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GLOBAL SOLVABILITY TO A CANCER INVASION MODEL WITH
REMODELING OF ECM AND POROUS MEDIUM DIFFUSION*

DANQING ZHANGT AND CHUNHUA JIN%

Abstract. In this paper, we deal with a cancer invasion model with remodeling of ECM and slow
diffusion. We consider this problem in a bounded domain of RN (N =2,3) with zero-flux boundary
conditions, and it is shown that for any large initial datum, the problem admits a global ‘very’ weak
solution for any slow diffusion case. It is worth noting that the coexistence of the nonlinear diffusion,
haptotaxis and the remodeling of ECM brings essential difficulties. Firstly, unlike the linear diffusion
case, the haptotaxis term cannot be merged into the diffusion term, which makes the regularity of ECM
less important in the process of making energy estimates. Secondly, the regularity of ECM depends
on the worst one of cells density and uPA, therefore, the difficulty caused by the haptotactic term is
really highlighted due to the low regularity of ECM. Therefore, it is hard to get the boundedness of
cells density because the regularity of ECM is difficult to improve, even for large m.
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1. Introduction

It is well known that cancer has always been a major disease that threatens human
life and health. Cancer big data shows that nearly 70%-90% of cancers are caused by
living habits or environmental factors, and only 10% to 30% of cancers can be attributed
to gene mutation [23]. In addition to active prevention, early diagnosis and treatment of
cancer is also particularly critical, for example, early screening can reduce the mortality
of cervical cancer by 80% and cure rate of early breast cancer is more than 90% [4,7].
On the other hand, correct understanding and facing cancer is also the key to overcome
cancer, and the research on the growth law of cancer cells is helpful for people to
understand the formation and development of tumors, and is of great significance for
the prevention and control of cancer.

In 1999, Perumpanani and Byrne [14] found the effect of extracellular matrix (ECM)
on cancer cells invasion, that is, the invasion of cancer cells is closely related to the
degradation of ECM, while matrix degrading enzyme (MDE) is secreted by cancer cells,
and in addition to diffusion, cancer cells will also gather towards the direction of higher
density of such nondiffusible ECM, which is called haptotaxis. In 2006, Chaplain and
Lolas [2] further pointed out that in addition to random diffusion and haptotaxis, cancer
cells will also move towards the direction of diffuse MDE, which is called chemotaxis,
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1494 GLOBAL SOLVABILITY TO A CANCER INVASION MODEL
and such a coupled chemotaxis-haptotaxis model is proposed.

ur =V (D, Vu) —xV - (uVv) =&V - (uVw) + pu(l —u—w),

dif fusion chemotaxis haptotazis proliferation

Tp= Av —v + u o,

dif fusiondecay production

we= —vw Fnw(l—u—w),
S~~~ —_—
degradation remodeling

where, u,v,w represent the cancer cells density, urokinase Plasminogen Activator (uPA)
protease concentration and the extracellular matrix (ECM) density, respectively; D, is
the diffusion coefficient, x,& are the chemotactic and haptotactic coefficients, respec-
tively; pu(l —u—w) is the proliferation or death of cancer cells, including competition
with the ECM in space; in the second equation, —v denotes the decay of protease,
u denotes the protease which is secreted by cancer cells; in the third equation, —vw
represents the degradation of ECM, nw(1l—u—w) represents the remodeling of ECM
components.

This model has been widely considered since it was proposed, and a lot of achieve-
ments in the research of this kind of models have been obtained. For example, Tao and
Winkler [18] proved the global existence of classical solution for 7=0 in two dimensional
bounded domain. For the parabolic-parabolic-ODE system, that is 7=1, in dimension
2, Pang and Wang [15] established the global bounded classical solution for large u, and
Jin [9] then removed the largeness restriction on p. In the 3D case, the global classical
solution is obtained respectively for small initial datum [16], or a generalized logistic
source [9]. Recently, in 2021, Jin and Xiang [11] studied the following simplified model
in dimension 2.

ur=Au—xV-(uVv)—EV- (uVw), z€Q,t>0
Tnp=QAv—v4u, x>0
wy=—vw+nw(l—w), z€Qt>0

with 7€ {0,1}, in which, the remodelling term nw(1 —u —w) is replaced with nw(1 —w).
The authors studied the boundedness, the blow-up phenomenon and the stability of this
model, and they established some results which are similar to the standard Keller-Segel
model (w=0), these results indicate that the haptotaxis effect is negligible in this model
since the regularity of w is almost equivalent to v. In addition, the case n=0 has also
been studied by many researchers. See for example [17,19-21,25,28], or [3] for a review.
Among these, the nonlinear diffusive model, like porous medium diffusion, is also an
important research field. Compared with linear diffusion, the nonlinear diffusion model
of cells is closer to the actual diffusion behavior in biology, and one of these models of
cancer cell is as follows.

ug=Au" —xV-(uVv) —EV - (uVw) + pu(l —u—w),
ve=Av—v+u, (1.2)

wy = —vW.

For this model, Tao and Winkler [22] obtained the existence of global weak solutions
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with some m >1 fulfilling

2n? +4n—4
- i fn<8
n(n+4) ifn<8,
"7 2n243n+2— B+ 1)
ron ifn>9.
n(n+2)

Subsequently, the authors of these papers [5,12,24,29] improved the results to m > 1\2,—12
However, if remodeling effect of ECM is considered in this model (1.2), there is no
research. We assume that there is no flux of tumour cells or protease across the boundary
of the domain, and this boundary condition is called no-flux boundary condition. This
paper is concerned with the following chemotaxis-haptotaxis model with porous medium
diffusion and remodeling of ECM with no-flux boundary condition

ug=Au" —xV-(uVv) =€V - (uVw) +pu(l —u—w), in Q,
nw=Av—v+4u, in Q,

wy=—vw+nw(l—u—w), in Q, (1.3)
ou™ _ u@,guaﬂ — @ =0 |
on on oMmlpa  Onlyg

u(am()) :’LL()((L'),’U(.’K,O) :’UO(IE),”LU(SU,O) :wO(x)v T,

where m>1, Q=Q xR, QCRY (N=2,3) is a bounded domain with smooth bound-
ary.

Our purpose is to establish the global solvability of a ‘very’ weak solution in the sense
of Definition 2.1. It is worth noting that the coexistence of the nonlinear diffusion and
the remodeling of ECM brings essential difficulties. On the one hand, comparing with
the linear diffusion case m =1, that is (1.2), for which, one can combine the haptotaxis
term and the diffusion term through a transformation, and it makes the regularity of w
less important in the process of making energy estimates. On the other hand, comparing
with the nonlinear diffusion case without remodeling of ECM, that is (1.2), although
the haptotaxis term can not be merged into the diffusion term, it is easy to see that
the regularity of w depends entirely on v, so the haptotaxis term and the chemotaxis
term have the same difficulty, which also means that the haptotaxis term will not cause
additional difficulties compared with the pure-chemotactic model. While for the system
(1.3), due to the coexistence of nonlinear diffusion and remodeling effect, on the one
hand, the haptotactic term can not be merged into the diffusion term, on the other
hand, the regularity of w depends on the worst one of v and v. Therefore, the difficulty
caused by the haptotactic term is really highlighted due to the low regularity of w.
Thus only a ‘very’ weak solution in the sense of Definition 2.1 can be obtained in the
present paper. To obtain the global ‘very’ weak solution, we consider an approximation
problem by adding eAw to the third equation of (1.3). However, this is not enough to
ensure the global existence of global bounded solutions in three dimensional domain,
thus we also add a damping term eu? to the first equation of (1.3). We first establish
the global existence of classical solutions to the approximation problem for any € >0,
then by using some energy estimates and compact discussion, and by letting € — 0, we
finally establish the global existence of the ‘very’ weak solutions. Unfortunately, it is
hard to get the boundedness of u because the regularity of ECM is really difficult to
improve, even for large m.
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We give the assumptions of this paper.

ug € L™(Q),v0 € H (), w € L°(Q), and V/wg € L (),

awo
UQ,’U(),U/()ZO,UQ%O,T =0.
" a0

(1.4)

On the other hand, by a direct calculation, we see that

Vwy=—wVv—ovVw+n(l—u—w)Vw—nwV(u+w)
=—wVv+(n—v—nu—_2nw)Vw—nwVu
n

—w
m

én

=—wVov+(n—v—nu—2nw)Vw—nuwVu+ u? "MV — ZLwu MV
m

én

= —wVv+(n—v—nu—2nw— Zwu®>"")\Vw — U
m

umfl

(Vu™ —&uVw).

From the boundary conditions in (1.3), we infer that

ow

0
W _ (n—v—nu—2nw—£—nwu2_m)—, on 99.
m on

on
It implies that
0
gur _p
on | yq

8w0 |
on 19Q

since =0. Our main result reads as follows.

THEOREM 1.1. Assume N =2, m>1 and (1.4) holds. Then the problem (1.3) admits
a global nonnegative ‘very’ weak solution (u,v,w) in the sense of Definition 2.1 with
(u,v,w) € Xy X Xy X X3, such that for any T >0

S(upT) (o0l Lo + o)l e nm + lul )l om + VvV L2) <My, (1.5)
te(0,

_3
1020l 2 g+ Notl ey + el gy +||u 2 0

L2(Qr)
Vw YVw
Y e +H-ﬁ s < Mo, (1.6)
ﬁ L2(Qr) \/E L2(Qr) 8 (@)
108l e gy < M (7)

where

loc loc

2 ={ue L @R L @)L L @) e B (RE D))

(e L (R @)},

Xo={ve Ly (RY; L™ (Q)NH(Q);D*v,v € L}, (RT;L*(Q))},

loc

Xy ={we Li5 (R L®(Q)); VV/w € L5, (RY; L*(Q)),

loc loc

wi, VUV W, oVVwe LY (RTL*(Q))}
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M;(i=1,2,3) depend only on Q, &, x, p, 1, uo, vo, wo and T

THEOREM 1.2.  Assume that N:3, m>1 and (1.4) holds. Then the problem (1.3)
admits a global nonnegative ‘very weak solution (u,v,w) in the sense of Deﬁm’tion 2.1
with (u,v w)€D1 x Dy x X3 f0rm> , and (u,v,w) €Dy x Dy x X3 for 1<m< 3 5, such
that for any T >0,

+ 3
su u(-t)| ;- —|—’u +||ull ;- <My, forl<m< —, 1.8
te<o,pT)” GOl Leiomy T1lEr+2@r) < Ma, £ 3 (19
3
sup [Ju(, )| m um_%Vu‘ +ull pm < Ms, form> -, 1.9
te(OPT)H Ol 2O lull g1 (@ formz3, (1.9)
sup ([|w ()| poe () g+ [ V][ ) + ([ D*0]] 2,

te(0,T)

Vw
+ Hvt”m(QT) + ||thL2(QT) + H\/qj; W

gz

where 0<T<m—1 is a small constant, B=max{m+1,4},

L2(Qr)

1)l

(0w < Mg, for anym>1, (1.10)
L*(Qr) D

(©2))

1,041

m+T

Dl_{ueLzoc(W;LT“(Q)) ML (R LT2(Q))u"

ELZOC(R+;H1(Q))7

loc
()€ L (R 5 @)

loc

Dl_{ueLzoc(W;Lm(Q)) AL RS L Q)2 € L, (RT3 H (),

()€ L (R 5 @) |

DQ—{UELZOC(R+;H1(Q)) DQU UteLloc(R+;L2<Q))}7
and M;(i=4,5,6) depend only on Q, &, x, 1, 0, ug, vo, wy and T'.

REMARK 1.1.  As we all know, although there is no classical solution in general to
porous medium diffusions, the regularity of the solution is still good. However, in the
present model (1.3), the remodeling term nw(1 —u—w) brings essential difficulties to the
estimation of the haptotactic term. Therefore, it is not easy to obtain the boundedness
of u, and only a global ‘very’ weak solution is obtained.

2. Preliminaries

Throughout this paper, we let [|-|| 1, :=|"[| 1»(q)-

Next, we give the definition of ‘very’ weak solutions.
DEFINITION 2.1.  (u,v,w) is called a ‘very’ weak solution of (1.3), if u>0,v>0,w >0,
with (u, v ,w) € Xy X Xo x X3 in dimension 2, (in dimension 3, (u,v,w)€ Dy x Dy x X3
form>32 5 (u,v,w) €Dy XDy x Xz for 1 <m < §) such that for any T >0, any ¢, $, €
OOO(QT) with @(maT):(b(va):w( ) 07 gi 20
hold

f// uaptdmdtf/u(m,O)cp(:E,O)der// Vungodxdtfx// uVoVedzdt
T Q T T

=0, the following integral equalities
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_5// quchdxdt:u// u(l—u—w)pded,
—//Tv¢tdajdt—/S)v(x,())(b(x,())dx—i—/QT VoVedzdt

+ // vodadt— // updzdt =0,
//Twwtd"””dt/Qw(%OW(x,O)dx

+// vwd)dzdt—n/ Yw(l—u—w)dedt=0,
T Qr

where Qr =Q x (0,T).

For reader’s convenience, we give the Gagliardo-Nirenberg interpolation inequality
as follows.

LEMMA 2.1.  For functions u:)—R defined on a bounded Lipschitz domain 2 €R"™,
we have

. .
[D7ul| , < CID™ull 7 Nlull e +Clull ..

where

1—J

and s >0 is arbitrary.
By [13,26], we have the following two lemmas.

LEMMA 2.2.  Assume that Q is bounded and let we C? () satisfy ‘3—’:|BQ =0, where n
is the outward unit normal vector to the boundary 9. Then we have

o|Vwl|?

<25|Vwl|?, ondQ,
on

where k>0 is an upper bound for the curvatures of 2.

LEMMA 2.3.  Suppose that h€ C*(R). Then for all o € C*(Q) fulfilling 5 B‘P =0 on 09,
we have

2
/ W () |Vl Apda + 2 / W) Aplde
Q 3 Ja

_g 2 _ = " 4 _1/ 8|V30‘
=2 [ mop*lae— [ wowel'as—3 [ np) LT

IVs@I
Q 90

and

dx<(2+\r /gp’DQImp‘ dx,
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where |D?p|? = Eﬁj:ﬂDij@F-

3. Energy estimation and global solvability to the regularized problems

Consider the approximate problems given as

m—1

=4 2 ? e | — \Ue VUeg)— ' fe e
Uet ((ue—&-s) u) XV - (ueVue) —EV (1+€u€Vw)

pe (1 —ue —w.) —eu?, in Q,

Vet = Ave — v + U, inQv

In(1 3.1
Wey = EAWe — VoW, +NWe (1—n(+€us)—we>,inQ, 3.1)
€
Oou, B v, B Oow, 0
om |gg  Onlyg 0N |yq
ue(2,0) =ucgo(z), ve(z,0)=ve0(x), we:(x,0)=we(x),ze€,
where € € (0,1), w0, ve0, Weo satisfy
— 1o} 0 1o}
uso,vso,w60602+°‘(9), % = V=0 = Weo ZO,UEO,’er,wEoZO,
(L PR 2/ PP on |y
Uen — UQ n Lm, Veo — Vo n ]:Il7 vV Weo — v/ Wo n Hl, and ||w60||Loo S ||w0||Loo.
(3.2)

We may assume that w.o Z0, usg Z0, otherwise, we have w.(z,t) =0, and u.(z,t) =0,
and the problem becomes very simple and does not need to be studied.

It is not difficult to see that when the approximation term cAw,. is added to the
third equation, the regularity of w. will be improved by two orders. Based on this, in
order to get the ‘very’ weak solution of the original problem (1.3), we can use (3.1) to
prove some a priori energy estimates which are independent of €, and the global solution
of the original problem (1.3) can then be achieved by letting ¢ — 0.

By the third equation of (3.1) , it is easy to obtain that

0 <we <max{1,[[weol| oo } < max{L, [Jwo o }- (3:3)

Using fixed point theory, or similar to the study of the chemotaxis model [6], it is not
difficult to obtain the following local existence result of classical solution to (3.1) for
any €>0.

LEMMA 3.1.  Assume that uco,ve0,We0, satisfy (3.2). Then for any € (0,1), there
exists Tmax € (0,+00] such that the problem (3.1) admits a unique classical solution
(Ue,ve,we ) € CPHOIS (A x (0, Tinax)) with

e >0,v: >0,we: >0 forall(z,t) € QX (0, Timax),
such that either Ty ax =00, or

m  ([Jue ||z +[[ve[[wr.oe + [[we[wr.0e) = +00.
t—Tmax

Next, we give some estimates of (ue,ve,we).
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LEMMA 3.2.  Assume that N=2,3, uc, veo, Weo Satisfy (3.2). Let (ue,ve,we) be a
classical solution of (3.1) in Qx (0,T) for some T >0. Then

T

sup ||u€("t)HL1+/ (lucll 32 +ellucl3s)ds <e1, (3.4)

te(0,T) 0
2 T 2 2

sup ||Ue('ﬂf)||H1+/ (llvellyyr2. +[|vetl| 72)ds < ez, (3.5)
te(0,T) 0

T
/ wer|ads < s, (3.6)

0

where c1, ¢o and c3 depend only on €, p,ug,v9,T, and they are independent of €.

Proof. By a direct integration for the first equation of (3.1), we obtain

d
ugdac—i—u/ Qdac—l—u/ ugwgdx—l—a/ugdx:,u/ ugdxgﬁ/ugdx—kcé;,
dt Q Q Q 2 Ja

then (3.4) is obtained from a direct integration. Using the boundedness of L?-norm
of ug, then (3.5) is easily derived by a standard calculation, see for example [9], for

simplicity, we omit it.
Multiplying the third equation of (3.1) by we;, and integrating it over 2, we obtain

In(1
/|Vw5|2d:c+/ |wee] dxff/vswswstdern/ WeWet 1,M,ws dx
2dt Q Q €

<5 [ lwaPdorC [ foof o+ s,
2 Q Q

and (3.6) is obtained by a direct integration. 0

LEMMA 3.3.  Assume that N=2,3, m>1, u.q, Ve, Weo satisfy (3.2). Let (uq,ve,we)
be a classical solution of (3.1) in Qx (0,T) for some T >0. Then

sup / Ue Inue + |V E| dx +/ / uite) T |Vu5| dxds
te(0,7)J 0
T T )
+/ /u§(1+lnu5)dzds+s/ /ws}Dﬂnwe‘ dzds
o Ja o Ja

T T 2
In(1
+5/ /u§(1+lnus)dxds+/ [Vee[” (vernn( ?“E))dxdsgc, (3.7)
0 Q 0 Q

We

where C is independent of €, and it depends only on m,|Q|,&,x,1,n, ug, vo, wo, T

Proof.  Multiplying the first equation of (3.1) by 1+Inw,., and integrating it over
), we obtain

d
—/uelnuedx—i—u/ u?(1+1Inu, )dz

m—1 A\V4
+/V<(u§—|—€) 2 u5> uusdas—i-e/ u(1+1Inu.)dr
Q € Q
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\Y
:X/QVUEVUde—i-f/Ql+

S—X/ usAvsd:c—i—f/ Vi Vwedx+ﬁ/u§(1+lnu5)dx+c57
QO Q 1+5U5 2 Q

since w, is bounded. From the above inequality we infer that

d Bl (u2 +2) "7
uslnusd:v—i—f uz(l+1Inu.)dz+

Ug
<— X/ Ue Av,

We use the third equatlon of (3.1) to get that

te ngdx—ku/us(l—wg)(l—klnus)d:c
Ue Q

|VU5|2dUC+€/ ud(1+1Inu,)dz
Q

dx+cs. (3.8)

|Vw5\ ng V., dr— / |Vw€\ woyde
2dt We Q We
A
:_/wgt( w5_|Vw2€\ )dz — = |Vw;| werd
Q We w2 2 Jq wz

1 [ |Vw|? A
=5 %watdw - / e Werdx
2 Q wg Q We

1 P Aw, (1 + eu.
25/(|w| _Aw )(SAwE_UEwﬁnwE(l—“(““)—ws))dx
Q

w2 We €

A € €
| w| —dx+ = /\Vw| Aw.dx + 77/ (w——3)|VwE| dm—l—/AwEvgdaﬁ

Q We

1 In(1
+77/ Awgin( +Eug)cl:v—f/ |Vw5| <'U5+nn( +€u€))dw
Q € 2 Q 9

We

Aw,|? 2 1 1
—fs/ ﬂdm+i/MAwsdx+fn/ IVw|*(— —3)dz
Q We 2 Q U}g 2 o) We

1 2 In(1
- / V. Vodz 1 / VuVw, 1 [ |[Vwe|” <U€+nn<+€u6>> do. (3.9)
O 0 1+€u€ 2 Q We g

Noticing that

/w5|D21nwE|2dx:/ (’Dzwa‘ |Vw5\ vwsD wEsz>dx
Q2 Q

W, w3 w2

/ <‘D2w5’ \sz| szV|Vw5| )
= 3 2 dx
o We w3 w2

|D2w. |? \sz| |sz| Vw,|*
= 3 5 Awe —2 3 dx
Q We wg w2 w

D2 2 4
:/ <| wel” ‘V“’;' Awstwg‘ >dx, (3.10)
Q We wg we
then by Lemma 2.3 with h(w)= 75’—5} and combining with the above equality, we see
that
A g g
| w|d+ ‘Vw|Aw€dx

2
Q We 2 Q Wz
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|D?w.|* * 1
9 Q wg’ 2 6Q’LU€8
:—g/w8|D21nw8| dx—l—*/ ——|Vw5‘2d8.
o 2 Joq we On

Substituting the above equality into (3.9) to obtain

2 2
In(1
[Viwe| dw—l-&/ws’DQIles’de-&-/i'vz:E' (va-l-nn( :gu)—i—SnwE)dx
Q Q €

2dt Jo w.

€ 1 0 Vu:Vw, 1 |Vw,|?
< —dr— — ——dx. A1
_2/89 o 3n|vw8| ds— | Tten dx /QVUEVwde—&—277/Q o dz. (3.11)

Using Lemma 2.3, we see that

|V“’E‘ Vel gz < (24 VN)? / w.| D nw, |*dz, (3.12)
o w? Q
Using the boundary trace embedding theorem [1,8], that is
HuHLz(aQ) < (5||V’U,||L2(Q) + Cg||u||L2(Q), for any 4> 0,

and combining with (3.12) with ¢ sufficiently small, we see that

1 1
E/ o |Vw.|*ds </fa/ —|Vw€|2ds:f£5/
2 /oo we On 20 We a0

2
S(SE/ dm+56’5/w5|V1nw€\2dw
Q Q

2 2
S&a/ 1 dI-l—ECa/Md
al2 Q We

2
§258/ (w5|D21 ‘ + 1 |Vw5| )dx-l—ECa/ Md
Q w3 o We

2

1
wZ Vinw:| ds

1
V(wé Vinw,)

1 1
we 2Vw:VInw: +w?2 D21nws

€ 2 2 |Vwa‘2
<- wE‘D lnw€’ dz+eCs | ————d
4 Q Q We
Noticing that w, is bounded, then
[Vw 5| <€ 1 / |V |* 5/ 9 2
Ce / - dr+cee<— | w.|D*Inw.| dr+cge.
4(2—|—\/N)2 Q w? =1/ | | 6
Combining the above two inequalities, we obtain
€ 1 9 2
g/aﬂw—aa—|Vw€\ ds<2/ﬂw€’D21nw€ dx + cge. (3.13)

Substituting (3.13) into (3.11) yields

V. |? € Vuw In(1+eu
2 ; w:| dx+§/s2ws|D21nwg| dx —1-2 | E| <v€—|—77(€)—|—3nws>dx

Q We
Vu.Vw, 1 |Vwe|?
— —d A d — —d . .14
<-7 L Tt eu x—i—/ﬂ VeWe m—l—zn/ﬂ o T+ CgE (3.14)
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Combining (3.8) with (3.14), we arrive at

m—1

d 2
—/ualnugdx—i—/ M|Vu€|2dx+ﬁ/ug(l—l—ug)dx—&—e/ ud(1+u.)dz
dt Jo Q Ug 2 Ja Q

£d [ |Vu)
2ndt Jq we

Vw.|? In(1+
+£ |Vw| (%M n(1+eu.)
27] Q We g

dx+§/w€|p21nws|2dx
2n Jo

+3nw5> dx
1 |2
S—X/ ueAvEdm+§/Avgwde+f£/ Mdm—i—q(l—l—s)
Q nJo 27 Jq we

1 Vw,|?
gX/ \u€|2dx+x/ |Av5|2dm+f€/ ﬂdaﬂ—cs;(H—s).
Q Q 27 Ja  we

Using (3.4), (3.5), we can easily obtain (3.7). 0

LEMMA 3.4.  Assume that (3.2) holds, N=2 with m>1, or N=3 with m>3. Let
(ue,ve,we) be a classical solution of (3.1) in Q% (0,T) for some T >0. Then

T T
sup /ué”dat—i—/ /(u?—l—a) T u;”_2|VuE|2dxds+/ /(u?“—i—au?”)dwdsga
te(0,7)JQ 0o JQ 0 JQ
(3.15)
where C' is independent of €, and it depends only on m,,&,x,1,1n, Uy, Vo, Wy, T.

Proof. From Lemma 2.1, we see that
IVl < o[ Voc 22 A2 +e10 [ Vo[£, when N=2,

10 4 10
IVvell P10 < c1nl[Vvellz2 |Av |72+ 12| Voe|| 22, when N =3,

recalling (3.5), we obtain

T
/ |Vve||;ads <ci3 when N=2, (3.16)
0
T 10
/o ||Vv5||L3% ds<cy4 when N=3. (3.17)

Multiplying the first equation of (3.1) by mu™~!, integrating it over €, recalling (3.3),
and using Young’s inequality yields

m—1

d (3
—/u;"dx—i—um/ u?"’ldm—i—m(m—l)/(uz—i—g) 2 u:;"_2|Vu5|2dx+m€/ u" 2 dy
dt Jo Q Q Q

m—1
gxm(m—l)/ug“quvasderEm(mfl)/ Ue Vu:Vw.dx
Q Ql+5U5
+@/u;”+1dz+cl5
4 Q
m(m—l)/ 2m—3 2 / 2 / Ue 2
<—— [ w2 | Vue|“dz+c ue | Ve |“dx+c —— |Vw,.|"dz
o 2 Q | | 10 Q | | . Q(1+5Us)2| |

—&—@/ugnﬂdm—i—cls
4 Ja
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<Tn(7f;—1)‘/ﬂ(u _|_5) 2

In(1
+C17/ MWwa\zda:—l—f/u?“dx—i—cw,
Q € 2 Ja

since

2(m+1)

ul'” 2|Vu5|2dx—|—clg/|Vv5| dx

Ue In(1+eu.)
7 <
(I4eue) €

for any eu. >0. Noticing that % <4 for any m>1, and 2("::1) <3 for m>3,
recalling (3.7), (3.16), (3.17), and by a direct integration, we obtain (3. 15)

REMARK 3.1. In dimension 2 with m > 1, or in dimension 3 with m > %, we have

sup u(-t)[Lm <C,

t€(0,T)

while for the three dimensional case with 1 <m < %, it is hard to get the above estima-
tion. Nevertheless, we can get the following estimate instead of the above result,

sup |Ju(-)|| g1 <C.
te(0,T)

This is also sufficient for the later proof.

LEMMA 3.5. When N=3, 1<m<2, assume that (3.2) holds. Let (u.,v.,w.) be a
classical solution of (3.1) in Q% (0,T) for some T >0. Then there ezists a small positive
constant T <m—1, such that

sup/ T+1dx+// ul4e) T Ul 1|Vu€|2—|—uT"’2)dacdt

0<t<T

+e / / uStTdadt < O, (3.18)
0o Ja

where C' is independent of €, and it depends only on 7,m,Q,&,x,p1,m, ug, vo, wo and T.

Proof.  Multiplying the first equation of (3.1) by ul for 0<r<m—1, similar to
the proof above, we obtain

1 d r m=1 ” 31y
T_’_la/ueﬂdx-i-r/ﬂ(ug—ks) 2w, 1|Vu5|2da:—|—%/nu8+2dz+e/nug+ dx

X r+1
<- £
< r—l—l/ Av dx+7"§/

VuEVwaderclg

X 'r+2 r+2 m+r—2 5 ug e 2
< /( +|Ave ") dz+ - / |Vue|?de+ =2 [ ———|Vwe|*dz +cio.
r+1 Q 2 Jo (14eu.)?

Noticing that %<r—m+2§1 since m<% and 0<r<m-—1, then

ul~mt2 Ue < In(1+¢cu.)

< 1 1.
(teu)? = (4eny =7 o  F

Thus, we arrive at
1 d

ugﬂdm—l—f/(u?—l—s)m;lug_1|Vu5\2da:+g/ug+2dx+5/u§’+’"daﬁ
2Ja 2 Ja Q



DANQING ZHANG AND CHUNHUA JIN 1505

. 2 In(l+e
K N N L
7'+]. Q Q €

By a direct integration and the LP theory of linear parabolic equations, we get that

1
sup/ ul M dr 4 - //u—i—s Tl V| dedt
r+1o<i<r

ﬁ/ /uf;”dxdt—l—s/ /ug"”dxdt

2 In(1+eu,
’"X// 2 |Av5|’“+2)dxdt+r§2/ /<n+€“)+1>|vw€ ddt +2Tcyg.

r+1

In(1
Scmrx/ /u§+2dxdt+r§2/ / <n—|—5u€)+1> |Vwe [2dxdt +ca1,
0 JQ 0 JO €

where cyg is independent of T, r and u, co1 depends on T. Taking r=7 with 0<7<

min{m—1, £~ 4x } in the above inequality, and using (3.7), we complete the proof. 0O

The above estimates are not enough to ensure the global existence of the approxi-
mation problem (3.1). In what follows, these estimates may depend on ¢.

LEMMA 3.6.  Assume (3.2) holds, N=2,3, m>1. Let (uc,ve,w.) be a classical solution
of (3.1) in Qx (0,T) for some T >0. Then

T T
sup /u?”dm—k/ /u§m71|VuE|2d3:ds+/ /ugn+4da:ds§05, (3.19)
te(0,T)JQ 0o JQ 0 JQ

where C depends on m,$,&, X, 14,1, Ue0,Ve0,We0, 1 and €.

Proof.  Multiplying the first equation of (3.1) by (m+2)u”"! and integrating it
over {2, we obtain

i/u?“dm + p(m + 2)/u2”+3dx+5(m+2)/u2”+4dx
dt Jo Q Q

(m+2)/V<(u§+s)m2u5> Vu;"“derx(erQ)/uEVWEVu?de
Q Q

+£(m+2)/ Vw:Vul +1dm+u(m+2)/u?”(l—wg)dx.
Q

1+€u5

Similar with the proof of Lemma 3.4, we obtain

i u?+2d$ + (m+1)(m+2)/u?m71|vuel2d:€
Q

dt Jo 2
i) [t vemey) [t
Q Q
3
. 2 m
< cgz/ug|V1}E|2d$+623/ u72|Vw€| do+ e(m+ )/ T dz+ oy
Q (1+eue) 4 2
2 2(m+4) 4 6
gi(mjL )6/ m+4dm+025/|VvE| m+1 dl’+C26 v wszl +623/u7d$+024
2 Q Q s| (1+5u5)

By Lemma 2.1, we obtain

2( m+4) (2m+d)(m+34) 9 3(;n+4) 2(m+4)
1 3)(nm 1 m
Ve 5 z(m+4> <eqr | Ve[ 50| VP || frid Y +ean | Voe|| 571, when N =2,

m+1
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2(m+4) ) _ 18(17:4-4) - 2(m+4)
Vel 585 7c41||vus|| Riacy Hv PRI ey Vo] 5T, when N =3.
L m+1

Combining the above three inequalities, using (3.4), (3.5) and (3.12), we obtain

d 1 2
*/U;n+2d:c + (m+ )(m+ )/ugmfl‘vugﬁdx
Q

dt Jo 2
2
+u(m+2)/u;"+3dx+m/u;”+4dx
Q 2 Q
2 |B(m+4) 2,12 S
§027 |V Ue{ d$+628 w€|D w5| dl’+023 7dl'+024, (320)
Q Q o (I+eu)?
where
3
———— when N =2,
g (m+3)(m+1)
- 1
8 , when N =3,
(5m+14)(m+1)

it is easy to see that 0< /3 <1. By (3.20) and using the L? theory of linear parabolic
equations, we get that

1 2) [T
sup /u?“dm + M&/ /u§m71|VuE|2dxdt
) 0o Jo

0<t<T J¢

2 T
+M/ /u?“dzdt
2 0 Jo

T T
§2027/ /|V2v5|ﬁ(m+4) dxdt+2czg/ /wE\D2w5|2dxdt
0o Ja 0 Jo

T 6
u
+2c / /;dxdt—k%
2 | O gew)t 24
T T T
§c29/ /|u€|ﬁ(m+4)dxdt+2028/ /w€|D2w5|2dxdt+C3o/ /UdedHC:n
0 Ja 0o Ja 0 Jo

9 T T T
Sm/ |u5|m+4 dxdt—l—?cQg/ / wE\D2w8|2da¢dt—|—C3o/ / udxdt +c3o.
4 0o Ja 0o Ja 0o Ja

By (3.4) and (3.7), we complete the proof. |

LEMMA 3.7. Assume N=2,3, m>1, and (3.2) holds. Let (uc,ve,w:) be a classical
solution in Q x (0,T). Then for any >0, we have

sup ||ve||poe <C, when N =2 (3.21)
te(0,T)

sup ||ve |l + SUP  |Jwe |l yprr.ee < Cs, (3.22)
te(0,T) te(0,T)

where C' is independent of € in dimension 2, C. depends on €, both of them depend on
m, Q7 5 3 X My 1, Ue0, Ve0, We0, T.

Proof. By Duhamel’s principle, we see that the solution v.,w. can be expressed
as follows,

t
vgze_temvgo—i—/ e_(t_s)e(t_smu(s)ds,
0
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w.=e e Pwoo+

/Ote_(t—s)ea(t—s)A ((1 —v(8))we(s) +nwe(s) (1 _ In(lteuc(s)) _wg(s)> ) ds,

€

where {et2};>¢ is the Neumann heat semigroup in Q; for more details of Neumann heat
semigroup, please refer to [27]. Here, we replace e!® with e~*e!2, so for this case, the
condition [,udz =0 in [27] is unnecessary. When N =2, using (3.15), for any ¢t € (0,7),
we arrive at

t
[ve (58] Loe Se—t\lvaolleJr/O eI (1t (=) ") ue(s)]

LmdS
! 1
SeitHUaO”Lac"’ sup ”uE(S)”Lm/ e*(tfs)(l_k(t_s)fm)ds
s€(0,T) 0

<e fveoll e+ sup uc(s)|

s€(0,T)

o0 1
L/ e *(1+s m)ds<cs3,
0

since % < 1. It is easy to see that c33 is independent of €. In dimension 3, similar to

the proof above, and using (3.18), we also obtain the L estimate of v.. Furthermore,
we also have

t
_1__ N _
||Vv€(-,t)||LooSe_tHVvEOHLW—i—/ eI (A4 (t—5) 727205 )|[ue ()| psads
0

t
1__ N
<e | Vel o + sup ||u5(s)||Lm+2/ (=) (1 4 (t— )} )ds
T) 0

s€(0,

<C. foranyte(0,T),
since %+%<1 for N=2,3, m> 1.

[Vwe ()| oo < eit”vwEOHLoo

t _1__ N In(1 e
+/ e_(t‘s)(e(t—s)) 272D ||(1—ve )we +nwe <1—M—w5> (s) ds
0 € Lm+2
<e” || Vweo|
bt 1N
+c3a sup (HuSHLm+2+HU5(S)HL”L+2+1)/ e (14 (e(t=s)) 2 20mF2 )ds
5€(0,T) 0
<C., for any te(0,T),
since % <wu, when u. >0, and C., C. depend on . O

Using (3.21), (3.22), we adapt the classical Moser’s iterative technique to prove the
L*° estimate of u,.

LEMMA 3.8. Assume N=2,3, m>1, and (3.2) holds. Let (uc,ve,we) be a classical
solution in Q x (0,T). Then for any >0, we have

sup |luell L <C, (3.23)
te(0,7)

where CE depends on e, m, Q7 g » X5 M 7], Ue0, Ve, We0, T.
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Proof.  Multiplying the first equation of (3.1) by puf~! for p>m, using (3.22)
yields

d
u”dx+p(p 1)/u§+m73\Vu6|2dx+up/(u§+1+u§w5)dz+/u§da:
dt o ; A
PV v
§XP(P—1)/9“5_1V%Vvadw+§p(p—1)/5)#%%%“)/9@1@
€

1
Sip(p—l)/U§+m_3|vus|2dﬂc+c35p2/U€+1_mdx+036p/ uldz,

which implies that

T
dt (p+m 1)?

§C35p2/u§+17mdx+636p/ uldx. (3.24)
Q Q

daz—i—/ uldx

Then completely similar to the proof of Lemma 3.5 in [10], we complete the proof. 0O

LEMMA 3.9. Assume N=2.3, m>1, and (3.2) holds. Then for any c€(0,1),
the problem (3.1) admits a unique global classical solution (u.,v.,w.) € C*te1+e/2(Q x
(0,+00)).

Proof. Recalling Lemma 3.1. We only need to prove that Ty, =00. Suppose the
contrary, that is Ty . < +00. We take T'=T},.x in Lemma 3.7 and Lemma 3.8. It is a
contradiction. The proof is completed. 0

4. Global existence of ‘very’ weak solutions

From Section 3, we see that the problem (3.1) admits a unique global classical
solution, and these estimates in Lemma 3.2-Lemma 3.5 are independent of . To show
the global existence of ‘very’ weak solutions of the problem (1.3), we also need some
estimates for u.s, for this purpose, we prove the following lemma.

LEMMA 4.1.  Assume N=2,3, 1 <m<2. Let (ucz,ve,we) be the global classical solution
for any e €(0,1). Then we have

/ /u +e) e "3V, [Pdzdt < C, (4.1)

where C' is independent of €, and it depends only on m, 0, &, x, pu, n, ug, vo, wo, 1.

Proof.  When 1<m <2, multiplying the first equation of (3.1) by —u™~2, then
integrating the resultant equation over 0, and using (3.3), (3.4) yields

1 d

T m—1dt / ul"ldz 4 (2—m) /Q (u2+2)"F ul' ¥ Vu. *da

m 2

:(2fm)/ (Xum QVUEVU5+§
Q
—u/ - ug—wg)dx+5/u;"+1dx
Q

Q

VUEVwE) dzx

2_
S?m u?m_4\Vu5|2dx+(2—m)X2/ \VUE\Zd:C—i-(Q—m)ﬁQ/ |Vw, |*dx
Q Q Q



DANQING ZHANG AND CHUNHUA JIN 1509

—i-,u/ umdx—|—5/ u™Hdr+C
Q Q

since 0 <m—1<1. Noticing that m <2, integrating the above inequality from 0 to T,
and using (3.5), (3.7), (3.15), (3.18), we complete the proof. ad

LEMMA 4.2.  Let (ug,ve,w.) be the global classical solution for any €€ (0,1). Then
(w2 ) €Ll (R+;W—1v”$1 (Q)) for N=2, (u@)ie Lk, (RﬂW*L%(Q)) for N=3,
that is, for any T >0,

T
/ H(u?)t W o) dt<Cr, when N=2, (4.2)
O m
T m ~
/ H(u?)twal,%(Q)dtSC’T, when N =3, (4.3)
0

where §=max{m+1,4}, Cr and Cr are independent of €, and they depend only on m,
Q: g s X My 1, U, Vo, Wo, T.

Proof.  For any ¢ € C§°(Qr), m>1, we see that

/ / ud twdmds———/ / (uZ+¢) 51UE>V(U§71¢)dmds
mx S m_]
5 € € 2 d d A 5 2 d d
5 /0 /Qu Vo V(ud xds+ / /1+€u5Vw V(ud p)dzds

T
—H/ /u?(l—ug—wg)wdxds—%/ /u?+2gpd:z:ds:,]1+J2—|—J3—|—J4—|—J5.
0 Q 0 Q

(i) We first consider the case N=2, m>1; or N=3, m> 3.
For Jy, using (3.15), we see that

T
|J1|§C/ /(u§+s)m7_u372|Vug|2|<p|dxds
0o Ja

T
+C/ / (u2+)7 ud 7| Vu.| V| dads

<ol oo QT)/ /u +e) 2‘_1 75L72|Vu5|2dxds

m

m m—1
+C (U6+€) 4 u€2 VUE ||(ug+€)HLé'l”2¢ Q ”chHLerl(QT)
T

L2(Qr) (@r)

T
m—1 E_Q
SClHVgD||Lm+1(QT)+C||<p||Loo(QT)/O /Q(u§+5) 03 2|V Pdads.

When m > 2, noticing that —1 <% —2 <m —2, then from (3.7) and (3.15), we infer that

T
C’/ /(ug—&-a)mT_lu?fﬂVuEFdde
0o Ja

T
éC/ / (u?+2) "% (u" 7 +u )| Vue2dads < C;
0 Q
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when 1 <m <2, noticing that m —3 < —2<m—2, and using (3.15) and (4.

that
T 2 m—1 m_9 2
C/ /(us—ks) T ul " |Vue| dzds
o Ja

T
<c / / (42 +€) “F (w2 4™ )| Vs, [Pdnds < .
Q

Summing up, we obtain
|1 < C1lIVellLmt1(@r) + Collell L= (@r)-

Next, we consider Js, it is easy to see that

|2 < u?_laquEva -‘r’u? Vu:V|drds

m_q
U VuE

gc‘

||VUE||L2 QT)”‘P”LOC(QT)
JFO”UEHLmH(QT HV 6||L2+m(Q )HVSDHLMH(QT)

<Cl|(uZ+e) = uZY*Vu,

HVU8||L2(QT) H‘PHLOO(QT)
L2(Qr)

+Clue| zvn-%—l(QT) Vo ||L2+% (Qr) HVQO”LM-H(QT)'

1), we get

Noticing that 2+ 2 <4 for m>1, 24+ 2 <1 for m> 3, and using (3.16), (3.17) yields

V|| <C.

L (Qr) =

Thus, combining (3.7) and (3.15), we finally arrive at

|J2| < C3[|Vl pm+1(@r) + Call@llLo=(@r)-

For J3, noticing that (1+5u 72 S

m_
[J3| <Cllue® V|2 [Vwell L2 (@) 191l oo (o)

1

2

||Ue||ﬁl(QT) ||V90||Lm+l(QT)
L2(QT)

+C||Vw

“l4eu,

m_1
<Cllug VUEHLZ(QT)HVWEHH(QT)||S0||Loo(QT)

ol Ve V(1 +eue) it \V
+ \/155 NG @ )||u€HLm+1(QT)|| <PHL’"+1(QT)
T

<CsllollLe(@r) T CslIV@llLm+1(Qr)-

For Jy, Js, from (3.15), we infer that

e

+
4l <€ (Jlue 21 o

- <C o0
o Jellz~@r) < Crlleli=en,

< 1“(1'25“5), and using (3.7), (3.15), we derive that
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and
|[J5] < Celluc|| 7o Ly +2(Q )||<P||L°°(QT) < CsllellLo(@r)-

Summing up, we conclude that when N=2, m>1; or N=3, m> %,

A (ue ) ppdads| < Collpll Loe (@r) + Croll Vol Lm1(@r)- (4.4)

(ii) Next, we turn our attention to the case N=3, 1<m<2. Recalling (3.7), (3.18)
and (4.1), noticing that m —3 <% —2<7—1, we obtain that

T
|J1|§C/ /(u§+g)mT_u?72|Vu€|2|<p|dxds
o Jao
T 2 m-1 B_]
+C (uz+e) = ul |Vue||Vy|dzds
0 Jo

T
SCH()DHLOO(QT)/O /Q(ug—kg)Tug_Qqua‘Qdajds

mo1 _1
+CH(U§+5) 41“62VU5

m—1

R

L2(QT) L2(QT)
T
m—1 — _—
<Cl¢lleion / /Q (w2 +2)"F (w5 +ul ) |V, Pdeds

m— _1
—&-CH(ug—i—a)Tlus 2Vu,

pre |
£ 4
(G RN PN | S,

L2(Qr)
A 2 m—1 7%
<Ol e gr +C || (12 +) "z * Ve

2
LZ(QT)HUEJH?HU( H S0”L2 m (Qr)
_CIH@HLOO(QT) +OQ||V<)OHL72_2M Qr)

For Js, using (3.4), (3.5) and (3.7) yields

mx

T
|2 = / / (u?_lchuEVve +u?<pAvE) dzxds
o Ja

1

\Y o0
LQ(QT)” vs||L2(QT)||SD||L (Qr)

+C el Fr gy 1A 2 Nl e o)

<Cs¢ll Lo (@r)-

As for J3, noticing that (1+8u 3z < ln(l":%), from (3.7), we infer that

m_]
[Js| <Cllue Vel r2@n) Vel 2 or) 1l L= o)

el 2 196

IL2— vn
1l L2 om (Qr)

<Cullelli=ion +CslIVell 2 o -
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Similarly, for Jy4, J5, noticing that % +1 <2, then using (3.4), we get that

341
L2 HQr

m
2

11 <C (Juc | i om

el By ) el @ < Callelli@n,

and

242

[Js| < Celluel fo s (el L=(@r) <Crllellz= @)

Summing up, we conclude that when N =3, 1<m< %,

T
| [ pdeds| < Clolimian + CollV4l 2, (4.5
From the above discussion, we see that when N =2, using (4.4),
T m
/ /(us2 )ppdxds| <Chy sup ||o|lwim+r (4.6)
0o Jo 0<t<T
since WhmHH(Q) < L>°(Q); when N =3, note that 52— <4 for m<3, we let =
max{4,m+1}. Then by (4.4) and (4.5),
T m
/ /(ug2 )ppdrds| < Cra sup |@|lwis. (4.7
0o Jao 0<t<T

This lemma is proved. O

Proof. (Proof of Theorem 1.1 and Theorem 1.2.) By Lemma 3.9, for any
£€(0,1), there exists a global classical solution (uc,v.,w:). We let e =0T (passing to
subsequences if necessary) to obtain the global ‘very’ weak solution. In what follows,
we let ‘—’ denote the strong convergence, and ‘—’ denote the weak convergence.

The following proofs are based on the uniform energy estimations in Lemma 3.2-
Lemma 3.5, Lemma 4.1 and (4.2). For simplicity, we only prove the case N=2, m>1,
and the case N =3, m > % The proof for N=3, 1<m< %, is similar, so we omit it.

Recalling (3.7), (3.15), (4.2) and (4.3), and using Aubin-Lions lemma,

m m 2 1
ug —u?, in LYQr) for any g < M
m

It implies
ue —u, in LYQr) for any g<m+1.
By (3.15), we also have

Ue —u, in Lm"rl(QT)7

Vu;n_% V™3 in L*(Qr) ,

and

m—+2
3

cu?—0, in L

(Qr),
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// \8u§|mT+2dxdt:6mT_le// W2 dpdt < Ce™F
Qr T

Noticing that (a+b)* <a®+4b* for any a,b>0, a€(0,1), then when m <3,

since

m—1

(ul4e) * u.—u (u2+e) = ue—ul +|u?—um|§£%u5+|ug‘—um

m—1 ’

when m > 3,

[

m—1
(W24e) T w—ul |+ [ul —u™|

(u?—i—s)zus—um’ <

-1 -
e(u+e) T Lue+ [ul —u™|

<Ceu %+ Ce™ u+ lul® —u™],
which implies that

m— 1
(u2+¢e) 2 1u5—>um inLP(Qr), for any p< ;
m

Employing (3.5), it gives
Ve —v, in W22’1(QT),
ve —v, Vv.—Vou, in L*(Qr).

Recalling (3.7), (3.10) and (3.12), it yields

// D?w,| dxdt<C’5// da:dt<C’5// we| D* Inw, |*dzdt < Cr.

Using (3.3), (3.6) and (3.7), we also have

we > w, in LP(Qr) for any p>1,

we —~w, in L®(Qr),

eAw.—0, in L*(Qr),

Vw, — Vw, Vyw, = Vyw,we —w;  in L*(Qr).

Noting that when € — 0, using (3.7) and (3.15),

EU2

Ue €

HlJrsuevwa_ungs L% S‘ 71+5u5vw5 L%

<ledll g, IV l2(@r) 0.

On the other hand, we also note that

||“va€”L%(QT) < ||u€||Lm+1(QT) vasHLQ(QT)’
[P < e V]
—Vw Ue|| 7 m w ,
Lheue ™l 3 = @0 e
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which implies that

u 2m+42
[ew, Ve uVwin Lo (Qr).

Since

ln(l—i—gus) 1

DT = l(——— — 1,

€ (1+9€ue Ju
_9 E
:‘1+;:u6 Ue <€’LL —>0 in L 2 (QT) with 96(0 1)
then
In(1+eue)

we —uw, in L™(Qr).
€

Similarly, using (3.16) and (3.18), we also have

4(m+1)

u:Voe —=uVo, in L™+ (Qr) for N=2,

usVue —=uVu, in L s (Qr) for N=3.

Recalling that for any ¢, ¢, € C>(Qr) with g—i =0and p(z,T)=¢(z,T) =1 (x,T)=0

—// uggotd:ﬂdt—/ ugocp(x,O)dx—// (u? -I—E)MT_’LLEAQdedt
Qr Q T
—X// uSVUEVgodmdt—f// Ue Vw:Vdzdt
T -~ L+eu.
:u// e (1 —ue fwg)gpdxdtfe// udpdads,
T Qr
—// vg(btdxdt—/ Ugo(é(m,O)das—l—/ V. Vodrdt
T Q Qr
+// Ve pdxdt — // uepdadt =0,
// wePrdxdt — /wgm/) x,0) dx—i—// vewPdrdt
T Q T

In(1+cu.
—c / V. Vipdrdt+1 // w.(1 _In(+eu) we)dzdt.
Qr Qr €

Letting € — 0, we conclude that

7// upidrdt — /uogo(:v 0) der// u™ Apdzdt— X// uNVoVedrdt
Qr
—5// uVwVedrdt=p // (1 —u—w)epdzdt,
Qr Qr

—// vqﬁtd:cdt—/ vmﬁ(:c,O)dac—i—/ Vquﬁdxdt—&—// vqﬁdxdt—// updxdt =0,

Qr Q Qr Qr Qr
—// wz/)tdmdt—/wmp(xﬁ)dx—i—// vwwdwdt:n// w(l —u—w)dzdt.

Qr 2 Qr Qr
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Noting that

4
(2 ’

L?’(QT

N\H

§C7

1 4
4 < Hmu “5Vu
L*(Qr)

L3(Q L*(Qr)

_3 1
= Hmum 2u2Vu

which implies Vu™ € L3 (Q7). Then we also have

—// uprdrdt — /uogo(x O)dx—i—/ Vu™Vpdxdt — X// uVoVodzdt
Qr Qr

—5// uNVwVpdzrdt=p // (1—u—w)pdxdt.

Hence, (u,v,w) is a ‘very’ weak solution of (1.3) such that these regularity estimates in
(1.5)-(1.10) hold. 0
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