
COMMUN. MATH. SCI. © 2022 International Press

Vol. 20, No. 6, pp. 1613–1636

ON THE EXPECTED NUMBER OF REAL ROOTS OF RANDOM
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Abstract. In this paper, we obtain finite estimates and asymptotic formulas for the expected
number of real roots of two classes of random polynomials arising from evolutionary game theory. As
a consequence of our analysis, we achieve an asymptotic formula for the expected number of internal
equilibria in multi-player two-strategy random evolutionary games. Our results contribute both to
evolutionary game theory and random polynomial theory.
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1. Introduction

1.1. Motivation from evolutionary game theory and random polynomial
theory. Large random systems, in particular random polynomials and systems of
random polynomials, arise naturally in a variety of applications in physics (such as in
quantum chaotic dynamics [3]), biology (such as in theoretical ecology [23], evolutionary
game theory and population dynamics [19]), computer science (such as in the theory of
computational complexity [33]) and in social sciences (such as in social/complex net-
works [25]). They are indispensable in the modelling and analysis of complex systems
in which very limited information is available or where the environment changes so
rapidly and frequently that one cannot describe the payoffs of their inhabitants interac-
tion [16,18–20,24]. The study of statistics of equilibria in large random systems provides
important insight into the understanding of the underlying physical, biological and social
systems such as the complexity-stability relationship in ecosystems [17, 20, 23, 32], bio-
diversity and maintenance of polymorphism in multi-player multi-strategy games [19],
and the learning dynamics [18]. A key challenge in such a study is due to the large (but
finite) size of the underlying system (such as the population in an ecological system,
the number of players and strategies in an evolutionary game and the number of nodes
and connections in a social network). Understanding the behaviour of the system at
finite size or characterizing its asymptotic behaviour when the size tends to infinity are
of both theoretical and practical interest, see for instance [29,31].

In this paper we are interested in the number of internal equilibria in (n+1)-player
two-strategy random evolutionary games as in [8, 9, 11, 12]. We consider an infinitely
large population that consists of individuals using two strategies, A and B. We denote
by y, 0≤y≤1, the frequency of strategy A in the population. The frequency of strategy
B is thus (1−y). The interaction of the individuals in the population is in randomly
selected groups of (n+1) participants, that is, they interact and obtain their fitness from
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(n+1)-player games. In this paper, we consider symmetric games where the payoffs do
not depend on the ordering of the players. Suppose that ai (respectively, bi) is the
payoff that an A-strategist (respectively, B) achieves when interacting with a group of
n other players consisting i (0≤ i≤n) A strategists and (n− i) B strategists. In other
words, the payoff matrix is given by

Opposing A players 0 1 .. . i ... n
A a0 a1 .. . ai .. . an
B b0 b1 .. . bi .. . bn

The average payoffs (fitnesses) of strategies A and B are respectively given by

πA=
n∑

i=0

ai

(
n
i

)
yi(1−y)n−i and πB =

n∑
i=0

bi

(
n
i

)
yi(1−y)n−i.

Internal equilibria in (n+1)-player two-strategy games can be derived using the repli-
cator dynamic approach [19] or the definition of an evolutionary stable strategy, see
e.g., [4]. There are those points 0<y<1 (note that y=0 and y=1 are trivial equilibria
in the replicator dynamics) such that the fitnesses of the two strategies are the same
πA=πB , that is

n∑
i=0

ξi

(
n
i

)
yi(1−y)n−i=0 where ξi=ai−bi.

In the literature, the sequence of the difference of payoffs {ξi}i is called the gain sequence
[1, 30]. Dividing the above equation by (1−y)n and using the transformation x= y

1−y ,

we obtain the following polynomial equation for x (x>0)

Pn(x) :=

n∑
i=0

ξi

(
n
i

)
xi=0. (1.1)

In random games, the payoff entries {ai}i and {bi} are random variables, thus so is the
gain sequence {ξi}i. Therefore, the expected number of internal equilibria in a (n+1)-
player two-strategy random game is the same as the expected number of positive roots
of the random polynomial Pn, which is half of the expected number of the real roots
of Pn due to the symmetry of the distributions. This connection between evolutionary
game theory and random polynomial theory has been revealed and exploited in a recent
series of papers [8,9,11,12]. It has been shown that, if {ξi}i are i.i.d normal (Gaussian)
distributions then [8, 9]

2n

π
√
2n−3

≤ENn≤
2
√
n

π

(
1+log2+

1

2
log(n)

)
∀n, (1.2)

where Nn is the number of real roots of Pn. We emphasize that (1.2) is true for all
finite group sizes n, which is useful for practical purposes, for instance when doing
simulations. A direct consequence of this estimate is the following asymptotic limit

lim
n→∞

logENn

logn
=

1

2
. (1.3)

On the other hand, the expected number of real roots of random polynomials has been
a topic of intensive research over the last hundred years. Three most well-known classes
studied in the literature are
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(i) Kac polynomials:
∑n

i=0 ξix
i,

(ii) Weyl (or flat) polynomials:
∑n

i=0
1
i!ξix

i,

(iii) Elliptic (or binomial) polynomials:
∑n

i=0

√(
n
i

)
ξix

i.

When {ξi} are Gaussian distributions, it has been proved, see for instance [13], that

ENn=


2
π log(n)+C1+

2
nπ +O(1/n2) for Kac polynomials,

√
n for elliptic polynomials,

√
n
(

2
π +o(1)

)
for Weyl polynomials.

(1.4)

We refer the reader to standard monographs [2, 15] for a detailed account and [7, 26]
for recent developments of the topic. The asymptotic formulas (1.4) are much stronger
than the limit (1.3) because they provide precisely the leading order of the quantity
ENn. A natural question arises: Can one obtain an asymptotic formula akin to (1.4)
for the random polynomial from random multi-player evolutionary games? It has been
conjectured, in a study on computational complexity, by Emiris and Galligo [14] and
formally shown in [12] that

ENn∼
√
2n+O(1). (1.5)

In this paper, we rigorously prove generalizations of the asymptotic formula (1.5) and of
the finite group size estimates (1.2) for two more general classes of random polynomials

P (γ)
n (x)=

n∑
i=0

ξi

(
n
i

)γ

xi and P (α,β)
n (x)=

n∑
i=0

(
n+α
n− i

) 1
2
(
n+β
i

) 1
2

ξix
i. (1.6)

Here γ >0,α,β >−1 are given real numbers, {ξi}i=0,...,n are standard normal i.i.d. ran-
dom variables. The class of random polynomials Pn arising from evolutionary game

theory is a special case of both P
(γ)
n (when γ=1) and P

(α,β)
n (when α=β=0). For

general values of α,β and γ, P
(γ)
n and P

(α,β)
n are related to more complex models in

evolutionary game theory where the gain sequence {ξi}i depends not only on i but also
on group size n. An example for such scenarios is in a public goods game in which
the benefit from cooperation are shared among all group members rather than accruing

to each individual [21, 28, 29]. From a mathematical point of view, the class P
(γ)
n is a

natural extension of Pn and covers both Kac polynomials and elliptic polynomials as
special cases (corresponding to γ=0 and γ= 1

2 respectively). In addition, as previously
shown in [9], Pn is connected to Legendre polynomials. As will be shown in Section 3.1,

the class P
(α,β)
n is intrinsically related to Jacobi polynomials, which contain Legendre

polynomials as special cases. The link between Pn and Legendre polynomials in [9] is

extended to that of between P
(α,β)
n and Jacobi polynomials in the present paper.

1.2. Main results. Throughout this paper, we suppose that {ξi} are i.i.d

standard normal distributions. We denote by EN (γ)
n and EN (α,β)

n the expected number

of real roots of P
(γ)
n and P

(α,β)
n respectively. The main results of the present paper are

the following theorems.
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Theorem 1.1 (Estimates of EN
(α,β)
n for any n). Suppose that α,β>−1.

(1) (Estimates in terms of roots of a Jacobi polynomial.) Let 0<sn,max<1 be the
maximum root of the Jacobi polynomial of degree n as defined in (3.1) . Then

√
n≤EN (α,β)

n ≤
√
n
1+sn,max

1−sn,max
. (1.7)

(2) (Explicit estimates for finite n.) For all α=β>−1, it holds that

2

π

√
n(n+2α)

2n+2α−1
≤EN (α,α)

n ≤ 2
√
n

π

(
1+log(2)+

1

2
log

n+α

1+α

)
. (1.8)

Theorem 1.1, which combines Theorems 3.1 and 3.2, provides lower and upper

bounds for EN
(α,β)
n in terms of the group size n. It is only applicable to the class Pα,β

n

since our proof makes use of a connection between Pα,β
n and Jacobi polynomials. In

addition, in the second part, we use a symmetry condition on the coefficients of the

polynomial P
(α,β)
n which requires α=β. The next result characterizes the asymptotic

limits, as the group size n tends to infinity, of both EN (γ)
n and EN (α,β)

n .

Theorem 1.2 (Asymptotic behaviour as n→+∞). We have

EN (γ)
n ∼

√
2γn(1+o(1)) and EN (α,β)

n ∼
√
2n(1+o(1)) as n→∞. (1.9)

As a consequence, there is a phase transition (discontinuity) in the expected number of

roots of EN (γ)
n as a function of γ as n→∞

EN (γ)
n ∼

{
2
π log(n) for γ=0,
√
2γn for γ>0.

(1.10)

Our study on the expected number of real roots of P
(γ)
n and P

(α,β)
n contributes to

both evolutionary game theory and random polynomial theory. From an evolutionary
game theory point of view, our results show surprisingly that in random multiplayer
evolutionary games, one expects much less number of equilibria, which is proportional
to the square root of the group size, than in deterministic games (recalling that the
expected number of internal equilibria is the same as the expected number of positive
roots, which is half of the expected number of real roots). In addition, since for a poly-
nomial equation, the number of stable equilbria is half of the total number of equilibria,
our results also apply to stable equilibria. From a random polynomial theory point of
view, the present paper introduces two meaningful classes of random polynomials that
have not been studied in the literature. In particular, the fact that the asymptotic

behaviour of EN (α,β)
n is independent of α and β is rather unexpected and is interesting

in its own right. In addition the phase transition phenomenon (1.10), to the best of our
knowledge, is shown for the first time.

1.3. Organization of the paper. The rest of the paper is organized as follows.
In Section 2 we recall the Kac-Rice formula for computing the expected number of real

roots of a random polynomial. In Section 3, we establish connections between P
(α,β)
n

and Jacobi polynomials and prove Theorem 1.1. Proof of Theorem 1.2 is presented
in Section 4 and Section 5. In Section 6 we provide further discussions and outlook.
Finally, detailed proofs of technical lemmas are given in the Appendix.
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2. Kac-Rice formula
In this section, we recall the celebrated Kac-Rice formula for computing the ex-

pected number of real roots of random polynomials, which is the starting point of our
analysis. Consider a general random polynomial

pn(x)=

n∑
i=0

aiξix
i.

Let {ξ} are standard i.i.d. random variables. Let ENn(a,b) be the expected number
of real roots of pn in the interval (a,b). Then the Kac-Rice formula is given by, see for
instance [13]

ENn(a,b)=
1

π

∫ b

a

√
An(x)Mn(x)−B2

n(x)

Mn(x)
dx (2.1)

where

Mn(x)=var(pn(x)), An(x)=var(p′n(x)), B=cov(pn(x)p
′
n(x)).

We can find Mn,An and Bn explicitly in terms of the coefficients {ai} of pn as follows.
Since {ξi} are standard i.i.d. random variables, we have

p′n(x)=

n∑
i=0

aiiξix
i−1, pn(x)

2=

n∑
i,j=0

aiajξiξjx
i+j , pn(x)p

′
n(x)=

n∑
i,j=0

aiajiξiξjx
i+j−1,

E(pn(x))=
n∑

i=0

aix
iE(ξi)=0, E(p′n(x))=0

Mn(x)=var(pn(x))=E(p2n(x))−(E(pn(x)))2=
n∑

i,j=0

aiajx
i+jE(ξiξj)=

n∑
i=0

a2ix
2i,

An(x)=var(p′n(x))=E((p′n(x))2)−(E(p′n(x)))2

=

n∑
i,j=0

aiajijx
i+j−2E(ξiξj)=

n∑
i=0

a2i i
2x2(i−1),

Bn(x)=cov(pn(x)p
′
n(x))=E(pn(x)p′n(x))=

n∑
i,j=0

iaiajx
i+jE(ξiξj)=

n∑
i=0

ia2ix
2i−1.

In conclusion, we have

Mn(x)=

n∑
i=0

a2ix
2i, An(x)=

n∑
i=0

a2i i
2x2(i−1), Bn(x)=

n∑
i=0

ia2ix
2i−1. (2.2)

Furthermore, the following relations between Mn,An and Bn, which follow directly from
the above formulas, will also be used in the subsequent sections:

Bn(x)=
1

2
M ′

n(x), An(x)=
1

4x

(
xM ′

n(x)
)′
,

An(x)Mn(x)−B2
n(x)

M2
n(x)

=
1

4

(M ′′
n (x)

Mn(x)
+

1

x

M ′
n(x)

Mn(x)
−
(M ′

n(x)

Mn(x)

)2)
=

1

4

( 1
x

M ′
n(x)

Mn(x)
+
(M ′

n(x)

Mn(x)

)′)
=

1

4x

(
x
M ′

n(x)

Mn(x)

)′
,
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where the prime ′ notation denotes a derivative with respect to the variable x.

Let EN (γ)
n (a,b) and EN (α,β)

n (a,b) be respectively the expected number of real roots

of P
(γ)
n and of P

(α,β)
n in a given interval [a,b]. Applying (2.1)-(2.2) to P

(γ)
n and to

P
(α,β)
n , we obtain the following common formula for EN (γ)

n (a,b) and EN (γ)
n (a,b) but

with different triples {An,Bn,Mn}

EN (∗)
n (a,b)=

1

π

∫ b

a

√
An(x)Mn(x)−B2

n(x)

Mn(x)
dx, (2.3)

where (∗)∈{(γ),(α,β)}. For EN
(γ)
n (a,b):

Mn(x)=
n∑

k=0

(
n
k

)2γ

x2k, An(x)=
n∑

k=0

k2
(
n
k

)2γ

x2(k−1), Bn(x)=
n∑

k=0

k

(
n
k

)2γ

x2k−1.

(2.4)

For EN
(α,β)
n :

Mn(x)=

n∑
k=0

(
n+α
n−k

)(
n+β
k

)
x2k, An(x)=

n∑
k=0

k2
(
n+α
n−k

)(
n+β
k

)
x2(k−1),

Bn(x)=

n∑
k=0

k

(
n+α
n−k

)(
n+β
k

)
x2k−1. (2.5)

By writing EN (γ)
n or EN (α,β)

n it becomes clear which class of random polynomials is
under consideration; therefore, for notational simplicity, we simply write {An,Bn,Mn}
without superscripts (γ) or (α,β). The above Kac-Rice formulas are starting points for
our analysis. The difficulty now is to analyze the integrand in (2.3) for each class of
random polynomials.

3. Finite group-size estimates

In this section, we show a connection between the class P
(α,β)
n and Jacobi polyno-

mials which extends that of between Pn and Legendre polynomials in [9]. Using this

connection, we will prove Theorem 1.1 on the estimates of EN (α,β)
n for finite n.

3.1. Connections to Jacobi polynomials and finite estimates of EN (α,β)
n .

We recall that the Jacobi polynomial is given by

J (α,β)
n (x)=

n∑
i=0

(
n+α
n− i

)(
n+β
i

)(x−1

2

)i(x+1

2

)n−i

. (3.1)

If α=β, Jacobi’s polynomial J
(α,β)
n (x) is called an ultraspherical polynomial. Legendre’s

polynomial is a special case of Jacobi’s polynomial when α=β=0. It is well-known

that the zeros of J
(α,β)
n are real, distinct and are located in the interior of the interval

[−1,1] [34]. The following lemma links M
(α,β)
n to Jacobi polynomials. Its proof is given

in the Appendix.

Lemma 3.1. It holds that

M (α,β)
n (x)=(1−x2)nJ (α,β)

n

(1+x2

1−x2

)
. (3.2)

The following theorem provides estimates of EN (α,β)
n in terms of the maximum root of

the Jacobi polynomial.
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Theorem 3.1. Let 0<sn,max<1 be the maximum root of the Jacobi polynomial of

degree n. Then the expected number of real roots, EN (α,β)
n , of P

(α,β)
n satisfies

√
n≤EN (α,β)

n ≤
√
n
1+sn,max

1−sn,max
. (3.3)

Proof. Let {−1<s1<s2<...<sn<1} be the zeros of the Jacobi polynomial of
degree n. Note that sk=−sn+1−k<0 for k=1,. ..,⌊n

2 ⌋. We deduce from Lemma 3.1 that

Mn has 2n distinct zeros given by {±i
√

1−sk
1+sk

, 1≤k≤n} which are purely imaginary.

Thus Mn can be written as

Mn(x)=mn

n∏
k=1

(x2+rk), (3.4)

where mn is the leading coefficient and for 1≤k≤n

rk=
1−sk
1+sk

>0. (3.5)

It follows from the properties of {sk} that r1>r2>...>rn>0 and rkrn+1−k=1 for
k=1,. ..,⌊n

2 ⌋. Using the representation (3.4) of Mn we have

M ′
n(x)=2xmn

n∑
k=1

∏
j ̸=k

(x2+rj),
M ′

n(x)

Mn(x)
=

n∑
k=1

2x

x2+rk
,
(
x
M ′

n(x)

Mn(x)

)′
=

n∑
k=1

4xrk
(x2+rk)2

.

Hence the density function can be represented as

fn(x)
2=

1

4x

(
x
M ′

n(x)

Mn(x)

)′
=

n∑
k=1

rk
(x2+rk)2

. (3.6)

Since 0<rn<...<r1, we deduce that

fn(x)
2=

n∑
k=1

rk
(x2+rk)2

≤n
r1

(x2+rn)2
, (3.7)

that is

fn(x)≤
√
n

√
r1

x2+rn
.

Since

EN (α,β)
n =

1

π

∫ ∞

−∞
fn(x)dx

we have

EN (α,β)
n ≤ 1

π

∫ ∞

−∞

√
nr1

x2+rn
dx,

that is, since
∫∞
−∞

1
x2+a dx=

π√
a
for a>0,

EN (α,β)
n ≤

√
n

√
r1
rn

.
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Since r1rn=1, the above expression can be written as

EN (α,β)
n ≤

√
nr1.

From (3.5), we obtain the following upper estimate for EN (α,β)
n in terms of roots of

Jacobi’s polynomials

EN (α,β)
n ≤

√
n
1−s1
1+s1

=
√
n
1+sn
1−sn

.

It remains to derive a lower bound for EN (α,β)
n . From (3.6) and using Cauchy-Schwartz

inequality we have (
n∑

k=1

√
rk

x2+rk

)2

≤n

n∑
k=1

rk
(x2+rk)2

=nfn(x)
2,

from which we deduce

fn(x)≥
1√
n

n∑
k=1

√
rk

x2+rk
.

Therefore,

EN (α,β)
n =

1

π

∫
−∞

fn(x)dx≥
1√
n

n∑
k=1

∫ ∞

−∞

√
rk

π(x2+rk)
dx=

√
n.

It is worth noticing that this lower bound is independent of α,β. This completes the
proof of the theorem.

The following theorem provides an explicit finite estimate for EN (α,β)
n in the ultra-

spherical case. It generalizes a previous result for α=0 (see (1.2)) obtained in [9].

Theorem 3.2. Consider the ultraspherical case (i.e., α=β). We have

2

π

√
n(n+2α)

2n+2α−1
≤EN (α,α)

n ≤ 2
√
n

π

(
1+log(2)+

1

2
log

n+α

1+α

)
. (3.8)

As a consequence,

lim
n→+∞

log(EN (α,α)
n )

log(n)
=

1

2
. (3.9)

Proof. Since α=β changing x to 1/x and x to −x leaves the distribution of the

coefficients of P
(α,α)
n (x) invariant. Thus we obtain that

EN (α,β)
n =4EN (α,β)

n (−∞,−1)=4EN (α,β)
n (−1,0)=4EN (α,β)

n (0,1)=4EN (α,β)
n (1,∞).

It follows from (3.6) that fn(x) is decreasing on (0,+∞). Thus for any x∈ [0,1], we
have

fn(0)=

√
n(n+α)

1+α
≥fn(x)≥fn(1)=

1

2

√
n(n+2α)

2n+2α−1
. (3.10)
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In addition, since (x2+rk)
2≥4rkx

2 for all x>0, we also deduce from (3.6) that

fn(x)
2≤ n

4x2
for x>0,

that is

fn(x)≤
√
n

2x
for x>0. (3.11)

Using the second inequality in (3.10) we obtain the lower bound for EN (α,β)
n as follows

EN (α,β)
n =

4

π

∫ 1

0

fn(x)dx≥
4

π

∫ 1

0

fn(1)dx=
4fn(1)

π
=

2

π

√
n(n+2α)

2n+2α−1
.

Using the first inequality in (3.10) and (3.11) we obtain the following upper bound for

EN (α,β)
n for any 0<γ<1

EN (α,β)
n =

4

π

∫ 1

0

fn(x)dx=
4

π

(∫ γ

0

fn(x)dx+

∫ 1

γ

fn(x)dx
)

≤ 4

π

(∫ γ

0

fn(0)dx+

∫ 1

γ

√
n

2x
dx
)

=
4

π

(
γ

√
n(n+α)

1+α
−

√
n

2
log(γ)

)
.

We choose γ∈ (0,1) that minimizes the right-hand side of the above expression. That
is

γ=
1

2

√
1+α

n+α
,

which gives

EN (α,β)
n ≤ 2

√
n

π

(
1+log(2)+

1

2
log

n+α

1+α

)
.

This completes the proof of the theorem.

Remark 3.1. The connections to Jacobi polynomials is crucial in our approach to
obtain finite n estimates for the expected number of the real roots of the class Pα,β

n .
It is an interesting question to derive such estimates for the class P γ

n . In the special
case γ=0, this problem has been studied intensively in the literature [6, 36–38] using
the explicit formula

E(N (0)
n )=

4

π

∫ 1

0

√
1−h2

n(x)

1−x2
dx

where hn(x)=(n+1)xn(1−x2)/(1−x2n+2) computed earlier by Kac [22]. The explicit
and benign formulation of the density function enables the authors in the mentioned

papers to get lower and upper bounds for E(N (0)
n ) in terms of the degree n. In the

general case, the density function (2.4) is much more complicated, and to the best of

our knowledge, there is no existing connection between P
(γ)
n with a well-known special

polynomial as in the class Pα,β
n . As such, currently it is not clear to us how to obtain

similar results in Theorem 1.1 for the class P
(γ)
n for an arbitrary γ>0. We leave this

interesting problem for future research.
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4. Asymptotic behaviour of EN
(γ)
n

In this section, we prove Theorem 1.2 obtaining asymptotic formulas for EN (γ)
n .

Strategy of the proof. Let us first explain the main idea of the proof since it requires a
rather delicate analysis. The first observation is that, similarly as the proof of Theorem
3.2, since changing x to 1/x and x to −x leaves the distribution of the coefficients of

P
(γ)
n (x) invariant, we have

EN (γ)
n (−∞,−1)=EN (γ)

n (−1,0)=EN (γ)
n (0,1)=EN (γ)

n (1,∞).

Thus EN (γ)
n =4EN (γ)

n (0,1) and it suffices to analyze EN (γ)
n (0,1). We then split

the interval (0,1) further into two smaller intervals (0,η) and (η,1), EN (γ)
n (0,1)=

EN (γ)
n (0,η)+EN (γ)

n (η,1) for a carefully chosen 0<η<1 (which may depend on n) such

that EN (γ)
n (0,η) is negligible. To select a suitable η, we will use Jensen’s inequality

(see Lemma 4.1) that provides an upper bound on the number of roots of an analytic
function (including polynomials) in an open ball. As such, we obtain η=n−3γ/4 and
write

EN (γ)
n (0,1)=EN (γ)

n (0,n−3γ/4)+EN (γ)
n (n−3γ/4,1).

In fact, as will be shown, EN (γ)
n (0,n−3γ/4) is of order o(

√
n), which is negligible

(see Proposition 4.1). The next step is to obtain precisely the leading order in

EN (γ)
n (n−3γ/4,1). We recall that by Kac-Rice formula (see Section 2) we have

EN (γ)
n (n−3γ/4,1)=

∫ 1

n−3γ/4

√
An(x)Mn(x)−B2

n(x)

Mn(x)
dx (4.1)

where An,Bn and Mn are given in (2.4). Therefore, we need to understand thor-
oughly the asymptotic behaviour of An(x)Mn(x)−B2

n(x) and of Mn(x) in the interval
[n−3γ/4,1]. This will be the content of Proposition 4.2. Its proof requires a series of
technical lemmas and will be presented in the Appendix.

We now follow the strategy, starting with Jensen’s inequality.

Lemma 4.1 (Jensen’s inequality). Let R>r>0 and f be an analytic function on an
open domain that contains the closed disk B(R)={z∈C : |z|≤R}. Then the number of
roots (including multiplicities) of f in B(r)={z∈C : |z|≤ r}, denoted by Nf (r), satisfies

Nf (r)≤
log MR

Mr

log R2+r2

2Rr

, (4.2)

where Mt=max|z|≤t |f(z)| for t>0.

An elementary proof of Jensen’s inequality can be found in [27, Section 15.5]. Now

we show that EN (γ)
n (0,n−3γ/4) is negligible as an interesting application of Jensen’s

inequality.

Proposition 4.1. We have

EN (γ)
n (0,n−3γ/4)=o(

√
n).

Proof. We aim to apply (4.2) to P
(γ)
n (z), which is indeed an entire function. Let

r=n−3γ/4 and R=n−2γ/3. Then

log
R2+r2

2Rr
≍ logn. (4.3)
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Moreover,

Mr=max
|z|≤r

|P (γ)
n (z)|≥ |P (0)|= |ξ0|, (4.4)

and

MR= max
|z|≤R

|P (γ)
n (z)|≤

n∑
i=0

|ξi|Ri

(
n

i

)γ

≤ max
0≤i≤n

|ξi|×
n∑

i=0

(
n∑

i=0

Ri/γ

(
n

i

))γ

≤n max
0≤i≤n

|ξi|×(1+R1/γ)nγ

≤n max
0≤i≤n

|ξi|×exp(γO(n1/3)). (4.5)

We define the event

E=
{
max
1≤i≤n

|ξi|≤n
}
∩{n−1≤|ξ0|≤n}.

Since {ξi}i=0,...,n are standard normal i.i.d. random variables,

P(E)≥1−O(1/n). (4.6)

By combining (4.2)–(4.5), we obtain

N (γ)
n (r)I(E)≤ Cn1/3

logn
, (4.7)

for some positive constant C, where N
(γ)
n (r) is the number of roots of P

(γ)
n in the ball

B(r) defined above. We notice also that N
(γ)
n (r)≤n. Therefore, by (4.6) and (4.7)

EN (γ)
n (0,n−3γ/4)≤EN (γ)

n (r)=E[N (γ)
n (r)I(E)]+E[N (γ)

n (r)I(Ec)]

≤ Cn1/3

logn
+nP(Ec)≤Cn1/3.

As a consequence, we obtain

EN (γ)
n (0,n−3γ/4)=o(

√
n). (4.8)

As already mentioned, the following proposition characterizes precisely the asymp-
totic behaviour of AnMn−B2

n and of Mn, the two quantities appearing in (4.1). The
proof of this proposition is presented in the Appendix.

Proposition 4.2. If 1≥x≥ (logn)4γ

nγ then

Mn(x)=

n∑
i=0

(
n

i

)2γ

x2i=

(
n

iγ,x

)2γ

x2iγ,x ×(
√
π+o(1))

√
nx1/γ

γ(1+x1/γ)2
, (4.9)

and

An(x)Mn(x)−B2
n(x)=

(
n

iγ,x

)2γ

x4iγ,x−2×
(π
2
+o(1)

)( nx1/γ

γ(1+x1/γ)2

)2

, (4.10)
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where iγ,x=[ntγ,x] with tγ,x=
x1/γ

1+x1/γ .

We are now ready to prove the asymptotic behaviour of EN (γ)
n (the first part of

(1.9) in Theorem 1.2).

Proof. (Proof of asymptotic formula of EN (γ)
n .) From Proposition 4.1, Propo-

sition 4.2 and Kac-Rice formula, we get

EN (γ)
n (0,1)=EN (γ)

n (0,n−3γ/4)+EN (γ)
n (n−3γ/4,1)

=
1

π

∫ 1

n−3γ/4

√
An(x)Mn(x)−B2

n(x)

Mn(x)
dx+o(

√
n)

=

√
n√
2π

∫ 1

0

x
1
2γ −1

√
γ
(
1+x1/γ

)dx+o(
√
n)

=

√
n√
2π

×
2
√
γπ

4
+o(

√
n)=

√
2γn

4
+o(

√
n),

where the last line follows from the change of variable u=x1/(2γ) and the equality∫ 1

0

du

1+u2
=

π

4
. Hence

EN (γ)
n =4EN (γ)

n (0,1)=
√
2γn+o(

√
n).

The proof is complete.

5. Asymptotic behaviour of EN
(α,β)
n

This section deals with the asymptotic formula of EN (α,β)
n (the second part of

(1.9) in Theorem 1.2). The strategy of the proof is as follows. We will first relate

the asymptotic behaviour of EN (α,β)
n for general (α,β) to that of EN (0,0)

n for α=β=0.

We then exploit the relation that EN (0,0)
n =EN (1)

n and use the result from the previous
section.

The negligible interval [0,n−3/4]. We use the same argument as in Proposition 4.1.
The estimate for MR can be replaced as

MR= max
|z|≤R

|P (α,β)
n (z)|≤

n∑
i=0

|ξi|Ri

(
n+α

n− i

) 1
2
(
n+β

i

) 1
2

≤ max
0≤i≤n

|ξi|(n+ |α|)|α|(n+ |β|)|β|×
n∑

i=0

Ri

(
n

i

)
≤ max

0≤i≤n
|ξi|×exp(O(n1/3)),

where, for the second line we used the inequality that
(
n+α
k

)
≤
(
n
k

)
(n+ |α|)2|α|. Then by

repeating the same argument in Proposition 4.1, we can show that

E[N (α,β)
n (0,n−3/4)]=o(

√
n). (5.1)

The main interval [n−3/4,1]. We first study the coefficients. It follows from Stirling
formula that as i∧(n− i)→∞,

a
(α,β)
i =

(
n+α

n− i

)(
n+β

i

)
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=(1+o(1))

√
(n+α)(n+β)

4π2i(i+α)(n− i)(n+β− i)
exp

(
(n+α)I( α+i

n+α )+(n+β)I( i
n+β )

)
=(1+o(1))

n

2πi(n− i)
exp

(
(n+α)I( α+i

n+α )+(n+β)I( i
n+β )

)
,

where I(t)=−t logt+(t−1)log(1− t). By Taylor expansion,

I( i+α
n+α )= I( i

n )+I ′( i
n )

(
i+α

n+α
− i

n

)
+O(I ′′(i/n))n−2

= I( i
n )+I ′( i

n )
α(n− i)

n2
+O( 1

i(n−i) ).

Note that I ′′(t)=−t−1(1− t)−1. Therefore, as i∧(n− i)→∞,

(n+α)I( i+α
n+α )−nI( i

n )=(1+o(1))

(
αI( i

n )+αI ′( i
n )

(n− i)

n

)
. (5.2)

Similarly,

(n+β)I( i
n+β )−nI( i

n )=(1+o(1))

(
βI( i

n )−βI ′( i
n )

i

n

)
.

Hence,

a
(α,β)
i =(1+o(1))

n

2πi(n− i)
exp

(
(α+β)I( i

n )+I ′( i
n )

α(n− i)−βi

n

)
exp(2nI( i

n )),

so that

a
(α,β)
i =(1+o(1))exp

(
(α+β)I( i

n )+I ′( i
n )

α(n− i)−βi

n

)
a
(0,0)
i

=(1+o(1))h(α,β)(
i
n )a

(0,0)
i ,

where, for t∈ (0,1)

h(α,β)(t)=(α+β)I(t)+I ′(t)(α(1− t)−βt).

Suppose that x∈ [n−3/4,1]. In the case (α,β)=(0,0), or equivalently the case γ=1, in

Lemma A.2 below, we show that the terms a
(0,0)
i xi attain the maximum around i=

ix± i
3/4
x with ix=[nx/(x+1)], and the other terms are negligible. Here, the asymptotic

behavior of a
(α,β)
i differs from that of a

(0,0)
i only on the term h(α,β)(

i
n ) which is minor

compared with a
(0,0)
i . Hence, using exactly the same analysis in Lemma A.2, we can

also show that these terms a
(α,β)
i xi, when |i− ix|≥ i

3/4
x , are negligible. Therefore,

M (α,β)
n (x)=(1+o(1))

∑
i:|i−ix|≤i

3/4
x

a
(α,β)
i xi=(1+o(1))

∑
i:|i−ix|≤i

3/4
x

h(α,β)(
i
n )a

(0,0)
i xi

=(1+o(1))h(α,β)(
x

x+1 )
∑

i:|i−ix|≤i
3/4
x

a
(0,0)
i xi=(1+o(1))h(α,β)(

x
x+1 )M

(0,0)
n (x),

since when |i− ix|≤ i
3/4
x , we have h(α,β)(

i
n )=(1+o(1))hα,β(

x
x+1 ). Similarly,

A(α,β)
n (x)=(1+o(1))h(α,β)(

x
x+1 )A

(0,0)
n (x), B(α,β)

n (x)=(1+o(1))h(α,β)(
x

x+1 )B
(0,0)
n (x).



1626 ROOTS OF RANDOM POLYNOMIALS FROM EVOLUTIONARY GAME THEORY

Thus for x∈ [n−3/4,1],

f (α,β)
n (x)=(1+o(1))f (0,0)

n (x),

and hence

EN (α,β)
n (n−3/4,1)=(1+o(1))EN (0,0)

n (n−3/4,1)=(1+o(1))

√
2n

4
. (5.3)

Combining (5.1) and (5.3), we obtain that EN (α,β)
n (0,1)=(1+o(1))

√
2n
4 , and hence

EN (a,b)
n =4EN (a,b)

n (0,1)=(1+o(1))
√
2n.

6. Summary and outlook
In this paper, we have proved asymptotic formulas for the expected number of

real roots of two general classes of random polynomials. As a consequence, we have
obtained an asymptotic formula for the expected number of internal equilibria in multi-
player two-strategy random evolutionary games. Our results deepen the connection
between evolutionary game theory and random polynomial theory, which was discovered
previously in [9, 11]. Below we discuss some important directions for future research.

Extensions to other models in EGT. The class of random polynomials that we stud-
ied in this paper arises from the replicator dynamics. It would be interesting to gener-
alize our results to more complex models in evolutionary game theory and population
dynamics. The most natural model to study next is the replicator-mutator dynamics
where mutation is present. Equilibria for the replicator-mutator dynamics are positive
roots of a much more complicated class of random polynomials, which depend on the
mutation. Studying the effect of mutation on the equilibrium properties, in particular
on the expected number of internal equilibria, is a challenging problem, see [10] for an
initial attempt. One can also ask whether our results can be extended to multi-player
multi-strategy evolutionary games whose equilibria are positive roots of a system of ran-
dom polynomials. In this case, the assumption that the gain sequence is independent
is not realistic from evolutionary game theory’s point of view (see [8, Remark 4] for a
detailed explanation). Therefore, one needs to deal with a dependent system of random
polynomials, which is very challenging.

Universality and other statistical properties. The assumption that the random vari-
ables {ξi}ni=0 are Gaussian distributions is crucial in the present paper. It allowed us to
employ the fundamental tool of Kac-Rice formula in Section 2. What happens if {ξi}
are not Gaussian? Very recently, it has been shown that universality phenomena hold
for three classes of random polynomials: Kac polynomials, elliptic polynomials, and
Weyl polynomials (recall the Introduction for their explicit expressions) [7,26,35]. The
universality results state that the expectation of the number of real roots of these classes
of random polynomials depend only on the mean and variance of the coefficients {ξi}
but not on their type of the distributions. It would be very interesting to obtain such
a universality theorem for the class of random polynomials arising from evolutionary
game theory studied in this paper. The distributions of the roots in different classes are
different, and the methods to study them need to be tailored to each class. It remains
elusive to us whether the techniques in [7,26,35] can be applied to the class of random
polynomials in this paper. Furthermore, studying other statistical properties such as
central limit theorem and the distribution of the number of equilibria also demands
future investigations, see for instance [5] for a characterization of the probability that a
multiplayer random evolutionary random game has no internal equilibria.
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Appendix. In this appendix, we present detailed computations and proofs of
technical results used in previous sections.

A.1. Proof of Lemma 3.1 and detailed computations of fn(0) and fn(1).
In this section, we prove Lemma 3.1 and compute fn(0) and fn(1).

Proof. (Proof of Lemma 3.1). It follows from the definition of Jacobi polynomial
(3.1) that for any q∈R

Jα,β
n

(
1+q

1−q

)
=

1

2n

n∑
i=0

(
n+α
n− i

)(
n+β
i

)(
1+q

1−q
−1

)i(
1+q

1−q
+1

)n−i

=
1

2n

n∑
i=0

(
n+α
n− i

)(
n+β
i

)(
2q

1−q

)i(
2

1−q

)n−i

=
1

(1−q)n

n∑
i=0

(
n+α
n− i

)(
n+β
i

)
qn−i.

Taking q=x2 yields the statement of Lemma 3.1.
Next we compute fn(0) and fn(1). We have

Mn(0)=

(
n+α
n

)
, An(0)=

(
n+α
n−1

)(
n+β
1

)
=(n+β)

(
n+α
n−1

)
, Bn(0)=0. (A.1)

Thus

fn(0)
2=

An(0)Mn(0)−Bn(0)
2

Mn(0)2
=

An(0)

Mn(0)
=

n(n+β)

α+1
,

that is

fn(0)=

√
n(n+β)

1+α
.

Next we compute fn(1). We have

Mn(1)=

n∑
i=0

(
n+α
n− i

)(
n+β
i

)
=

(
2n+α+β

n

)
.

Using the following formula for the derivative of Jacobi polynomials [34, Section 4.5]

(2n+α+β)(1−x2)
d

dx
J (α,β)
n (x)

=−n
(
(2n+α+β)x+β−α

)
J (α,β)
n (x)+2(n+α)(n+β)J

(α,β)
n−1 (x)

and Lemma 3.1 we obtain the following formula for the derivative of Mα,β
n (x).
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x(2n+α+β)M ′
n(x)=

(
n(2n+α+β)+β−α

)
M (α,β)

n (x)

−2(1−x2)(n+α)(n+β)M
(α,β)
n−1 (x). (A.2)

Applying (A.2) for x=1, we obtain

Bn(1)=
1

2
M ′

n(1)=
n(2n+α+β)+β−α)Mn(1)

2(2n+α+β)
=

1

2

(
n+

β−α

2n+α+β

)(
2n+α+β

n

)
.

Taking derivative of (A.2) we have

(2n+α+β)(M ′
n(x)+xM ′′

n (x))=(n(2n+α+β)+β−α)M ′
n(x)

−2(n+α)(n+β)
[
−2xMn−1(x)+(1−x2)M ′

n−1(x)
]
.

It follows that

An(1)=
1

4
(M ′

n(1)+M ′′
n (1))

=
1

4(2n+α+β)

[
(n(2n+α+β)+β−α)M ′

n(1)+4(n+α)(n+β)Mn−1(1)
]

=
1

4

(
n+

β−α

2n+α+β

)2(2n+α+β
n

)
+

(n+α)(n+β)

2n+α+β

(
2n+α+β−2

n−1

)
.

Hence

fn(1)=

√
An(1)Mn(1)−Bn(1)2

Mn(1)

=

√
(n+α)(n+β)

2n+α+β

√√√√√√√
(
2n+α+β−2

n−1

)
(
2n+α+β

n

)

=
1

2n+α+β

√
n(n+α)(n+β)(n+α+β)

2n+α+β−1
.

In particular, when α=β,

fn(1)=
1

2

√
n(n+2α)

2n+2α−1
.

A.2. Proof of Proposition 4.2. In this section we prove Proposition 4.2. The
proof will be established after a series of technical lemmas. We start with the following
lemma that provides an estimate for a power of the binomial coefficient, which is a key
factor appearing in the expressions of An,Bn and Mn.

Lemma A.1. For 0<t<1 and x>0 we define I(t) := tlog 1
t +(1− t)log 1

1−t and
Jγ,x(t) :=γI(t)+ tlogx. Then(

n
i

)γ

xi=

(
n

2πi(n− i)

)γ/2(
1+O

(
1

i
+

1

n− i

))γ

enJγ,x( i
n ). (A.3)
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Proof. It follows from Stirling formula

i!=
√
2πi(1+O(i−1))

(
i

e

)i

that (
n
i

)
=

√
n

2πi(n− i)

(
1+O

(
1

i
+

1

n− i

))
enI(

i
n ),

where

I(t)= tlog
1

t
+(1− t)log

1

1− t
.

Therefore, (
n
i

)γ

xi=

(
n

2πi(n− i)

)γ/2(
1+O

(
1

i
+

1

n− i

))γ

enJγ,x( i
n ),

which is the statement of the lemma.

Lemma A.2. We define

tγ,x :=
x1/γ

1+x1/γ
and iγ,x := ⌊ntγ,x⌋. (A.4)

We note that tγ,x is the unique solution of the equation J ′
γ,x(t)=0, where

J ′
γ,x(t)=γ log

1− t

t
+logx and J ′′

γ,x(t)=
−γ

t(1− t)
. (A.5)

Assume that 1≥x≥ (logn)4γ/nγ . Then the following holds for all n large enough:

a. If |i− iγ,x|≥ i
3/4
γ,x then (

n
i

)γ
xi(

n
iγ,x

)γ
xiγ,x

≤ 1

n10
.

b. If |i− iγ,x|<i
3/4
γ,x then

(ni)
γ
xi

( n
iγ,x

)
γ
xiγ,x

=
(
1+O

(
1

logn

))
exp

{[
J ′′
γ,x (tγ,x)+O

(
(ntγ,x)

3/4

nt2γ,x

)]
(i−iγ,x)

2

2n

}
.

Proof.

a. Since

(
n

i

)
≤ exp(nI(i/n)), using (A.3) we have

(
n
i

)γ
xi(

n
iγ,x

)γ
xiγ,x

≤ (2πiγ,x)
γ/2 exp(n [Jγ,x(i/n)−Jγ,x(iγ,x/n)])

≤ (2πiγ,x)
γ/2 exp

(
n

[
Jγ,x

(
iγ,x± i

3/4
γ,x

n

)
−Jγ,x(iγ,x/n)

])
,
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where the second line follows from the fact that the function Jγ,x(t) is concave and

attains maximum at tγ,x. By Taylor expansion, there exists θ∈
(

iγ,x−i3/4γ,x

n ,
iγ,x+i3/4γ,x

n

)
such that

Jγ,x

(
iγ,x± i

3/4
γ,x

n

)
−Jγ,x

(
iγ,x
n

)
=

±i
3/4
γ,x

n
J ′
γ,x

(
iγ,x
n

)
+J ′′

γ,x(θ)
i
3/4
γ,x

2n2
.

Notice that∣∣∣J ′
γ,x

(
iγ,x
n

)∣∣∣= ∣∣∣J ′
γ,x

(
iγ,x
n

)
−J ′

γ,x (tγ,x)
∣∣∣≤ sup

y∈(
iγ,x

n ,tγ,x)

|J ′′
γ,x(y)|

∣∣∣ iγ,x
n

− tγ,x

∣∣∣
≤ 1

n
sup

y∈(
iγ,x

n ,tγ,x)

∣∣∣ −γ

y(1−y)

∣∣∣≤ C

nx1/γ
. (A.6)

Combining this with the fact that

J ′′
γ,x(θ)=

−γ

θ(1−θ)
≤ −γ

θ
≤ −nγ

iγ,x+ i
3/4
γ,x

≤ −cn

iγ,x
,

we get that for n large enough,(
n
i

)γ
xi(

n
iγ,x

)γ
xiγ,x

≤ (2πiγ,x)
γ/2 exp

(
Ci

3/4
γ,x

nx1/γ
−ci1/2γ,x

)

≤ (2πn)γ/2exp
(
−c′(logn)2

)
≤ 1

n10
,

where in the last line we use the estimate iγ,x≃nx1/γ =(logn)4. This ends the proof of
Part a.

b. Suppose that |i− iγ,x|<i
3/4
γ,x . By using (A.3) and Taylor expansion,(

n
i

)γ
xi(

n
iγ,x

)γ
x2γ,x

=

[
(1+O(i−1

γ,x))
iγ,x(n− iγ,x)

i(n− i)

]γ/2
exp

(
n

[
Jx

(
i

n

)
−Jx

(
ix
n

)])
=

(
1+O

(
1

logn

))
exp(

n

[
J ′
γ,x

(
iγ,x
n

)
(i− iγ,x)

n
+J ′′

γ,x

(
iγ,x
n

)
(i− iγ,x)

2

2n2
+J ′′′

γ,x (θ)
(i− iγ,x)

3

6n3

])
,

for some θ∈ (
iγ,x

n , i
n ).

Observe that

•
∣∣∣J ′

γ,x

(
iγ,x
n

)∣∣∣≤ C ′

nx1/γ
≤ C

iγ,x
as in the proof of Part a.

• J ′′′
γ,x(y)=O(y−2) for all y∈R. Therefore J ′′′

γ,x(θ)=O(t−2
γ,x).

• J ′′
γ,x

(
iγ,x
n

)
=J ′′

x (tγ,x)+O

(
1

t2γ,x

)(
iγ,x
n

− tγ,x

)
=J ′′

x (tγ,x)+O

(
1

nt2γ,x

)
.

Combining these estimates,

n

[
Jx

(
i

n

)
−Jx

(
ix
n

)]
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=O

(
i
3/4
γ,x

iγ,x

)
+

[
J ′′
γ,x (tγ,x)+O

(
1

nt2γ,x

)
+O

(
1

t2γ,x

)
i− iγ,x

n

]
(i− iγ,x)

2

2n

=O
(
i(δ−1)/2
γ,x

)
+

[
J ′′
γ,x (tγ,x)+O

(
(ntγ,x)

3/4

nt2γ,x

)]
(i− iγ,x)

2

2n
.

Then Part b. follows.

Lemma A.3. We have

An(x)Mn(x)−Bn(x)
2=

1

2

n∑
i,j=0

(i−j)2
(
n

i

)2γ(
n

j

)2γ

x2(i+j−1). (A.7)

Proof. Using formulas of Mn,An and Bn given in (2.4), we obtain

An(x)Mn(x)−Bn(x)
2

=

n∑
i,j=0

i2
(
n

i

)2γ

x2(i−1)

(
n

j

)2γ

x2j−
n∑

i,j=0

i

(
n

i

)2γ

x2i−1j

(
n

j

)2γ

x2j−1

=
1

2

n∑
i,j=0

[i2+j2−2ij]

(
n

i

)2γ(
n

j

)2γ

x2(i+j−1)

=
1

2

n∑
i,j=0

(i−j)2
(
n

i

)2γ(
n

j

)2γ

x2(i+j−1).

The last step is the desired equality.

The following lemma will be used to obtain asymptotic behaviour of AnMn−B2
n

later on.

Lemma A.4. Let f(x,y) be a bivariate function such that f(x,y)=O(x2+y2).

Consider two sequences (an) and (bn) such that an→0 and bn(logn)
4

an
→0. Then for

k<iγ,x−a−1
n and l> iγ,x+a−1

n ,

l∑
i,j=k

f(i,j)exp
(
−(an+bn)

(
(i− iγ,x)

2+(j− iγ,x)
2
))

=

(
1+O

(
1

logn

)) ∑
|i−iγ,x|<(anbn)

−1/4

|j−iγ,x|<(anbn)
−1/4

f(i,j)exp
(
−an

(
(i− iγ,x)

2+(j− iγ,x)
2
))

+O(1).

Proof. Denote by θ=(anbn)
−1/4. If |i− iγ,x|≥θ or |j− iγ,x|≥θ then

−(an+bn)
(
(i− iγ,x)

2+(j− iγ,x)
2
)
≤−anθ

2≤−c(logn)2.

Therefore ∑
|i−iγ,x|<(anbn)

−1/4 or

|j−iγ,x|<(anbn)
−1/4

f(i,j)exp
(
−(an+bn)

(
(i− iγ,x)

2+(j− iγ,x)
2
))

≤Cn4e−c(logn)2 =O(1).
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Consider |i− iγ,x|<θ and |j− iγ,x|<θ. Then

bn
(
(i− iγ,x)

2+(j− iγ,x)
2
)
=O(bnθ

2)=O

(
1

(logn)2

)
.

It implies that

exp
(
−(an+bn)

(
(i− iγ,x)

2+(j− iγ,x)
2
))

=

(
1+O

(
1

logn

))
exp

(
−an

(
(i− iγ,x)

2+(j− iγ,x)
2
))

.

Then the result follows.

Lemma A.5. Let g : R→R be a differentiable function such that

sup
x∈R

[
(x4+1)|g(x)|+ |g′(x)|

]
≤C<∞.

Then for any K,l,m such that K, l√
K
, m√

K
→∞, we have

1√
K

m∑
i=−l

g

(
i√
K

)
=(1+o(1))

∫
R
g(x)dx, (A.8)

and

1

K2

m∑
i,j=−l

(i−j)2g

(
i√
K

)
g

(
j√
K

)
=(1+o(1))

∫
R2

(x−y)2g(x)g(y)dxdy. (A.9)

Proof. We start by proving (A.8). Let

m1=min{m,K2/3}, l1=min{l,K2/3}.

Then using |g(x)|≤C/(x4+1) we have∣∣∣∣∣ 1√
K

m∑
i=−l

g

(
i√
K

)
− 1√

K

m1∑
i=−l1

g

(
i√
K

)∣∣∣∣∣≤ 1√
K

∑
|i|≥K2/3

∣∣∣∣g( i√
K

)∣∣∣∣
≤ C√

K

∑
|i|≥K2/3

(√
K

|i|

)4

=O(K−1/2). (A.10)

For −l1≤ i,j≤m1, by the mean value theorem,

∣∣∣ 1√
K

g

(
i√
K

)
−
∫ i+1√

K

i√
K

g(x)dx
∣∣∣≤ sup

x∈R
|g′(x)|

∫ i+1√
K

i√
K

∣∣x− i√
K

∣∣dx≤ C

2K
.

Therefore,∣∣∣∣∣∣ 1√
K

m1∑
i=−l1

g

(
i√
K

)
−
∫ m1+1√

K

−l1

g(x)dx

∣∣∣∣∣∣≤ C(l1+m1)

2K
=O(K−1/3). (A.11)
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Since
∫
R |g(x)|dx<∞ (as |g(x)|≤C/(|x4+1)), and m1/

√
K,l1/

√
K→∞,∣∣∣∣∣∣

∫
R
g(x)dx−

∫ m1+1√
K

−l1√
K

g(x)dx

∣∣∣∣∣∣=o(1).

Combining this with (A.10) and (A.11) we obtain (A.8).

Next, we prove (A.9). Define

m2=min{m,K5/9}, l2=min{l,K5/9},

and

h(x,y)=(x−y)2g(x)g(y).

Then using the inequality

|h(x,y)|≤2(x2+y2)|g(x)g(y)|≤2C2(x2+y2)/((x4+1)(y4+1)), (A.12)

we have∣∣∣∣∣∣ 1

K2

m∑
i,j=−l

h
(

i√
K
, j√

K

)
− 1

K2

m2∑
i,j=−l2

h
(

i√
K
, j√

K

)∣∣∣∣∣∣≤ 1

K2

∑
|i|,|j|≥K5/9

∣∣∣h( i√
K
, j√

K

)∣∣∣
≤ 2C2

K2

∑
|i|,|j|≥K5/9

(i2+j2)

(
K

|i||j|

)4

=O(K−2/9). (A.13)

For l2≤ i,j≤m2, we define □ij =[ i√
K
, i+1√

K
]× [ j√

K
, j+1√

K
]. Using the trivial bound if

(u,v)∈□ij then |u−v|≤ l2+m2√
K

and the assumption that supx∈R(|g(x)|+ |g′(x)|)≤C,

we have

sup
(u,v)∈□ij

|∂xh(u,v)|, sup
(u,v)∈□ij

|∂yh(u,v)|≤3C2

(
l2+m2√

K

)2

.

Thus using the mean value theorem again, we have∣∣∣∣∣
∫
□ij

[
h
(

i√
K
, j√

K

)
−h(x,y)

]
dxdy

∣∣∣∣∣≤3C2

(
l2+m2√

K

)2∫
□ij

[∣∣∣x− i√
K

∣∣∣+ ∣∣∣y− j√
K

∣∣∣]dxdy
=

3C2

2K
√
K

(
l2+m2√

K

)2

.

Therefore, with □(l2,m2)=
[−l2√

K
,m2+1√

K

]2
we have∣∣∣∣∣∣

m2∑
i,j=−l2

h
(

i√
K
, j√

K

)
−
∫
□(l2,m2)

h(x,y)dxdy

∣∣∣∣∣∣≤
m2∑

i,j=−l2

3C2(m2+ l2)
2

2K5/2

=O(1)
(m2+ l2)

4

K5/2
=o(1), (A.14)
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since m2,l2≤K5/9. Notice that by (A.12),
∫
R2 |h(x,y)|dxdy<∞, and □(l2,m2)→R2

(as l2√
K
, m2√

K
→∞). Hence, ∫

R2\□(l2,m2)

h(x,y)dxdy=o(1).

This estimate, together with (A.13) and (A.14), implies (A.9).

Finally, we now bring all previous technical lemmas to prove Proposition 4.2.

Proof. (Proof of Proposition 4.2.) We have

Mn(x)=
∑

|i−iγ,x|≥i
3/4
γ,x

(
n

i

)2γ

x2i+
∑

|i−iγ,x|<i
3/4
γ,x

(
n

i

)2γ

x2i=:M1,n+M2,n.

By Lemma A.2 Part a.,

M1,n(
n

iγ,x

)2γ
x2iγ,x

≤ n

n20
≤ 1

n10
;

and by Lemma A.2 Part b., Lemma A.4 and Lemma A.5,

M2,n(
n

iγ,x

)2γ
x2iγ,x

=(1+o(1))
∑

|i−iγ,x|<i
3/4
γ,x

exp

([
J ′′
γ,x (tγ,x)+O

(
(ntγ,x)

3/4

nt2γ,x

)]
(i− iγ,x)

2

n

)

=(1+o(1))

∫
R
e−x2

dx×
√
n/|J ′′(tγ,x)|

=(
√
π+o(1))

√
nx1/γ

γ(1+x1/γ)2
.

Now according to Lemma A.3, we have

An(x)Mn(x)−B2
n(x)=

1

2

n∑
i,j=0

(i−j)2
(
n

i

)2γ

x2i

(
n

j

)2γ

x2i+2j−2.

Then by the same argument as above, we get

An(x)Mn(x)−B2
n(x)=

1

2
(1+o(1))

∫
R2

(x−y)2e−(x2+y2)dxdy×(n/|J ′′(tγ,x)|)2

=
(π
2
+o(1)

)( nx1/γ

γ(1+x1/γ)2

)2

,

which completes the proof.
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