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LOW MACH NUMBER LIMIT OF THE FULL COMPRESSIBLE MHD
EQUATIONS WITH CATTANEO’S HEAT TRANSFER LAW∗

FUCAI LI† AND SHUXING ZHANG‡

Abstract. We study low Mach number limit of the full compressible magnetohydrodynamic
(MHD) equations with Cattaneo’s heat transfer law in the framework of classical solutions with small
density, temperature and heat flux variations. It is rigorously justified that, for well-prepared initial
data and a sufficiently small Mach number, the full compressible MHD equations with Cattaneo’s heat
transfer law admit a smooth solution on the time interval where the smooth solution of the incompress-
ible MHD equations exists, and the solution of the former converges to that of the latter as the Mach
number tends to zero. Moreover, we also obtain the convergence rate.
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1. Introduction
The three-dimensional full compressible magnetohydrodynamic (MHD) equations

with Cattaneo’s heat transfer law (hereinafter called the MHD–Cattaneo equations for
short) can be written in the following form (see, e.g. [29])

∂tρ+div(ρu)=0, (1.1)

∂t(ρu)+div(ρu⊗u)+∇p−(curlH)×H=divS, (1.2)

∂tE+div((E ′+p)u)+divq=div((u×H)×H−ν(curlH)×H+uS), (1.3)

∂tH−curl(u×H)=−curl(νcurlH), divH=0, (1.4)

τ∂tq+q+κ∇θ=0. (1.5)

Here the unknowns ρ, u=(u1,u2,u3), H=(H1,H2,H3), θ and q=(q1,q2,q3) denote the
density of the fluid, the fluid velocity, the magnetic field, the thermodynamic tempera-
ture and the heat flux, respectively. The stress tensor S is given by

S=µ(∇u+∇u⊤)+λdivuI3,

where µ and λ are viscosity coefficients satisfying µ>0 and 2µ+3λ≥0, and I3 is the
3×3 identity matrix. The total energy E is given by

E=E ′+
|H|2

2
with E ′=ρ

(
e+

|u|2

2

)
.

Here e, |u|2
2 and |H|2

2 denote the internal energy, the kinetic energy and the magnetic
energy, respectively. The equations of state p=p(ρ,θ) and e=e(ρ,θ) relate the pressure
p and the internal energy e to the density ρ and the temperature θ. ν >0 is the magnetic
diffusion coefficient of the magnetic field. κ>0 denotes the heat conductivity coefficient
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and τ >0 is the relaxation time. For simplicity, we assume that µ, λ, ν, κ and τ are
constants.

For τ =0, the Cattaneo’s heat transfer law (1.5) turns into the Fourier’s heat transfer
law

q+κ∇θ=0,

and the MHD–Cattaneo equations (1.1)–(1.5) become the so-called full compressible
MHD equations, i.e.,

∂tρ+div(ρu)=0, (1.6)

∂t(ρu)+div(ρu⊗u)+∇p−(curlH)×H=divS, (1.7)

∂tE+div((E ′+p)u)−κ∆θ=div((u×H)×H−ν(curlH)×H+uS), (1.8)

∂tH−curl(u×H)=−curl(νcurlH), divH=0. (1.9)

There have been a number of studies on this classical system because of the wide ap-
plications in the real world and the mathematical challenges involved, see, for exam-
ple, [3, 4, 8, 9, 12–16, 37] and the references cited therein. One of the important topics
on this system is to study its low Mach number limit (also called incompressible limit).
Roughly speaking, the basic result is that the solution of slightly compressible model
converges to that of the incompressible one as the Mach number tends to zero. Specifi-
cally, Jiang, Ju and Li [19] obtained the low Mach number limit of the full compressible
MHD system with well-prepared initial data, in which the effect of small entropy or tem-
perature variation is taken into account. Whereafter, together with Z.-P. Xin, they [20]
investigated the low Mach number limit of these equations with general initial data and
large temperature variations. Cui, Ou and Ren [7] studied the incompressible limits of
the full compressible MHD equations for viscous and heat-conductive ideal polytropic
flows with magnetic diffusion in a three-dimensional bounded domain. All the above
results are about smooth solutions, the incompressible limit in the framework of weak
solutions was also established, for example, see [10,11,23,26,27]. Besides the references
mentioned above, there are some other articles on the low Mach number limit of ideal
compressible MHD equations. We refer the interested reader to [5,6,21,22,25,28,33,41]
and the references cited therein.

Fourier’s heat transfer law implies a parabolic equation with respect to the tem-
perature θ, which predicts that heat waves have an infinite propagation speed and this
behavior violates the recognized principle of causality. Compared to Fourier’s law, Cat-
taneo’s law leads to the hyperbolic equations with respect to the heat flux q and the
temperature θ, which means the heat waves have a finite propagation speed (see [35]
for more details). In recent years, Cattaneo’s law has been gradually studied by many
researchers. For the Navier–Stokes equations with Cattaneo’s law, Hu and Racke [17]
studied the existence of smooth solutions under different initial data conditions and
verified that the solution uniformly converges to that of the full compressible Navier-
Stokes equations as the relaxation time τ goes to zero. The low Mach number limit
of the Navier–Stokes equations with Cattaneo’s law was investigated by the second au-
thor [40]. It is justified that, for small density, temperature and heat flux variations, the
solution converges to that of the incompressible Navier–Stokes equations as the Mach
number tends to zero. For the MHD–Cattaneo Equations (1.1)–(1.5), Liu and Xu [29]
showed that the local solution exists for large initial data and the global solution exists
for small initial data. They also proved the uniform convergence of the solution to that
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of the full MHD Equations (1.6)–(1.9) as τ goes to zero. Boukrouche, Boussetouan
and Paoli [2] prove an existence result for the incompressible fluid with Tresca’s friction
at the boundary and heat transfer governed by Cattaneo’s law. In addition to fluid
dynamics, Cattaneo’s law is also used in thermoelasticity which results in the second
sound phenomenon, see [1, 18,31,32] and the references therein.

Motivated by [19,40], the main purpose of this paper is to investigate the low Mach
number limit of the Equations (1.1)–(1.5) in the framework of classical solutions in the
whole space R3 or the three-dimensional torus T3=(R/(2πZ))3, which will be denoted
by Ω. We shall focus our study on the fluid obeying the perfect gas relations

p=ℜρθ, e= cV θ, (1.10)

where the positive constants ℜ and cV are the generic gas constant and the specific heat
at constant volume, respectively.

Now, we simplify the Equations (1.1)–(1.5). First of all, for the energy Equation
(1.3), we can rewrite it in the form of the temperature θ. Multiplying (1.2) by u and
(1.4) by H, and putting them together, we have

1

2

d

dt
(ρ|u2|+ |H|2)+ 1

2
div(ρ|u2|u)+∇p ·u

=(divS+(curlH)×H) ·u+(curl(u×H)−curl(νcurlH)) ·H. (1.11)

Subtracting (1.11) from (1.3) and using the following identities

div(H×curlH)= |curlH|2−(curlcurlH) ·H,

div((u×H)×H)=(curlH)×H ·u+curl(u×H) ·H,

we arrive at

ρ(∂te+u ·∇e)+pdivu+divq=ν|curlH|2+Ψ,

where

Ψ=
µ

2
|∇u+∇u⊤|2+λ|divu|2.

Substituting the relations (1.10) into the above equation yields

cV ρ(∂tθ+u ·∇θ)+ℜρθdivu+divq=ν|curlH|2+Ψ.

Secondly, utilizing the mass conservation equation, Equation (1.1), the momentum con-
servation Equation (1.2) becomes

ρ(∂tu+u ·∇u)+ℜ∇(ρθ)−(curlH)×H=µ∆u+(µ+λ)∇divu.

Finally, using the identities

curl(u×H)=udivH−Hdivu+H ·∇u−u ·∇H,

curlcurlH=∇divH−∆H,

and the constraint condition divH=0, the magnetic field Equation (1.4) now reads

∂tH+u ·∇H−H ·∇u+Hdivu=ν∆H.
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Thus, we rewrite the MHD–Cattaneo Equations (1.1)–(1.5) in the following form

∂tρ+u ·∇ρ+ρdivu=0, (1.12)

ρ(∂tu+u ·∇u)+ℜ∇(ρθ)−(curlH)×H=µ∆u+(µ+λ)∇divu, (1.13)

cV ρ(∂tθ+u ·∇θ)+ℜρθdivu+divq=ν|curlH|2+Ψ, (1.14)

∂tH+u ·∇H−H ·∇u+Hdivu=ν∆H, (1.15)

τ∂tq+q+κ∇θ=0. (1.16)

Dividing each variable in the above system by its reference states and using the same
notations for the dimensionless velocity field u, magnetic field H and thermodynamic
functions ρ, θ and q, the dimensionless version of the system (1.12)–(1.16), only retaining
Mach number (taking all other dimensionless parameters to be one), can be rewritten
as follows (see the appendix of [19] for more details)

∂tρ+u ·∇ρ+ρdivu=0, (1.17)

ρ(∂tu+u ·∇u)+
∇(ρθ)

ϵ2
−(curlH)×H=µ∆u+(µ+λ)∇divu, (1.18)

ρ(∂tθ+u ·∇θ)+(γ−1)ρθdivu+divq= ϵ2(ν|curlH|2+Ψ), (1.19)

∂tH+u ·∇H−H ·∇u+Hdivu=ν∆H (1.20)

τ∂tq+q+κ∇θ=0. (1.21)

where γ=1+ ℜ
cV

is the ratio of specific heats, and ϵ>0 is the reference Mach number
for the slightly compressible fluids, i.e. if ρ̄, p̄ and ū represent the reference density,
pressure and velocity, then the dimensionless Mach number ϵ can be denoted by the
following form

ϵ=
ū√
γp̄/ρ̄

.

Inspired by [40], we further restrict ourselves to the small density, temperature and heat
flux variations. Setting

ρ=1+ϵηϵ, θ=1+ϵϕϵ, q= ϵψϵ,

then we can rewrite (1.17)–(1.21) as

∂tη
ϵ+uϵ ·∇ηϵ+ 1

ϵ
(1+ϵηϵ)divuϵ=0, (1.22)

(1+ϵηϵ)(∂tu
ϵ+uϵ ·∇uϵ)+ 1

ϵ
[(1+ϵηϵ)∇ϕϵ+(1+ϵϕϵ)∇ηϵ]−(curlHϵ)×Hϵ

=µ∆uϵ+(µ+λ)∇divuϵ, (1.23)

(1+ϵηϵ)(∂tϕ
ϵ+uϵ ·∇ϕϵ)+ γ−1

ϵ
(1+ϵηϵ)(1+ϵϕϵ)divuϵ+divψϵ

=ϵ(ν|curlHϵ|2+Ψϵ), (1.24)

∂tH
ϵ+uϵ ·∇Hϵ−Hϵ ·∇uϵ+Hϵdivuϵ=ν∆Hϵ, (1.25)

τ∂tψ
ϵ+κ∇ϕϵ=−ψϵ. (1.26)
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Here we have added the superscript ϵ on the unknowns to stress the dependence on the
Mach number ϵ. The system (1.22)–(1.26) is equipped with the initial data

(ηϵ,uϵ,ϕϵ,Hϵ,ψϵ)|t=0=(ηϵ0(x),u
ϵ
0(x),ϕ

ϵ
0(x),H

ϵ
0(x),ψ

ϵ
0(x)). (1.27)

Suppose that the limits uϵ→w and Hϵ→B exist and denoting the formal limit of 1
ϵ [(1+

ϵηϵ)∇ϕϵ+(1+ϵϕϵ)∇ηϵ] by ∇π, we can formally obtain the following incompressible
MHD equations

∂tw+w ·∇w+∇π−(curlB)×B=µ∆w, (1.28)

∂tB+w ·∇B−B ·∇w=ν∆B, (1.29)

divw=0, divB=0, (1.30)

with the initial data

(w,B)|t=0=(w0(x),B0(x)).

In this paper, we shall establish the above limit rigorously in Ω=R3 or T3. More-
over, we shall prove that for sufficiently small ϵ, the MHD–Cattaneo Equations (1.22)–
(1.26) admit a smooth solution on the time interval where the smooth solution of the
incompressible MHD Equations (1.28)–(1.30) exists. Now we state our main result as
follows.

Theorem 1.1. Let s> 3
2 +2. Assume that the initial data (1.27) are well-prepared,

i.e.,

∥(ηϵ0,uϵ0−w0,ϕ
ϵ
0,H

ϵ
0−B0,ψ

ϵ
0)∥s=O(ϵ), (1.31)

for (w0,B0)∈Hs+3(Ω) satisfying divw0=divB0=0. Let (w,B,π) be a smooth solution
to the incompressible MHD Equations (1.28)–(1.30) with the initial data (w0,B0) on
[0,T ∗] for some T ∗>0 and satisfy

(w,B)∈C([0,T ∗];Hs+2(Ω))∩C1([0,T ∗];Hs(Ω)),

π∈C([0,T ∗];Hs+2(Ω))∩C1([0,T ∗];Hs+1(Ω)).

Then there exists a constant ϵ0>0, such that for all ϵ≤ ϵ0, the MHD–Cattaneo Equa-
tions (1.22)–(1.26) have a unique smooth solution (ηϵ,uϵ,ϕϵ,Hϵ,ψϵ)∈C([0,T ∗];Hs(Ω)).
Moreover, there exists a constant K>0 independent of ϵ, such that, for all ϵ≤ ϵ0,

sup
t∈[0,T∗]

∥∥∥∥(ηϵ− ϵ

2
π,uϵ−w,ϕϵ− ϵ

2
π,Hϵ−B,ψϵ+ ϵκ∇π

2

)∥∥∥∥
s

≤Kϵ.

Remark 1.1. The regularity assumptions of (w,B,π) in Theorem 1.1 will be used
in error estimates (see more details in Section 4). Moreover, supposing that the initial
data (w0,B0)∈Hs+3(Ω), we actually obtain from the existence result of the incom-
pressible MHD equations (Theorem 2.2 in Section 2) that (w,B)∈C([0,T ∗];Hs+3(Ω))∩
C1([0,T ∗];Hs+1(Ω)). If the domain Ω is T3, then π can be normalized by request-
ing that

∫
Ω
πdx=0, and the regularity of π follows from elliptic regularity such that

π∈C([0,T ∗];Hs+3(Ω))∩C1([0,T ∗];Hs+1(Ω)). In the whole space case, to restrict π=0
in infinity, we can also derive the same regularity of π. Thus, we obtain a better regu-
larity of (w,B,π) than that required in Theorem 1.1.
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Remark 1.2. Theorem 1.1 can be regarded as a generalization of the result in [40].
In fact, taking the magnetic field Hϵ=0, the convergence result in Theorem 1.1 also
holds for the Navier–Stokes equations with Cattaneo’s law. Moreover, compared with
the results in [19] for full MHD equations with Fourier’s law, we find that for the well-
prepared initial data, Cattaneo’s law (or hyperbolic heat conduction) and Fourier’s law
(or parabolic heat conduction) can lead to the same limit equations.

The proof of Theorem 1.1 is based on the method developed in [19]. There are two
critical processes. The first one is to construct the approximate system of the MHD–
Cattaneo equations by using the solution of the incompressible MHD equations. The
second one is to establish the uniform error estimates by energy method. Thus, using
the convergence-stability lemma, we can complete the proof of Theorem 1.1.

The outline of this paper is as follows. In the next section, we construct some
preliminaries. We first show the existence theory for the MHD–Cattaneo Equations
(1.22)–(1.26), then go over the existence result of the incompressible MHD Equations
(1.28)–(1.30). Finally, we list some calculus inequalities in Sobolev space and give the
nonlinear Gronwall-type inequality, which are used in the error estimates. In Section 3,
we construct the approximate system and show our main result. Finally, the uniform
error estimates, which are required in Section 3, are obtained in Section 4.

Before ending the introduction, we give some notations used throughout the current
paper. We use the letter C to denote various positive constants independent of ϵ,
which may vary from line to line. The Greek letter α is used to denote multi-index
α=(α1,α2,α3), for integers αi≥0, i=1,2,3. We denote by Dα=∂α1

1 ∂α2
2 ∂α3

3 the partial
derivative of order |α|=α1+α2+α3. In particular, we useDk to denoteDα with |α|=k.
Hs(Ω) (s∈R) denotes the usual Sobolev spaces with norm ∥·∥s. For s=0, namely L2

space, we denote the norm ∥·∥L2 by ∥·∥. L∞(Ω) is the space of bounded measurable
functions on Ω with the norm ∥·∥L∞ .

2. Preliminaries
In this section, we construct some necessary preliminaries. First, we show the local

existence of classical solutions to the Equations (1.22)–(1.26). The method is based on
the classical theory of local existence of solutions to quasilinear symmetric hyperbolic–
parabolic system. Using the same way, Hu and Racke [17] obtained the local existence of
solutions to the Navier–Stokes equations with Cattaneo’s law. Here, we give the sketch
of the proof on the local existence of solutions to Equations (1.22)–(1.26), for the sake
of completeness.

Denoting U ϵ=(ηϵ,uϵ,ϕϵ,Hϵ,ψϵ), we rewrite the system (1.22)–(1.26) in the vector
form

A0(U
ϵ)∂tU

ϵ+

3∑
i=1

Ai(U
ϵ)∂iU

ϵ=Q(D2U ϵ)+F (U ϵ,DU ϵ), (2.1)

where

Q(D2U ϵ)=(0,µ∆uϵ+(µ+λ)∇divuϵ,0,ν∆Hϵ,0)⊤,

F (U ϵ,DU ϵ)=(0,0,ϵ(ν|curlHϵ|2+Ψϵ),0,−ψϵ)⊤,

and the matrices Ai(U
ϵ), i=0,1,2,3, are given by

A0(U
ϵ)=diag(1,1+ϵηϵ,1+ϵηϵ,1+ϵηϵ,1+ϵηϵ,1,1,1,τ,τ,τ),
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A1(U
ϵ)=

uϵ1
1+ϵηϵ

ϵ 0 0 0 0 0 0 0 0 0
1+ϵϕϵ

ϵ uϵ1(1+ϵη
ϵ) 0 0 1+ϵηϵ

ϵ 0 Hϵ
2 Hϵ

3 0 0 0
0 0 uϵ1(1+ϵη

ϵ) 0 0 0 −Hϵ
1 0 0 0 0

0 0 0 uϵ1(1+ϵη
ϵ) 0 0 0 −Hϵ

1 0 0 0

0 (γ−1)(1+ϵηϵ)(1+ϵϕϵ)
ϵ 0 0 uϵ1(1+ϵη

ϵ) 0 0 0 1 0 0
0 0 0 0 0 uϵ1 0 0 0 0 0
0 Hϵ

2 −Hϵ
1 0 0 0 uϵ1 0 0 0 0

0 Hϵ
3 0 −Hϵ

1 0 0 0 uϵ1 0 0 0
0 0 0 0 κ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


,

A2(U
ϵ)=

uϵ2 0 1+ϵηϵ

ϵ 0 0 0 0 0 0 0 0
0 uϵ2(1+ϵη

ϵ) 0 0 0 −Hϵ
2 0 0 0 0 0

1+ϵϕϵ

ϵ 0 uϵ2(1+ϵη
ϵ) 0 1+ϵηϵ

ϵ Hϵ
1 0 Hϵ

3 0 0 0
0 0 0 uϵ2(1+ϵη

ϵ) 0 0 0 −Hϵ
2 0 0 0

0 0 (γ−1)(1+ϵηϵ)(1+ϵϕϵ)
ϵ 0 uϵ2(1+ϵη

ϵ) 0 0 0 0 1 0
0 −Hϵ

2 Hϵ
1 0 0 uϵ2 0 0 0 0 0

0 0 0 0 0 0 uϵ2 0 0 0 0
0 0 Hϵ

3 −Hϵ
2 0 0 0 uϵ2 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 κ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


,

A3(U
ϵ)=

uϵ3 0 0 1+ϵηϵ

ϵ 0 0 0 0 0 0 0
0 uϵ3(1+ϵη

ϵ) 0 0 0 −Hϵ
3 0 0 0 0 0

0 0 uϵ3(1+ϵη
ϵ) 0 0 0 −Hϵ

3 0 0 0 0
1+ϵϕϵ

ϵ 0 0 uϵ3(1+ϵη
ϵ) 1+ϵηϵ

ϵ Hϵ
1 Hϵ

2 0 0 0 0

0 0 0 (γ−1)(1+ϵηϵ)(1+ϵϕϵ)
ϵ uϵ3(1+ϵη

ϵ) 0 0 0 0 0 1
0 −Hϵ

3 0 Hϵ
1 0 uϵ3 0 0 0 0 0

0 0 −Hϵ
3 Hϵ

2 0 0 uϵ3 0 0 0 0
0 0 0 0 0 0 0 uϵ3 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 κ 0 0 0 0 0 0


.

It is easy to see that the matrices Â0(U
ϵ)Ai(U

ϵ), i=1,2,3, are symmetric matrices by
choosing the symmetrizer Â0(U

ϵ) as

Â0(U
ϵ)=diag

(
1+ϵϕϵ

1+ϵηϵ
,I3,

1

(γ−1)(1+ϵϕϵ)
,I3,

1

κ(γ−1)(1+ϵϕϵ)
I3
)
,

where I3 is the 3×3 identity matrix, and the coefficient matrix of the second-order
partial derivative in Q(D2U ϵ) is real symmetric and semi-positive definite. Moreover,
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denote by G the physical state space of U ϵ, for each bounded open set G1 satisfying
G1⋐G and U ϵ∈ Ḡ1. Â0 is a positive definite symmetric matrix for sufficiently small ϵ.
Following the proof of the local existence theorem for the Cauchy problem of quasilinear
symmetric hyperbolic–parabolic system (see [24,36]), we obtain the following result.

Theorem 2.1. Let s≥ 3
2 +2. Suppose that U ϵ0 =(ηϵ0,u

ϵ
0,ϕ

ϵ
0,H

ϵ
0,ψ

ϵ
0)∈Hs(Ω) and U ϵ0 ∈

G0. Then for each open subset G1 satisfying G0⋐G1⋐G, there exists a T ϵ>0 such that
the MHD–Cattaneo Equations (1.22)–(1.26) have a unique classical solution U ϵ∈G1 and

(ηϵ,ϕϵ,ψϵ)∈C([0,T ϵ];Hs(Ω))∩C1([0,T ϵ];Hs−1(Ω)),

(uϵ,Hϵ)∈C([0,T ϵ];Hs(Ω))∩C1([0,T ϵ];Hs−2(Ω)).

Next, we recall the local existence of solutions to the incompressible MHD equations.

Theorem 2.2 ([19,34]). Let s≥ 3
2 +2. Suppose that (w0,B0)∈Hs(Ω) satisfy divw0=0

and divB0=0. Then, there exists a T̄ >0 such that the incompressible MHD Equations
(1.28)–(1.30) have a unique solution (w,B)∈L∞([0,T̄ ];Hs(Ω)) satisfying divw=0 and
divB=0. Moreover, there exists a constant M>0 such that for all T ∈ (0,T̄ ), it holds
that

sup
t∈[0,T ]

{
∥(w,B)(t)∥s+∥(∂tw,∂tB)(t)∥s−2+∥∇π(t)∥s−2

}
≤M.

Finally, we list some basic facts on product and commutator estimates in Sobolev
space and give the nonlinear Gronwall-type inequality.

Lemma 2.1 (Moser-type calculus inequalities [25, 30]). Assume that g, h∈Hs(Ω)∩
L∞(Ω). Then for any α with 1≤|α|≤s, we have

∥Dα(gh)∥≤C(∥g∥L∞∥Dsh∥+∥h∥L∞∥Dsg∥),
∥[Dα,g]h∥≤C(∥∇g∥L∞∥Ds−1h∥+∥h∥L∞∥Dsg∥),

where [Dα,g]h=Dα(gh)−gDαh.

Lemma 2.2 (Nonlinear Gronwall-type inequality [39]). Suppose that σ(t) is a positive
C1 function of t∈ [0,T ) with T ≤∞, m>1 and b1(t), b2(t) are integrable on [0,T ). If

σ′(t)≤ b2(t)σm(t)+b1(t)σ(t),

then there exists a δ>0, depending only on m, C1b and C2b, such that

sup
t∈[0,T )

σ(t)≤eC1b ,

whenever σ(0)∈ (0,δ]. Here

C1b= sup
t∈[0,T )

∫ t

0

b1(s)ds and C2b=

∫ T

0

max{b2(t),0}dt.

3. Proof of Theorem 1.1
Proof. This section is devoted to proving Theorem 1.1. First of all, according to

Theorem 2.1, for any fixed ϵ∈ (0,1), we obtain that there exists a time interval [0,T ϵ),
such that the Equations (1.22)–(1.26) have a unique classical solution U ϵ∈Hs(Ω) and
U ϵ∈G1. Now we define

Tϵ=sup{T ϵ :U ϵ(t,x)∈C([0,T ϵ];Hs), U ϵ(t,x)∈G1, ∀(t,x)∈ [0,T ϵ]×Ω}.
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Namely, [0,Tϵ) is the maximal time interval of Hs existence. Note that Tϵ depends on
G and may tend to zero as ϵ→0. To show that liminf

ε→0
Tϵ>0, we shall make use of the

following convergence-stability lemma, which was first developed for hyperbolic systems
by Yong in [38] and is also available for hyperbolic–parabolic systems. We recall it here
for the reader’s convenience.

Lemma 3.1 ([19, 38]). Let s> 3
2 +2. Suppose that U ϵ0 ∈G0 and the following conver-

gence assumption (A) holds.
(A) For each ϵ, there exist T ∗>0 and Uϵ∈L∞([0,T ∗];Hs) for each ϵ, satisfying⋃

x,t,ϵ

{Uϵ(t,x)}⋐G,

such that, for t∈ [0,min{T ∗,Tϵ}),

sup
x,t

|U ϵ(t,x)−Uϵ(t,x)|=o(1), sup
t
∥U ϵ(t,x)−Uϵ(t,x)∥s=O(1) as ϵ→0.

Then there exists an ϵ̄>0 such that, ∀ϵ∈ (0, ϵ̄], it holds that

Tϵ>T
∗.

To apply Lemma 3.1, we construct the approximation Uϵ=(ηϵ,uϵ,ϕϵ,Hϵ,ψϵ) by

ηϵ=
ϵπ

2
, uϵ=w, ϕϵ=

ϵπ

2
, Hϵ=B and ψϵ=−ϵκ∇π

2
,

where (w,B,π) is the smooth solution to the incompressible MHD Equations (1.28)–
(1.30) obtained in Theorem 2.2. It is easy to verify that Uϵ satisfies the following
approximate system:

∂tηϵ+uϵ ·∇ηϵ+
1

ϵ
(1+ϵηϵ)divuϵ=

ϵ

2
(πt+w ·∇π), (3.1)

(1+ϵηϵ)(∂tuϵ+uϵ ·∇uϵ)+
1

ϵ
[(1+ϵηϵ)∇ϕϵ+(1+ϵϕϵ)∇ηϵ]−(curlHϵ)×Hϵ

=µ∆uϵ+
ϵ2π

2
(wt+w ·∇w+∇π), (3.2)

(1+ϵηϵ)(∂tϕϵ+uϵ ·∇ϕϵ)+
γ−1

ϵ
(1+ϵηϵ)(1+ϵϕϵ)divuε+divψϵ

=(
ϵ

2
+
ϵ3π

4
)(πt+w ·∇π)− ϵκ

2
∆π, (3.3)

∂tHϵ+uϵ ·∇Hϵ−Hϵ ·∇uϵ+Hϵdivuϵ=ν∆Hϵ, (3.4)

τ∂tψϵ+κ∇ϕϵ=−ϵτκ∇πt
2

+
ϵκ∇π
2

. (3.5)

In the next section, we will prove the following error estimates.

Lemma 3.2. Suppose that the assumptions in Theorem 1.1 hold. Then there exist
constants K=K(T ∗) and ϵ0= ϵ0(T

∗) such that for all ϵ∈ (0,ϵ0], it holds that

sup
t∈[0,min{T∗,Tϵ})

∥U ϵ(t,x)−Uϵ(t,x)∥s≤Kϵ. (3.6)

With this lemma in hand, we can verify the convergence assumption (A) by using
Sobolev’s inequality and accomplish the proof of Theorem 1.1.
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4. Uniform error estimates
In this section, we are going to establish the uniform error estimates. We rewrite

the approximate system (3.1)–(3.5) in the following vector form

A0(Uϵ)∂tUϵ+

3∑
i=1

Ai(Uϵ)∂iUϵ=S(D
2Uϵ)+R, (4.1)

with S(D2Uϵ)=(0,µ∆uϵ,0,ν∆Hϵ,0)
⊤ and

R=


ϵ
2 (∂tπ+w ·∇π)

ϵ2π
2 (∂tw+w ·∇w+∇π)

( ϵ2 +
ϵ3π
4 )(∂tπ+w ·∇π)− ϵκ

2 ∆π
0

− ϵτκ∇∂tπ
2 + ϵκ∇π

2

 .
Due to the regularity assumptions on (w,B,π) in Theorem 1.1, we have

max
t∈[0,T∗]

∥R(t)∥s≤Cϵ. (4.2)

Setting E=U ϵ−Uϵ=(η,u,ϕ,H,ψ) and utilizing (2.1) and (4.1), we get the error system

∂tE+

3∑
i=1

Ai(U
ϵ)∂iE=

3∑
i=1

(Ai(Uϵ)−Ai(U
ϵ))∂iUϵ+A

−1
0 (U ϵ)(Q(D2U ϵ)+F (U ϵ,DU ϵ))

−A−1
0 (Uϵ)(S(D

2Uϵ)+R), (4.3)

where Ai(U)=A−1
0 (U)Ai(U), i=1,2,3.

For any α with |α|≤s, we take Dα of (4.3) to obtain that

∂tD
αE+

3∑
i=1

Ai(U
ϵ)∂iD

αE=Cα+Pα+Qα+Rα, (4.4)

where

Cα=−
3∑
i=1

[Dα,Ai(U
ϵ)]∂iE

=


−[Dα,uϵ] ·∇η− [Dα, 1ϵ (1+ϵη

ϵ)]divu

−[Dα,uϵ] ·∇u− [Dα, 1ϵ
1+ϵϕϵ

1+ϵηϵ ]∇η− [Dα, 1
1+ϵηϵH

ϵ]×curlH

−[Dα,uϵ] ·∇ϕ− [Dα, γ−1
ϵ (1+ϵϕϵ)]divu− [Dα, 1

1+ϵηϵ ]divψ

−[Dα,uϵ] ·∇H+[Dα,Hϵ] ·∇u− [Dα,Hϵ]divu
0

 :=


Cα1
Cα2
Cα3
Cα4
0

 , (4.5)

Pα=
3∑
i=1

Dα{(Ai(Uϵ)−Ai(U
ϵ))∂iUϵ}

=Dα


−u ·∇ηϵ−ηdivuϵ

−u ·∇uϵ− 1
ϵ (

1+ϵϕϵ

1+ϵηϵ −
1+ϵϕϵ

1+ϵηϵ
)∇ηϵ−( Hϵ

1+ϵηϵ −
Hϵ

1+ϵηϵ
)×curlHϵ

−u ·∇ϕϵ−(γ−1)ϕdivuϵ−( 1
1+ϵηϵ −

1
1+ϵηϵ

)divψϵ

−u ·∇Hϵ+H ·∇uϵ−Hdivuϵ

0

 :=


Pα1
Pα2
Pα3
Pα4
0

 ,
(4.6)
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Qα=Dα{A−1
0 (U ϵ)(Q(D2U ϵ)+F (U ϵ,DU ϵ))−A−1

0 (Uϵ)S(D
2Uϵ)}

=Dα



0
µ∆uϵ+(µ+λ)∇divuϵ

1+ϵηϵ − µ∆uϵ

1+ϵηϵ
ϵ(ν|curlHϵ|2+Ψϵ)

1+ϵηϵ

ν∆Hϵ−ν∆Hϵ

−ψϵ

τ


,

and

Rα=Dα{A−1
0 (Uϵ)R}

=Dα



− ϵ
2 (πt+w ·∇π)

− ϵ2π
2(1+ϵηϵ)

(wt+w ·∇w+∇π)
− 2ϵ+ϵ3π

4(1+ϵηϵ)
(πt+w ·∇π)+ ϵκ

2(1+ϵηϵ)
∆π

0
ϵκ∇πt

2 − ϵκ∇π
2τ


.

We define the symmetrizer of the error system (4.3) by

Ã0(U
ϵ)= Â0(U

ϵ)A0(U
ϵ)

=diag

(
1+ϵϕϵ

1+ϵηϵ
,(1+ϵηϵ)I3,

1+ϵηϵ

(γ−1)(1+ϵϕϵ)
,I3,

τ

κ(γ−1)(1+ϵϕϵ)
I3
)

and the canonical energy by

∥E∥2e :=
∫
⟨Ã0(U

ϵ)E,E⟩dx.

Multiplying (4.4) by Ã0(U
ϵ), taking the inner product between the resulting equations

and DαE and using integration by parts, we have

d

dt
∥DαE∥2e=

∫
⟨ΓDαE,DαE⟩dx+2

∫
⟨DαE,Ã0(U

ϵ)(Cα+Pα+Qα+Rα)⟩dx, (4.7)

where

Γ=(∂t,∇) ·
(
Ã0(U

ϵ),Ã0(U
ϵ)A1(U

ϵ),Ã0(U
ϵ)A2(U

ϵ),Ã0(U
ϵ)A3(U

ϵ)
)
.

We note that it is only needed to consider t∈ [0,min{T ∗,Tϵ}), in which U ϵ and Uϵ are
regular enough and take values in a bounded subset of G. Thus, we have

C−1∥DαE∥2≤∥DαE∥2e≤C∥DαE∥2, (4.8)

for some constant C>0.
Now, we estimate various terms on the right-hand side of (4.7). Since Ã0(U

ϵ)
depends only on 1+ϵηϵ and 1+ϵϕϵ, we obtain from (1.22) and (1.24) that

|∂tÃ0(U
ϵ)|≤

∣∣∣∣( 1+ϵϕϵ

(1+ϵηϵ)2
+

1

(γ−1)(1+ϵηϵ)
+1

)
ϵ∂tη

ϵ

∣∣∣∣
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+

∣∣∣∣( 1+ϵηϵ

(γ−1)(1+ϵϕϵ)2
+

τ

κ(γ−1)(1+ϵϕϵ)2
+

1

1+ϵη

)
ϵ∂tϕ

ϵ

∣∣∣∣
≤C

(
|ϵ∂tηϵ|+ |ϵ∂tϕϵ|

)
≤C

(
|ϵuϵ ·∇ηϵ|+ |(1+ϵηϵ)divuϵ|+ |ϵuϵ ·∇ϕϵ|+ |(γ−1)(1+ϵϕϵ)divuϵ|

+ |ϵdivψϵ|+ |ϵ2Ψϵ|+ |ϵνcurlHϵ|2
)

≤C
(
1+∥E∥2s

)
,

where we have used the Cauchy and Sobolev inequalities. Notice that Ã0(U
ϵ)Ai(U

ϵ) in-

cludes the singular terms 1+ϵηϵ

ϵ and 1+ϵϕϵ

ϵ . Fortunately, we can factor out ϵ in ∂i(
1+ϵηϵ

ϵ )

and ∂i(
1+ϵϕϵ

ϵ ) to balance ϵ appearing in the denominator. A direct calculation yields

|∂i(Ã0(U
ϵ)Ai(U

ϵ))|≤
∣∣∣∣∂i(1+ϵϕϵ

1+ϵηϵ
uϵi

)∣∣∣∣+ |∂i((1+ϵηϵ)uϵi)|

+

∣∣∣∣∂i(1+ϵηϵ

ϵ

)∣∣∣∣+ ∣∣∣∣∂i(1+ϵϕϵ

ϵ

)∣∣∣∣
+

∣∣∣∣∂i( (1+ϵηϵ)uϵi
(γ−1)(1+ϵϕϵ)

)∣∣∣∣+ ∣∣∣∣∂i( 1

(γ−1)(1+ϵϕϵ)

)∣∣∣∣+ |∂iHϵ|

≤C
(
1+∥E∥2s

)
.

Based on the above analysis, we get the following estimates∫
⟨ΓDαE,DαE⟩dx≤C|Γ|∥E∥2s

≤C

(∣∣∂tÃ0(U
ϵ)
∣∣+ 3∑

i=1

∣∣∂i(Ã0(U
ϵ)Ai(U

ϵ)
)∣∣)∥E∥2s

≤C
(
1+∥E∥2s

)
∥E∥2s. (4.9)

For the second term on the right-hand side of (4.7), we have∫
⟨DαE,Ã0(U

ϵ)(Cα+Pα+Qα+Rα)⟩dx

≤C
(
∥DαE∥2+∥Cα∥2+∥Pα∥2+∥Rα∥2

)
+

∫
⟨DαE,Ã0(U

ϵ)Qα⟩dx. (4.10)

First, we shall get the estimates of the commutator Cα according to the specific form of
the expression in (4.5). We get from using Moser-type calculus inequalities that

∥Cα1 ∥≤∥[Dα,uϵ] ·∇η∥+
∥∥∥∥[Dα,

1+ϵηϵ

ϵ

]
divu

∥∥∥∥
≤∥∇uϵ∥L∞∥Ds−1∇η∥+∥∇η∥L∞∥Dsuϵ∥

+

∥∥∥∥∇(1+ϵηϵ

ϵ

)∥∥∥∥
L∞

∥Ds−1u∥+∥∇u∥L∞

∥∥∥∥Ds

(
1+ϵηϵ

ϵ

)∥∥∥∥
≤∥uϵ∥s∥η∥s+∥ηϵ∥ss∥u∥s
≤C

(
1+∥E∥ss

)
∥E∥s, (4.11)
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and

∥Cα2 ∥≤∥[Dα,uϵ] ·∇u∥+
∥∥∥∥[Dα,

1

ϵ

1+ϵϕϵ

1+ϵηϵ

]
∇η
∥∥∥∥+∥∥∥∥[Dα,

1

1+ϵηϵ
Hϵ

]
×curlH

∥∥∥∥
≤∥∇uϵ∥L∞∥Ds−1∇u∥+∥∇u∥L∞∥Dsuϵ∥

+

∥∥∥∥∇(1

ϵ

1+ϵϕϵ

1+ϵηϵ

)∥∥∥∥
L∞

∥Ds−1∇η∥+∥∇η∥L∞

∥∥∥∥Ds

(
1

ϵ

1+ϵϕϵ

1+ϵηϵ

)∥∥∥∥
+

∥∥∥∥∇( Hϵ

1+ϵηϵ

)∥∥∥∥
L∞

∥Ds−1∇H∥+∥∇H∥L∞

∥∥∥∥Ds

(
Hϵ

1+ϵηϵ

)∥∥∥∥
≤C

(
∥uϵ∥s∥u∥s+∥(ηϵ,ϕϵ)∥ss∥η∥s+∥(ηϵ,Hϵ)∥ss∥H∥s

)
≤C

(
1+∥E∥ss

)
∥E∥s. (4.12)

Using a similar fashion, one gets the estimates of Cα3 and Cα4 as

∥Cα3 ∥+∥Cα4 ∥≤C
(
1+∥E∥ss

)
∥E∥s (4.13)

Combining (4.11), (4.12) and (4.13), we obtain that

∥Cα∥≤∥Cα1 ∥+∥Cα2 ∥+∥Cα3 ∥+∥Cα4 ∥≤C
(
1+∥E∥ss

)
∥E∥s. (4.14)

Next, we deal with the terms Pαi , i=1,2,3,4, in (4.6). Notice that they have similar
structures. The term Pα2 can be bounded as

∥Pα2 ∥≤∥Dα(u∇uϵ)∥+
∥∥∥∥Dα

(
1

ϵ

(
1+ϵϕϵ

1+ϵηϵ
− 1+ϵϕϵ

1+ϵηϵ

)
∇ηϵ

)∥∥∥∥
+

∥∥∥∥Dα

((
Hϵ

1+ϵηϵ
− Hϵ

1+ϵηϵ

)
×curlHϵ

)∥∥∥∥
≤∥u∥L∞∥Ds∇uϵ∥+∥∇uϵ∥L∞∥Dsu∥

+

∥∥∥∥1ϵ
(
1+ϵϕϵ

1+ϵηϵ
− 1+ϵϕϵ

1+ϵηϵ

)∥∥∥∥
L∞

∥Ds∇ηϵ∥+∥∇ηϵ∥L∞

∥∥∥∥1ϵDs

(
1+ϵϕϵ

1+ϵηϵ
− 1+ϵϕϵ

1+ϵηϵ

)∥∥∥∥
+

∥∥∥∥( Hϵ

1+ϵηϵ
− Hϵ

1+ϵηϵ

)∥∥∥∥
L∞

∥Ds∇Hϵ∥+∥∇Hϵ∥L∞

∥∥∥∥Ds

(
Hϵ

1+ϵηϵ
− Hϵ

1+ϵηϵ

)∥∥∥∥
≤C

(
∥uϵ∥s+1∥u∥s+∥ηϵ∥s+1∥(η,ϕ)∥s+∥ηϵ∥s∥(η,ϕ)∥ss
+∥Hϵ∥s+1∥(η,H)∥s+∥Hϵ∥s∥(η,H)∥ss

)
≤C

(
1+∥E∥ss

)
∥E∥s,

where we have used the uniform boundedness of ∥Uϵ∥s+1. The estimates of Pα1 , Pα3 and
Pα4 can be given in a similar fashion, so we obtain

∥Pα1 ∥+∥Pα3 ∥+∥Pα4 ∥≤C
(
1+∥E∥ss

)
∥E∥s.

Thus, we arrive at

∥Pα∥≤C
(
1+∥E∥ss

)
∥E∥s. (4.15)

For the term Rα, using the fact (4.2), it is easy to see that

∥Rα∥≤Cϵ. (4.16)
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Finally, let’s concentrate on the estimate of
∫
⟨DαE,Ã0(U

ϵ)Qα⟩dx, which is more com-
plex and delicate because of the existence of the highest order derivative terms. We can
rewrite it as∫

⟨DαE,Ã0(U
ϵ)Qα⟩dx

=

∫
(1+ϵηϵ)Dαu ·Dα

(
µ∆uϵ+(µ+λ)∇divuϵ

1+ϵηϵ
− µ∆uϵ

1+ϵηϵ

)
dx

+

∫
1+ϵηϵ

(γ−1)(1+ϵϕϵ)
DαϕDα

(
ϵ(ν|curlHϵ|2+Ψϵ)

1+ϵηϵ

)
dx

+

∫
DαH ·Dα(ν∆Hϵ−ν∆Hϵ)dx−

∫
1

κ(γ−1)(1+ϵϕϵ)
Dαψ ·Dαψϵdx

=

∫
(1+ϵηϵ)Dαu ·Dα

(
µ∆u+(µ+λ)∇divu

1+ϵηϵ

)
dx

+

∫
(1+ϵηϵ)Dαu ·Dα

(
µ∆uϵ
1+ϵηϵ

− µ∆uϵ
1+ϵηϵ

)
dx

+

∫
1+ϵηϵ

(γ−1)(1+ϵϕϵ)
DαϕDα

(
ϵ(ν|curlHϵ|2+Ψϵ)

1+ϵηϵ

)
dx

+ν

∫
DαH ·Dα∆Hdx−

∫
1

κ(γ−1)(1+ϵϕϵ)
Dαψ ·Dαψϵdx

:=I1+I2+I3+I4+I5.

Using integration by parts, Moser-type calculus inequalities and the regularity of Uϵ,
the estimates of Ii, i=1,2,3,4,5, can be obtained as follows.

I1=
∫
(1+ϵηϵ)Dαu ·Dα

(
µ∆u+(µ+λ)∇divu

1+ϵηϵ

)
dx

= −
∫
µ|Dα∇u|2+(µ+λ)|Dαdivu|2dx

+

∫
(1+ϵηϵ)Dαu · [Dα,(1+ϵηϵ)−1](µ∆u+(µ+λ)∇divu)dx

≤−
∫
µ|Dα∇u|2+(µ+λ)|Dαdivu|2dx

+C∥Dαu∥∥∇(1+ϵηϵ)−1∥L∞∥Ds−1(µ∆u+(µ+λ)∇divu)∥
+C∥Dαu∥∥µ∆u+(µ+λ)∇divu∥L∞∥Ds(1+ϵηϵ)−1∥

≤ −
∫
µ|Dα∇u|2+(µ+λ)|Dαdivu|2dx+Cϵ∥u∥s∥ηϵ∥s∥Ds+1u∥+C∥u∥2s∥ηϵ∥ss

≤ −
∫
µ|Dα∇u|2+(µ+λ)|Dαdivu|2dx+ϵ2∥u∥2s+1+C(∥E∥4s+∥E∥s+2

s )+O(ϵ2),

I2=
∫
(1+ϵηϵ)Dαu ·Dα

(
µ∆uϵ
1+ϵηϵ

− µ∆uϵ
1+ϵηϵ

)
dx

≤C∥Dαu∥
∥∥∥∥Dα

(
ϵη∆uϵ

(1+ϵηϵ)(1+ϵηϵ)

)∥∥∥∥
≤C∥E∥s+1

s ,

I3=
∫

1+ϵηϵ

(γ−1)(1+ϵϕϵ)
DαϕDα

(
ϵ(ν|curlHϵ|2+Ψϵ)

1+ϵηϵ

)
dx
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=

∫
ϵ

(γ−1)(1+ϵϕϵ)
DαϕDα

(
ν|curlHϵ|2+Ψϵ

)
dx

+

∫
1+ϵηϵ

(γ−1)(1+ϵϕϵ)
Dαϕ[Dα,(1+ϵηϵ)−1]

(
ν|curlHϵ|2+Ψϵ

)
dx

≤Cϵ2(∥Ds+1u∥2+∥Ds+1H∥2)+C∥Dαϕ∥2

+C∥Dαϕ∥
∥∥∥∥∇( 1

1+ϵηϵ

)∥∥∥∥
L∞

∥∥∥Ds−1
(
ν|curlHϵ|2+ µ

2
|∇uϵ+(∇uϵ)⊤|2+λ|divuϵ|2

)∥∥∥
+C∥Dαϕ∥

∥∥∥(ν|curlHϵ|2+ µ

2
|∇uϵ+(∇uϵ)⊤|2+λ|divuϵ|2

)∥∥∥
L∞

∥∥∥∥Dα

(
1

1+ϵηϵ

)∥∥∥∥
≤Cϵ2(∥u∥2s+1+∥H∥2s+1)+C(∥E∥2s+∥E∥s+2

s )+O(ϵ2),

I4=ν
∫
DαH ·Dα∆Hdx=−ν

∫
|Dα∇H|2dx,

I5= −
∫

1

κ(γ−1)(1+ϵϕϵ)
Dαψ ·Dαψϵdx≤C∥E∥2s+O(ϵ2).

Collecting the above estimates, we have∫
⟨DαF,Ã0(U

ϵ)Qα⟩dx≤ −
∫
µ|Dα∇u|2+(µ+λ)|Dαdivu|2+ν|Dα∇H|2dx

+Cϵ2(∥u∥2s+1+∥H∥2s+1)+C(∥E∥2s+∥E∥s+2
s )+O(ϵ2).

(4.17)
Putting (4.14)–(4.17) into (4.10) gives∫

⟨DαE,Ã0(U
ϵ)(Cα+Pα+Qα+Rα)⟩dx

≤−
∫
µ|Dα∇u|2+(µ+λ)|Dαdivu|2+ν|Dα∇H|2dx

+Cϵ2(∥u∥2s+1+∥H∥2s+1)+C(∥E∥2s+∥E∥2s+2
s )+O(ϵ2). (4.18)

By substituting (4.9) and (4.18) into (4.7), taking summation for all α with |α|≤s,
and considering ϵ small enough, we obtain that

d

dt

∑
|α|≤s

∥DαE∥2e+ξ1∥u∥2s+1+ξ2∥H∥2s+1≤C(∥E∥2s+∥E∥2s+2
s )+O(ϵ2), (4.19)

where ξ1 and ξ2 are positive constants. Thanks to (4.8), we integrate the inequality
(4.19) over (0,t) with t<min{T ∗,Tϵ} to obtain

∥E(t)∥2s≤∥E(0)∥2s+C
∫ t

0

(∥E(τ)∥2s+∥E(τ)∥2s+2
s )+O(ϵ2)dt.

Furthermore, with the help of Gronwall’s lemma and the initial data condition (1.31),
we obtain that

∥E(t)∥2s≤Cϵ2 exp
{
C

∫ t

0

(1+∥E(τ)∥2ss )dt

}
. (4.20)

Denote the right-hand side of (4.20) by Φ(t) and it is easy to see that Φ(t) satisfies

∥E(t)∥2s≤Φ(t),
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and

Φ′(t)=C(1+∥E(t)∥2ss )Φ(t)≤CΦ(t)+CΦs+1(t). (4.21)

Applying Lemma 2.2 to (4.21), we get

Φ(t)≤eCT
∗

for all t∈ [0,min{T ∗,Tϵ}), provided that Φ(0) is suitably small, for example, Φ(0)=
Cϵ2< exp{−CT ∗}. As a result, we conclude that ∥E(t)∥s is uniformly bounded in
[0,min{T ∗,Tϵ}) and the estimate (3.6) holds from (4.20). Thus, the proof of Lemma 3.2
is completed.
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