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STABILITY OF LARGE AMPLITUDE VISCOUS SHOCK WAVE FOR
1-D ISENTROPIC NAVIER-STOKES SYSTEM IN THE HALF SPACE∗

LIN CHANG†

Abstract. In this paper, the asymptotic-time behavior of solutions to an initial boundary value
problem in the half space for 1-D isentropic Navier-Stokes system is investigated. It is shown that
the viscous shock wave is stable for an impermeable wall problem where the velocity is zero on the
boundary provided that the shock wave is initially far away from the boundary. Moreover, the strength
of the shock wave could be arbitrarily large. This work essentially improves the result of [A. Matsumura
and M. Mei, Arch. Ration. Mech. Anal., 146(1):1–22, 1999], where the strength of the shock wave is
sufficiently small.
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1. Introduction
We consider a 1-D isentropic Navier-Stokes system for general viscous gas, which

reads in the Lagrangian coordinate as,{
vt−ux=0,
ut+px=(µ(v)ux

v )x,
(1.1)

where t>0,x∈R+, and v(x,t)= 1
ρ(x,t) is the specific volume, u(x,t) the fluid velocity,

p=av−γ the pressure with constant a>0, γ>1 the adiabatic constant, and µ(v)=
µ0v

−α the viscosity coefficient with α≥0. When the viscosity µ(v)≡0, the system
(1.1) becomes the famous Euler system{

vt−ux=0,
ut+px=0,

(1.2)

that has rich wave phenomena such as shock and rarefaction waves. When µ(v)>0, the
shock wave is mollified as the so-called viscous shock wave. Without loss of generality,
we assume µ0=1 in what follows.

Since the system (1.1) is regular than the Euler system (1.2), it is very interesting
and important to study the stability of the viscous version of the shock wave, i.e., the
viscous shock wave, for the viscous conservation laws such as the NS system (1.1) with
the initial data:

(v,u)(x,0)=(v0,u0)(x)−→ (v±,u±), as x→∞. (1.3)

The stability of viscous shock wave for the Cauchy problem (1.1), (1.3) has been
extensively studied in a large amount of literature since the pioneering works of [2, 13],
see the other interesting works [1,4–9,11,14,17]. It is noted that most of the above works
require the strength of the shock wave to be suitably small, that is, the shock must be
weak. The stability of a large amplitude shock (strong shock) is more interesting and
challenging in both mathematics and physics, see the works [3, 6, 10,13,16,18,19].
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It is shown by Matsumura-Nishihara [13] that the viscous shock wave is stable if
|v+−v−|<C(γ−1)−1, that is, when γ→1, the strength of the shock wave could be
large. This condition is relaxed in [6] to the condition that |v+−v−|<C(γ−1)−2 later.
Recently, the restriction on the strength of the shock was removed in [16] by an elegant
weighted energy method as α> γ−1

2 . Vasseur-Yao [18] removed the condition α> γ−1
2

by introducing a beautiful variable transformation. Moreover, He-Huang [3] extended
the result of [18] to general pressure p(v) and general viscosity µ(v), where µ(v) could
be any positive smooth function.

On the other hand, it is also interesting to investigate the stability of viscous shock
wave under the effect of a boundary. In 1999, Matsumura-Mei [12] considered an im-
permeable wall problem of (1.1) in the half space x≥0, i.e.,{

(v,u)(x,0)=(v0,u0)(x)−→ (v+,u+), x→+∞,

u(0,t)=0, t∈R+,
(1.4)

where v+>0,u+<0. The impermeable wall means that there is no flow across the
boundary so that the velocity at the boundary x=0 has to be zero. It was proved in [12]
that the solution of (1.1), (1.4), with α=0, time-asymptotically tends to an outgoing
shock wave (2-shock) connecting the left state (v−,0) and the right one (v+,u+) if
|v+−v−|<C(γ−1)−2, and the outgoing shock is initially far away from the boundary
so that the interaction between the shock and the boundary is weak, where v− is
determined by the RH condition, i.e.,{

−s(v+−v−)−(u+−u−)=0,

−s(u+−u−)+(p(v+)−p(v−))=0,
(1.5)

with u−=0. Matsumura-Nishihara [15] removed the condition that the shock is initially
far away from the boundary by extending the half space to the whole space, with the
price that the shock wave has to be weak even for γ=1 case.

In this paper, we aim to prove that the large-amplitude shock wave is still stable for
the impermeable wall problem (1.1)-(1.4). Roughly speaking, there exists a 2-viscous
shock wave (outgoing shock) (V2,U2) connecting (v−,0) and (v+,u+) with v− determined
by the RH condition (1.5), and (V2,U2) is asymptotically stable if it is initially far away
from the boundary. The precise statement of the main result is given in Theorem 2.1.

We outline the strategy as follows. Motivated by [18] and [3], we introduce a new
variable h=u−v(−α+1)vx and formulate a new equation (4.2)2 in which the viscous
term is moved to the mass equation (4.2)1 so that the two nonlinear terms px and
( vx
vα+1 )x are decoupled and the interaction between nonlinear terms is weakened. Since

the strength of outgoing shock is arbitrarily large, the interaction between the 2-shock
and the boundary x=0 is strong. We have to assume that the outgoing shock is ini-
tially far away from the boundary so that the interaction is weak. Since the boundary
terms with first-order derivatives are controlled, we can obtain the low order estimates
through careful analysis. But the idea using the new system (4.2) does not work in the
higher order estimation since it is very difficult to control the second-order derivatives
of boundary terms for the new system. Note that the second derivatives of u on the
boundary can be controlled, we then turn to original system (1.1) to obtain the higher
order energy estimates, and finally complete the a priori estimates.

The rest of the paper will be arranged as follows. In Section 2, the outgoing shock
wave is formulated and the main result is stated. In Section 3, the problem is refor-
mulated by the anti-derivatives of the perturbations around the viscous shock wave.
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In Section 4, the a priori estimates are established. In Section 5, the main theorem is
proved.

Notation. The functional ∥·∥Lp(Ω) is defined by ∥f∥Lp(Ω)=(
∫
Ω
|f |p(ξ)dξ)

1
p . The

symbol Ω is often omitted, when Ω=(0,∞). As p=2, for simplicity we denote,

∥f∥=
(∫ ∞

0

f2(ξ)dξ

) 1
2

.

In addition, Hm denotes the m-th order Sobolev space of functions defined by

∥f∥m=

(
m∑
k=0

∥∂kξ f∥2
) 1

2

.

2. Preliminaries and main theorem

2.1. Viscous shock profile and location of the shift. As pointed out by [12],
the solution of the impermeable wall problem (1.1)-(1.4) is expected to tend toward the
outgoing viscous shock (V,U)(ξ) satisfying

−sV ′−U ′=0,

−sU ′+p(V )′=
(

U ′

V α+1

)′
,

(V,U)(−∞)=(v−,0), (V,U)(+∞)=(v+,u+),

(2.1)

where ′=d/dξ, ξ=x−st, s is the shock speed determined by the RH condition (1.5)
and v±>0,u+<0 are given constants. From (2.1)1 and (2.1)2, one gets

s2V ′+p(V )′=−
(
sV ′

V α+1

)′

. (2.2)

Integrating (2.2) over (±∞,ξ) gives

sV ′

V α+1
=−s2V −p(V )−b=:h(V ),V (±∞)=v±, (2.3)

U =−s(V −v−)=−s(V −v+)+u+, (2.4)

where b=−s2v±−p(v±).

Proposition 2.1 ([12]). There exists a unique viscous shock profile (V,U)(ξ) up to a
shift satisfying

0<v−<V (ξ)<v+, h(V )>0, U ′<0, (2.5)

|V (ξ)−v±|=O(1)|v+−v−|e−C±|ξ|, (2.6)

as ξ→±∞, where C±=
vα+1
±
s |p′(v±)+s2|, s= −u+

v+−v− .

We expect
∫∞
0

[v(x,t)−V (x−st+β0−β)]dx→0 as t→∞. As in [12], the shift of
the viscous shock profile is given by

β0=
1

v+−v−

{∫ ∞

0

[v0(x)−V (x−β)]dx+
∫ ∞

0

U(−st−β)dt
}
. (2.7)
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2.2. Main theorem. We assume that for β>0, the initial data satisfies

v0(x)−V (x−β)∈H1∩L1 u0(x)−U(x−β)∈H1∩L1, (2.8)

and

u0(0)=0 (2.9)

as the compatibility condition. Set

(A0,B0)(x) :=−
∫ ∞

x

(v0(y)−V (y−β),u0(y)−U(y−β))dy.

We further assume that

(A0,B0)∈L2. (2.10)

The shift β0 has the following properties.

Lemma 2.1 ([12]). Under the assumptions (2.8)-(2.10), the shift β0 defined by (2.7)
satisfies

β0→0 as ∥A0,B0∥2→0 and β→+∞.

The main theorem is stated as follows.

Theorem 2.1. For any u+<0 and v+>0, suppose that (2.8)-(2.10) hold. Then there
exists a positive constant δ0 such that if

∥(A0,B0)∥2+β−1≤ δ0,

then the initial-boundary value problem (1.1), (1.4) has a unique global solution
(v,u)(x,t), satisfying

v(x,t)−V (x−st+β0−β)∈C0([0,+∞);H1)∩L2([0,+∞);H1),

u(x,t)−U(x−st+β0−β)∈C0([0,+∞);H1)∩L2([0,+∞);H2), (2.11)

where s>0 is defined by (1.5), and

sup
x∈R+

|(v,u)(x,t)−(V,U)(x−st+β0−β)|→0, as t→+∞. (2.12)

Remark 2.1. The condition v+−v−<C(γ−1)−2 in [12] is removed.

3. Reformulation of the original problem
Set

ϕ(x,t)=−
∫ ∞

x

v(y,t)−V (y−st+β0−β)dy,

ψ(x,t)=−
∫ ∞

x

u(y,t)−U(y−st+β0−β)dy, (3.1)

which means that we look for the solution (v,u)(x,t) in the form

v(x,t)=ϕx(x,t)+V (x−st+β0−β),
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u(x,t)=ψx(x,t)+U(x−st+β0−β). (3.2)

The initial perturbations ϕ and ψ satisfy

Lemma 3.1 ([12]). Under the assumptions (2.8)-(2.10), the initial perturbation
(ϕ,ψ)(x,0) :=(ϕ0,ψ0)(x)∈H2 and satisfies

∥(ϕ0,ψ0)∥2→0 as ∥(A0,B0)∥2→0 and β→+∞.

Motivated by [12], substituting (3.2) into (1.1) and integrating the resulting system
with respect to x, we have {

ϕt−ψx=0,

ψt−f(V )ϕx− ψxx

V α+1 =F,
(3.3)

with the initial conditions and Neumann boundary condition:

(ϕ0,ψ0)(x)∈H2, x≥0,

ψx|x=0= ϕt|x=0=−U(st+β0−β), t≥0, (3.4)

where

f(V )=−p′(V )+(α+1)
sVx
V α+2

=−p′(V )+(α+1)
h(V )

V
>0, (3.5)

F =
ux
vα+1

− Ux
V α+1

− ψxx
V α+1

+(α+1)
Uxϕx
V α+2

− [p(v)−p(V )−p′(V )ϕx]

=O(1)(|ϕx|2+ |ϕxψxx|). (3.6)

We will seek the solution in the functional space Xδ(0,T ) for any 0≤T <+∞,

Xδ(0,T ) :=
{
(ϕ,ψ)∈C([0,T ];H2)|ϕx∈L2(0,T ;H1),ψx∈L2(0,T ;H2)

sup
0≤t≤T

∥(ϕ,ψ)(t)∥2≤ δ},

where δ≪1 is small.

Proposition 3.1 (A priori estimate). Suppose that (ϕ,ψ)∈Xδ(0,T ) is the solution
of (3.3), (3.4) for some time T >0. There exists a positive constant δ0 independent of
T , such that if

sup
0≤t≤T

∥(ϕ,ψ)(t)∥2≤ δ≤ δ0,

for t∈ [0,T ], then

∥(ϕ,ψ)(t)∥22+
∫ t

0

(∥ϕx(t)∥21+∥ψx(t)∥22)dt≤C0(∥(ϕ0,ψ0)∥22+e−C−β),

where C0>1 and C− are positive constants independent of T .

As long as Proposition 3.1 holds, the local solution (ϕ,ψ) can be extended to T =
+∞. We have the following lemma.
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Lemma 3.2. If (ϕ0,ψ0)∈H2, there exists a positive constant δ1=
δ0√
C0

, such that if

∥(ϕ0,ψ0)∥22+e−C−β≤ δ21 ,

then the initial-boundary problem (3.3), (3.4) has a unique global solution (ϕ,ψ)∈
Xδ0(0,∞) satisfying

sup
t≥0

∥(ϕ,ψ)(t)∥22+
∫ ∞

0

(∥ϕx(t)∥21+∥ψx(t)∥22)dt≤C0(∥(ϕ0,ψ0)∥22+e−C−β).

4. A priori estimate
Throughout this section, we assume that the problem (3.3),(3.4) has a solution

(ϕ,ψ)∈Xδ(0,T ), for some T >0,

sup
0≤t≤T

∥(ϕ,ψ)(t)∥2≤ δ. (4.1)

It follows from the Sobolev inequality that 1
2v+≤v≤ 3

2v−, and

sup
0≤t≤T

{∥(ϕ,ψ)(t)∥L∞ +∥(ϕx,ψx)(t)∥L∞}≤ δ.

4.1. Low order estimate. In order to remove the condition v+−v−<C(γ−
1)−2 in [12], we introduce a new perturbation (ϕ,Ψ) instead of (ϕ,ψ), where Ψ will be
defined below.

Inspired by [18] and [3], we introduce a new variable h which depends on v and
u, i.e., h=u−v−(α+1)vx. Through a direct calculation, v and h satisfy the following
system {

vt−hx=( vx
vα+1 )x,

ht+px=0.
(4.2)

Then the initial-boundary conditions given in (1.4) are changed into{
(v,h)(x,0)=(v0,u0−v0−(α+1)v0x)(x)−→ (v+,u+), x→+∞,

h(0,t)=u(0,t)−v(0,t)−(α+1)
vx(0,t)=−v(0,t)−(α+1)

vx(0,t),t∈R+.

Let H=U−V −(α+1)Vx. Then (2.1) is equivalent to
Vt−Hx=

(
Vx

V α+1

)
x
,

Ht+p(V )x=0,

(V,H)(−∞)=(v−,0), (V,H)(+∞)=(v+,u+).

(4.3)

We define

−
∫ ∞

x

(h−H)dx=Ψ. (4.4)

Substituting (4.3) from (4.2) and integrating the resulting system with respect to x, we
have from (4.4), (3.1)1 that{

ϕt−Ψx− ϕxx

V α+1 +(α+1) Vxϕx

V α+2 =G,

Ψt+p
′(V )ϕx=−p(v|V ),

(4.5)
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where

G=
vx
vα+1

− Vx
V α+1

− ϕxx
V α+1

+(α+1)
Vxϕx
V α+2

,

p(v|V )=(p(v)−p(V ))−p′(V )ϕx,

with the initial data

ϕ(x,0)∈H2, Ψ(x,0)∈H1,

and boundary data

Φ(0,t)=−
∫ ∞

x

[u(y,0)−U(y+β0−β)]dy+
(
V −(α+1)−v−(α+1)

)
(x,0).

Lemma 4.1 ([3]). Under the assumption of (4.1), it holds that

p(v|V )≤Cϕ2x,
|p(v|V )x|≤C(|ϕxxϕx|+ |Vx|ϕ2x),
|G|≤C(|ϕxxϕx|+ |Vx|ϕ2x).

In addition, some boundary estimates are given as follows.

Lemma 4.2. Under the same assumptions of Proposition 3.1, for 0≤ t≤T , it holds
that: ∣∣∣∣∫ t

0

(ϕΨ)|x=0dt

∣∣∣∣≤Ce−C−β ,

∣∣∣∣∫ t

0

(ϕϕx)|x=0dt

∣∣∣∣≤Ce−C−β , (4.6)∣∣∣∣∫ t

0

(ϕxϕt)|x=0dt

∣∣∣∣≤Ce−C−β ,

∣∣∣∣∫ t

0

(ψxψt)|x=0dt

∣∣∣∣≤Ce−C−β , (4.7)∣∣∣∣∫ t

0

(ψxψxx)|x=0dt

∣∣∣∣≤Ce−C−β ,

∣∣∣∣∫ t

0

(ψxtψxx) |x=0dt

∣∣∣∣≤Ce−C−β , (4.8)

and

∥Ψ0∥21≤∥ψ0∥21+C∥ϕ0∥22, ∥ψ∥2≤∥Ψ∥2+C∥ϕ∥21,
∥ψx∥2≤∥Ψx∥2+C∥ϕx∥21, (4.9)

where C−=
vα+1
−
s |p′(v−)+s2|>0.

Proof. Note that

Ψ(x,t) = −
∫ ∞

x

[u(y,t)−U(y−st+β0−β)]dy

+(g(v(x,t))−g(V (x−st+β0−β)))
:=ψ(x,t)+p(x,t)≤ψ(x,t)+C|ϕx(x,t)|,

ψ(x,t) = Ψ(x,t)−p(x,t)≤ψ(x,t)+C|ϕx(x,t)|, (4.10)

where g(v)= 1
αv

−α, if α ̸=0; g(v)=−lnv, if α ̸=0, one has (4.9) from (4.10) immediately.
Motivated by [12], we have

|ψ(0,t)|≤C, |ϕx(0,t)|≤C, |ϕ(0,t)|≤Ce−C−βe−C−st. (4.11)
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Combining (4.10) and (4.11), we have (4.6). The estimates (4.7) and (4.8) can be found
in [12]. Thus the proof is completed.

Lemma 4.3. Under the same assumptions of Proposition 3.1, it holds that

∥(ϕ,Ψ)∥2(t)+
∫ t

0

∫ ∞

0

(
1

p′(V )

)
t

Ψ2dxdt+

∫ t

0

∥ϕx∥2dt

≤ C∥(ϕ0,Ψ0)∥2+Cδ
∫ t

0

∥ϕxx∥2dt+Ce−C−β .

Proof. Multiply (4.5)1 and (4.5)2 by ϕ and Ψ
−p′(V ) respectively, sum them up,

and integrate the result with respect to t and x over [0,t]× [0,∞). We have

1

2

∫ ∞

0

(
ϕ2− Ψ2

p′(V )

)
dx+

∫ t

0

∫ ∞

0

{
1

2

(
1

p′(V )

)
t

Ψ2+
ϕ2x
V α+1

}
dxdt

=

∫ t

0

∫ ∞

0

Gϕdxdt+

∫ t

0

∫ ∞

0

p(v|V )Ψ

p′(V )
dxdt

−
∫ t

0

(ϕΨ+(V −(α+1))ϕϕx)|x=0dt+
1

2

∫ ∞

0

(
ϕ2− Ψ2

p′(V )

)∣∣∣
t=0

dx

=:

4∑
i=1

Ai. (4.12)

Utilizing Lemma 4.1, we can get

|A1+A2|

≤C
(∫ t

0

∫ ∞

0

|ϕxϕxxϕ|+
∣∣Vxϕ2xϕ∣∣+ ∣∣Ψϕ2x∣∣dxdt)

≤C
∫ t

0

∥ϕ∥L∞

∫ ∞

0

|ϕxϕxx|dxdt+C
∫ t

0

(∥ϕ∥L∞ +∥Ψ∥L∞)

∫ ∞

0

ϕ2xdxdt

≤C(∥ϕ∥2+∥ψ∥1)
∫ t

0

∥ϕx∥2+∥ϕxx∥2dt

≤Cδ
∫ t

0

∥ϕx∥2+∥ϕxx∥2dt. (4.13)

With the help of Lemma 4.2, one has

|A3|≤Ce−C−β . (4.14)

Taking δ sufficiently small, using (4.12)–(4.14), we get Lemma 4.3.

Lemma 4.4. Under the same assumptions of Proposition 3.1, it holds that

∥(ϕ,Ψ)(t)∥21+
∫ t

0

∥ϕx∥21dt≤C∥(ϕ0,Ψ0)∥21+Ce−C−β .

Proof. Multiply (4.5)1 and (4.5)2 by −ϕxx and Ψxx

p′(V ) respectively, sum over the

result, integrate the result with respect to t and x over [0,t]× [0,∞). We have

1

2

∫ ∞

0

(
ϕ2x−

Ψ2
x

p′(V )

)
dx+

∫ t

0

∫ ∞

0

{
1

2

(
1

p′(V )

)
t

Ψ2
x+

ϕ2xx
V α+1

}
dxdt
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=
1

2

∫ ∞

0

(
ϕ2x−

Ψ2
x

p′(V )

)∣∣∣
t=0

dx−
∫ t

0

∫ ∞

0

[
G−(α+1)

Vx
V α+2

ϕx

]
ϕxxdxdt

−
∫ t

0

∫ ∞

0

(
1

p′(V )

)
x

p′(V )Ψxϕxdxdt

−
∫ t

0

(
ϕtϕx−ϕxΨx−

ΨtΨx
p′(V )

− p(v|V )

p′(V )
Ψx

)∣∣∣
x=0

dt

+

∫ t

0

∫ ∞

0

1

p′(V )
p(v|V )xΨxdxdt

=:
1

2

∫ ∞

0

(
ϕ2x−

Ψ2
x

p′(V )

)∣∣∣
t=0

dx+

4∑
i=1

Bi. (4.15)

Now we estimate Bi term by term. The Cauchy inequality indicates that

|B1|≤C
∫ t

0

∫ ∞

0

(|ϕxxϕx|+ |Vxϕ2x|)|ϕxx|+ |ϕxϕxx|dxdt

≤ (Cδ+ε)

∫ t

0

∥ϕxx∥2dt+Cε
∫ t

0

∥ϕx∥2dt, (4.16)

and

|B2|≤
∫ t

0

∫ ∞

0

∣∣∣∣p′(V )Ψxϕx

(
1

p′(V )

)
x

∣∣∣∣dxdt
≤1

4

∫ t

0

∫ ∞

0

(
1

p′(V )

)
t

Ψ2
xdxdt+C

∫ t

0

∥ϕx∥2dt. (4.17)

Making use of the estimate (4.7) for the boundary, we have

B3=−
∫ t

0

(
ϕtϕx−ϕxΨx−

ΨtΨx
p′(V )

− p(v|V )

p′(V )
Ψx

)∣∣∣
x=0

dt

=−
∫ t

0

(ϕtϕx)|x=0≤Ce−C−β . (4.18)

By (4.9) and the Sobolev inequality, we obtain

|B4|≤
∫ t

0

∫ ∞

0

∣∣∣∣ 1

p′(V )
p(v|V )xΨx

∣∣∣∣dxdt
≤C

∫ t

0

∫ ∞

0

∣∣(ϕxϕxx+Vxϕ2x)Ψx∣∣dxdt
≤C

∫ t

0

∫ ∞

0

{∣∣(ϕxϕxx+Vxϕ2x)ψx∣∣+ |(ϕxxϕxx+Vxϕxϕxx)ϕx|
}
dxdt

≤C(∥ϕ∥2+∥ψ∥2)
∫ t

0

∥ϕx∥2+∥ϕxx∥2dt

≤Cδ
∫ t

0

(∥ϕxx∥2+∥ϕx∥2)dt. (4.19)
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From (4.15)–(4.19), we get

1

2

∫ ∞

0

(
ϕ2x−

Ψ2
x

p′(V )

)
dx+

1

4

∫ t

0

∫ ∞

0

[(
1

p′(V )

)
t

Ψ2
x+

ϕ2xx
V α+1

]
dxdt

≤(C+Cδ+Cε)

∫ t

0

∥ϕx∥2dt+(Cδ+ε)

∫ t

0

∥ϕxx∥2dt

+Ce−C−β+C
(
∥ϕ0x∥2+∥Ψ0x∥2

)
.

Choosing ε sufficiently small, together with Lemma 4.3, we complete the proof of Lemma
4.4.

Lemma 4.5. Under the same assumptions of Proposition 3.1, it holds that∫ t

0

∥Ψx(t)∥2dt≤C∥(ϕ0,Ψ0)∥21+Ce−C−β .

Proof. Multiply (4.5)1 by Ψx and make use of (4.5)2. We get

Ψ2
x=(ϕΨx)t+[ϕ(p(v)−p(V ))]x−ϕx(p(v)−p(V ))

−Ψxϕxx
V α+1

−Ψx

[
G−(α+1)

Vxϕx
V α+2

]
. (4.20)

Integrate (4.20) with respect to t and x over [0,t]× [0,∞). We have∫ t

0

∥Ψx∥2dt

=−
∫ ∞

0

ϕΨx|t=0dx−
∫ t

0

∫ ∞

0

Ψx

[
G−(α+1)

Vxϕx
V α+2

]
dxdt

+

∫ ∞

0

ϕΨxdx−
∫ t

0

∫ ∞

0

Ψxϕxx
V α+1

dxdt

−
∫ t

0

∫ ∞

0

ϕx (p(v)−p(V ))dxdt−
∫ t

0

ϕ(p(v)−p(V ))|x=0dt

=:−
∫ ∞

0

ϕΨx|t=0dx+

5∑
i=1

Hi. (4.21)

We estimate Hi term by term. By the Cauchy inequality, it holds that

H1≤C
∫ t

0

∫ ∞

0

Ψx(|ϕxϕxx|+ |Vxϕx|)dxdt

≤ε
∫ t

0

∥Ψx∥2dt+Cε
∫ t

0

(∥ϕxx∥2+∥ϕx∥2)dt. (4.22)

In addition, it is straightforward to imply that

H2+H3+H4

≤∥(ϕ,Ψx)∥2+ε
∫ t

0

∥Ψx∥2dt+Cε
∫ t

0

∥ϕxx∥2dt+C
∫ t

0

∥ϕx∥2dt. (4.23)
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Making use of the estimate (4.6) for the boundary, we have

H5=−
∫ t

0

ϕ(p(v)−p(V ))|x=0dt≤C
∫ t

0

ϕϕx|x=0dt≤Ce−C−β . (4.24)

Collecting (4.21)-(4.24) and using Lemma 4.4, we complete the proof of Lemma 4.5.

Combining Lemmas 4.3-4.5, we obtain the following low order estimates

∥(ϕ,Ψ)∥21(t)+
∫ t

0

∥Ψx∥2dt+
∫ t

0

∥ϕx∥21dt≤C∥(ϕ0,Ψ0)∥21+Ce−C−β . (4.25)

If we continue to get the estimates of second-order derivatives ϕxx,Ψxx, new diffi-
culties arise from the boundary. In fact, multiplying the result {(4.5)1}xx by ϕxx and
{(4.5)2}xx×(−p′(V ))−1Ψxx, we obtain(

ϕ2xx
2

− Ψ2
xx

2p′(V )

)
t

+

(
1

V α+1

)
ϕ2xxx−

s

2

(
1

2p′(V )

)
x

Ψ2
xx

=

{
Gxxϕxx+(

1

V α+1
)xxxϕxϕxx+2(

1

V α+1
)xxϕ

2
xx+

p(v|V )xx
p′(V )

Ψxx

−2

(
1

p′(V )

)
x

(p′(V )ϕx)xΨxx−
(

1

p′(V )

)
xx

p′(V )ϕxΨxx

}
+

{((
ϕxx
V α+1

)
x

ϕxx+ϕxxΨxx

)
x

}
:= I1+I2.

The last term I2 vanishes after integration for the Cauchy problem. However, both
ϕxx and Ψxx are unknown on the boundary and appear after integration for the initial-
boundary problem. In particular, Ψxx contains ϕxxx and it is very difficult to estimate
ϕxxϕxxx on the boundary. Thus, we turn to the original equation (3.3) to study the
higher order estimates. Inequality (4.25) can be rewritten by the variables ϕ and ψ as

Lemma 4.6. Under the same assumptions of Proposition 3.1, it holds that

(∥ϕ∥21+∥ψ∥2)(t)+
∫ t

0

∥ψx∥2dt+
∫ t

0

∥ϕx∥21dt≤C∥ϕ0∥22+C∥ψ0∥21+Ce−C−β .

Proof. From (4.10), ψ(x,t)=Ψ(x,t)−p(x,t), which gives that

|ψ(x,t)|≤ |Ψ(x,t)|+C|ϕx|, (4.26)

and

∥ψ(x,t)∥2≤∥Ψ(x,t)∥2+C∥ϕx∥2. (4.27)

Then it follows from (4.25) that

∥ψ∥2≤∥Ψ∥2+C∥ϕ∥21≤C∥(ϕ0,Ψ0)∥21+Ce−C−β . (4.28)

Similarly, it holds that∫ t

0

∥ψx∥2dt≤
∫ t

0

∥Ψx∥2+C∥ϕx∥21dt≤C∥(ϕ0,Ψ0)∥21+Ce−C−β . (4.29)

Therefore, Lemma 4.6 is obtained by (4.25), (4.28), (4.29) and (4.9)1.
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4.2. High order estimate.
Lemma 4.7. Under the same assumptions of Proposition 3.1, it holds that

∥ψx∥2(t)+
∫ t

0

∥ψxx∥2dt≤C∥ϕ0∥22+C∥ψ0∥21+Ce−C−β . (4.30)

Proof. Multiplying (3.3)2 by −ψxx, integrating the result with respect to t and x
over [0,t]× [0,∞) gives

1

2
∥ψx∥2(t)+

∫ t

0

∫ ∞

0

ψ2
xx

V α+1
dxdt

=
1

2
∥ψ0x∥2−

∫ t

0

{ψxψt}|x=0dt−
∫ t

0

∫ ∞

0

f(V )ϕxψxxdxdt−
∫ t

0

∫ ∞

0

Fψxxdxdt

=:
1

2
∥ψ0x∥2+

3∑
i=1

Mi. (4.31)

Making use of the estimate (4.7) for the boundary, we have

M1≤Ce−C−β . (4.32)

The Cauchy inequality implies that

M2≤ε
∫ t

0

∥ψxx∥2dt+Cε
∫ t

0

∥ϕx∥2dt. (4.33)

By (3.6) and the Sobolev inequality, we have

M3≤C
∫ t

0

∫ ∞

0

(
|ϕx|2+ |ϕx||ψxx|

)
|ψxx|dxdt

≤C
∫ t

0

∫ ∞

0

|ϕx|
(
|ϕx|2+ |ψxx|2

)
dxdt

≤Cδ
∫ t

0

(
∥ϕx∥2+∥ψxx∥2

)
dt. (4.34)

Substituting (4.32)-(4.34) into (4.31) and using Lemma 4.6, we obtain (4.30).

Lemma 4.8. Under the same assumptions of Proposition 3.1, it holds that

∥ϕxx∥2+
∫ t

0

∥ϕxx∥2dt≤C∥ϕ0∥22+C∥ψ0∥21+Ce−C−β+Cδ

∫ t

0

∥ψxxx∥2dt. (4.35)

Proof. Differentiating (3.3)1 with respect to x, using (3.3)2, we have

ϕxt
V α+1

+f(V )ϕx=ψt−F. (4.36)

Differentiating (4.36) with respect to x and multiplying the derivative by ϕxx, integrat-
ing the result with respect to t and x over [0,t]× [0,∞), using (2.3), one has

1

2

∫ ∞

0

ϕ2xx
V α+1

dx+

∫ t

0

∫ ∞

0

(
f(V )− (α+1)h(V )

2V

)
ϕ2xxdxdt
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=
1

2

∫ ∞

0

ϕ2xx
V α+1

∣∣∣
t=0

dx−
∫ ∞

0

ψxϕxx

∣∣∣
t=0

dx+

∫ ∞

0

ψxϕxxdx

+

∫ t

0

ψxψxx

∣∣∣
x=0

dt+

∫ t

0

∥ψxx∥2dt−
∫ t

0

∫ ∞

0

Fxϕxxdxdt

+(α+1)

∫ t

0

∫ ∞

0

Vx
V α+2

ϕxtϕxxdxdt−
∫ t

0

∫ ∞

0

f(V )xϕxϕxxdxdt

=:
1

2

∫ ∞

0

ϕ2xx
V α+1

∣∣∣
t=0

dx−
∫ ∞

0

ψxϕxx

∣∣∣
t=0

dx+

6∑
i=1

Ni. (4.37)

By (2.5) and (3.5), one has

f(V )− (α+1)h(V )

2V
≥−p′(v+)>0. (4.38)

The Cauchy inequality yields

N1≤ε∥ϕxx∥2+Cε∥ψx∥2. (4.39)

Making use of the estimate (4.8) for the boundary, it follows that

N2≤Ce−C−β . (4.40)

N3 can be controlled by (4.30). By the Cauchy inequality, we have

|N4|≤ε
∫ t

0

∥ϕxx∥2dt+Cε
∫ t

0

∥Fx∥2dt.

Using

∥Fx∥2≤C
∫ ∞

0

(
ϕ4x+ϕ

2
xϕ

2
xx+ψ

2
xxϕ

2
xx+ψ

2
xxxϕ

2
x+ϕ

2
xψ

2
xx

)
dx

≤Cδ
(
∥ϕx∥21+∥ψx∥22

)
,

we have the estimate of N4

|N4|≤ε
∫ t

0

∥ϕxx∥2dt+Cεδ
∫ t

0

(
∥ϕx∥21+∥ψx∥22

)
dt. (4.41)

The Cauchy inequality yields

|N5|≤C
∫ t

0

∫ ∞

0

∣∣∣∣ Vx
V α+2

ψxxϕxx

∣∣∣∣dxdt≤ε∫ t

0

∥ϕxx∥2dt+Cε
∫ t

0

∥ψxx∥2dt, (4.42)

|N6|≤ε
∫ t

0

∥ϕxx∥2dt+Cε
∫ t

0

∥ϕx∥2dt. (4.43)

Choosing ε small, substituting (4.38)-(4.43) into (4.37) and using Lemma 4.6, Lemma
4.7, we have (4.35).

On the other hand, differentiating the second equation of (3.3) with respect to x,
multiplying the derivative by−ψxxx, integrating the resulting equality over [0,∞)× [0,t],
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using Lemmas 4.6-4.8, we can get the highest order estimate in the same way, which is
listed as follows and the proof is omitted.

Lemma 4.9. Under the same assumptions of Proposition 3.1, it holds that

∥ψxx(t)∥2+
∫ t

0

∥ψxxx∥2dt≤C∥(ϕ0,ψ0)∥22+Ce−C−β . (4.44)

Finally, Proposition 3.1 is obtained by Lemmas 4.5-4.9.

5. Proof of Theorem 2.1
Now we turn to the proof of the main theorem, i.e., Theorem 2.1. It is straight-

forward to imply (2.11) from Lemma 3.2. It remains to show (2.12). We will use the
following useful lemma.

Lemma 5.1 ([13]). Assume that the function f(t)≥0∈L1(0,+∞)∩BV (0,+∞). Then
it holds that f(t)→0 as t→∞.

Proof. (Proof of Theorem 2.1.) Differentiating the first equation of (3.3) with
respect to x, multiplying the resulting equation by ϕx, and integrating on (0,∞), we
have ∣∣∣∣ ddt (∥ϕx∥2)

∣∣∣∣≤C(∥ϕx∥2+∥ψxx∥2).

Using Lemma 3.2, we have∫ ∞

0

∣∣∣∣ ddt (∥ϕx∥2)
∣∣∣∣dt≤C{∥(ϕ0,ψ0)∥22+e

−c−β
}
≤C,

which implies ∥ϕx∥2∈L1(0,+∞)∩BV (0,+∞). By Lemma 5.1, we have

∥ϕx∥→0 as t→+∞.

Since ∥ϕxx∥ is bounded, the Sobolev inequality implies that

∥v−V ∥2∞=∥ϕx∥2∞≤2∥ϕx(t)∥∥ϕxx(t)∥→0.

Similarly, we have

∥u−U∥2∞=∥ψx∥2∞≤2∥ψx(t)∥∥ψxx(t)∥→0.

Therefore, the proof of Theorem 2.1 is completed.
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