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NONEQUILIBRIUM-DIFFUSION LIMIT OF
THE COMPRESSIBLE EULER-P1 APPROXIMATION MODEL
ARISING FROM RADIATION HYDRODYNAMICS*

QIANGCHANG JUT AND YONGKAI LIAO#

Abstract. We prove rigorously the nonequilibrium-diffusion limit of the compressible Euler-P1
approximation model arising in radiation hydrodynamics. For sufficiently well-prepared initial data,
we obtain the uniform estimates of smooth solutions and establish the convergence of the model to the
Euler system coupled with a nonlinear diffusion equation.

Keywords. Diffusion limit; nonequilibrium regime; radiation hydrodynamics; Euler-P1 approxi-
mation.

AMS subject classifications. 35D35; 35Q31; 35Q35; 76D30.

1. Introduction
As pointed out in [3,14,20], the motion of a compressible inviscid radiative flow can
be described by the Euler system coupled with a radiative transfer equation

SyOrp+div, (pu) =0, (1.1
. 1 P

Sy0t (pe) +div, (peu) + Pdiv,u=—PCSg+PSr-u, (1

(

)
)
)
)

= W N

Here the dimensionless unknowns p(t,z), u(t,x), and e(t,z) represent the density, veloc-
ity, and specific internal energy, respectively, as functions of the time ¢ > 0 and the spatial
variable z € Q:=T3 = (R\(27Z))®. I(z,t,v,w) is the dimensionless radiative intensity de-
pending on the frequency v >0 and direction w € S? of photons with S? CR? being the
unit sphere. The pressure P=P(p,0) and the internal energy e=e(p,0) are smooth
functions of p and the temperature 6, and satisfy the Gibbs relation ds=de+pd(1/p)
for some smooth entropy function s=s(p,0). The radiative source term S in (1.4) is
given by

S=Loy(B(w,0)—I)+LLyos (f— 1) : (1.5)
where
v3 ~ 1
B(V’e)_65—17 I—E SQIdw7 (1.6)

and 0, =0, (1,0) >0 and o5 =0,(r,0) >0 represent the absorption coefficient and scat-
tering coefficient, respectively. Moreover, the radiative flux Sr and the radiative energy
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source Sg are given by

1 o0 oo
SF:f/ / wSdwdv, SE:/ Sdwdv. (1.7)
cJo Js2 0o J&2

Furthermore, we denote by Sr, Ma, and C the Strouhal, Mach, and “infrarelativistic”
numbers corresponding to hydrodynamics, and by £, L,, and P the various dimen-
sionless numbers corresponding to radiation. For the sake of convenience, the energy
Equation (1.3) will be rewritten in the following form

_PCSE +’PSF-11

Sy0; (ps)+divy (psu) = 7 7

. (1.8)
For simplification, we assume that o, and o4 are two positive constants in the following
derivation. It should be noted that the general case o, =0, (p,0) and os=0,(p,0) can
be also dealt with similarly.

When the distribution of photons is almost isotropic, the well-known P1 approxi-
mation is frequently used (see [4,5,20]). The main advantage of considering P1 approx-
imation is that the radiative transfer equation is transformed to equations independent
of the angular directions which are easy to solve numerically. In fact, the equation of
radiative transfer is very complicated while the P1 model can approach the full radiative
heat transfer with very low computational cost. By using the famous P1 hypothesis
Jo Idv=1Iy+1; -w where Iy and I; are independent of w and v (see [10,11]), we can
obtain the following Fuler-P1 approximation radiation model

S, 8y p+divy (pu) =0, (1.9)
.0, (pu) +dive (pu@u) + ﬁva: % (00t Lo )4, (1.10)
510 (ps) +dive (psw) = 7L (10400 - TE (g, o L) Lw, (1)
%@Im—divwh =Lo, (C10* - 1Iy), (1.12)
%atll+vz10:f£(aa+.csas)11, (1.13)

where C is some positive constant, and Iy and I; denote the leading term of the
radiation distribution and the small correction terms with respect to the travelling
angle, respectively.

The system (1.1)-(1.4) can be considered as a simplified model in radiation hy-
drodynamics, the physical foundations of which were described by Pomraning [20] and
Mihalas and Weibel-Mihalas [17] in the framework of special relativity. The asymptotic
regimes of the system (1.1)-(1.4) have been investigated formally and numerically by
Lowrie, Morel and Hittinger [14] and the well-known equilibrium and nonequilibrium
limits of the system (1.1)-(1.4) were formally given by Buet and Despres [3] through
the Chapman-Enskog expansion. For the case that viscosity and heat-conduction are
included (the so-called Navier-Stokes-Fourier-Radiation model (NSFR)), Ducomet and
Necasové [7] studied both equilibrium and nonequilibrium diffusion limits for NSFR
system with the Dirichlet boundary condition for the velocity field in the framework
of relative entropy method. For the Pl-approximation of the radiative transfer equa-
tion, Danchin and Ducomet [5] justified the diffusive limits for the barotropic model of
viscous radiative flow in the critical functional framework with the small data. To the
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best of our knowledge, there are very few rigorous results of the asymptotic limits for
the inviscid system (1.1)-(1.4). Recently, Jiang, Ju and Liao [10] rigorously proved the
nonequilibrium-diffusion limit of the system (1.9)-(1.13) at low Mach number with the
large temperature variation. We mention that Zhong and Jiang [25] proved the local
existence and finite-time blow-up of smooth solutions to the system (1.1)-(1.4).

This paper aims to provide the rigorous justification of the nonequilibrium-diffusion
limit of the system (1.9)-(1.13) when the Mach number is fixed. In order to analyze the
nonequilibrium diffusion regime, we use £, =¢"2 and L=e¢. We also assume that the
flow is strongly under-relativistic, i.e., C=¢~! and that a moderate amount of radiation
is present, i.e., P=1. On the other hand, since we are interested in the case that the
Mach number is fixed, we put Ma=1. Moreover, we set Sr=1 in the previous system.
In addition, we focus on the fluids obeying the ideal polytropic gas relations

e =Cyb°, PE—RpEGE—A(pE)’YeXp<7R156> , (1.14)
where the specific gas constants A, R, and the specific heat at constant volume CYy, are
positive constants and > 1 is the adiabatic constant. In what follows, for simplicity
of presentation, we set the physical constants Cy, R, and A to be one. Besides, if
we further ignore the influence of other constants, then we can deduce from the above
assumptions and (1.9)-(1.14) that

1 —1) (I5—(6°)* 1\ If -u
E(&tpe_i_ue.vae)_’_,ydikue: (v )(Poe (6°) ) —(y=1) (6+6) 1])7?, (1.15)
1

pe(atu5+u€.vmuf)+vzpez <e+ 6) IS, (1.16)
J¢ — (p¢ 4 1\ I€-u¢

(‘%se—l—u“sze:OPi(e)— (6+6> IP? , (1.17)

div,I§
I+ L = (09) - I, (1.18)
€
€ VIIS 1 €
oI + i <1+€2> I5. (1.19)
The Equations (1.15)-(1.19) are supplemented with initial data

(Pe,ue,SG,IS,Ii) (t,.’L‘) |t:0 = (ngu(e)’s(ﬁ)’léovlio) (‘T)’ (1'20)

where x € :=T3.
A local existence result for (1.15)-(1.20) in the following sense can be shown in a
similar way as that in [13,15,21]. Thus we omit the details of the proof.

THEOREM 1.1 (Local existence). Let e€(0,1], and suppose that the initial data
(P§,u§,s8,150,150) € H3(Q) and there are positive constants p and 0 independent
of €, such that po(x)>p, 0o(x)>0. Then there exists a positive constant T¢=
T (P§, 0,55, 150,150, €), such that the initial value problem (1.15)—(1.20) admits a unique
solution (P€,uc, s, I§,I5) (¢t,x), and for any § >0, it holds that

(Peut,s%,I5,15) (t,2) € CH((0,7] x ) () | () €7 (0.7 H>°()) |,

=0

97 (Pe,uc, s, I5,I5) (t,2) € L= ([0, T H379(Q)), j=0,1,2,3.
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If we introduce
Me(t)=|(P*,u,s 15,19) ()| g

= sup ZH@’ 155 () [ (1.21)

0<‘r<t

then the main result of this paper is stated as follows, which shows the uniform estimates
of strong solutions to (1.15)—(1.20), and the corresponding nonequilibrium-diffusion
limit.

THEOREM 1.2.  In addition to the hypotheses of Theorem 1.1, if we further assume
that the initial datum (P§(z),u§(z),s§(z),I5,(z),I50(x)) satisfies

(i) ||(P06’u6556>1507150)||]3 <Cy;

(ii) there exists (Py(x),ug(x),s0(x),loo(x),I10(x)) € H3(Q) such that

Lim [[(£5 — Po, ug — w0, 55 — 50, 160 — Lo0: Tio —T10) | s () = 0-

Then we can conclude that

(a) the solution (P€,u,s¢ I§,17) (t,x) obtained in Theorem 1.1 exists on a time interval
[0,T] for some T >0 independent of € >0 and satisfies

H(Pe,ue,se,fg,li) (T)”E <Cs.

(b) There exists (p,u,0,s,10,11) (t,x) € C ([0, T]; H3~°(Q))NC* ([0,T]; H*°(Q)) N
C ([0, 7] x Q) for any 6 >0, such that as € —0,
(pe (P€736)7u6a06 (P67SE),$E,IS,Ii)(t7$) — (p,,u,@,s,[o,ll)(t,z)
in C([0,T]; H37°(Q)).
(c) (p,u,0,s,1y,11)(t,x) satisfy the following equations
Op+u-Vyp+pdiv,u=0,
p(Oru+u-Vyu)+V, (pf+ 1) =0,
p(8t9+u~Vﬁ)—f—p@dz’vzu—vxfo~u:IO—04,
O lo—Aglo+ 1o =6",
Il :Oa
=pf=pTexp((y—1)s),

with initial data

(p(P(t,x),s(t,a:)) (t .I) H(P(t x))*s(t’x))73(t7$)710(tax)711 (tax))|t=0
= (p(Po(x),50(2)) ,u0(2),0 (Po(x),50(2)),s0(2), Loo(z),T10())-

Here Cy and C3 are positive constants which are independent of € > 0.

REMARK 1.1. To snnphfy the statement, we shall use “0,1{,” to signify the quantity
04X |4—0 :=—1V,Ioo — (1+ %)Ly through the Equation (1.19). Other time derivatives
of the corresponding variables are defined in similar ways.

REMARK 1.2. The equilibrium diffusion regime is defined by setting £=¢"' and
Ls=¢€? (see [3,7,14]). To study the equilibrium-diffusion limit of the system (1.9)-(1.13),
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new tricks should be developed to deal with the singular terms caused by radiation
effect.

REMARK 1.3. In [10], the authors consider the case of a small amount of radiation
i.e, P =¢, while we consider in this paper the more realistic case , i.e., P=1.

REMARK 1.4. It is more interesting to give a rigorous justification of the diffusion limit
of the original system (1.1)-(1.4) for which the techniques used in the present paper are
not sufficient since the additional direction variable is involved in the kinetic equation.
It will be our purpose in the future.

Similar as in [1, 10,16, 19], it suffices to show the following theorem to deduce the
main result Theorem 1.2.

THEOREM 1.3. Let T be the mazimal time of existence of the solution to the system
(1.15)-(1.19) in the sense of Theorem 1.1. Then for any t€[0,T¢), we have

M*(t) < Co (M*(0)) +C(M“(t))t,

for some given non-decreasing continuous functions Co(-) and C(-).

Now we outline the main difficulties of the problem and our strategy to prove the
main theorem. Indeed, the key point in our analysis lies in deducing the uniform energy
estimates (independent of €) on the solution (P€(¢,z),uc(¢t,z),s(t,x),I§ (t,x),I§ (t,z)).
Due to the singular terms caused by radiation effect in the system (1.15)-(1.19), the
classical theory of singular limits for quasi-linear hyperbolic equations [1, 12,16, 21] is
invalid for our problem. Besides, compared with the problem considered in [10](Ma=¢),
we cannot derive energy estimates on div,u® and V,P¢ through (1.15) and (1.16) since
the Mach number is fixed in our case. For our purpose, we shall introduce the norm
|(P€uc, s, 15,19) ()| 5 (see (1.21)) to deduce the uniform estimates on the solution.
Our norm includes the derivatives of solutions with respect to time and space, and in
particular the higher order time derivatives are involved since the coefficients of the
time derivatives of the velocity and the pressure in (1.15)-(1.19) are variable. Such
kind of norm has been used by Browning and Kreiss in [2] to study the singular limit
of nonlinear partial differential equations. However, the problem considered here is
quite distinct from the system in [2]. To prove the main theorem, we make full use
of the special structure of the system to deduce the desired energy estimates on the
singular radiative term I{. In particular, we shall deduce the uniform estimate on

3 .
fot (1+%) ;)H@;Ii (T)Hiﬁﬂ'(sz) d7 (see Lemma 3.1) by using the energy method, which

helps us control the singular radiative terms on the right-hand side of (1.15), (1.16),
and (1.17).

Before concluding this section, we mention other results concerning the P1 approx-
imation radiation model, please refer to [4,9,11,22,24]. Moreover, interested readers
can also refer to [3,6,8,14,23,25] for more references therein.

The rest of the paper is arranged as follows. Some elementary facts and useful
inequalities will be given in Section 2. Then we will deduce uniform estimates for
the norms [|(I§,I5) (¢)|| p and ||(P€,u,s%)(t)|| p in Section 3 and Section 4, respectively.
Finally, the proof of Theorem 1.2 will be given in Section 5.

Notations. Throughout this paper, € <1 represents some small positive constant. C' >
lor C;>1(i=1,2,...) is used to denote a generic positive constant which is independent
of e. Note that these constants may vary from line to line. By Cy(-,), C(+,) and F(-,),
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we denote positive non-decreasing continuous functions independent of €. A < B means
that A <CB holds for some positive constant C' independent of e.

L1(Q) (or L) (1<g<o0) denotes the usual Lebesgue space on Q with norm
Il Ilza¢c), while H?(Q2) denotes the usual Sobolev space with norm |[|-||ga(qy. On the
other hand, we denote by C'(I; H?())) the space of continuous functions on the interval

I with values in H?(Q2). For simplicity, we use ||-|| and ||-||; to denote the norms
|- lz2(q) and |||| e (), respectively.
For a multi-index a=(az,...,a,), we denote 95 =031 ---0g and |a|=|aq|+---+

|, |. For an integer m, the symbol D" denotes the summation of all terms 0% with the
multi-index « satisfying |a| =m.

In the estimates that follow, Holder’s and Sobolev’s inequalities as well as the inter-
polation inequality will be used without further claim. We shall drop the superscript “e”
in p¢, ¢, u,s¢,0I§, and I for the sake of brevity. Moreover, we write M€(t), M<(0),
div,, and V, as M, My, div, and V, respectively, for short.

2. Some useful inequalities

In this section, some useful inequalities are given since they will be frequently used
later on. The first lemma focuses on some Moser-type calculus inequalities in Sobolev
spaces, whose proof can be found in [12,18] for example.

LEMMA 2.1.  Let Q be a bounded domain in R™.
(i) For f,ge H™(Q)NL>®(Q) and |a| <m, m>n/2, it holds that

107 (FDN SN e 1D g1+ N9l Lo 1D £ (2.1)

(ii) For fe H™(Q2), DLfe L>(Q), g H" 1 Q)NL>®(Q), and |a| <m, m>n/2+1, it
holds that

107 (£9) = fOR gl SIDaf || oo 1DF gl + gl e 107 1] (2.2)

(iii) Assume g(u) is a smooth vector-valued function on Q, k(x) is a continuous function
with k€Qq, Q1 CCQ, and ke H™(Q)NL>(Q). Then for m>1,

m ag m— m
O e e (23

m—1,0,

Here ||, g, is the C"-norm on the set Qi;
(iv) If f,ge H™(Q), m>n/2, then f-g€ H™(Q), and

£l Sl Nl - (2.4)

The following lemma is a consequence of (1.14) and the definition of the norm || - || g.

LEMMA 2.2.  Assume that the conditions in Theorem 1.2 hold, we have for all0 <t <T*¢
that

ol + 1101l < E Pl g: sl z) (2.5)

for some non-decreasing continuous e-independent function F(-,-).
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3. Uniform estimates on ||(/o,11)
In this section, we shall first deduce uniform estimates on ||(Io,I1)|| 5. At the same

3 .
time, we also obtain the estimates on fot (1+ %) > ||0iTi(7) ,d7, which will play an
i=0

I;
3—
important role in dealing with the singular radiative terms on the right-hand side of
(1.15)-(1.17). In fact, we have

LEMMA 3.1.  Assume that the conditions in Theorem 1.2 hold, then we have for all
0<t<T* that

3 . 2 t 3 . 2 1 3 .
S ot m o+ f | St (14 ) ol o
i=0 0 Li=0 i=0

< Co(Mp)+C(M)t. (3.1)

Proof.  'We apply the operator 9% (0<|a|<3) to (1.18) and (1.19), multiply the
resulting equations by 9Ty and 991, respectively, and integrate over [0,¢] x Q2. A simple
summation shows that

slezno o+ [ [ioene+ (1+ 5 ) 1oen o] ar

<o)+ [ lognmiPar+o [ oz ar
<Co(Mo) + / |02 ()P dr +C / 015+ 10112) =

SC'o(Mo)-FC'(M)H-i/ 102 Iy (7)||* dr. (3.2)
0
Here (2.3) has been used in the penultimate inequality of (3.2).

Second, applying the operator 929; (0<|8|<2) to (1.18) and (1.19), multiplying

the resulting equations by 929,Iy and 20,1, in L%(Q), respectively, and adding up the
resulting equalities, we arrive at

1 2 t 2
5”(85&]0,85@11)@)” +/ [||a£at10 )| +(1+ >||858t11 7| ]dT
< Co(Mo)+ /||aﬂat10 )| dT+C/ 02 (6°0,0)|” dr
<o)+ 5 [ 03000 *ar+C [ (10 1D20001 + 100~ | D207 ) an
0 0
1 ¢ 3 2 ¢ 2 8 6
<CoOo)+3 [ oot ar+c [ 1ol (1015-+1015) ar

< Co (M) +C(M)t+ /Hé?ﬁ@tlo H dr. (3.3)

We point out that (2.1), (2.3), and (2.5) have been employed in deriving the above
inequality.

Third, we differentiate (1.18) and (1.19) with respect to ¢ twice, multiply the re-
sulting equations by 9y Iy and dyI; in L?(Q), respectively, then add up the resulting
identities to deduce that

S10utn. 2t @+ [ f10uu(r)P+ (143 ) 1ontir)l ar
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t
gco(M0)+/ /|8ttIO|(02|8t0\2+93|8tt9|)dxd7
0 JQ

t
< Co (Mp) + / 100 o] 16113 (112:6113 + [10112]|0ue61]) d7
0
< Co(Mo)+C(M)t. (3.4)

Moreover, we apply the operator dy D, to (1.18) and (1.19), multiply the resulting
equations by 9y D, Iy and 0y D,I; in L?(Q2), and sum up the resulting equalities to
conclude that

1 ‘ 1
310uD 10,00 1) O+ [ 10aDero(E+ (145 ) loun. T () ar
0
t
gco(M0)+/ /|8tthIO|(0|Dx9||8t9|2+92|8t98tD¢9|+92|Dm98tt0|+93|6qu9|)dxdr
0 JQ

t
< Co(Mo) +/ 18se 1ol (161151100115 + 161151102611 + 16113110261l ) A7
0
< Co(Mo)+C(M)t. (3.5)

Finally, differentiating (1.18) and (1.19) with respect to time thrice, multiplying the
resulting equations by dy:Io and 9y I; in L2(£2), then summing up, one has

1 ! 1
310t 0ea) O+ [ 10wt + (145 ) 10 ()1 ar
0
t
gco(M0)+/ /|8m10\(9|8t0|3+02|8t08tt0|+03|8ttt0|)dxd7
0 JQ

t
3 2 3
<Co(0o)-+ [ 0untal (1611 10813+ 16131061 10w+ 613061 ) dr
0
<Co(My)+C(M)t. (3.6)
Then (3.1) is a consequence of (3.2)-(3.6). |
4. Uniform estimates on ||(P,u,s)|
The main task of this section is to derive uniform estimates on [|(P,u,s)| 5. For
this purpose, we will utilize the antisymmetric structure of the system (1.15)-(1.19) to
eliminate the high-order space derivative terms caused by diva and VP on the left-

hand side of (1.15) and (1.16), respectively. On the other hand, the singular radiative
terms appearing on the right-hand side of (1.15)-(1.17) will be bounded by the term

3 .
1+ L 0L (7 %> dr as pointed out before. To begin with, we first deduce the
0 € t 3—1 p g
i=0
estimate on ||(P, u)||§ In fact, we have

LEMMA 4.1.  Assume that the conditions in Theorem 1.2 hold, then we have for all
0<t<T* that
I(P,w)|[5 < Co (Mo) +C(M)t. (4.1)

Proof.  Multiplying 0%(1.18) and 02(1.19) (0<|a|<3) by 02P and 0%u, respec-
tively, summing up the resulting identities and integrating over [0,t] x 2, we obtain
that

4
1 1
5 [P0z PE wplozaP)ae = [ (PPaz PR plozul) 00+ YUK, (42)
Q Q j=1
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where
Klfot/ﬂ{g&p@?uz;P28tP|6;‘P|2+(71)8§‘ [P~1(1o—6%)] agp}dxdr,
ng—/ot/g{ [03(P~'9,P)— P'0,05 P+ 02 (PT'VP-u)—03VP-P 'u| 03 P
#9102 () - 010w+ 0 (p- V)~ pu- V2] -0
ng—/ot/g(P_l(f?gPu-VaxaP—l—vpu-V@guﬁ;)‘u)dxdﬂ

1 t
Ky= (€+> / / (Y001, -0fu— (v —1)0% (P~ 1 -u) 8 P] dadr.
€/ Jo Ja
For the term K7, we employ (2.1), (2.3), and (2.5) to infer that

t
K15 [ [0l (i 1P1E) + (Jo (P2 + oz (P61 ) 1Pl ar
t
sconer [ 1P, (ID26+ [D26)])
# (Il + 1612 ) D2 1Pl 0

t
scOne+ [ (1ol + Vol 11+ (1005 101,) 1013+ 1013171 171 r

<C(M)t.

Moreover, it follows from (2.2) and (2.3) that

Kzg/ot -||P||3 (|3 (P18, P) - P~10:05 P|| + || 03 (P~ 'V P-u) — 03V P- P~ 'ul|)
+||u||3(Ilaﬁ(pﬁtu%p@taﬁull+||33(pu-Vu)—pu~V8§‘ull)]dT

g/
0

DL P )|, | D2V P+ VP, ||D2<P1u>u) 1Pl

(||D;<P1>HLOO 1D20,P|| + 0.P] . | D3 (P~
+ (1080l [2000] [l 0201+ | D20 P29
IVl HD2<pu>|\) ||u|3}df

t
2 3 2
S [ [ (104 10 PP +1P1 Tl + all + P ) 11

+ (1oeall, +113) ol bl [ar <



1646 EULER-P1 APPROXIMATION RHD MODEL

On the other hand, we use integration by parts to conclude that
1 t
K3:§/ / [102 P2div (P~ u) 4+7]02ul?div(pu) | dr
0JQ
t
5/ / (|02 P2 (P~ |dival + P2V P|u]) + 0%l (| Vol ul + pldivu])] dr
o Ja

t
2 3 2
< [ (IPI+1P1+ ol Il Il dr < QO

Furthermore, we utilize (2.3), (2.4), and (3.1) to bound the singular term K, as follows
1 [* )
Ka= (et 1) [Tl (e 121, 1P ar

t 1 t
</ <+) mar+ [l (1+1P15) ar

<Co(Mp)+C(M)t.
Plugging all the above estimates into (4.2), we can derive (4.1). d

Our next lemma focuses on estimates of ||(9: P, 8tu)||§.

LEMMA 4.2.  Assume that the conditions in Theorem 1.2 hold, then we have for all
0<t<T* that

18P, 0pw) 5 < Co (Mo) +C(M)t. (4.3)

Proof.  Applying the operator 079, (0<|8|<2) to (1.18) and (1.19), multiplying
the resulting equations by 929, P and v020,u in L?(Q), respectively, and adding up the
resulting equalities, one has

1 _
5/52 (P~Y1020,P |2 + |0 Oyul?) dx
1 8
:5/9(P_1|858tP|2+7P|8§8tu|2) (0)dz+ ) K;, (4.4)
j=5
where
! v
K5:/ / [Gfatu-<28tp856tu—vaf (atpatu—i—@tpu-Vu—i—p@tu-Vu))
0 JQ
1
+a§jatp<a§§ (P~2|8,P|*+P29,P-u—P~'VP-0u) — 519-23,51385@19
+(y =192 (P~9,Iy— P20, PI+ P20, P9* — 4P~ '0°0,0) )} dxdr,
t
K6=—/ /{é;{?atp (02 (P70, P) — P~ 10,00 P+ 02 (P'VO,P-u) — P~ 'u-9, V. P]
0 JQ
+7920pu- [08 (pdyu) — pdl Oypu+ 92 (pu- Vo) — pu- VoL dpu] }dxdr,

t
K7:—/ /(P—lagatpuvatafp_i_,ypuVafatuafﬁtu)dl'd’r,
0 JQ
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1 t
Kg= <e+ 6) / / [’y@f@tIl Pou—(y—1)9? (P‘latIl -u—P729,PI,-u
0 Jo
+P71, ~8tu> P atp} dzdr.
We apply (2.3)-(2.4) to bound K5 and Ky as follows

t
2 2 — _
K5 | [||at,o||2||atu||2+||atp3+HP 210, PP||, |0.Pll, + | P20, PYP-ul|, |9, P],
[PV P-Opull, 9Pl + |9updrully |9rull, + |Buou- ul, |0l

+||P20,PI,

I

+||p8tu-Vu||2 ||8tu||2—|— <HP_1(9,5[()||2

+||P20,P6%||,+ ||P103at9||2) ||6tP||2}dT
¢ 2 2 2 4
sconer [ [||atp||2(||P||2+||P||2) (1 Plly+ 1P lrlly + 1 2ol + 16113)
+10:Plly (1Pl + P13 ) (1Pl 19ruly+ 101 Loll, + 613 9:611 )

+|19rull (atpng||atu||2+||atp||2||u||§+||p||2||atu||2||u||3)]dT<C<M>t7

Ko I3[ (102 (P0) - P0,02P] 4 o2 (P90, ) - P 0902 P P,
+ (H@f (pOeu) —p(?f@ttuH + H@g (pu-Vogu) —pu-V@f@tuH) 8tu|2} dr
t
< [ (101121 10 Pl + 10 P, 101 PIE Fall, (14 1715)

+llpll5 [|0cally ([Ocull; +[[all; [|Onull,) {dr
<C(Mt.

After integration by parts, K7 can be bounded as follows
K7:;/0t/g[|6£8tP|2div(P1u)+’y|858tu|2div(pu)] dr
< / t [10:PI13 (s + 1Pl all,) + el Il Noul3 | ar < Can)z.
Moreover, we utilize (2.3), (2.4), and (3.1) to achieve
o= () [ om0l + =1 ) 1021,

+||at11|2||atu||2}d7

< K 2 1 2 K 2 2 2 2 2
S (e ) 1anizar+ [ | (IP1+1PI3) (Il +12al3) 1o.PI3
0 € 0
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2\* 4y 02 2
+ (121, +1P12) 19 P 3+ v ar
<Co(My)+C(M)t.
Inserting all the above estimates into (4.4), we can conclude (4.3). O

Now we turn to bound terms ||(0y P, attu)H?. In fact, we have
LEMMA 4.3.  Assume that the conditions in Theorem 1.2 hold, then we have for all
0<t<T* that

(84 P, ) |2 < Co (Mo) +C (M)t (4.5)

Proof.  We apply the operator 970 (0<|n|<1) to (1.18) and (1.19), multiply by
010y P and v91dyu in L2(€), respectively, and add up the resulting equalities to reach

%/ (P02 P|? +7p|020yu|?) dz
Q
1 12
:5/ (P110200 P2 +7p|020y0?) (0)dz+ S K, (4.6)
Q =9

where

t
KQI/ / {’ya;’&tu- B(’)tp(’)tta;’u—(‘?g (26tp8ttu+8ttp6tu+8ttpu-Vu
0 JQ
+28tp8tu~Vu+28t,ou~Vatuqtpattu~Vu+2p6tu~vatu)} + 070 P-

{a;z <3P—26tPaﬁP— %P—Qatpattagp— 2P ?0,P|?8,P+2P 29,PVd,P-u
—2P~'V§,P-8yu—2P %8, P’VP-u+ P ?0,PVP-u+2P *9,PVP-d;u
—-P7'vP. attu) +(y—1)07 (P*lattlo —2P 729, POy Io+2P 2|0, P|*Io — P20 Pl

—2P 3|0, P|*0* + P20, P0* +8P 28, PH° 8,0
—12P7'6%|0,0|* f4P*193aﬁ9>] }dxdT,

Kio=— [ fﬂ{ [02 (P 0yt P) — P~ 040} P+ 0 (P~'NV 0y P-u) —V 10y P- P~ 'u) 010 P
+7[07(pOrru) — pOerDgu+ 07 (pu- VOru) — pu- VO dyu) - 0y attu}da:dr,

Kii=— /0 t /Q (P~ 'u- V8,01 PO10w P+~ pu- VIl 0yu- 9 0ru) dadr,

Ki=—(y=1)(e+%) [o [, [a;gattpa;g (Plaﬂl1 u+2P7 19,1, -0pu+2P 3|0, P|’1; -u
—P7'9uPI, -u—2P %9,PI, -Ou+ P 'T, .attu> - %a;?attll ‘a;aﬁu} dzdr.

In view of (2.3)-(2.5), we have

t
Ko [ [aﬁunl (natquattunﬁnatpam1+||attpatu||1+||aupu-Vu|1
0
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+0pdru-Vull, + | 0ppu-Vayull, +]|pduu- Vull, + patu-vatul)

+10:: Pl (atpn2 100 Pll,+ || P20, P[0 P||, +|| P20, PO P

+||P720,PVO,P-ul|, + || P VPOl + | P*10, PPV P-ul|,
+||P7204PVP-u||,+ | P?0,PVP-0pu|, + || P'VP- 0],

([P 0l |, + | P20 PO ||, + [P0 Ro ||, + [ P20 P
+[|P20. P20 || + | P2 0uP0 || + || P20, PO30,0]|, + || P~16%10:6)?|,

+]|P‘1938tt9|\1>d7
K 2
5/0 [|Oreur]]; <|atﬂ||z||3ttu|1+5ttﬂ||1||3tu||2+5tt:0||1||u||3
+||atp||2||atu||2||u||3+||p||3||attu|1||u3+|p|3atu|§)
+[10u P, [(|P||2+||P||§) (10:P 1 12: Toll, + 615 220113

2
+ (1P +1P12) 1921, (1P Nowul + 61 ool

3
+ (1Pl +1P13) 100PI3 (10:P Iy + 1Pl el + 1 2ol + 16112)
1Pl (1Pl 192 Pl + 1252 Pl Nalls + 1Pl vl + el
4 4
1Pl 10w Pl (1 20llo+ 116113 ) + 196 Plly (11 20l15 + 16113)

U+ 1Pl (1ol + 10401, 1612)
2P, (nattPnl Pl 10 P+ 1Pl 18Pl Tl + 194 Py 1l
+||P|3||atu||2+||atu||2)] <cn,

and

Ko< [y {(Hag (P710u P) — P710, 00 P|| + 1|07 (P~'VOu P -u) — P~1u-V8,01P||) |0x P,
+ (107 (pOue1) — pO O]+ |07 (pu- VOyu) — pu- VO Oy ul|) ||5ttu||1] dr
K 2
< [ {10aPl 121 (100 P+ (1+1715) hal 10 P

+||p||3||attu||1<||u|3+||atttu||>}drsc<M>t.

On the other hand, we employ (2.4) and integration by parts to obtain that
1 t
K1 = 5/ / (0204 P|*div (P~ ') +7[00yu|*div (pu) | dr
o Ja

t
= / (1Pl + 121 ) Tl 122 PIE + 1Pl Il 1w, | ar < (2
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Finally, using (2.3), (2.4), and (3.1), we can infer that
¢
K< (e+7) fo [(1+||P||3)||<9ttP||1(||3tt11||1||11||2+||5ttP||111||3U||3+||11||3|5ttU|1)

2 2
1Ll (1Pl + P13 12:Plly 12 Pl

(90l + 1P 9Pl [l + P13 10 P, ull,)

+10c1ll, (1Pl + I1PI3) 10eull 10 Pl + | 9uTa ||attu||1} dr

3

g/ot <e2+€12> S oo, dr +C (M)t

=0

<Co(Mo)+C(M)t.
We insert all the above estimates into (4.6) to deduce (4.5). d
The next lemma aims to bound terms ||(9yy P,dye)||.

LEMMA 4.4.  Assume that the conditions in Theorem 1.2 hold, then we have for all
0<t<Te that

(844t P, Dpeu)||> < Co (M) 4 C (M)t (4.7)

Proof. Differentiating (1.18) and (1.19) with respect to time thrice, multiplying
by Oyt P and v9ypu in L2(Q), respectively, then adding up the resulting equalities, we
arrive at

1
5/ (P_1|8mP|2+'yp|(‘3mu|2)dx
Q
1 16
:5/ (P~10ue PI? +4p|0wra]?) (0)dz+ > K, (4.8)
Q

j=13

where
t
7
K13:/ 0mP {2P_QatPﬁmP+3P_28tPV8ttP~u—3P_1V6ttP-8tu
0 JQ

+6P 40, P|* —12P 3|0, P|?0y4 P+ 3P~ 2|0 P|* — 6 P39, P|*V ;P -u
+3P~20,,PV,P-u+6P 29, PVd,P-8,u—3P 'V, P-0u+6P 49, P>*VP-u
—6P 739, POy PVP-u—6P 3|0, P|*°VP-0,u+P 20,,PVP-u
+3P729,;PVP-0,u+3P 29,PVP-0yu— P 'VP-9;u

+(y—1) <P16ttt10 —3P720,P0y Iy +6P 3|0, P|?0,1y — 3P 20, PO, I

—6P ™40, P|?0, PIy+6P 39, P8y PIy — P~ 20y, PIo+ 6P~ *|0,P|*0, Po*
—6P 30, POy, PO* — 24P 3|0, P|?0%0,0 + P20 0, P+ 12P~20,, PH>0,0
+12P 720, PO30,10 + 36 P20, P6?%|0,0|> — 24P ~10|0,0|%0,0

—36P16%0,00,,0 — 4P1938ttt9)] dadr,
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t
)
K14:—’)// /amu- (28tpamu+35tt,08ttu+8ttp6tu+3mpu-Vu
0 JQ
+38ttp8tu-Vu+38ttpu-V@tu—l-?)atpattu-Vu+6(‘3t,08tu-V@tu

+38tpu . V@ttqupamu -Vu+ 3p3ttu . V@tqu 3[)81511 . V@ttu) d.’,EdT7
t
K15:*/ / (Pilu'vatttpatttp‘i"ypu'vatttu'atttu)dxdTv
0 JQ

1 t
Klﬁ = (’y— 1) <6+ ) / / [8tttP <P‘28tP8tt11 -u—P_l&gttIl -u—3P_18tt11 -8tu
€/ Jo Ja
+4P*25‘tP8tIl~6tu—3P*18t11-8ttu+6P*4|8tP|28tP11~u—6P*35'tP5‘ttP11-u
—2P7 30, P|?0,1; -u—6P 30, P|*1; - Opu+ P~°I; -ulyy P+ P20, PO, I; -u

v
v—1

+3P7 29, P1,-0yu+3P 29, P, - Oyu— P 1 -8ttu) + S -8mu} dzdr.

With the help of interpolations and Holder’s inequalities, K33 and K4 can be
bounded as follows

t
K135/0 |:||8tP||2<|atttP+||u||2||8ttp||1+||attu|1+P||3u||2|attP||+||P|3||attu”
4 3 2 2
+ 110 loll + ol 18z Pl + 10s: PI 1012 + 10112 110601 + 11013 ||3t9||2)

105 (1104 P+ 9rually + 11 Pl |15l + 19: Loll + 101131 :1 )

+18:P1 (19 P+l + ala 1Pl + 1o+ 6115

100 Plly (19rull, + 18Pl + 1Pl 10wully + 19: Foll, + 1013 125611 )

+110uee P (1Pl el + 1 oll + 1013 ) + 1P | Geeenll+ 1041 Lol

+16ll (||ato||3+||o||2||ato||2||att0|+||o||§||attto||)} 1e: P dr
<C(M)t,

and

t
K15 [ 10wl ol (ul 10ucul-+ 10:ul, 10l
2
1040l (Il 00|+ Dru3+ D],
9uplly sl + Dol s + a9
2
+0epl (0l + i) +10,P1 el | a7
<C(Mt.

Moreover, we use (2.3)-(2.5), and integration by parts to show that

I e .
K15:§/ / (|04 P div (P~ "u) +7|0yruldiv (pu) | dr
0 JQ
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t
3 2 2
S / (1Pl + 1P ) Tl 1920 PP + 1ol Il e ¥ ar < (M.
Finally, it follows from (3.1) that
1 t
K05 (e+2) [ 100 |10, (10,218 Bl + 100l ull 0PI+ 0PI forul

+||11||2||atttPH+H8ttPHHatu||2+|‘atp|l2Hamu”+“8nu”)
+ 101l (10: P, | 0wl + [|Oeear]| + (| 0: P13 ]|, + [|Ose Pl fur]l,)

+ (10 || (10 Pl [[ully, +|0sull,) + [|OseeTn || (|0 ull, + Hatttuﬂ)]df

t 1 3
2
<[ (¢3)%]

< Co(Mo)+C(M)t.

8:11(7')Hziid7'+C(M)t

Plugging estimates of K13-Kj6 into (4.8), we can derive (4.7). |

3 .
Now it suffices to deduce estimates on 3 ||ags(t)|}§_i.
i=0

LEMMA 4.5.  Assume that the conditions in Theorem 1.2 hold, then we have for all
0<t<Te that

3
S J8is(t)]s_, < Co(Mo) +C(M)t. (4.9)
=0

Proof.  First, we apply the operator 9% (0<|a|<3) to (1.17), and multiply the
resulting equations by 92s in L?(Q) to achieve

1 1
7/ |8;‘s|2d:c:f/ |0%s|2(0)dz + K17, (4.10)
2 Jq 2Ja
where
t 1
K17:/ /a;;s [ag (P~ 'Iy—P 70" —u-Vs) — (e+> oy (P_lll-u)}dxdr
0 JQ €
By using (2.1)-(2.5), (3.1), and integration by parts, we can get
KnN || Ig[IIP1Io||3+HP194H3+||u3||s|3+|8§(U-V8)—u-3§VSII (4.11)
e+ 2)||P ', ), [d
c 1-ua 3 T
4
/ Is |3[ 1Pls+1P15) (1 2oll+113) + s sl (4.12)
1
(e ) (1P +1PIE) 1,

1 2
5/0 (e +€2> Ty [2dr 4+ C (M)t < Co(My) + C(M)t. (4.13)
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The combination of (4.10) and (4.11) gives
Is()[I3 < Co (Mo) +C (M)t (4.14)

Second, applying the operator 920, (0<|B|<2) to (1.17), multiplying by 920;s,
then integrating the result identity over [0,t] X €2, we arrive at

20
1/Q\358ts|2dx:%/Q|8£8ts|2(0)dx+ZK]-, (4.15)

2 :
j=18

where

t
Kls//{;U-V(|5‘f§ts|2)+[3f(u~V6'ts)u-V@fats]afﬁts}dxdT,
0 JQ
t
Kig=— / / 920,508 (P~'0,Iy — Oyu-Vs— P29, PIy+ P29, P6* —4P~1630,0) dadr,
0 JQ

1 t
Koo = (e+ ) / / 920,502 (P20, P1;-u— P71 9,1 -u— P '1; - Opu) dadr.
€/ Jo Ja
To bound Ki5-Kag, we employ (2.4), (2.5), (3.1), and integration by parts to obtain

t t
Klsg/ /|divu|\858ts|2dxd7'+/ 1620,5][]|02 (u- Vas) —u- V20,5 dr
0 Q 0

t
< / ully 8:s]2dr <C (M),

t
Ko< / [l [(|P||2+|P||§) (10eTo -+ 10113 011, )

2
+ (1Pl +11P13) ||atP||2(|fo||2+||0;*)+||atu||2||s||3}dr
<C(M)t,
and

1 t
Koo (e+7) [ 10l | (1P1a-+1P13) Chall 10 + a1 )

9 2
+ (1Pl +1P13) Il Tl 19, Pl |dr

3
S/Ot (62+€12> ZO 0L, (7)|[_, d7 + C(M)¢
< Co(Mo)+C(M)t.
Combining the estimates on Kjg-Kog and (4.15), we have
18:5(t)]15 < Co (Mo) +C(M)t. (4.16)

Moreover, we apply the operator 979, (0<|n|<1) to (1.17), and multiply it by
0M0ys in L2(2) to achieve

23
1 1
5/9|6;’8tts|2dx:§/Q|8;’8tts|2(0)dsc+ > K, (4.17)

=21
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where
¢ 1
KQF_A /Q{2u~V(|8;78tt8|2)+[3£(U-V3tts)—u~V3;78tt3]8;78tts}da:dT,
t
K22:/ /828&88;] <2P_3|8tP|210—28tu-Vats—&gths—P_?@ttPlo
0 JQ
—2P~20,Pd,Iy+ P~ 0,1y — 2P 3|0, P|*6* + P20, Po*
+8P‘2938tP6t9—12P_192|8t9|2—4P_1938tt9)dxd7',
1 t
Koz = (e+)/ /a;gattsa;g (P_28ttP11-u—2P_3|8tP211-u+2P_28tP8t11-u
€ 0 JQ
+2P729,PI, -0yu— P~ '0u1; -u—2P~ 19,1, - u— P11, -8ttu> dadr.
We utilize (2.3), (2.4), (2.5), (3.1), and integration by parts to infer that
t t
Kzlg/ /|divu||8;78tts|2dxdT+/ 107005 07 (- Vyes) — u- VO s dr
0 JQ 0

t
< / lully [9s|2dr < (M),
0

t
Ko< / 0res s [<1+||P|3>(||attfo||1+||0||§||atte||1)+|atu||2||ats||2+||auu|1||s3
+ (1Pl +1PI3) 1ON3 10:61 (161110 Pl + 0:611)
9 2 3
+ (1Pl +IPI13) 19 Pl 10 Toll + (I1PU + 1213 ) oI5 (1ol + 11011 )
+104P, (|P|3|fo||2+||fo3+|P|3|e||;*+||e||§)}dr
<C(M)t,
and
1 t
Koz < <€+ 6>/0 [[Oreslly [(1+||P||3)||Il|3(|u||3||8ttP||1+||8ttu1)
2
+ (1P +1P13) 19l vl + (1Pl + 1 PIZ) 19:P, (||at11||2 Jull,
3
+||11n2uatun2)+(||P\|2+||Pn§) natpnéHLHQ||u||2+<1+||Pn3>nannnlnung}dr
t 1 5 ; 2
5/ (62—1—62)2\@;11(7)“3idT+C(M)t
0 i=0
<Co(My)+C(M)t.
We plug the estimates on Ko1-Ks3 into (4.17) to dedcue

[0hs(8)]2 < Co (Mo) + C(M)L. (1.18)
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Finally, we differentiate (1.17) with respect to ¢ three times, multiply the resulting
identity by s in L?(Q) to conclude that

25
1 1
5/9|5ms|2dx:5/gz|8ttts|2(0)dx+ ZKj, (419)

j=24

where
t
K24 = / / 3ttts <11 . V@ttts — 33tu . V@tts — 36ttu . V@ts — 3tttu -Vs
0 JQ

—6P 10, P|0, P|*Io +6P 30, P0;; PIy+6P 3|0, P|*0; Iy — P20y, PI,
—3P 720, PO 1y — 3P 20, POy o+ P~ 0y In +6 P40, P|0, P)?6*
—6P 30, PO, PO* — 24P 3|0, P|?0%0,0 + P~20,, PO* +12P~20,, P60,
+36P2620,P|9,0|? +12P~20%0,Pd,,0 — 24P~108,0|0,6|

—36P~10%0,00,,0 — 4P1938m9> dadr,

1\ [* ‘
K25: <6+ 6>/ /8“,55<P28mP11-u6PdatPattP11~u+3PzﬁttPﬁtIl'u
0 JQ

+3P 720, P, - 0,u+6P~ 49, P|0, P|* 1, -u— 6P~ 3|0, P|*0,1; -u— 6P 3|0, P|*1; - O,u
+3P_28tP8tt11 -u—|—6P_28tP8t11 -Otu—|—3P_28tP11 -é?ttu—P_lamIl-u

—3P716tt11 . 8tu—3P718t11 . 8ttu—P7111 . 815,51511) dadr.
Similar as the terms Ko1-Ko3, K94 and Ko5 can be bounded as follows

t
K24§/ [|Orees|| <|3ttt$||11||3+||3tu||2||3tt3||1+||3ttu1||3t3||2+||3ttt11||||53
0

+10: P13 1ol + 18: P || Tol | 182 Pl + |9 PI3 10 Lo || + 1| Oeee Pl || Zo |

+110u P 10eLoll5 + 18 Plls |18se Lol + 19ee Lol + 18 PII3 16115+ 10: Pl |0 Pl 16113

+ 0PI 1011310601+ [19eee P 16113+ 10 PU 0113 1060115 + 10 P 16115 1106015

+|atP|2||e|§atte||+||e||2|ate|3+o||§||at9||2|aue||+9||3||attt9||)d7
SC(M),

and
1 t
Kas 5 (1) [ 10uesl |11l (10471 100 Pl + 1000 P
3 2
0w PY0rully+ 10713 -+ 10 P10+ 10l 0l + [l
2
10 (100 Pl Il + 1012 [l + 12 ] + 00

F 0 La[[ (19 Pl [lully + [19su]l) + (| Geee L UIIQ] dr
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¢ 1\ < ; 2
2 @
5/0 (e —&-62);H8t11(7)H3Z.dT—i—C(M)t
< Co(Mo)+C(M)t.
We insert the above estimates into (4.19) to derive
1Deses]|* < Co (M) + C(M)t. (4.20)

Then (4.9) follows from (4.14), (4.16), (4.18), and (4.20). d
With Lemmas 3.1-4.5 in hand, we can deduce Theorem 1.3 immediately.

5. The proof of Theorem 1.2

The proof of Theorem 1.2 is actually based on [1,10,16,19]. For the completeness
of the paper, we sketch the proof here. Assume that Theorem 1.3 holds and T < 400
is the maximal life time of existence for the solution deduced in Theorem 1.1. Then we
have for any 0 <t <min{1,7¢} that

ME(t) < Co (M (0))+C (M(t))t
< Co(M*(0))exp(C(M(1))1), (5.1)

where M€(0) <Cj for 0 <e<1. In the sequence, we choose C5 > Cy(C2) and next 71 <1
such that

C() (C’g)exp(TlC'(C’g))<Cg. (52)

Let t <min{T3y,T¢}, with (5.1) and (5.2) in hand, we can assert that M<(¢) # Cs. Be-
sides, we can assume without restriction that Cy <Cj5, which implies that M€(0) <Cs.
Noticing the function M€(t) is continuous, one has

Me(t)<Cs for t<min{T1,7°} and 0<e<lI. (5.3)

Thus we can claim that T¢>T; for 0<e<1. Otherwise, with (5.3) and Theorem 1.1
in hand, we can extend the time interval of existence to [0,71], which contradicts to
the maximality of 7°¢. Thus, M¢(t) <Cj5 for any t€[0,71], where T is independent
of e€(0,1]. Obviously, the conclusion is also true for T°=+o00 by applying the same
argument. This completes the proof of Theorem 1.2.
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