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ON GLOBAL REGULARITY FOR A MODEL OF THE REGULARIZED
BOUSSINESQ EQUATIONS WITH ZERO DIFFUSION∗

ZHUAN YE†

Abstract. In this paper, we consider the n-dimensional regularized incompressible Boussinesq
equations with a Leray-regularization through a smoothing kernel of order α in the quadratic term and
a β-fractional Laplacian in the velocity equation. Attention is focused on the case that the temperature
equation is a pure transport equation without regularizing the velocity in the nonlinear term. We
establish the global regularity for the regularized Boussinesq equations with zero diffusion in the critical
case α+β= 1

2
+ n

4
and β≥ 1

2
. In addition, a regularity criterion via the temperature is also established

for the critical case α+β= 1
2
+ n

4
and 0<β< 1

2
.

Keywords. Boussinesq equations; Fractional dissipation; Global regularity.

AMS subject classifications. 35Q35; 35B65; 76D03.

1. Introduction and main results

The standard incompressible Boussinesq equations with zero diffusion read as fol-
lows 

∂tv+(v ·∇)v−∆v+∇p=θen, x∈Rn, t>0,

∂tθ+(v ·∇)θ=0,

∇·v=0,

v(x,0)=v0(x), θ(x,0)=θ0(x),

(1.1)

where v(x, t)=(v1(x, t), v2(x, t), · · ·, vn(x, t)) is a vector field denoting the velocity, θ=
θ(x, t) is a scalar function denoting the temperature, p is the scalar pressure and en is
the unit vector (0, 0, · · ·, 1). v0 and θ0 are the given initial data satisfying ∇·v0=0. The
Boussinesq equations model geophysical fluids such as atmospheric fronts and oceanic
currents as well as fluids in our daily life such as the Rayleigh-Benard convection (see
[5, 13, 15] for more details). Moreover, from the mathematical point of view, the full
inviscid case is analogous to the incompressible axi-symmetric swirling three dimensional
Euler equations (see e.g. [13]).

The incompressible Boussinesq equations not only have many applications in mod-
eling fluids and geophysical fluids but also are mathematically important. The global
well-posedness problems on the Boussinesq equations have recently attracted consid-
erable interest. For the case n=2, Chae [4] and Hou-Li [7] established the global
well-posedness of the problem (1.1), independently. Later, Hmidi-Keraani-Rousset [8]
successfully established the global well-posedness for the system (1.1) when −∆ was
weakened to half Laplacian, namely,

√
−∆. However, when n≥3, the global regularity

problem of (1.1) is a very challenging open problem in fluid mechanics. Remarkably,
some interesting models have been proposed to guarantee the global regularity in the
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higher dimensions. One natural generalization is to replace −∆ by Λ2β , namely,
∂tv+(v ·∇)v+Λ2βv+∇p=θen, x∈Rn, t>0,

∂tθ+(v ·∇)θ=0,

∇·v=0,

(1.2)

where the fractional Laplacian operator Λγ denotes the Zygmund operator defined
through the Fourier transform, namely

Λ̂γf(ξ)= |ξ|γ f̂(ξ).

In fact, the global existence and regularity result holds true for the system (1.2) with β≥
1
2 +

n
4 (see [10,17–19] for details). On the other hand, a weaker nonlinearity and a strong

viscous dissipation could work together to imply the regularity (see [14]). Recently,
inspired by the idea of Olson and Titi [14], Bessaih and Ferrario [2] proposed (in fact
n=3) the following regularized n-dimensional incompressible Boussinesq equations with
zero diffusion 

∂tv+(u ·∇)v+Λ2βv+∇p=θen, x∈Rn, t>0,

∂tθ+(u ·∇)θ=0,

v=u+Λ2αu,

∇·u=∇·v=0.

(1.3)

Moreover, they established the global regularity result for the system (1.3) in the case
n=3 provided that α+β≥ 5

4 and 1
2 <β< 5

4 . In our recent paper [22], the unnatural
restriction 1

2 <β< 5
4 was removed and the global results were also extended to arbitrary

spatial dimensions. More precisely, the system (1.3) admits a unique global regular
solution as long as α≥0 and β≥0 satisfy α+β≥ 1

2 +
n
4 . These results are also true

even for some logarithmically supercritical cases (see [22] for details).

It should be noted that the work of Olson and Titi [14] showed that the lack of
viscous diffusion strength may be compensated by regularizing the velocity within the
nonlinear term. This drives us to believe that regularizing the nonlinear term within the
velocity equation may be enough. Consequently, this paper aims at the global regularity
of the following regularized n-dimensional incompressible Boussinesq equations with
zero diffusion 1 

∂tv+(u ·∇)v+Λ2βv+∇p=θen, x∈Rn, t>0,

∂tθ+(v ·∇)θ=0,

v=u+Λ2αu,

∇·u=∇·v=0,

v(x,0)=v0(x), θ(x,0)=θ0(x).

(1.4)

The physical motivation of this regularization defined in terms of smoothing kernels is
very related to a sub-grid length scale in the model and these kernels work as a kind
of filter with certain widths (see [14] for more details). When α=0, (1.4) reduces to

1The author would like to express his special thanks to one of the anonymous referees of our
paper [22] for providing us with the interesting model (1.4) and helping us to derive some results for
this model.
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(1.2). Compared with the system (1.3), we only regularize the nonlinear term in the
velocity equation. More precisely, the system (1.4) is only regularized (v ·∇)v to (u ·∇)v,
without (v ·∇)θ to (u ·∇)θ. As a matter of fact, the global regularity problem for the
system (1.4) is more interesting and challenging to some extent. Now let us state our
result of this paper as follows.

Theorem 1.1. Assume that n≥3 and v0∈Hs(Rn), θ0∈Hs−β(Rn) with s>1+ n
2 . If

α≥0 and β≥ 1
2 satisfy

α+β≥ 1

2
+

n

4
,

then the Boussinesq system (1.4) admits a unique global regular solution (v, θ) such that
for any given T >0,

v∈L∞([0,T ];Hs(Rn))∩L2([0,T ];Hs+β(Rn)), θ∈L∞([0,T ];Hs−β(Rn)).

Remark 1.1. The proof of Theorem 1.1 is divided into two cases, namely,

Case 1 :α+β≥ 1

2
+

n

4
with β>

1

2
;

Case 2 :α≥ n

4
and β=

1

2
.

The proof of Theorem 1.1 is not trivial and involves the combination of an array of tools
and new techniques. The core of the proof is to establish a global a priori bound. This
is obtained by consecutively proving more and more regular global bounds. Let us now
explain the main difficulty and our arguments. When α+β≥ 1

2 +
n
4 , the best regularity

estimate is

∥u(τ)∥
L2

TH1+n
2
≤C(T,v0,θ0), (1.5)

which can not help us get any regularity for θ because θ satisfies a pure transport
equation with the convective term v ·∇θ. On the one hand, for Case 1, we fully exploit
the space-time estimates (see Lemma 2.3) to derive the following key estimates (see
Lemma 2.4)

∥∇v(t)∥L1
tL

∞
x
+∥∇θ(t)∥L1

tL
∞
x
≤C(t,v0,θ0).

Therefore, the global Hs-estimate for Case 1 follows from the above estimates im-
mediately. On the other hand, the proof of Case 2 is much more difficult which
needs several techniques, such as Littlewood-Paley technique, maximal regularity type
estimate. To bypass the above mentioned difficulty, we first establish two new com-
mutators (2.16) and (2.17). Then, combining the localized maximum principle, (1.5)
and the two commutators (2.16) and (2.17) altogether, we derive the crucial estimate
∥v(t)∥L∞

T B1
∞,∞

≤C(T, v0, θ0), where B
s
p,r denotes the nonhomogeneous Besov space (see

Appendix A for details). Finally, with this estimate at our disposal, the desired global
Hs-estimate follows immediately.

Remark 1.2. We remark that our main efforts are devoted to the proof of the critical
case α+β= 1

2 +
n
4 as the subcritical case α+β> 1

2 +
n
4 is more easier and can be handled

in the same manner with only some suitable modifications.
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Remark 1.3. Unfortunately, at present we are not able to show that Theorem 1.1
holds true under the condition α+β≥ 1

2 +
n
4 with β< 1

2 . The key reason is that the
temperature equation is a pure transport equation without regularizing the velocity in
the nonlinear term. Thus, the best information of θ is the boundedness of ∥θ(t)∥L∞

t L∞ ,
without any regularity. Therefore, it would be interesting and challenging to show the
global regularity result for this remainder case. This is left for the future. However,
if one adds some certain regularity on θ, then the global regularity of solution (v, θ)
actually holds true. More precisely, as a by-product of the proof of Theorem 1.1, we
have the following regularity criterion result.

Theorem 1.2. Assume that n≥3 and v0∈Hs(Rn), θ0∈Hs−β(Rn) with s>1+ n
2 .

Let (v, θ) be the local (in time) smooth solution of the Boussinesq system (1.4) with α+
β≥ 1

2 +
n
4 and 0<β< 1

2 corresponding to the initial condition (v0, θ0). If the following
condition holds true

∥θ(t)∥
L̃p

TB
1−2β+

2β
p

∞,∞

<∞ for 1≤p≤∞, (1.6)

then the solution (v, θ) can be extended beyond time T , where L̃p
TB

s
q,r denotes the mixed

space-time Besov spaces (see Appendix A for its definition).

The rest of the paper unfolds as follows. In Section 2 we carry out the proof of
Theorem 1.1. Section 3 is devoted to the proof of Theorem 1.2. In Appendix A, we
present the Besov spaces and some useful lemmas. For the convenience of the reader,
we present the proof of Lemma 2.1 and Lemma 2.2 in Appendix B.

2. The proof of Theorem 1.1
This section is devoted to the proof of Theorem 1.1. We first state that the existence

and uniqueness of local smooth solutions in the functional spaces Hs with s>1+ n
2 can

be performed through the standard approach (see for example [6,13]). Thus, in order to
complete the proof of Theorem 1.1, it is sufficient to establish a priori estimates that hold
for any fixed T >0. In this paper, we shall use the convention that C denotes a generic
constant, whose value may change from line to line. We shall write C(λ1,λ2,· · ·,λk) as
the constant C depends on the quantities λ1,λ2, · · ·,λk. We also denote Ψ≈Υ if there
exist two constants C1≤C2 such that C1Υ≤Ψ≤C2Υ. For a quasi-Banach space X and
for any 0<T ≤∞, we use standard notation Lp(0,T ;X) or Lp

T (X) for the quasi-Banach
space of Bochner measurable functions f from (0,T ) to X endowed with the norm

∥f∥Lp
T (X) :=


(∫ T

0

∥f(.,t)∥pX dt

) 1
p

, 1≤p<∞,

sup
0≤t≤T

∥f(.,t)∥X , p=∞.

We now recall the following two lemmas (Lemma 2.1 and Lemma 2.2), which can
be proved in the same way as Lemma 2.5 and Lemma 2.6 of [22]. For the sake of
convenience, we present the proof in Appendix B.

Lemma 2.1. Assume (v0, θ0) satisfies the assumptions stated in Theorem 1.1. Then
the corresponding smooth solution (v,θ) of (1.4) admits the following bounds for any
t>0

∥θ(t)∥Lp ≤∥θ0∥Lp , p∈ [1,∞], (2.1)
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∥v(t)∥2L2 +

∫ t

0

∥v(τ)∥2Hβ dτ ≤C(t,v0,θ0), (2.2)

∥u(t)∥2H2α +

∫ t

0

∥u(τ)∥2H2α+β dτ ≤C(t,v0,θ0). (2.3)

Lemma 2.2. Assume (v0, θ0) satisfies the assumptions stated in Theorem 1.1. If α≥0
and β≥0 satisfy α+β≥ 1

2 +
n
4 , then the corresponding smooth solution (v,θ) of (1.4)

admits the following bounds for any t>0

∥v(t)∥2Hβ +

∫ t

0

∥v(τ)∥2H2β dτ ≤C(t,v0,θ0), (2.4)

∥u(t)∥2H2α+β +

∫ t

0

∥u(τ)∥2H2α+2β dτ ≤C(t,v0,θ0). (2.5)

We note that θ satisfies a pure transport equation with the convective term v ·∇θ,
which is a big obstacle to derive the regularity of θ. Actually, in order to obtain the
regularity of θ, we need to control the norm ∥∇v∥L∞ . Consequently, our next main goal
is to derive this crucial estimate. To this end, we divided the proof into two cases.

Case 1: α+β≥ 1
2 +

n
4 with β> 1

2 .

In this case, we will make use of the following space-time estimates (see [20, Lemma
3.1]), which play a key role in proving our main result.

Lemma 2.3. Consider the following fractional dissipation equation with γ>0

∂tf+Λγf =g, f(x,0)=f0(x),

then for any 0<ε≤γ and for any 1≤p, q≤∞, we have

∥Λγ−εf∥Lq
tL

p
x
≤C(t,f0)+C∥g∥Lq

tL
p
x
. (2.6)

Now we are in a position to derive the key estimate ∥∇v∥L1
tL

∞
x
.

Lemma 2.4. Assume (v0, θ0) satisfy the assumptions of Theorem 1.1. Let (v,θ) be the
corresponding smooth solution of the system (1.4). If α+β= 1

2 +
n
4 with β> 1

2 , then the
following estimate holds

∥Λ2β−εv(t)∥L1
tL

q
x
≤C(t,v0,θ0) (2.7)

for any 0<ε<2β−1 and for any n
2β−1 <q<∞. In particular, we have

∥∇v(t)∥L1
tL

∞
x
≤C(t,v0,θ0). (2.8)

This further implies

∥∇θ(t)∥L1
tL

∞
x
≤C(t,v0,θ0). (2.9)

Proof. Due to ∇·v=0, we rewrite the first equation of (1.4) as

∂tv+Λ2βv=P(θen−u ·∇v),

where P denotes the Leray projector over divergence-free vector-fields, namely,

P :=

(
I−∇∇·

∆

)
.
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Applying the estimate (2.6) to the above equation yields

∥Λ2β−εv(t)∥L1
tL

q
x
≤C(t,v0,θ0)+∥P(θen−u ·∇v)∥L1

tL
q
x

≤C(t,v0,θ0)+C∥θen−u ·∇v∥L1
tL

q
x

≤C(t,v0,θ0)+C∥θ∥L1
tL

q
x
+C∥u ·∇v∥L1

tL
q
x

≤C(t,v0,θ0)+C∥u ·∇v∥L1
tL

q
x
, (2.10)

where we have used the fact that the Calderon-Zygmund type operators are bounded
on Lr for 1<r<∞. Thanks to the Hölder inequality and the Gagliardo-Nirenberg
inequality (see Lemma A.5), it ensures for any 0<ε<2β−1

C∥u ·∇v∥L1
tL

q
x
≤C∥u∥L∞

t L
q1
x
∥∇v∥L1

tL
q2
x

≤C∥u∥L∞
t L

q1
x
∥∇v∥

1− nq(q2−2)

q2[2(2β−1−ε)q+(q−2)n]

L1
tL

2
x

∥Λ2β−εv∥
nq(q2−2)

q2[2(2β−1−ε)q+(q−2)n]

L1
tL

q
x

≤1

2
∥Λ2β−εv(t)∥L1

tL
q
x
+C∥u∥

q2[2(2β−1−ε)q+(q−2)n]

q2[2(2β−1−ε)q+(q−2)n]−nq(q2−2)

L∞
t L

q1
x

×∥∇v∥L1
tL

2
x
,

where q1 and q2 should satisfy

1

q
− 1

q2
=

1

q1
<

2β−1−ε

n
.

If we further take q1 satisfying

2α+β− n

2
≥− n

q1
,

then it follows from (2.4) and (2.5) that

∥u∥L∞
t L

q1
x
+∥∇v∥L1

tL
2
x
≤C∥u∥L∞

t H2α+β
x

+C∥v∥L1
tH

2β
x

≤C(t,v0,θ0). (2.11)

It should be pointed out that the above q1 and q2 would work as long as β> 1
2 . Putting

(2.10)-(2.11) together leads to

∥Λ2β−εv(t)∥L1
tL

q
x
≤C(t,v0,θ0),

which is (2.7). Taking q> n
2β−1−ε , we have that

∥∇v∥L∞ ≤C∥∇v∥L2 +C∥Λ2β−εv∥Lq .

As a result, the desired estimate (2.8) follows directly. We now apply gradient operator
to (1.4)2 to get

∂t∇θ+(v ·∇)∇θ=−(∇v ·∇)θ. (2.12)

Multiplying the Equation (2.12) by |∇θ|p−2∇θ, integrating by parts and using ∇·v=0,
it yields

1

p

d

dt
∥∇θ(t)∥pLp ≤∥∇v∥L∞∥∇θ∥pLp ,

which further gives

d

dt
∥∇θ(t)∥Lp ≤∥∇v∥L∞∥∇θ∥Lp .
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Letting p→∞, we have

d

dt
∥∇θ(t)∥L∞ ≤∥∇v∥L∞∥∇θ∥L∞ . (2.13)

The Gronwall inequality and (2.8) allow us to deduce

∥∇θ(t)∥L1
tL

∞
x
≤C(t,v0,θ0).

This ends the proof of Lemma 2.4.

With the above estimates at our disposal, we are now ready to deduce the global
Hs-estimate for Case 1.

Proof. (The global Hs-estimate for Case 1.) Applying Λs to (1.4)1 and Λs−β

to (1.4)2, taking the L2 inner product with Λsv and Λs−βθ respectively, then adding
them up, we can get

1

2

d

dt
(∥Λsv(t)∥2L2 +∥Λs−βθ(t)∥2L2)+∥Λs+βv∥2L2

=−
∫
Rn

[Λs, u ·∇]v ·Λsvdx−
∫
Rn

[Λs−β , v ·∇]θΛs−βθdx

+

∫
Rn

Λsθen ·Λsvdx. (2.14)

By using the commutator (A.3), it is obvious to see

−
∫
Rn

[Λs, u ·∇]v ·Λsvdx≤C∥[Λs,u ·∇]v∥L2∥Λsv∥L2

≤C(∥∇u∥L∞∥Λsv∥L2 +∥∇v∥L∞∥Λsu∥L2)∥Λsv∥L2

≤C(∥∇u∥L∞ +∥∇v∥L∞)(∥u∥2L2 +∥Λsv∥2L2)

≤C(1+∥∇v∥L∞)(1+∥Λsv∥2L2),

−
∫
Rn

[Λs−β , v ·∇]θΛs−βθdx≤C∥[Λs−β ,v ·∇]θ∥L2∥Λs−βθ∥L2

≤C(∥∇v∥L∞∥Λs−βθ∥L2 +∥∇θ∥L∞∥Λs−βv∥L2)∥Λs−βθ∥L2

≤C(∥∇v∥L∞ +∥∇θ∥L∞)(1+∥Λs−βv∥2L2 +∥Λs−βθ∥2L2)

≤C(∥∇v∥L∞ +∥∇θ∥L∞)(1+∥Λsv∥2L2 +∥Λs−βθ∥2L2).

According to the Young inequality, it yields∫
Rn

Λsθen ·Λsvdx≤C∥Λs+βv∥L2∥Λs−βθ∥L2 ≤ 1

2
∥Λs+βv∥2L2 +C∥Λs−βθ∥2L2 .

Putting all the above estimates together, it is easy to show that

d

dt
X(t)+∥Λs+βv∥2L2 ≤C(1+∥∇v∥L∞ +∥∇θ∥L∞)X(t)

where

X(t) :=1+∥Λsv(t)∥2L2 +∥Λs−βθ(t)∥2L2 .
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Thanks to (2.8) and (2.9), we obtain by using the Gronwall inequality

∥Λsv(t)∥2L2 +∥Λs−βθ(t)∥2L2 +

∫ t

0

∥Λs+βv(τ)∥2L2 dτ ≤C(t,v0,θ0).

This completes the proof of Theorem 1.1 for Case 1.

Case 2: α≥ n
4 and β= 1

2 .

In this case, we first establish the following crucial estimate.

Lemma 2.5. Assume (v0, θ0) satisfies the assumptions stated in Theorem 1.1. Let
α≥ n

4 and β= 1
2 , then the following estimate holds

∥v(t)∥L∞
T B1

∞,∞
≤C(T, v0, θ0), (2.15)

where C(T, v0, θ0) is a constant depending on T and the initial data.

To prove Lemma 2.5, we first establish the following commutator estimates, which
play an important role.

Lemma 2.6. Let u be a divergence-free vector field and 1≤ r≤∞, then for any k≥0
and 0≤ δ≤1, we have

∥[∆kRlRi,u ·∇]v∥Lr
TL∞ ≤C(k+1)2−(1−δ)k∥u∥L̃r

TB1
∞,∞

∥v∥L̃∞
T B1−δ

∞,∞
, (2.16)

∥[∆k,u ·∇]v∥Lr
TL∞ ≤C(k+1)2−(1−δ)k∥u∥L̃r

TB1
∞,∞

∥v∥L̃∞
T B1−δ

∞,∞
, (2.17)

where Rm := ∂m√
−∆

(m=1,2,· · ·,n) are the classical Riesz transforms.

Proof. First, we make use of Bony’s decomposition to show that

[∆kRlRi,u ·∇]v=
∑

|j−k|≤4

[∆kRlRi,Sj−1u ·∇]∆jv+
∑

|j−k|≤4

[∆kRlRi,∆ju ·∇]Sj−1v

+
∑

j−k≥−4

[∆kRlRi,∆̃ju ·∇]∆jv

:=N1+N2+N3.

Now we recall the following fact. Let A be an annulus centered at the origin. Then
for every F with spectrum supported on 2jA, there exists η∈S(Rn) whose Fourier
transform supported away from the origin, such that

RlRiF =2jnη(2j .)⋆F.

For fixed k, the summation over |j−k|≤4 involves only a finite number of j′s. For the
sake of brevity, we shall replace the summations by their representative term with j=k
in N1 and N2. By Lemma A.1 and Lemma A.2, we have

∥N1∥Lr
TL∞ ≤C∥x2knη(2kx)∥L∞

T L1∥∇Sk−1u∥Lr
TL∞∥∆k∇v∥L∞

T L∞

≤C2−k
∑

k′≤k−2

∥∆k′∇u∥Lr
TL∞∥∆k∇v∥L∞

T L∞

≤C2−(1−δ)k
∑

k′≤k−2

∥∆k′∇u∥Lr
TL∞∥∆kΛ

1−δv∥L∞
T L∞
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≤C(k+1)2−(1−δ)k∥u∥L̃r
TB1

∞,∞
∥v∥L̃∞

T B1−δ
∞,∞

,

∥N2∥Lr
TL∞ ≤C∥x2knη(2kx)∥L∞

T L1∥∆k∇u∥Lr
TL∞∥Sk−1∇v∥L∞

T L∞

≤C2−k∥∆k∇u∥Lr
TL∞

∑
k′≤k−2

∥∆k′∇v∥L∞
T L∞

≤C2−k∥∆k∇u∥Lr
TL∞

∑
k′≤k−2

2δk
′
∥∆k′Λ1−δv∥L∞

T L∞

≤C2−(1−δ)k∥u∥L̃r
TB1

∞,∞
∥v∥L̃∞

T B1−δ
∞,∞

.

The last term N3 can be rewritten as

N3=
∑

j−k≥−4

∆kRlRi(∆̃ju ·∇∆jv)−
∑

j−k≥−4

∆̃ju ·∇∆kRlRi∆jv :=N1
3 +N2

3 .

Due to ∇·u=0 and k≥0, we conclude by Lemma A.1 that

∥N1
3 ∥Lr

TL∞ =

∥∥∥∥∥∥
∑

j−k≥−4

∆kRlRi∇·(∆̃ju⊗∆jv)

∥∥∥∥∥∥
Lr

TL∞

≤C
∑

j−k≥−4

2k∥∆̃ju∆jv∥Lr
TL∞

≤C
∑

j−k≥−4

2k∥∆̃ju∥Lr
TL∞∥∆jv∥L∞

T L∞

=C
∑

j−k≥−4, j≥0

2k∥∆̃ju∥Lr
TL∞∥∆jv∥L∞

T L∞

+C
∑

j−k≥−4, j=−1

2k∥∆̃ju∥Lr
TL∞∥∆jv∥L∞

T L∞

≤C2−(1−δ)k
∑

j−k≥−4, j≥0

2(2−δ)(k−j)∥∆̃j∇u∥Lr
TL∞∥∆jΛ

1−δv∥L∞
T L∞

+C
∑

j−k≥−4, j=−1

2k∥∆̃ju∥Lr
TL∞∥∆jv∥L∞

T L∞

≤C2−(1−δ)k∥u∥L̃r
TB1

∞,∞
∥v∥L̃∞

T B1−δ
∞,∞

+C2−(1−δ)k∥u∥L̃r
TB0

∞,∞
∥v∥L̃∞

T B0
∞,∞

≤C2−(1−δ)k∥u∥L̃r
TB1

∞,∞
∥v∥L̃∞

T B1−δ
∞,∞

.

With the same argument, it yields

∥N2
3 ∥Lr

TL∞ ≤C
∑

j−k≥−4

∥∆̃ju∥Lr
TL∞∥∇∆kRlRi∆jv∥L∞

T L∞

≤C
∑

j−k≥−4

2k∥∆̃ju∥Lr
TL∞∥∆jv∥L∞

T L∞

≤C2−(1−δ)k∥u∥L̃r
TB1

∞,∞
∥v∥L̃∞

T B1−δ
∞,∞

.

This allows us to get

∥N3∥Lr
TL∞ ≤C(k+1)2−(1−δ)k∥u∥L̃r

TB1
∞,∞

∥v∥L̃∞
T B1−δ

∞,∞
.
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Summing up all the above estimates, we obtain

∥[∆kRlRi,u ·∇]v∥Lr
TL∞ ≤C(k+1)2−(1−δ)k∥u∥L̃r

TB1
∞,∞

∥v∥L̃∞
T B1−δ

∞,∞
,

which is the desired estimate (2.16). Finally, (2.17) follows from the proof of (2.16).
This completes the proof of Lemma 2.6.

With (2.16) and (2.17) at our disposal, we are in a position to prove Lemma 2.5.

Proof. (Proof of Lemma 2.5.) Keeping in mind, it suffices to consider β= 1
2 . To

this end, we apply ∆k with k≥0 to the first equation of (1.4) to get

∂t∆kv+∆k{(u ·∇)v}+Λ∆kv+∇∆kp=∆kθen. (2.18)

By ∇·u=∇·v=0, we can rewrite (2.18) as

∂t∆kv+(u ·∇)∆kv+Λ∆kv=− [∆k, u ·∇]v+∆kθen+∆k
∇∇·
−∆

(θen)

−∆k
∇∂m
−∆

(ui∂ivm)

=− [∆k, u ·∇]v+∆kθen+∆k
∇∇·
−∆

(θen)

−
[
∆k

∇∂m
−∆

, ui

]
∂ivm,

where we have used the fact

ui∆k
∇∂m
−∆

∂ivm=ui∆k
∇∂i
−∆

∂mvm=0.

This implies

∂t∆kv+(u ·∇)∆kv+Λ∆kv=− [∆k, u ·∇]v+∆k(I+RRn)(θen)

− [∆kRRm, u ·∇]vm, (2.19)

where I is the n×n identity matrix and R := ∇√
−∆

is the classical Riesz transform.

According to the localized maximum principle (see [16, Theorem 1.1]), we deduce from
(2.19) that

d

dt
∥∆kv∥L∞ +c2k∥∆kv∥L∞ ≤∥[∆k, u ·∇]v∥L∞ +∥∆k(I+RRn)(θen)∥L∞

+∥[∆kRRm, u ·∇]vm∥L∞ ,

where c>0 is an absolute constant. We therefore obtain

∥∆kv(t)∥L∞ ≤∥∆kv0∥L∞e−c2kt+

∫ t

0

e−c2k(t−τ)∥[∆k, u ·∇]v(τ)∥L∞ dτ

+

∫ t

0

e−c2k(t−τ)∥∆k(I+RRn)(θen)(τ)∥L∞ dτ

+

∫ t

0

e−c2k(t−τ)∥ [∆kRRm, u ·∇]vm(τ)∥L∞ dτ. (2.20)
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Recalling (2.16) and (2.17), a straightforward computation gives∥∥∥∥∫ t

0

e−c2k(t−τ)∥[∆k, u ·∇]v(τ)∥L∞ dτ

∥∥∥∥
L∞

T

≤C∥e−c2kt∥L2
T
∥[∆k, u ·∇]v(τ)∥L2

TL∞

≤C(k+1)2−( 3
2−δ)k∥u∥L̃2

TB1
∞,∞

∥v∥L̃∞
T B1−δ

∞,∞
,

∥∥∥∥∫ t

0

e−c2k(t−τ)∥ [∆kRRm, u ·∇]vm(τ)∥L∞ dτ

∥∥∥∥
L∞

T

≤C∥e−c2kt∥L2
T
∥[∆kRRm, u ·∇]vm(τ)∥L2

TL∞

≤C(k+1)2−( 3
2−δ)k∥u∥L̃2

TB1
∞,∞

∥v∥L̃∞
T B1−δ

∞,∞
.

Due to k≥0, we may deduce∥∥∥∥∫ t

0

e−c2k(t−τ)∥∆k(I+RRn)(θen)(τ)∥L∞ dτ

∥∥∥∥
L∞

T

≤C

∥∥∥∥∫ t

0

e−c2k(t−τ)∥θ(τ)∥L∞ dτ

∥∥∥∥
L∞

T

≤C

(∫ t

0

e−c2ktdt

)
∥θ(τ)∥L∞

T L∞

≤C2−k∥θ0∥L∞ .

Inserting the above three estimates into (2.20) yields for any k≥0

∥∆kv(t)∥L∞
T L∞ ≤∥∆kv0∥L∞e−c2kt+C(k+1)2−( 3

2−δ)k∥u∥L̃2
TB1

∞,∞
∥v∥L̃∞

T B1−δ
∞,∞

+C2−k∥θ0∥L∞ . (2.21)

Moreover, it is obvious to check that

∥∆−1v(t)∥L∞
T L∞ ≤C∥∆−1v(t)∥L∞

T L2 ≤C(T,v0,θ0). (2.22)

Fixing δ∈ (0, 1
2 ), it follows from (2.21) and (2.22) that

∥v(t)∥L̃∞
T B1

∞,∞
≤C(T,v0,θ0)+C sup

k≥0
{(k+1)2−( 1

2−δ)k}∥u∥L̃2
TB1

∞,∞
∥v∥L̃∞

T B1−δ
∞,∞

≤C(T,v0,θ0)+C∥u∥L̃2
TB1

∞,∞
∥v∥L̃∞

T B1−δ
∞,∞

. (2.23)

Invoking the facts of (A.1), we thus deduce from (2.23) that

∥v(t)∥L∞
T B1

∞,∞
≤C(T,v0,θ0)+C∥u(t)∥L2

TB1
∞,∞

∥v(t)∥L∞
T B1−δ

∞,∞
.

Noticing the following interpolation inequality

∥v(t)∥L∞
T B1−δ

∞,∞
≤C∥v(t)∥

2δ
n+2

L∞
T L2∥v(t)∥

n+2−2δ
n+2

L∞
T B1

∞,∞
,
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it yields

∥v(t)∥L∞
T B1

∞,∞
≤C(T,v0,θ0)+C∥u(t)∥L2

TB1
∞,∞

∥v(t)∥
2δ

n+2

L∞
T L2∥v(t)∥

n+2−2δ
n+2

L∞
T B1

∞,∞

≤1

2
∥v(t)∥L∞

T B1
∞,∞

+C(T,v0,θ0)+C∥u(t)∥
n+2
2δ

L2
TB1

∞,∞
∥v(t)∥L∞

T L2 ,

which implies

∥v(t)∥L∞
T B1

∞,∞
≤C(T,v0,θ0)+C∥u(t)∥

n+2
2δ

L2
TB1

∞,∞
∥v(t)∥L∞

T L2 . (2.24)

It follows from the simple embedding and (2.5) that∫ T

0

∥u(τ)∥2B1
∞,∞

dτ ≤C

∫ T

0

∥u(τ)∥2
H1+n

2
dτ ≤C(T,v0,θ0).

This along with (2.24) yields

∥v(t)∥L∞
T B1

∞,∞
≤C(T, v0, θ0).

We therefore conclude the proof of Lemma 2.5.

With the above estimates at our disposal, we are now ready to prove Theorem 1.1
for Case 2.

Proof. (The global Hs-estimate for Case 2.) Recalling (2.14), we have

1

2

d

dt
(∥Λsv(t)∥2L2 +∥Λs−βθ(t)∥2L2)+∥Λs+βv∥2L2

=−
∫
Rn

[Λs, u ·∇]v ·Λsvdx−
∫
Rn

[Λs−β , v ·∇]θΛs−βθdx+

∫
Rn

Λsθen ·Λsvdx.

It follows from the commutator (A.3) that∣∣∣∣∫
Rn

[Λs, u ·∇]v ·Λsvdx

∣∣∣∣≤C∥[Λs,u ·∇]v∥L2∥Λsv∥L2

≤C(∥∇u∥L∞∥Λsv∥L2 +∥∇v∥L∞∥Λsu∥L2)∥Λsv∥L2

≤C(∥∇u∥L∞ +∥∇v∥L∞)(∥Λsu∥2L2 +∥Λsv∥2L2)

≤C(∥∇u∥L∞ +∥∇v∥L∞)∥Λsv∥2L2 . (2.25)

Thanks to ∇·v=0 and (A.4), it yields for β≥ 1
2 that∣∣∣∣∫

Rn

[Λs−β , v ·∇]θΛs−βθdx

∣∣∣∣= ∣∣∣∣∫
Rn

[Λs−β∂i, vi]θΛ
s−βθdx

∣∣∣∣
≤C∥[Λs−β∂i, vi]θ∥L2∥Λs−βθ∥L2

≤C(∥∇v∥L∞∥Λs−βθ∥L2 +∥θ∥L∞∥Λs+1−βv∥L2)∥Λs−βθ∥L2

≤C∥∇v∥L∞∥Λs−βθ∥2L2 +C∥θ∥L∞∥v∥
2β−1
s+β

L2 ∥Λs+βv∥
s+1−β
s+β

L2 ∥Λs−βθ∥L2

≤1

4
∥Λs+βv∥2L2 +C∥∇v∥L∞∥Λs−βθ∥2L2 +C∥θ∥

2(s+β)
s+3β−1

L∞ ∥v∥
2(2β−1)
s+3β−1

L2 ∥Λs−βθ∥
2(s+β)
s+3β−1

L2 . (2.26)
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The Young inequality yields∫
Rn

Λsθen ·Λsvdx≤C∥Λs+βv∥L2∥Λs−βθ∥L2 ≤ 1

4
∥Λs+βv∥2L2 +C∥Λs−βθ∥2L2 . (2.27)

Putting all the above estimates together, it is easy to show that

d

dt
Z(t)+∥Λs+βv∥2L2 ≤C

(
1+∥∇u∥L∞ +∥∇v∥L∞ +∥θ∥

2(s+β)
s+3β−1

L∞ ∥v∥
2(2β−1)
s+3β−1

L2

)
Z(t)

where

Z(t) :=1+∥Λsv(t)∥2L2 +∥Λs−βθ(t)∥2L2 .

Recall the logarithmic Sobolev inequalities (see [3, 12] for instance)

∥∇f∥L∞ ≤C
(
1+∥f∥L2 +∥Λ1+n

2 f∥L2 log
(
1+∥f∥Ḣs

))
, s>1+

n

2
, (2.28)

∥∇f∥L∞ ≤C
(
1+∥f∥L2 +∥f∥B1

∞,∞
log
(
1+∥f∥Ḣs

))
, s>1+

n

2
. (2.29)

Now we thus deduce

d

dt
Z(t)+∥Λs+βv∥2L2 ≤C

(
1+∥Λ1+n

2 u∥L2 +∥v∥B1
∞,∞

+∥θ∥
2(s+β)
s+3β−1

L∞ ∥v∥
2(2β−1)
s+3β−1

L2

)
×Z(t)lnZ(t).

According to (2.1)–(2.5) and (2.15), we obtain∫ T

0

(
1+∥Λ1+n

2 u(t)∥L2 +∥v(t)∥B1
∞,∞

+∥θ(t)∥
2(s+β)
s+3β−1

L∞ ∥v(t)∥
2(2β−1)
s+3β−1

L2

)
dt≤C(T, v0, θ0),

which together with the Gronwall inequality yields for any t≤T

∥Λsv(t)∥2L2 +∥Λs−βθ(t)∥2L2 +

∫ T

0

∥Λs+βv(τ)∥2L2 dτ ≤C(T,v0,θ0).

This ends the proof of Theorem 1.1 for Case 2.

3. The proof of Theorem 1.2
The proof of Theorem 1.2 can be performed in the same fashion as that of Theorem

1.1 with some certain modifications. Now we present the details as follows. We first
point out that due to α+β≥ 1

2 +
n
4 , Lemma 2.1 and Lemma 2.2 are still true. For

simplicity, we denote

M :=∥θ(t)∥
L̃p

TB
1−2β+

2β
p

∞,∞

<∞.

Now we will show the following crucial estimate under the assumption (1.6).

Lemma 3.1. Assume (v0, θ0) satisfies the assumptions stated in Theorem 1.2. Let
α+β≥ 1

2 +
n
4 with 0<β< 1

2 , then it holds under the assumption (1.6)

∥v(t)∥L∞
T B1

∞,∞
≤C(T,M, v0, θ0), (3.1)

where C(T,M, v0, θ0) is a constant depending on T , M and the initial data.
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Proof. We first deduce from (2.19) that

∂t∆kv+(u ·∇)∆kv+Λ2β∆kv=− [∆k, u ·∇]v+∆k(I+RRn)(θen)− [∆kRRm, u ·∇]vm.

Again, thanks to the localized maximum principle (see [16, Theorem 1.1]), it yields

d

dt
∥∆kv∥L∞ +c22βk∥∆kv∥L∞ ≤∥[∆k, u ·∇]v∥L∞ +∥∆k(I+RRn)(θen)∥L∞

+∥ [∆kRRm, u ·∇]vm∥L∞ , (3.2)

where c>0 is an absolute constant. Consequently, we have

∥∆kv(t)∥L∞ ≤∥∆kv0∥L∞e−c22βkt+

∫ t

0

e−c2k(t−τ)∥[∆k, u ·∇]v(τ)∥L∞ dτ

+

∫ t

0

e−c22βk(t−τ)∥∆k(I+RRn)(θen)(τ)∥L∞ dτ

+

∫ t

0

e−c22βk(t−τ)∥ [∆kRRm, u ·∇]vm(τ)∥L∞ dτ.

By (2.16) and (2.17), one thus obtains∥∥∥∥∫ t

0

e−c22βk(t−τ)∥[∆k, u ·∇]v(τ)∥L∞ dτ

∥∥∥∥
L∞

T

≤C∥e−c22βkt∥L2
T
∥[∆k, u ·∇]v(τ)∥L2

TL∞

≤C(k+1)2−(1+β−δ)k∥u∥L̃2
TB1

∞,∞
∥v∥L̃∞

T B1−δ
∞,∞

,

∥∥∥∥∫ t

0

e−c22βk(t−τ)∥ [∆kRRm, u ·∇]vm(τ)∥L∞ dτ

∥∥∥∥
L∞

T

≤C∥e−c22βkt∥L2
T
∥[∆kRRm, u ·∇]vm(τ)∥L2

TL∞

≤C(k+1)2−(1+β−δ)k∥u∥L̃2
TB1

∞,∞
∥v∥L̃∞

T B1−δ
∞,∞

.

By means of k≥0, one can bound it as follows∥∥∥∥∫ t

0

e−c22βk(t−τ)∥∆k(I+RRn)(θen)(τ)∥L∞ dτ

∥∥∥∥
L∞

T

≤C

∥∥∥∥∫ t

0

e−c22βk(t−τ)∥∆kθ(τ)∥L∞ dτ

∥∥∥∥
L∞

T

≤C∥e−c22βkt∥
Lp′

T

∥∆kθ(τ)∥Lp
TL∞

≤C2−
2β(p−1)k

p ∥∆kθ(τ)∥Lp
TL∞ .

Plugging the above estimates into (3.2) gives that for any k≥0

∥∆kv(t)∥L∞
T L∞ ≤∥∆kv0∥L∞e−c22βkt+C(k+1)2−(1+β−δ)k∥u∥L̃2

TB1
∞,∞

∥v∥L̃∞
T B1−δ

∞,∞

+C2−
2β(p−1)k

p ∥∆kθ(τ)∥Lp
TL∞ . (3.3)
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Moreover, one has

∥∆−1v(t)∥L∞
T L∞ ≤C∥∆−1v(t)∥L∞

T L2 ≤C(T,v0,θ0). (3.4)

Taking δ∈ (0, β), we deduce from (3.3) and (3.4) that

∥v(t)∥L̃∞
T B1

∞,∞
≤C(T,v0,θ0)+C sup

k≥0
{(k+1)2−(β−δ)k}∥u∥L̃2

TB1
∞,∞

∥v∥L̃∞
T B1−δ

∞,∞

+C∥θ(t)∥
L̃p

TB
1−2β+

2β
p

∞,∞

≤C(T,M,v0,θ0)+C∥u∥L̃2
TB1

∞,∞
∥v∥L̃∞

T B1−δ
∞,∞

.

Invoking the following facts of (A.1), it implies

∥v(t)∥L∞
T B1

∞,∞
≤C(T,M,v0,θ0)+C∥u(t)∥L2

TB1
∞,∞

∥v(t)∥L∞
T B1−δ

∞,∞
.

With the same argument in dealing with (2.24), we derive

∥v(t)∥L∞
T B1

∞,∞
≤C(T,M,v0,θ0)+C∥u(t)∥

n+2
2δ

L2
TB1

∞,∞
∥v(t)∥L∞

T L2 ,

which further gives

∥v(t)∥L∞
T B1

∞,∞
≤C(T,M, v0, θ0).

We therefore conclude the proof of Lemma 3.1.

With the help of (3.1), we are now in a position to prove Theorem 1.2. Keeping in
mind (2.14), we get that

1

2

d

dt
(∥Λsv(t)∥2L2 +∥Λs−βθ(t)∥2L2)+∥Λs+βv∥2L2

=−
∫
Rn

[Λs, u ·∇]v ·Λsvdx−
∫
Rn

[Λs−β , v ·∇]θΛs−βθdx+

∫
Rn

Λsθen ·Λsvdx.

By (2.25) and (2.27), one arrives at∣∣∣∣∫
Rn

[Λs, u ·∇]v ·Λsvdx

∣∣∣∣≤C(∥∇u∥L∞ +∥∇v∥L∞)∥Λsv∥2L2 ,∫
Rn

Λsθen ·Λsvdx≤C∥Λs+βv∥L2∥Λs−βθ∥L2 ≤ 1

4
∥Λs+βv∥2L2 +C∥Λs−βθ∥2L2 .

However, the estimate (2.26) depends heavily on the requirement β≥ 1
2 . However, our

case 0<β< 1
2 fails. Thus, we should handle this case differently. The following crude

estimate is an easy consequence of (A.3)∣∣∣∣∫
Rn

[Λs−β , v ·∇]θΛs−βθdx

∣∣∣∣
≤C∥[Λs−β , v ·∇]θ∥L2∥Λs−βθ∥L2

≤C(∥∇v∥L∞∥Λs−βθ∥L2 +∥∇θ∥L∞∥Λs−βv∥L2)∥Λs−βθ∥L2

≤C∥∇v∥L∞∥Λs−βθ∥2L2 +C∥∇θ∥L∞∥v∥
2β

s+β

L2 ∥Λs+βv∥
s−β
s+β

L2 ∥Λs−βθ∥L2
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≤1

4
∥Λs+βv∥2L2 +C∥∇v∥L∞∥Λs−βθ∥2L2 +C∥∇θ∥

2(s+β)
s+3β

L∞ ∥v∥
4β

s+3β

L2 ∥Λs−βθ∥
2(s+β)
s+3β

L2 .

Putting all the above estimates together, it is easy to show that

d

dt
(∥Λsv(t)∥2L2 +∥Λs−βθ(t)∥2L2)+∥Λs+βv∥2L2

≤C (1+∥∇u∥L∞ +∥∇v∥L∞)(∥Λsv∥2L2 +∥Λs−βθ∥2L2)+C∥∇θ∥
2(s+β)
s+3β

L∞ ∥v∥
4β

s+3β

L2 ∥Λs−βθ∥
2(s+β)
s+3β

L2 . (3.5)

However, at this moment we have no estimate for ∥∇θ∥L∞ . To this end, some special
techniques are required. To begin with, according to (3.1), it is not difficult to see that
for any small constant ϵ>0 to be fixed hereafter, there exists T0=T0(ϵ)∈ (0, T ) such
that ∫ T

T0

∥v(τ)∥B1
∞,∞

dτ ≤ ϵ.

For any T0≤ t≤T , we denote

Γ(t) := max
τ∈[T0,t]

(∥Λsv(τ)∥2L2 +∥Λs−βθ(τ)∥2L2), s>1+
n

2
.

Consequently, one may verify that Γ(t) is a monotonically nondecreasing function. Then,
the next objective is to show

lim
t→T−

Γ(t)≤C<∞.

Recalling (2.13), (2.29) and noticing the monotonicity of Γ(t), it is not hard to check
for any T0≤ t<T that

∥∇θ(t)∥L∞ ≤∥∇θ(T0)∥L∞exp
[∫ t

T0

∥∇v(τ)∥L∞ dτ
]

≤Cexp
[
C

∫ t

T0

(
1+∥v(τ)∥L2 +∥v(τ)∥B1

∞,∞
ln(e+∥Λsv(τ)∥L2

)
dτ
]

≤Cexp
[∫ t

T0

C(1+∥v∥L2)dτ
]
exp
[
C0

(∫ t

T0

∥v(τ)∥B1
∞,∞

dτ
)
ln
(
e+Γ(t)

)]
≤Cexp

[
C0

(∫ t

T0

∥v(τ)∥B1
∞,∞

dτ
)
ln
(
e+Γ(t)

)]
≤C(e+Γ(t))C0ϵ,

where C0>0 is an absolute constant whose value is independent of ϵ, T or T0. Conse-
quently, it implies

∥∇θ(t)∥L∞ ≤C(e+Γ(t))C0ϵ for any T0≤ t<T. (3.6)

Integrating (3.5) over the interval (T0,t) and making use of (2.28)-(2.29), it leads to

∥Λsv(t)∥2L2 +∥Λs−βθ(t)∥2L2 −∥Λsv(T0)∥2L2 −∥Λs−βθ(T0)∥2L2

≤C

∫ t

T0

(1+∥u(τ)∥
H

1+n
2
+∥v(τ)∥B1

∞,∞
)ln

(
e+∥Λsv(τ)∥2L2 +∥Λs−βθ(τ)∥2L2

)
×(∥Λsv(τ)∥2L2 +∥Λs−βθ(τ)∥2L2)dτ+C

∫ t

T0

∥∇θ(τ)∥
2(s+β)
s+3β

L∞ ∥Λs−βθ(τ)∥
2(s+β)
s+3β

L2 dτ,
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which along with (3.6) yields

e+Γ(t)≤C+Γ(T0)+C

∫ t

T0

(1+∥u(τ)∥
H1+n

2
+∥v(τ)∥B1

∞,∞
)ln
(
e+Γ(τ)

)
Γ(τ)dτ

+C

∫ t

T0

(
e+Γ(τ)

) 2C0ϵ(s+β)
s+3β

(
e+Γ(τ)

) s+β
s+3β dτ

≤C+Γ(T0)+C

∫ t

T0

(1+∥u(τ)∥
H1+n

2
+∥v(τ)∥B1

∞,∞
)× ln

(
e+Γ(τ)

)(
e+Γ(τ)

)
dτ,

where in the last line we have chosen 0<ϵ≤ 2β
2C0(s+β) . This tells us that

e+Γ(t)≤C+Γ(T0)+C

∫ t

T0

A(τ)ln
(
e+Γ(τ)

)(
e+Γ(τ)

)
dτ, (3.7)

where

A(τ) :=1+∥u(τ)∥
H1+n

2
+∥v(τ)∥B1

∞,∞
.

Thanks to (2.5) and (3.1), we observe∫ T

0

A(τ)dτ <∞.

Applying the Log-Gronwall inequality to (3.7), we end up with

Γ(t)≤C<∞, T0≤ t≤T.

By the local well-posedness results, the solution (v, θ) can be extended beyond time T .
Consequently, we complete the proof of Theorem 1.2.
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Appendix A. Besov spaces and some useful facts. This Appendix includes
several parts. It recalls the Littlewood-Paley theory, introduces the Besov spaces,
provides Bernstein inequalities as well as several facts used in the proof of our main
result. We start with the Littlewood-Paley theory. We choose some smooth ra-
dial nonincreasing function χ with values in [0,1] such that χ∈C∞

0 (Rn) is supported
in the ball B :={ξ∈Rn, |ξ|≤ 4

3} and with value 1 on {ξ∈Rn, |ξ|≤ 3
4}, then we set

φ(ξ)=χ
(
ξ
2

)
−χ(ξ). One easily verifies that φ∈C∞

0 (Rn) is supported in the annulus
C :={ξ∈Rn, 34 ≤|ξ|≤ 8

3} and satisfies

χ(ξ)+
∑
j≥0

φ(2−jξ)=1, ∀ξ∈Rn.

Let h=F−1(φ) and h̃=F−1(χ), then we introduce the dyadic blocks ∆j of our decom-
position by setting

∆ju=0, j≤−2; ∆−1u=χ(D)u=

∫
Rn

h̃(y)u(x−y)dy;
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∆ju=φ(2−jD)u=2jn
∫
Rn

h(2jy)u(x−y)dy, ∀j∈N.

We shall also denote

Sju :=
∑

−1≤k≤j−1

∆ku, ∆̃ju :=∆j−1u+∆ju+∆j+1u.

The nonhomogeneous Besov spaces are defined through the dyadic decomposition.

Definition A.1. Let s∈R,(p,r)∈ [1,+∞]2. The nonhomogeneous Besov space Bs
p,r

is defined as a space of f ∈S′(Rn) such that

Bs
p,r={f ∈S′(Rn);∥f∥Bs

p,r
<∞},

where

∥f∥Bs
p,r

=


( ∑
j≥−1

2jrs∥∆jf∥rLp

) 1
r

, r<∞,

sup
j≥−1

2js∥∆jf∥Lp , r=∞.

We shall also need the mixed space-time spaces

∥f∥Lρ
TBs

p,r
:=
∥∥∥(2js∥∆jf∥Lp)lrj

∥∥∥
Lρ

T

and

∥f∥L̃ρ
TBs

p,r
:= (2js∥∆jf∥Lρ

TLp)lrj .

The following links are a direct consequence of the Minkowski inequality

Lρ
TB

s
p,r ↪→ L̃ρ

TB
s
p,r, if r≥ρ, and L̃ρ

TB
s
p,r ↪→Lρ

TB
s
p,r, if ρ≥ r. (A.1)

In particular,

L̃r
TB

s
p,r≈Lr

TB
s
p,r.

The following lemma provides Bernstein-type inequalities for fractional derivatives.

Lemma A.1 (see [1]). Assume 1≤a≤ b≤∞. If the integer j≥−1, then it holds

∥Λk∆jf∥Lb ≤C12
jk+jn( 1

a− 1
b )∥∆jf∥La , k≥0.

If the integer j≥0, then we have

C22
jk∥∆jf∥Lb ≤∥Λk∆jf∥Lb ≤C32

jk+jn( 1
a− 1

b )∥∆jf∥La , k∈R,

where C1, C2 and C3 are constants depending on k,a and b only.

Let us recall the following commutator estimate (see [9, Lemma 3.2]).

Lemma A.2. Let f , g and h be three functions such that ∇f ∈L∞, g∈L∞ and
xh∈L1. Then it holds

∥h⋆(fg)−f(h⋆g)∥L∞ ≤∥xh∥L1∥∇f∥L∞∥g∥L∞ ,
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where ⋆ stands for the convolution symbol.

We recall the following commutators estimate (see [21, Lemma 2.6]).

Lemma A.3. Let f be a divergence-free vector field and 1
p =

1
p1

+ 1
p2

with p∈ [2,∞),

p1, p2∈ [2,∞], r∈ [1,∞] as well as s∈ (−1,1−δ) for δ∈ (0,2), then it holds

∥[Λδ,f ·∇]g∥Bs
p,r

≤C(p,r,δ,s)
(
∥∇f∥Lp1∥g∥Bs+δ

p2,r
+∥f∥L2∥g∥L2

)
. (A.2)

We also need the classical Kato-Ponce type commutator estimate (see [11]).

Lemma A.4. Let s>0. Let p,p1,p3∈ (1,∞) and p2,p4∈ [1,∞] satisfy

1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

Then there exist some constants C such that

∥[Λs,f ]g∥Lp ≤C
(
∥Λsf∥Lp1 ∥g∥Lp2 +∥Λs−1g∥Lp3 ∥∇f∥Lp4

)
. (A.3)

In some context, we also need the following variant version of (A.3), whose proof is the
same as that for (A.3)

∥[Λs−1∂i,f ]g∥Lr ≤C
(
∥∇f∥Lp1∥Λs−1g∥Lq1 +∥Λsf∥Lp2 ∥g∥Lq2

)
. (A.4)

The following lemma is the fractional version of the Gagliardo-Nirenberg inequality.

Lemma A.5. Let 1<p, q, r<∞, 0≤θ≤1 and s,s1,s2∈R, then the following fractional
Gagliardo-Nirenberg inequality

∥Λsu∥Lp(Rn)≤C∥Λs1u∥1−θ
Lq(Rn)∥Λ

s2u∥θLr(Rn),

holds if and only if

1

p
− s

n
=(1−θ)(

1

q
− s1

n
)+θ(

1

r
− s2

n
), s≤ (1−θ)s1+θs2.

Appendix B. The proof of Lemma 2.1 and Lemma 2.2.

Proof. (Proof of Lemma 2.1.) Multiplying the Equation (1.4)2 by |θ|p−2θ,
integrating by parts and using ∇·v=0, we get

d

dt
∥θ(t)∥Lp =0.

The desired estimate (2.1) follows by integrating it in time. Multiplying the Equation
(1.4)1 by v and integrating by parts, it yields by using (2.1) with p=2 that

1

2

d

dt
∥v(t)∥2L2 +∥Λβv∥2L2 ≤

∫
Rn

|v||θ|dx ≤∥v∥L2∥θ∥L2 ≤∥v∥L2∥θ0∥L2 . (B.1)

It follows that

d

dt
∥v(t)∥L2 ≤∥θ0∥L2 .
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Integrating in time yields

∥v(t)∥L2 ≤∥v0∥L2 + t∥θ0∥L2 .

Recalling (B.1) and integrating in time imply

∥v(t)∥2L2 +2

∫ t

0

∥Λβv(τ)∥2L2 dτ ≤∥v0∥2L2 +2

∫ t

0

∥v(τ)∥L2∥θ0∥L2 dτ

≤∥v0∥2L2 +2

∫ t

0

(∥v0∥L2 +τ∥θ0∥L2)∥θ0∥L2 dτ

=(∥v0∥L2 + t∥θ0∥L2)2.

Notice the simple fact∫ t

0

∥v(τ)∥2Hβ dτ ≈
∫ t

0

(∥v(τ)∥2L2 +∥Λβv(τ)∥2L2)dτ ≤C(t,v0,θ0).

This leads to (2.2). Noticing the following facts

v̂(ξ)= û(ξ)+ |ξ|2αû(ξ), 1

2
≤ (1+ |ξ|2)α

1+ |ξ|2α
≤2α,

we have

∥u∥Hσ =∥(1+ |ξ|2)σ
2 û(ξ)∥L2 =

∥∥∥ (1+ |ξ|2)σ
2

1+ |ξ|2α
v̂(ξ)

∥∥∥
L2

=
∥∥∥ (1+ |ξ|2)α

1+ |ξ|2α
(1+ |ξ|2)

σ−2α
2 v̂(ξ)

∥∥∥
L2

≈∥(1+ |ξ|2)
σ−2α

2 v̂(ξ)∥L2 ≈∥v∥Hσ−2α ,

which gives

∥u∥Hσ ≈∥v∥Hσ−2α . (B.2)

An easy consequence of (2.2) and (B.2) is that

∥u(t)∥2H2α +

∫ t

0

∥u(τ)∥2H2α+β dτ ≈∥v(t)∥2L2 +

∫ t

0

∥v(τ)∥2Hβ dτ

≤C(t,v0,θ0).

This completes the proof of Lemma 2.1.

Proof. (Proof of Lemma 2.2.) Applying Λβ to Equation (1.4)1 and taking the
inner product with Λβv yield

1

2

d

dt
∥Λβv(t)∥2L2 +∥Λ2βv∥2L2 =−

∫
Rn

Λβ
(
u ·∇v

)
Λβvdx+

∫
Rn

ΛβθenΛ
βvdx. (B.3)

To bound the first term at the right-hand side of (B.3), we split it into two cases, namely,
the case β<1 and the case β≥1. For the case β<1, we have by using commutator
estimate (A.2) that∣∣∣∫

Rn

Λβ
(
u ·∇v

)
Λβvdx

∣∣∣=∣∣∣∫
Rn

[Λβ ,u ·∇]vΛβvdx
∣∣∣
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≤C∥[Λβ ,u ·∇]v∥H−β∥v∥H2β

≤C(∥∇u∥
L

n
β
∥v∥B0

2n
n−2β

,2

+∥u∥L2∥v∥L2)∥v∥H2β

≤C(∥u∥H2α+β∥v∥Hβ +∥u∥L2∥v∥L2)∥v∥H2β

≤1

4
∥Λ2βv∥2L2 +C(1+∥u∥2H2α+β )∥Λβv∥2L2 +C,

where we have used the following facts

∥∇u∥
L

n
β
≤C∥u∥H2α+β , α+β=

1

2
+

n

4
,

and

∥v∥B0
2n

n−2β
,2

≤C∥v∥Hβ .

For the case β≥1, the commutator estimate (A.3) would suffice our purpose. In fact,
it implies∣∣∣∫

Rn

Λβ
(
u ·∇v

)
Λβvdx

∣∣∣=∣∣∣∫
Rn

[Λβ ,u ·∇]vΛβvdx
∣∣∣

≤C∥[Λβ ,u ·∇]v∥L2∥Λβv∥L2

≤C(∥∇u∥
L

n
β
∥Λβv∥

L
2n

n−2β
+∥∇v∥

L
2n

n−4β+2
∥Λβu∥

L
n

2β−1
)∥Λβv∥L2

≤C(∥u∥H2α+β∥Λ2βv∥L2 +∥Λ2βv∥L2∥u∥H2α+β )∥Λβv∥L2

≤1

4
∥Λ2βv∥2L2 +C(1+∥u∥2H2α+β )∥Λβv∥2L2 .

The following is a direct consequence of the Young inequality∫
Rn

ΛβθenΛ
βvdx≤∥θ∥L2∥Λ2βv∥L2 ≤ 1

4
∥Λ2βv∥2L2 +C.

Summing up the above estimates gives

d

dt
∥Λβv∥2L2 +∥Λ2βv∥2L2 ≤C(1+∥u∥2H2α+β )∥Λβv∥2L2 +C.

The classical Gronwall inequality ensures

∥Λβv(t)∥2L2 +

∫ t

0

∥Λ2βv(τ)∥2L2 dτ ≤C,

which along with (2.2) implies (2.4). It is not hard to see that (2.5) is an easy con-
sequence of (2.3) and the relation v=u+Λ2αu. This completes the proof of Lemma
2.2.
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