Vb-bdac:O. (3.5)

Combining (3.3) and (3.4), we obtain from integrating the resulting equality over [0,T]
and the Cauchy-Schwarz inequality, that

d
%(H\/EUII%z HIblIZ2) + 20 VulL2 + v VDI =2/0962~udw

1/2
<[lpll /2 lIv/pull 216 22 (3.6)

Multiplying (1.1), by € and integrating over R?, then integrating the resulting equality
over [0,T], we arrive at

T
sup (622 +# / V1122t < |62 (3.7)
t€[0,T) 0
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Integrating (3.6) with respect to ¢ and together with (3.1) and (3.7), we have
T
t:;};](llx/ﬁUHZLz +[bl172) +/0 (IVullZ= +[Vbl72)dt < C. (3.8)

Combining (3.7) and (3.8) yields

ES[%I;](II\/EUIIinrIIbIiz+ll9ll2m)+/(|Vu|i2+IIVbII%2+||V9||2Lz)dt<0~ (3.9)

Next, multiplying (1.1), by @ and integrating over R? give

1
/p|u|2dx:u/Au-udx—/VP~udx+/p962-udw—i—/b-Vb-udx—§/V\b|2-im{a:
£ T+ Jo+ s+ Jy+ Js. (3.10)

In view of the integration by parts and (2.2), we get
leu/Au-(ut—i—u-Vu)dx

d ) )
= —g£||Vu||2L2 —u/@iujai(ukf)kuj)dx

wd
<=5 7 IVuliz+ClIVulis

wd
<=5 7 IVulliz+ClIVulza [ Vul 2. (3.11)

We estimate .Jo by Equation (1.1), integration by parts and the duality of H* space
and BMO (see [7, Chapter IV]). Then, since div(dju)=09;divu=0, V*-(Vu!)=0, and
along with (2.7) and (2.9) yields

J2:—/VP(ut—i—u-Vu)da::/Pajui&»ujdx
< O Pllsumolldju' 9 130 < C|[Vpl| 2|V 2. (3.12)
We can deduce the term Js by the Cauchy-Schwarz inequality, (3.1), and (3.9), to get
. . 1 .
Ja=| [ ptea-idal < Clll 2 pidla 62 < IVl +C. (313)

It follows from integration by parts, (1.1); and (1.1); that

J4:/b-Vb-utd$—|—/b-Vb-(u-Vu)da:

—%/b-Vu-bdx—&-/bt-Vu-bdw—i—/b-Vwbtdm
—/biaiujajukbkdx—/biujﬁiajukbkdm
:—%/b-Vu-bdx+/(VAb—u~Vb+b-Vu)-Vu-bdx

+/b-vu- (vAb—u-Vb+b-Vu)dr — /biﬁiujajukbkdx
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+/ui8jbiﬁiukbkd:1:—|—/biaiukujﬁjbkdx
d
<- a/b-w-bdﬁg||Ab||2L2 +O[b)17=(1V0] 72+ CIVulZ: [VPul 2. (3.14)
The integration by parts together with (1.1), and (2.2) leads to
1 . )
Jo= §/|b|28iu38juzdx§ bl o +C V2
< CIblIZ: VBl +CIVul L2 ][ Vul 2. (3.15)
Next, substituting (3.11)-(3.15) into (3.10) gives

d u 1 .
GG Ivulzet [b-Vu-bdo)+ 3 il

1%
<SNAb|IE: +Clbl[72 Vbl 72 + CUIVZull 12 + IV Pl 22) [ Va7 (3.16)

Then, adding (1.1); x Ab to (1.1), x Af and integrating the resulting equality over R?,
it follows form Hoélder’s inequality and (2.2) that

%/(\VbP—F|V0|2)dx+21//|Ab|2dx+2fs/|A0|2dx
SC/|Vu||Vb|2da:+C/|Vu||b||Ab|da;+C/|Vu||V9\2dx
<CN\ Va1 (| VB V2RI + ]l o 28] 2 + V611357 | A0175%)
14 K
<CIVullZ: [VZullz + CO+BIZ) VDI Lz + S 14D 72 + ClIVOIT2 + 51 A0] 72, (3.17)

which together with (3.16) and (3.9) estimate

d i .
£(5||Vu||%2+||VbH%2+||V0||%2+/b~Vu-bdx)+H\/ﬁuHQLz+21/||Ab||%2+2/i||A0||%2
<C(IVOl7z +[IVol12) + CUIVull 2 + [V Pl 2) I VullZe. (3.18)

On the other hand, as (p,u, P,b,0) satisfies the following Stokes system

1
—uAu+Vp=—pu+p962—|—b-Vb—§V|b\2, reR?

divu =0, zeR?, (3.19)
u(z) —0, |z| — o0,

applying the standard L"-estimates (3.1) to (3.19)(see [29]) that hold for any s>1,

IV2ull s + VPl Lo < Cllpi]| e +Cllp8)| - +C|[b]| VB -
<CllVpillLs +Cllp8l| s +Cl[bl[ V]| s (3.20)
It deduces from (3.18), (3.20), (3.1) and (3.9) that
d

1 .
T AO +5IIVpil7e + 201 80] 72 + 2] A 7

1
<C||VBlIz: +CIIVOI L2 + ClIVullzz + S 11l VBIIZ2, (3.21)
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where
A2 51 Tulla + V03 + V61 + [ b Fu-bda, (3.22)
and owing to (2.1) and (3.9), one has
%HVUHQL2 HIVOIIZ2 + V022 = Crllbll7s < A(t) < [ VulZa + VBl Z2 + [ VOII72. (3.23)

Then, multiplying (1.1), by b/b|> and integrating the resulting equality by parts over
R? lead to
1 v
FUIBPIZ)e + VI BIVOIIZ2 + SV IBI (7 < ClIVul 2 B[
<Ol Vul|2][161% ] 221V [B1?]| 2
v
§C||Vu||‘j2+1||V|b|2||%2+|\Vb\|‘22. (3:24)

Finally, combining (3.24), (3.21) and (3.23) yields

d I
T (A@+ Bl + 5 IVl 7z + I A0 72 + I A0 T2 + 20 B VB 72

<C([Vullf2+IIVblIZ2 + I VOII72) (A(t) + [1bl|70), (3.25)

which together with (3.9), (3.23) and Gronwall’s inequality gives (3.2). Then, (3.25)
multiplied by ¢, (3.9) combined with (3.23), (3.2) and Gronwall’s inequality gives (3.3).
Finally, it finishes the proof of Lemma 3.2. ]
LEMMA 3.3.  There is some positive constant C depending only on p, v, &, ||pollLinre
IVuollzz, |bollm and ||p(1)/2u0||L2 such that fori=1,2,

T
sup tl(”ﬁu”%?+|||b||Vb|||%2)+/ ' (IVall 72 + 116l Ab]||72)dt < C, (3.26)
t€[0,T) 0
and
sup t'(||V2ul|3: +||VP|3:) <C. (3.27)
t€[0,T]

Proof. First, operating 0; +u-V to (1.1)%7 it follows from a few simple calculations
that

O (pi? ) +div(puts? ) — pAE = — p0; (Ou- V) — pdiv(Oudin? ) — 0;0,P — (u-V)0; P
+ 04 (phed) +u-V (phel) + 0 (b- V')
o1 1
+u~V(b~VbJ)—gat(3j|b|2)—§U~V(8j|b|2). (3.28)

Next, (3.28) multiplied by @/, and together with integration by parts and (1.1),, we
have
1d

iaﬂ\/ﬁuH%g + | V]| 2 :—u/81-(81-11-Vuj)itjdx—u/div(@iuaiuj)ujdx

—/(ujatajP—i—uj(wV)@P)dm—i—/(@t(peeé)+u-V(p9€§))~ujdx
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+/(8t(b-Vb7)+u~V(b~Vbj)) uﬂdx—lj(at(a 16]2) + -V (8;[b]2)) - i dar

6
2N K. (3.29)
=1

Following the same argument as [22, Lemma 3.3] we have the estimates of (K;(i=1,2,3))
as

S Ko< [ Poptoudda+ CQlolta +19ult) + £ITalk (330
i=1
Estimating the term Ky by (1.1),, (1.1),, (1.1), (3.1), (3.2) and (3.9), one has
K4:—/div(pu)96§~ujdx+/pe%(ﬁV9—u-V9)~ujdx—/uip96%8iujdx
:/puee%-vujdx—i—m/peQAH o dx — /uinegaiujdac

§C/p|u||9|\Vu\dx+C/p|u||A9|dx

<Cllpll 2 /Pl 2 118] =1 Vil| 12 + Cllpll 2 1Pl 22 | A6 2
S§||Vu||L2+C||A9\\L2+C|\\/ﬁu||p+C. (3.31)

We can deduce from integration by parts, (1.1),, (1.1), and (2.2) that
- / bid i b dox — / b0y’ bl da: — / il u' b Ol da:
:/(_yAbwu.vzf—bi.vu)a,-ujbfdx+/biaiuﬂ'(—mbi+u-w—bi-vu)dx
+ / ' 0; 0! V¥ da + / ;! Opu' bV dae
:—I//Ab'Vu-bdm—l//b-Vu'Abdm—/b'vw(boVu)dx
<CIbP 74 +ClIVullza +ClIBIADIIE: + 5 HVUHLz (3.32)
Same as K5, we also get
Kﬁz/divab-(b-Vu+VAb)dx—%/8j1ljui8i|b\2dm+%/uiﬁiuj8j|b|2dx
§C’/|Vu\3|b|2d:c+0/|Vu|2|Ab||b|d:1:—1/8jui8iuj|b|2dm
<P Ls +ClIVullzs +ClIIADIIL: + 5 ||VU||L2 (3.33)

Substituting (3.30)-(3.33) into (3.29) gives

5 VAl + 5 1Vil3e <5 [ Pojutondda-+ Ol +VullL) +Cllpil3e
Y02 +CIBE 4 +CIBIANZ:+C. (3:34)
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Multiplying (1.1); by 4v~'bA|b]* and integrating the resulting equality over R? leads

to
v VB2 )+ 2] A bl (|7 2
:4/|Vb|2A|b\2dac—4u‘1/b-Vu-bA|b|2da:+2u‘1/u~V|b\2A\b|2dx

<ClIVullzs +ClIVBILa + CllIbP s + [ AL Z2-

(3.35)

Next, we will adapt some key ideas used in [21] to estimate the term [||b||Ab|||2,. Indeed,

for a;,a2 € {—1,0,1}, denote
Z)(al,ag) =a1b' +axb?®, (ay,as) =ayut +asu’.
Notice that
[BIIAB][|72 <CIIVBI| T4+ |AIB(L,0) (172 + | A]6(0, 1) (13-
AL DT+ 1AB(L, =172
and
I116/[V0] (172 < E(t) <C|l[b]|Vb][72
with
E(t) 2| V[b(1,0)[*[172 + [ V[6(0, 1) (|72 + | VIb(L, D) 72 + 1V [b(1,—1)*| 72,
which combined with (3.35) and (3.36) implies

d, _
(v ICLE(8) + Cu | [bl| A 72

<C[VulLs+ClIVb] s+ ClIB |17 + ClI A .

Putting (3.40) into (3.34), we have

d JU—
Rl Ohs §IIWH%Z +l[6l1 2072
SC(|P|| 74 +IVullz4) + Clly/pil 7z + CllA0|1 72 + C|| V]| 14+ Cll|b* || 72+ C,
where
1 S
F(t)é§||¢ﬁu||§2+flclE(t)—/Paju’aiuﬂdx
satisfies

1 . v1 .
ZII\/EUII%z +—-CLE() —C||Vulz: < F(t) <Clly/pil 72+ CE(t) +C||Vul 72

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

We can get the following estimates from (3.12), (3.20), (3.38) and Young’s inequality

I/Pajuiaiujdxl <C(Ilvpullz2 + 109 2 + 6] VB]l[72) | Vel 2

1

-1
. 14
<5 IVpill3s+ == CLE®) +C|Vul ..

o |

(3.44)
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Thus, combining with (3.20), (2.1), (3.9) and Sobolev’s inequality, we will estimate the
term on the right-hand of (3.15) that

IPl[7s+ 1Vl 7s <

CUIVPI s +IIV2ull]4)
L3 L3
<l +11p811* 4 + IBIIVBII )
<C(lplzellvpulzz +llpl 7 10112 + 1Bl 721 Vbl 7.)
<C|lVpill 12 +C|IVbl|7: [ V?b]|72 +C. (3.45)
We can deduce from (2.1) and (3.9) that
IVO[ s+ 1bI[[74 < CIVBIL2 (V0] 2 + ClIVOI Za 6] VD122 (3.46)

Then, substituting (3.45) and (3.46) into (3.41), and together with (3.38), (3.43), (3.2)
and (3.3), we can obtain that for i=1,2,

d JU—
Uk §||Vu||iz+|||bllﬁb\lliz

Cllvpiliz+IVolIZ2) (F(6) +[Vullzz +1) + C A7z +C[ VI V20 72

Cllvpillzz+IVblIZ2)F(t) + CIIAO| T + Ct (lv/pullzz + V20l 72 + IVU‘EZ)- |
3.47

<
<

Next, applying Gronwall’s inequality to (3.47), multiplying by #*(i =1,2), it follows from
(3.38), (3.43), (3.2), (3.3) and (3.9) that

T
sup (HF(£))+ / B (V|2 + bl B[22 )dt

te[0,T)

T T
g/ tl—"F(t)dtJrC/ t| 20|32 dt
0 0

T
+C/O t(llv/pallge + V20l 22 + [Vl 72)dt
<o(T). (3.48)

Finally, as i=1,2, from (3.38), (3.43) and (3.3) we get (3.26). (3.27) is a direct conse-
quence of (3.26) and (3.20). We finish the proof of Lemma 3.3. |

3.2. Lower order estimates. We are concerned with the estimates on the
higher-order derivatives of the strong solution (p,u,p,b,0) as follows:

LEMMA 3.4. For a positive constant C, such that

sup |[|pz®||pr <C(T). (3.49)
t€[0,T)

Proof. For M >1, let ppr € C§°(Bar) satisfy

L |z[<M/2,

<CM™". 3.50
0. | > M, Vo] < (3.50)

0<em<1, @M(w)Z{

We can deduce with (1.1), that

d

T ppmdr = /pu-VgonxZ—CM_I(/pdx)l/Q(/p|u|2dm)1/2Z—C'M_l, (3.51)
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in the last inequality of (3.51), we have applied (3.2) and (3.9). Integrating (3.51) and

letting M = Ny 22N, +4CT, we obtain after using (1.4) that

inf dz > inf d
i . o> iy [ romte

Z/pogoNldx—C’NflT

/ CT
> podr — —————
By 2No+4CT

0

v
1=

(3.52) along with (3.1), (3.9) and (2.5) for any n € (0,1] and any s> 2, result in

Lo SC(lIp"?ull 12+ Vul| 12) < C.

[[uz "]

(3.52)

(3.53)

Multiplying (1.1), by Z* and integrating the resulting equality by parts over R? we find

that

%/pa’cadxgC/p|u|§:a_1log2(e+|x|2)dx

<C|pz* | sia uz | psva

| sta
L7+a

< C/pgﬁadx—FC.

Using Gronwall’s inequality on (3.54) gives (3.49) and it proves Lemma 3.4.

LEMMA 3.5. There is a positive constant C' depending on T such that

T at1
S[UP]”P”HIOWW"‘/ (IV2ul 2 +[V2ull i +tIVulFanpq)dt
tel0,T 0

T a+1
+/0 (VP22 + VPl i +tVPI72nL.)dt <O(T).

Proof. 'We can follow from (1.1), that Vp holds for any r>2,

£ <O [[Vul L= [Vp|

d
—|IV
Z194l

rLr.

Next, employing Lemma 2.2, (3.2) and (3.20), we have for ¢> 2,

q—2 q

q
IVl e <CIVull 75 V2] 7777 < Cllpaf 77

It follows from (3.52), (3.1), (2.2) and (3.49) that for any s> 2,

lpvlle <Cllpz s | s [lvz =5 | s
QoD o a1/2
<Clipll = ozl 3 (o ?vll 2 + [Vl 2)

<O(lp" vl g2 +[1V0ll2),

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)
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(3.58) combined with the Gagliardo-Nirenberg inequality shows that

2(g—1) a(q—2)

lpal| e < Cllpil 2~ llpall 5

2(41 1) 2)
<Cllpil| 52 (il 2 + [ Vil z2) e
2({1 1) (q 2)

< C(Ivpillz + Vel % 2 IVl 52 ), (3.59)

which is deformed and when calculated appropriately, leads to

/ il i di<C / \pal s dt
0 0
+q2—2g9—2 a(g—2)(q+1)

2_, T
+ sup (t]y/pi]|32) 77 / e (t]|Va]|2.) a2 dt
te[0,T) 0

<0/ ufunmdtw/ TR o t||vu||izdt

<c, (3.60)
T T
/ t||p1l||2qut§C(/ HIVa|2adt +1) < C. (3.61)
0 0
Then, (3.60) and (3.57) imply
T
/ [Vul|peedt <C(t). (3.62)
0
Next, using Gronwall’s inequality on (3.56) shows
sup [|Vpllr2nre <C. (3.63)
t€[0,77]

Then, letting s=2 in (3.20) and integrating the resulting equality over [0,T], we obtain
after using (3.1), (3.2) and (3.3) that

T T
/ \|V2u||2L2dt+/ [VP|7.dt<C. (3.64)
0 0

Similarly, setting r=¢ in (3.20) and integrating the resulting equality over [0,7], we
deduce using (3.60), (3.1), (3.2) and (3.3) that

T it T at1
/ |V 2u| & dt+/ I\VP| 4 dt<C. (3.65)
0 0

Multiplying (3.20) by ¢ and integrating the resulting equality over [0,T], we can obtain
after using (3.60), (3.1), (3.2) and (3.3) that

T T
/ t||v2u||iqut+/ HIV P2 adt < C. (3.66)
0 0
Moreover, we can get from (3.64), (3.65) and (3.66) that

T at1
/ IVl + 1Vl 5 +tIVul 7o) dt
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T atl
4 [ VPR +ITPILE +IV PRyt <C. (3.7
0

which combined with (3.1) and (3.63) gives (3.55). Lemma 3.5 is proved. O
LEMMA 3.6 (see [21]).  There exists a positive constant C depending on T such that
for g>2,

sup |pz®||Lrnmrawia <C(T). (3.68)
t€[0,T]

LEMMA 3.7. There exists a positive constant C such that
a a T a a
sup (Ilbﬁlliﬁ\lﬁ’ﬁlliaH/ (IVbz2 |22 +[|VOz2[|72)dt < O(T), (3.69)
te[0,T) 0
and
a a T a a
sup t(||Vb:f5||%z+||V0:E5||%z)+/ t(| bz |32+ || AT ||3.)dt < C(T).  (3.70)
te[0,T] 0

Proof. First, adding (1.1); xbz* to (1.1), x0Z* and integrating the resulting
equality over R?, we have

1d,
2 dt
SO/(|b|2+|9|2)Afadx+/b.vu.ba-;adx+%/(|b|2+|9|2)u.vjadx

10z%/2||%2 +1162/2 ([ 72) + w11 Vb2 22 + K VOZ2 2

L2114+ Lo+Ls, (3.71)

where

Ly §C/(|b|2+|0|2):E“f*2log4(e+|x|2)dx

<ClJea"/ 32 +Cll0z""2|32. (3.72)
Lo < C||Val| 2 |62/ 76 < Cl0&" /2|2 (1702 2+ [DVE?] 1)
< Clea"/ 7+ 7 IVbz" 2, (3.73)
1

Lg:i/(|b|2+|9|2)u-V§:adx
< O([bz 2| pal|bT®2|| 2 + 11022 14107 || 2 ) uz /| a
< Clz" 2|30 + V52 3+ 62°/ 72 + 5 [ V02 . (3.74)

Substituting (3.72)-(3.74) into (3.71), we get

1d
5 3 IDE/2 132 + 0272 32) + 2 [ V02232 + 5 V02| 3
<C|bz?|2. +C||02%/?||2.. (3.75)

Using Gronwall’s inequality on (3.75), we obtain (3.69).
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Next, multiplying (1.1), by Abz® and integrating by parts over R?, we find
a/2 a/2

o R VN

§0/|Vu\|Vb|2£“dx+C/|u||Vb|2|Vf“|da:+C/|Vb||Ab|\V§3“|dx

+c/|b|\vu\|Ab|asadx+c/\Vb\|b|vu||vgza|dx

5
A _
= E Lia
i=1

we can get the following estimations by the Gagliardo-Nirenberg inequality, (3.2),

and (3.53)
Ly < O||Vul 1 [|Vbz%/2||2, < C(1+ ||V 2u §11/) || V0z/2| 2.,
Ly < C|||Vb[*~3959 73| Louja-a uz ™3| oo || VB[ | oo
< O||Vbz /2| 355 |Vb )| 22 < || Wbz 2|2, + C|| Vb 2.
<C|Vbz 2|3, +C|| Abz /2|3,

L3+ L4< ZHAbi“/QH%z +C|| Vb2 2|2, + C||bz?||3 4 + C||Vul[ 14
< 2l 26272 22 + CIIVbz" 2|72 +C|[V2ulF. +C,

Ls < C||bz?||3. 4+ C||Vul|3. +C|| Vbz*/?||2,

< Olbz*2 (|22 (IV0z/2 |22 + 11622 2) + Ol Vul| 14 +C | Vo2 % |72

<C+C|| V|22 +C||Vbz/?||2..

Inserting (3.77)-(3.80) into (3.76) implies that

d
S IVbE 2|3 + v Abz 2| 7
<CA+[ V2|15 V52232 +C||Vul 32 +C.

Multiplying (1.1), by A8z and integrating by parts over R?, we find

LIV [+ w207 [

<c/\vu\|v9|2 ”dx+C/|uHV9| |Va:a|dx+C/|V9\|A9||an\dx ZLZ,

i=1

where
L1<CIIVUIIL°°||V91‘?5IIL2<C||V IIZ(‘* 1)HVQ IIQ(Q ”HW«%%H%z
<C(1+”v2u“Lq ) VOz% |72,
d
||V9|| <C|V0z2|7.+C|VO| 7.

Lgsonweﬁ—w co, ™3 | oo V0] | oo

LGa

<C|vost|,F

(3.76)

(3.69)

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)
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<C||vez |2, +§||Ae:z%||‘;, (3.84)
Is< gnmﬁng +C||VOz5 |2, (3.85)
Submitting L1, Lo, L3 into (3.82), one has
d —2 2 —22 2 i —22
V0= [z + 6] A0Z2 [T <CA+[V7ull 3 ) VOZ=][Z-. (3.86)
Finally, combining (3.81) and (3.86), we get
d . . . .
o (IVbz 21132+ (IVOZE|[72) + V(| b2 2|72 + 5| AOZE |7
g+1

§0(1+|IV2uIqu/q)IIwa“/QIiz+C|V2ull2Lz+C(1+IIVQU|LZ)||V9w3||iz+?~ )
3.87

We multiply (3.87) by ¢, and together with (3.69) and (3.55) , then employing Gronwall’s
inequlity, one obtains (3.70). This completes the proof of Lemma 3.7. ]

LEMMA 3.8. There exists a positive constant C such that
sup ([|y/puell7a +[1bel|72 + 10172 + [V 20l|72 +[IV?6] 72)
te[0,T]
T
+/ (V|22 + V0|72 + V|| 72)dt < C(T). (3.88)
0

Proof.  For any n€(0,1] and any s> 2, we deduce from (3.53), (3.58), (3.9) and
(3.2) that

llo"ullporn + luZ™ " pern <C. (3.89)
Next, we will prove that
sup ([VullZ: +[|VOlI72 + VD7)
te[0,T]
T
+/0 (IVpuelZ2 + bl 2 + 10172 + | ABIIZ: + | A0 72 )dt < C. (3.90)
With (3.2) at hand, we need to only show
T
/0 (Ivpuellzz +1lbelZ2 + 19:]172)dt < C. (3.91)

First, owing to (2.2) and (3.89) it is easy to show that

Ivpuell7z < llVeille + I1volul[Vull| 72 < [|v/pill7: +Cllvoull 16 [ Vul|7s
<|lv/pul|2: +C||Vul 22 + C||V2ul22. (3.92)

At the same time, (1.1),, (1.1); combined with (2.2) and (3.2) respectively, gives

Ibel[ 72 + 110172 <CIABIZ2 + (11l Vull 22 + | [ul VOl 72 + CIAOIT: +[I[ul VO [17-
<Ol AblZ2 +IbIZ4 [ VullZs + [ V0ZE |72 + CIAONZ +[[VOzE |7
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<C||Ab]|72 +Cl[VullZ2 +CIV?ull 72 + ClIAO|| 72
+|VbE 2|72+ VOZE 72,
where
[l VD]|[72 < Clluz ™15 V0|74 + C[ Vo2 |72

1
< S IV2lIZe +C [ Vba®?| 7
and

ul|[VO[|7> < Clluz=*|| 15| V0|74 + C||VOZ/2||3
1
S§|IV29||%2+C’||V0;f“/2||2L2.

(3.93)

(3.94)

(3.95)

According to (3.89) and (2.2), we can get (3.91) by the combination of (3.92), (3.93),

(3.2), (3.9), (3.9), (3.55) and (3.69).
Next, differentiating (1.1), with respect to ¢ gives

P+ pu-Vuy — pAug+ VP,

1
=—pi(ug+u-Vu)— puy - Vu+ (phes )+ (b- Vb — 5V\b|2)t.

(3.96)

Multiplying (3.96) by u and integrating by parts over R?, we deduce from (1.1), and

(1.1), that
ld
2dt
<C [ plullusl(Fus + ol V2l [Va)do+-C [ V[Vl dz

plus ot [ (Vs

+/p\ut\2|Vu\dx+/pt062~utdx+/p9tez~utdx
—/bt-Vut-bdx—/b-Vut-btdac
7
23" 1z,
=1
where
N < Clly/pull o llv/Busl| 22 | VBuel £ (Va2 + [ Vull3)
1+ Cllp¥ulld s lly/pul 2 lly/Buell 2o | V2l 2
< Cllvpuel 2 (I /pudll e + [ Vuell2) 2 (V| 12 + 19| 12)
< CIVale +CO+ [Voulie +92ul3),

_ _ 3 1
My +Ms < Clly/pul s ||Vl Ll Vel 2 + [ Val 2 lly/pue | 26 [l /pue| 72
o
< gIVullZe + CO+IVoullz: +11V2ullZz).

(3.97)

(3.98)

(3.99)



MIN LIU

1455

We can obtain the term M, from (1.1), together with integration by parts, (3.89), (3.2),

(3.9) and (2.2) that

—/div(pu)&ez-utdxgC’/p|u||Vt9||ut|dx+0/p|u|\9||Vut|dx

< Iv/purll e | /pull s V8] s+ | Pl | ] o 18]
< SIVula + O+ [[voula +19201152).

We can obtain the bound from the Hélder inequality and (3.1) that

1/2
M < lpll 2 11/pul| 211642 < Cllv/pue1 32 + Cll6 I3

and

Wty < 9 3+ DB < 210032+ O 3
m v
< gHVUtHQIﬂ +C|lbe|7 +§HVbt||2L2~

Submitting (3.98)-(3.102) into (3.97) gives

d
ZrIvewlis +plVuelis

<C(|I\/EUt||Lz+||bt||Lz+||9tHLz)+C(||VQUHLz+||V29HL2+1)+ ||Vbt||L2'

Next, differentiating (1.1), with respect to ¢ shows
btt—bt-Vu—b-Vut—l—ut Vb+UVbt —Z/Abt =

Now, multiplying (3.104) by b; and integrating by parts over R?, we find

2dt/|bt| da:+1//\Vbt| dz
:/b-Vut-btd:c+/bt-Vu~btdx+/ut«Vbt~bdx

<C|lb|l 2 16272 G2 [z~ P9V s || Vb | 12
+Clbell o bl 2| Vel 2 + Cllbe| 2] V| 2
<C(lv/pudllpz +Vuel|2) [ Vbel| 12 + Cllbe || 24 + O V|22

1% CQ
<C(bel72 + IVpuelzz) + S IVbe 22 + V|72
Adding (3.103) x = 1Cs into (3.105), we get

7 (1 1CzIIfUtHLzJrIIthILz)JrHVUtlle+ V072
<C(lvpuelzs +11bell2) + C(L+ [ V2ullZ2),

(3.100)

(3.101)

(3.102)

(3.103)

(3.104)

(3.105)

(3.106)

which multiplied by ¢, together with Gronwall’s inequality, (3.90), and (3.55) shows

sup ¢(|lv/puellz> +[10e]72) + /t(IIVUtIIiz+||Vbt||iz)dt§C(T)-

te[0,T]

(3.107)
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Then, differentiating (1.1), with respect to ¢ shows
Qtt—ut-ve—l—u-V@t—/ﬁAHt:O, (3108)

and, multiplying (3.106) by b; and integrating by parts over R?, we find

1d
5%/|9t|2dx+n/|V9t\2da::/ut0t-0da:

< C||9.fa/2||L8a/(4a71) ||ut.f_(2a_1)/4||L8a HVHtHLz

K
<Cllvpullz: +Csl| Vurl72) + SIVOIZ:. (3.109)
Meanwhile, adding (3.103) x 4~ *Cj3 into (3.109), we have

d, _
2 (0 CalVpullZe + 101 72) + Vel 7z + 51V 0,72
<C(lvpudlzs +10:ll72) +CA+]V2ull72 +1|V20]1Z2), (3.110)

Then, multiplying (3.110) by ¢ and integrating by parts over [0,7], and due to Gronwall’s
inequality, (3.90), (3.55) and (3.70) we have
T
sup ]15(||\/f5uzt||2L2 +[10:172) +/ t([| Vel + V0| 22)dt < C(T). (3.111)
te[o,T 0

Finally, we deduce from (1.1),, (1.1),, (2.2), (3.2), (3.94) and (3.94) that
IV2bIIZ +[1V*6]1 72
<Clbeliz= +ClIBIVullZe +Clllul| VI + Cll6 72+ Cll[ul V] 72
§C||bt||%2JFC”bH%‘I”VUHL2HV2UHL2+%||v2b”%2
+CHW“/2II%2+C||9t||%2+%IIV29H%2+CHWE%II%
<3 +CIVuls + 5 IV + Vb2
+cu9t||iz+%|\v29||iz+C||v9z%||§2, (3.112)

which combined with (3.111), (3.107), (3.103), (3.70) and (3.27) gains (3.88). Finally,
the proof of Lemma 3.8 is finished. O

4. Proof of Theorem 1.1
In this section, we will give the proof of Theorem 1.1.

Proof. (Proof of Theorem 1.1.) According to Lemmas 3.1-3.8, using standard
continuity theory of local existence, it is assumed that there is a T, > 0 such that systems
(1.1) and (1.2) have a local and unique strong solution (p,u, P,b,6) on R? x (0,T]. Next,
we will extend the local solution to all time. Set

T* =sup{T|(p,u, P,b,0) is a strong solution on R*x (0,T]}. (4.1)

We deduce from (3.2), (3.9), (3.27) and (3.88), for any 0 <7 <T <T™* with T finite,
and any g>2 that,

Vu,Vb,V0,b,0 € C([7,T];L*NLY). (4.2)
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Then, along with the standard embedding
L>(r, T;H YN H (1,T;L%) = C([r,T}; L), for any q€[2,00).
And, due to (3.55), (3.68), and [15, Lemma 2.3|, we have
peC([0,T); L' nH nWh). (4.3)
We declare that
T" = 0. (4.4)

On the contrary, if T* < co, we deduce from (4.2), (4.3), (3.2), (3.9), (3.68), and (3.88)
that

(p,u,b,0)(x,T")= lim (p,u,b,0)(z,1)
t—T*

conforms to the initial condition (1.5) at t=T. So, we can assume the initial data is
(p,u,b,0)(x,T*), since the existence and uniqueness of local strong solutions signifies that
there is some T™* > T, such that Theorem 1.1 holds for T'=T"**. This is contradictory
with the hypothesis of T* in (4.1), so (4.4) holds. Hence, the previous lemmas and the
local existence and uniqueness of strong solutions indicate that (p,u,P,b,0) is actually
the unique strong solution on R? x [0,T] for any 0<T <T* =o00. This completes the
proof of Theorem 1.1. ]

Acknowledgments. The author would like to thank the referee’s questions and
suggestions, and Professor Yong Li for careful reading, helpful suggestions, and valuable
comments, which helped a lot to improve the presentation of this manuscript.

REFERENCES

[1] D. Bian and G. Gui, On 2D Boussinesq equations for MHD convection with stratification effects,
J. Differ. Equ., 261:1669-1711, 2016. 1
[2] D. Bian and J. Liu, Initial-boundary value problem to 2D Boussinesq equations for MHD convec-
tion with stratification effects, J. Differ. Equ., 263:8074-8101, 2017. 1
[3] D. Bian and X. Pu, Global smooth azisymmetic solutions of the Boussinesq equations for mag-
netohydrodynamics convection, J. Math. Fluid Mech., 22:12, 2020. 1
[4] Q.Y. Bie, Q. Wang, and Z. Yao, Global well-posedness of the 3D incompressible MHD equations
with variable density, Nonlinear Anal. Real World Appl., 47:85-105, 2019. 1
[5] Y. Cho and H. Kim, Ezistence result for heat-conducting viscous incompressible fluids with vac-
uum, J. Korean Math. Soc., 45:645-681, 2008. 1.2
[6] H.J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for monhomogeneous
incompressible fluids, Commun. Partial Differ. Equ., 28:1183-1201, 2003. 1.2
[7] R. Coifman, P.L. Lions, Y. Meyer, and S. Semmes, Compensated compactness and Hardy spaces,
J. Math. Pures Appl., 72:247-286, 1993. 2.5, 2, 3.1
[8] B. Desjardins and C. Le Bris, Remarks on a nonhomogeneous model of magnetohydrodynamics,
Differ. Integral Equ., 11(3):377-394, 1998. 1
[9] J.F. Fan and F.C. Li, Global strong solutions to the nonhomogeneous incompressible MHD equa-
tions in a bounded domain, Nonlinear Anal. Real World Appl., 46:1-11, 2019. 1
[10] C. He and Z. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohy-
drodynamic equations, J. Funct. Anal., 227:113-152, 2005. 1
[11] X.D. Huang and Y. Wang, Global strong solution with vacuum to the two-dimensional density-
dependent Navier-Stokes system, SIAM J. Math. Anal., 46:1771-1788, 2014. 2.3, 2
[12] N. Ishimura and H. Morimoto, Remarks on the blow-up criterion for the 3D Boussinesq equations,
Math. Model. Meth. Appl. Sci., 9(9):1323-1332, 1999. 2.2, 2
[13] A.G. Kulikovskiy and G.A. Lyubimov, Magnetohydrodynamics, Addison-Wesley, Reading, MA,
1965. 1


https://doi.org/10.1016/j.jde.2016.04.011
https://doi.org/10.1016/j.jde.2017.08.034
https://link.springer.com/article/10.1007/s00021-019-0468-8
https://doi.org/10.1016/j.nonrwa.2018.10.008
https://doi.org/10.4134/JKMS.2008.45.3.645
https://doi.org/10.1081/PDE-120021191
https://link.springer.com/article/10.1007/BF02788851
https://projecteuclid.org/journals/differential-and-integral-equations/volume-11/issue-3/Remarks-on-a-nonhomogeneous-model-of-magnetohydrodynamics/die/1367341058.full
https://doi.org/10.1016/j.nonrwa.2018.08.010
https://doi.org/10.1016/j.jfa.2005.06.009
http://dx.doi.org/10.1137/120894865
https://doi.org/10.1142/S0218202599000580
https://www.researchgate.net/publication/236420100_Magnetohydrodynamics

1458 GLOBAL WELL-POSEDNESS OF THE 2D MHD-BOUSSINESQ

[14] A. Larios and Y. Pei, On the local well-posedness and a Prodi-Serrin type regularity criterion
of the three-dimensional MHD-Boussinesq system without thermal diffusion, J. Differ. Equ.,
263(2):1419-1450, 2017. 1

[15] Z. Liang, Local strong solution and blow-up criterion for the 2D nonhomogeneous incompressible
fluids, J. Differ. Equ., 258:2633-2654, 2015. 4

[16] P.L. Lions, Mathematical Topics in Fluid Mechanics, Vol. I: Incompressible Models, Oxford Uni-
versity Press. Oxford, 1996. 3.1

[17] M. Liu, Global existence and large time asymptotic behavior of strong solution to the Cauchy
problem of 2D density-dependent Boussinesq equations with vacuum, J. Appl. Math. Phys.,
7:2333-2351, 2019. 1

[18] H. Liu, D. Bian, and X. Pu, Global well-posedness of the 3D Boussinesqg-MHD system without
heat diffusion, Z. Angew. Math. Phys., 70:81, 2019. 1

[19] S.A. Lorca and J.L. Boldrini, The initial value problem for a generalized Boussinesq model:
regularity and global existence of strong solutions, Mat. Contemp., 11:71-94, 1996. 1

[20] S.A. Lorca and J.L. Boldrini, The initial value problem for a generalized Boussinesq model,
Nonlinear Anal., 36:457-480, 1999. 1

[21] B.Q. Ld and B. Huang, On strong solutions to the Cauchy problem of the two-dimensional com-
pressible magnetohydrodynamic equations with vacuum, Nonlinearity, 28:509-530, 2015. 1,
3.1, 3.6

[22] B.Q. L4, X.D. Shi, and X. Zhong, Global ezistence and large time asymptotic behavior of strong
solutions to the Cauchy problem of 2D density-dependent Navier-Stokes equations with vac-
uum, Nonlinearity, 31:2617-2632, 2018. 3.1

[23] B.Q. Lii, Z.H. Xu, and X. Zhong, Global existence and large time asymptotic behavior of strong
solutions to the Cauchy problem of 2D density-dependent magnetohydrodynamic equations
with vacuum, J. Math. Pures Appl., 108:41-62, 2017. 1

[24] A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Amer. Math. Soc.,
Providence, RI, 9, 2003. 1

[25] G. Mulone and S. Rionero, Necessary and sufficient conditions for nonlinear stability in the
magnetic Bénard problem, Arch. Ration. Mech. Anal., 166(3):197-218, 2003. 1

[26] H. Qiu and Z. Yao, Well-posedness for density-dependent Boussinesq equations without dissipation
terms in Besov spaces, Comput. Math. Appl., 73:1920-1931, 2017. 1

[27] M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Com-
mun. Pure Appl. Math., 36(5):635-664, 1983. 1

[28] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,
Princeton University Press, Princetonn. NJ, 1993. 2.4, 2

[29] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, reprint of the (1984)
edition. AMS Chelsea Publishing. Providence. RI., 2001. 3.1

[30] X.K. Zhao, Global wellposedness of magnetohydrodynamics for Boussinesq system with partial
viscosity and zero magnetic diffusion, J. Math. Anal. Appl., 461:97-127, 2018. 1

[31] X. Zhong, Strong solutions to the 2D Cauchy problem of density-dependent viscous Boussinesq
equations with vacuum, J. Math. Phys., 60:051505, 2019. 1

[32] X. Zhong, Strong solutions to the Cauchy problem of two-dimensional non-barotropic non-
resistive magnetohydrodynamic equations with zero heat conduction, J. Differ. Equ.,
268:4921-4944, 2020. 1

[33] X. Zhong, Strong solutions to the nonhomogeneous Boussinesq equations for magnetohydrody-
namics convection without thermal diffusion, Electron. J. Qual. Theory Differ. Equ., 24:1-23,
2020. 1, 1.1


https://doi.org/10.1016/j.jde.2017.03.024
https://doi.org/10.1016/j.jde.2014.12.015
https://www.researchgate.net/publication/265435857_Mathematical_topics_in_fluid_mechanics_Vol_1_Incompressible_models
https://doi.org/10.4236/jamp.2019.710159
https://link.springer.com/article/10.1007/s00033-019-1126-y
https://mathscinet.ams.org/mathscinet-getitem?mr=1425465
https://doi.org/10.1016/S0362-546X(97)00635-4
https://iopscience.iop.org/article/10.1088/0951-7715/28/2/509/meta
https://arxiv.org/pdf/1506.03143.pdf
https://doi.org/10.1016/j.matpur.2016.10.009
https://doi.org/10.1090/cln/009
http://dx.doi.org/10.1007/s00205-002-0230-9
https://doi.org/10.1016/j.camwa.2017.02.041
https://doi.org/10.1002/cpa.3160360506
https://doi.org/10.1090/S0273-0979-99-00792-2
https://www.researchgate.net/publication/295736587_Navier-Stokes_Equations_Theory_and_Numerical_Analysis
https://doi.org/10.1016/j.jmaa.2017.12.070
https://doi.org/10.1063/1.5048285
https://doi.org/10.1016/j.jde.2019.10.044
https://doi.org/10.14232/ejqtde.2020.1.24
https://doi.org/10.14232/ejqtde.2020.1.24

