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ERROR ANALYSIS OF
GALERKIN SPECTRAL METHODS FOR NONLINEAR OPTIMAL

CONTROL PROBLEMS WITH INTEGRAL CONTROL CONSTRAINT∗

YANPING CHEN† , XIUXIU LIN‡ , AND YUNQING HUANG§

Abstract. The error analysis of Galerkin spectral methods for integral control constrained non-
linear optimal control problems is investigated in this paper. At first, the optimality conditions of
the optimal control problem are presented. More precisely, on the basis of the property of projection
operator, a priori error analysis of Galerkin spectral discretization is derived. Moreover, a posteriori
error analysis of state, control, adjoint state is established rigorously. Furthermore, for this nonlinear
problem, detailed a posteriori error analysis of hp spectral element discretization for the optimal control
problem is also proved. In the end, ample numerical experiments are presented to verify the theoretical
analysis of Galerkin spectral discretization by using the efficient gradient projection algorithm.
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1. Introduction

In recent decades, the numerical analysis of optimal control problems has already
become a very attractive field of research. There exist a great number of works for
the purpose of studying optimal control problems [1, 7, 9, 16, 22–24, 29]. More detailed
research can be found in Hinze et al. [17], Lions [20], and Tröltzsch [32]. With the
development of engineering applications, the problem of nonlinear optimal control has
gradually stepped onto the stage of academic research, such as in [5, 6, 14, 18, 21, 25,
28] and so on. Tröltzsch [33] considered a parabolic optimal control problem with a
nonlinear boundary condition and constraints on the control and the state. Arada,
Casas and Tröltzsch [2] studied error analysis of distributed nonlinear optimal control
problems governed by semilinear elliptic partial differential equations with pointwise
constraint on the control. Liu and Yan [26] investigated a posteriori error analysis of
nonlinear control problem. In [10], Chen and Lu considered a priori error analysis of
semilinear parabolic control problem which is approximated by mixed finite element
methods.

It is well known that spectral method [3,4,30,34] is very efficient numerical approach
for solving partial differential equations, because it can obtain fast convergence and high
order accuracy when the solutions have higher regularity. We must mention the works of
Shen, Tang, and Wang [31]. Recently, spectral discretization for linear control problem
has already been discussed in [15] successfully. In [11,12], a priori and a posteriori error
estimates of Galerkin spectral approximation for optimal control problem with elliptic
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PDE are proved rigorously. In [8], Chen, Huang, Yi, and Liu investigated the spectral
discretization of integral control constrained Stokes optimal control problem, and proved
a priori and a posteriori error analysis. In [35, 36], the authors investigated Galerkin
spectral method for state constrained optimal control problem, and established a priori
error estimates. A posteriori error estimates of hp spectral element methods for elliptic
optimal control problem with state constraint are proved in [19], and then a priori and
a posteriori error estimates of hp spectral element discretization for first bi-harmonic
optimal control problem with integral state constraint are established in [13].

Motivated by above literature, the study of Galerkin spectral discretization for non-
linear optimal control problems is significant, because it can obtain high order accuracy.
It is more difficult to study than linear optimal control problems because of the nonlin-
ear function. The novelty of this article is analysing and discussing Galerkin spectral
methods for nonlinear optimal control problem. Based on some properties of operators,
a priori error analysis of spectral discretization is established in details. Moreover, a
posteriori error analysis for this control problem is also deduced in L2−H1-norm and
L2−L2-norm rigorously. Additionally, a posteriori error analysis of hp spectral element
discretization is obtained in L2−H1-norm and L2−L2-norm, respectively. Finally, an
efficient projection algorithm is presented, and the theoretical analysis is confirmed by
numerical experiments.

Throughout this article, the following control constrained nonlinear elliptic optimal
control problem is analyzed:

min
u∈K

J(y,u)=g(y)+h(u)

subject to

−∆y+ψ(y)=f+u, in Ω,

y=0, on ∂Ω,

where the constraint set K is

K={v∈L2(Ω) :

∫
Ω

v≥0}.

The details of the problem are presented in Section 2.
The rest of this article is organized as follows. In Section 2, we are going to construct

the spectral discretization of the nonlinear optimal control problem. Based on the
property of operators, a priori error analysis is derived rigorously in Section 3. Moreover,
a posteriori error analysis is proved in L2−H1-norm and L2−L2-norm for the control
problem in detail in Section 4. Furthermore, a posteriori error analysis for the nonlinear
control problem discretized by hp spectral element methods in L2−H1-norm and L2−
L2-norm is also investigated in Section 5. In Section 6, the gradient projection algorithm
is presented and then some numerical experiments are carried out to verify that the
theoretical analysis of Galerkin spectral approximation can obtain spectral accuracy.
Finally, a brief conclusion and some future works are summarized in the last section.

There are some basic notations that will be used in the sequel. Let Ω be a bounded
open set in R2 with a Lipschitz boundary ∂Ω. Introduce the standard notationWm,p(Ω)
for Sobolev spaces on Ω with a norm ∥·∥m,p given by ∥v∥pm,p=

∑
|α|≤m

∥Dαv∥pLp(Ω) and

a semi-norm | · |m,p given by |v|pm,p=
∑

|α|=m

∥Dαv∥pLp(Ω). Set Wm,p
0 (Ω)={w∈Wm,p(Ω) :
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w|∂Ω=0}. For p=2, we denote Hm(Ω)=Wm,2(Ω), Hm
0 (Ω)=Wm,2

0 (Ω), and ∥·∥m=∥·
∥m,2, ∥·∥=∥·∥0,2. Additionally, c and C denote different positive constants independent
of discrete parameter.

2. Optimal control problems and its spectral approximation
In this section, we study Galerkin spectral approximation for control constrained

optimal control problem governed by nonlinear elliptic equation. To begin with, we
present a weak formulation and the optimality conditions of optimal control problem.

2.1. Optimal control problems. Let Y =H1
0 (Ω) be the state space, and U =

L2(Ω) be the control space, we investigate nonlinear optimal control problem as follows

min
u∈K

J(u,y)=
1

2

∫
Ω

(y−y0)2+
α

2

∫
Ω

u2, (2.1)

subject to

−∆y+ψ(y)=f+u, in Ω,

y=0, on ∂Ω,
(2.2)

and the constraint set is

K={v∈L2(Ω) :

∫
Ω

v≥0},

where y0 is the desired state, and α is the regularization parameter. Suppose that
the function ψ(·)∈W 1,∞(−R,R), for any R>0. ψ′(y)∈L2(Ω) for any y∈H1(Ω), and
ψ′≥0.

Take

A(y,v)=

∫
Ω

∇y ·∇v, ∀ y,v∈Y,

(p,q)=

∫
Ω

pq, ∀ p,q∈U,

and there are two positive constants c and C such that ∀ y,v∈Y

A(y,y)≥ c∥y∥2Y , |A(y,v)|≤C∥y∥Y ∥v∥Y .

Thus the weak formulation of (2.2) is: for given functions f and u, seek y(u)∈Y
satisfying

A(y(u),v)+(ψ(y),v)=(f+u,v), ∀ v∈Y.

Hence, the nonlinear problem (2.1)-(2.2) can be shown as:

min
u∈K

J(y,u)=
1

2

∫
Ω

(y−y0)2+
α

2

∫
Ω

u2, (2.3)

A(y(u),v)+(ψ(y),v)=(f+u,v), ∀ v∈Y. (2.4)

It is well known [20] that the control problem has a solution (y,u). It follows from
Lions [20] that the optimality conditions are presented as follows.
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Lemma 2.1. If a pair (y,u) is the solution of the optimal control problem (2.3)-(2.4),
then there exists an adjoint state z∈Y such that the triplet (y,u,z) satisfies the following
optimality conditions: (OPT −CON)

(a) A(y,v)+(ψ(y),v)=(f+u,v), ∀ v∈Y,
(b) A(q,z)+(ψ′(y)z,q)=(y−y0,q), ∀ q∈Y,
(c) (αu+z,η−u)U ≥0, ∀ η∈K,

(2.5)

and

αu=max{0, z̄}−z=θ−z, (2.6)

where z̄=
∫
Ω
z∫

Ω
1
means the integral average on Ω.

2.2. Galerkin spectral discretization. We will establish Galerkin spectral
discretization of the nonlinear control problem. Let Lr(xi)(i=1,2) be the r-th degree
Legendre polynomial on the variable xi. Set

Xi
M =span{L0(xi),L1(xi),·· · ,LM (xi)}, M ≥0,

and the product space is defined as

XM =

2∏
i=1

Xi
M .

Take the approximation spaces YM =XM ∩Y , UM =XM ∩U , and KM =UM ∩K.
Here KM and VM are the spaces of control and state approximations, respectively.
Then spectral discretization of the problem (2.3)-(2.4) is given as follows

min
uM∈KM

JM (yM ,uM )=
1

2

∫
Ω

(yM −y0)2+
α

2

∫
Ω

u2M , (2.7)

A(yM ,vM )+(ψ(yM ),vM )=(f+uM ,vM ), ∀ vM ∈YM . (2.8)

Analogously, the control problem has a solution (yM ,uM ), and the discrete optimality
conditions are also gained as follows.

Lemma 2.2. If a pair (yM ,uM ) is the solution of the discrete optimal control problem
(2.7)-(2.8), then there exists an adjoint state zM ∈YM such that (yM ,uM ,zM ) satisfies
the following optimality conditions: (OPT −CON)M

(a) A(yM ,vM )+(ψ(yM ),vM )=(f+uM ,vM ), ∀ vM ∈YM ,
(b) A(qM ,zM )+(ψ′(yM )zM ,qM )=(yM −y0,qM ), ∀ qM ∈YM ,
(c) (αuM +zM ,ηM −uM )U ≥0, ∀ ηM ∈KM ,

(2.9)

and

αuM =max{0,zM}−zM =θM −zM , (2.10)

where zM =
∫
Ω
zM∫
Ω
1

means the integral average on Ω of zM .
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From [27], for Taylor expansion, assume that ψ(·)∈W 2,∞(−R,R), and the property
of ψ can be written as follows: for φ∈YM , we get

ψ(φ)−ψ(ρ)=−ψ̃′(φ)(ρ−φ)=−ψ′(ρ)(ρ−φ)+ ψ̃′′(φ)(ρ−φ)2,

where

ψ̃′(φ)=

∫ 1

0

ψ′(φ+s(ρ−φ))ds, ψ̃′′(φ)=

∫ 1

0

(1−s)ψ′′(ρ+s(φ−ρ))ds

are bounded functions in Ω.

3. A priori error analysis
A priori error analysis of Galerkin spectral discretization for the nonlinear optimal

control problem will be derived rigorously in this section. Some important results of
operators will be introduced to help us to establish the error analysis. They can be
found in the reference books [4, 31].

Lemma 3.1. For any v∈L2(Ω), we define the orthogonal projection operator PM :
L2(Ω)→UM , which satisfies

(v−PMv,wM )=0, ∀ wM ∈UM .

For all v∈Hm(Ω) (m≥0), we have

∥v−PMv∥Hl(Ω)≤CM l−m∥v∥Hm(Ω), 0≤ l≤m.

Lemma 3.2. For any v∈H1
0 (Ω), we define the projection operator P 0

1,M :H1
0 (Ω)→YM

satisfying ∫
Ω

∇(v−P 0
1,Mv) ·∇wM =0, ∀ wM ∈YM .

If v∈H1
0 (Ω)∩Hm(Ω),m≥1, then we have that

∥v−P 0
1,Mv∥Hµ(Ω)≤CMµ−m∥v∥Hm(Ω), 0≤µ≤1.

The regularity of the control problem is presented as follows [11].

Remark 3.1. Suppose that (y,z,u) satisfy the (OPT −CON), and assume that f, y0
and Ω are infinitely smooth, we can get the control u∈C∞(Ω̄).

The following auxiliary equations are important to derive a priori error analysis,
seek (yM (u), zM (u)) such that

A(yM (u),vM )+(ψ(yM (u)),vM )=(f+u,vM ), ∀ vM ∈YM , (3.1)

and

A(qM ,zM (u))+(ψ′(yM (u))zM (u),qM )=(yM (u)−y0,qM ), ∀ qM ∈YM . (3.2)

The important analytical results are proved in the following theorem.

Theorem 3.1. Let (y,z,u) and (yM ,zM ,uM ) be the solutions of optimality conditions
(OPT −CON) and (OPT −CON)M , respectively. Suppose that (y,z,u) is sufficiently
regular, and then for any m≥1, there holds

∥u−uM∥L2(Ω)+∥y−yM∥H1(Ω)+∥z−zM∥H1(Ω)≤CM1−m, (3.3)
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where C>0 is a constant independent of M .

Proof. We obviously know that

∥y−yM∥H1(Ω)≤∥y−y(uM )∥H1(Ω)+∥y(uM )−yM∥H1(Ω), (3.4)

and

∥z−zM∥H1(Ω)≤∥z−z(uM )∥H1(Ω)+∥z(uM )−zM∥H1(Ω). (3.5)

From the substraction of the (OPT −CON) and auxiliary Equations (3.1)-(3.2), we can
get

A(y−yM (u),vM )+(ψ(y)−ψ(yM (u)),vM )=0, ∀ vM ∈YM , (3.6)

and

A(qM ,z−zM (u))+(ψ′(y)z−ψ′(yM (u))zM (u),qM )=(y−yM (u),qM ), ∀ qM ∈YM .
(3.7)

We divided the proof process into the following five steps:

The first step: to estimate ∥y−yM (u)∥H1(Ω). Letting vM =y−yM (u) in (3.6), we
get

c∥y−yM (u)∥2H1(Ω)

≤A(y−yM (u),y−yM (u))+(ψ(y)−ψ(yM (u)),y−yM (u))

=A(y−yM (u),y−yM (u)+wM )+(ψ(y)−ψ(yM (u)),y−yM (u)+wM )

=A(y−yM (u),y−yM (u)+wM )+(ψ̃′(y)(y−yM (u)),y−yM (u)+wM )

≤∥y−yM (u)∥H1(Ω) inf
wM∈YM

∥y−wM∥H1(Ω),

where we employ the fact that ψ′(·)∈W 1,∞(Ω), and ψ′(·)≥0, then we obtain

∥y−yM (u)∥H1(Ω)≤C inf
wM∈YM

∥y−wM∥H1(Ω)≤CM1−m. (3.8)

The second step: to estimate ∥z−zM (u)∥H1(Ω). Similarly, letting qM =z−zM (u)
in (3.7), we have

A(z−zM (u),z−zM (u))+(ψ′(y)z−ψ′(yM (u))zM (u),z−zM (u))

=(y−yM (u),z−zM (u)),

namely

A(z−zM (u),z−zM (u))+(ψ′(yM (u))z−ψ′(yM (u))zM (u),z−zM (u))

=(y−yM (u),z−zM (u))+(ψ′(yM (u))z−ψ′(y)z,z−zM (u)),

combining (2.9) with (3.7), we gain

c∥z−zM (u)∥2H1(Ω)≤A(z−zM (u),z−zM (u))+(ψ′(yM (u))(z−zM (u)),z−zM (u))

=(y−yM (u),z−zM (u))+(ψ′(yM (u))z−ψ′(y)z,z−zM (u))

≤C∥ψ′(y)−ψ′(yM (u))∥L2(Ω)∥z∥H1(Ω)∥z−zM (u)∥H1(Ω)

+C∥z−zM (u)∥L2(Ω)∥y−yM (u)∥L2(Ω)
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where we used the fact that ψ′(·)∈W 1,∞(Ω), and ψ′(·)≥0, ∥z∥H1(Ω)≤C, then the
following inequality is obtained

∥z−zM (u)∥H1(Ω)≤C∥y−yM (u)∥L2(Ω)≤CM1−m. (3.9)

It follows from (OPT −CON)M and (3.1)-(3.2) that

A(yM (u)−yM ,vM )+(ψ(yM (u))−ψ(yM ),vM )=(u−uM ,vM ), ∀ vM ∈YM , (3.10)

and

A(qM ,zM (u)−zM )+(ψ′(yM (u))zM (u)−ψ′(yM )zM ,qM )

=(yM (u)−yM ,qM ), ∀ qM ∈YM .
(3.11)

The third step: estimating ∥yM (u)−yM∥H1(Ω). Letting vM =yM (u)−yM in (3.10),
then

A(yM (u)−yM ,yM (u)−yM )+(ψ(yM (u))−ψ(yM ),yM (u)−yM )

=(u−uM ,yM (u)−yM ),

where we used ψ′(·)≥0, and we have

∥yM (u)−yM∥H1(Ω)≤C∥u−uM∥L2(Ω). (3.12)

The fourth step: estimating ∥zM (u)−zM∥H1(Ω). Letting qM =zM (u)−zM in (3.11),
then

A(zM (u)−zM ,zM (u)−zM )+(ψ′(yM (u))zM (u)−ψ′(yM )zM ,zM (u)−zM )

=(yM (u)−yM ,zM (u)−zM ),

the above equation can be restated as

A(zM (u)−zM ,zM (u)−zM )+(ψ′(yM (u))(zM (u)−zM ),zM (u)−zM )

=(ψ′(yM (u))zM −ψ′(yM )zM ,zM (u)−zM )+(yM (u)−yM ,zM (u)−zM ),

then we have

∥zM (u)−zM∥H1(Ω)≤C∥yM (u)−yM∥L2(Ω)≤C∥u−uM∥L2(Ω), (3.13)

where we used

(ψ′(yM (u))zM −ψ′(yM )zM ,zM (u)−zM )

≤C∥ψ′(yM (u))zM −ψ′(yM )∥L2(Ω)∥zM∥H1(Ω)∥zM (u)−zM∥H1(Ω)

≤C∥yM (u)−yM∥L2(Ω)∥zM (u)−zM∥H1(Ω).

Letting vM =zM (u)−zM in (3.10) and qM =yM (u)−yM in (3.11), then

(u−uM ,zM (u)−zM )−(ψ(yM (u))−ψ(yM ),zM (u)−zM )

=(yM (u)−yM ,yM (u)−yM −(ψ′(yM (u))zM (u)−ψ′(yM )zM ,yM (u)−yM ),

then the above equation can be written as

(u−uM ,zM (u)−zM )=(yM (u)−yM ,yM (u)−yM )+(ψ(yM (u))−ψ(yM ),zM (u)−zM )
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−(ψ′(yM (u))zM (u)−ψ′(yM )zM ,yM (u)−yM ). (3.14)

The fifth step: estimating ∥u−uM∥L2(Ω). It follows from (2.5)(c), (2.9)(c)that

α∥u−uM∥2L2(Ω)=α(u−uM ,u−uM )=(u−uM ,αu−αuM )

=(u−uM ,αu+z−z+zM −zM −αuM )

=(u−uM ,αu+z)+(u−uM ,zM −z)−(u−uM ,zM +αuM )

=(u−uM ,αu+z)+(u−uM ,zM −z)−(u−vM +vM −uM ,zM +αuM )

=−(uM −u,αu+z)+(u−uM ,zM −z)−(u−vM ,zM +αuM )

−(vM −uM ,zM +αuM )

≤ (u−uM ,zM −zM (u))+(u−uM ,zM (u)−z).

Letting vM =PMu∈UM , where PM is defined in Lemma 3.1. Letting wM =1 in Lemma
3.1, then we have ∫

(u−PMu)=0,

∫
PMu=

∫
u≥0,

thus, we have PMu∈KM . Finally, we get

∥u−uM∥L2(Ω)≤C∥z−zM (u)∥L2(Ω). (3.15)

Combining with (3.4)-(3.15) to obtain the result (3.3), the proof is completed.

4. A posteriori error analysis
We will prove a posteriori error analysis of optimal control problem rigorously in

this section. Firstly, the L2−H1 posteriori error estimates are established, based on
control error approximation using L2-norm, and the both state error approximation
using H1-norm.

It is necessary to introduce the auxiliary equations as follows

A(y(uM ),v)+(ψ(y(uM )),v)=(f+uM ,v), ∀ v∈Y, (4.1)

and

A(q,z(uM ))+(ψ′(y(uM ))z(uM ),q)=(y(uM )−y0,q), ∀ q∈Y. (4.2)

Next, to derive the intermediate equations, from the (OPT −CON) and auxiliary
Equations (4.1)-(4.2), we have

A(y(uM )−y,v)+(ψ(y(uM ))−ψ(y),v)=(uM −u,v), ∀ v∈Y, (4.3)

and

A(q,z(uM )−z)+(ψ′(y(uM ))z(uM )−ψ′(y)z,q)=(y(uM )−y,q), ∀ q∈Y. (4.4)

Letting v=y(uM )−y in (4.3) to get

A(y(uM )−y,y(uM )−y)+(ψ(y(uM ))−ψ(y),y(uM )−y)=(uM −u,y(uM )−y),

since (ψ(y(uM ))−ψ(y),y(uM )−y)=(ψ̃′(y(uM ))(y(uM )−y),y(uM )−y) and ψ′(y)≥0,
then we get

∥y(uM )−y∥H1(Ω)≤ c1∥uM −u∥L2(Ω). (4.5)
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Setting q=z(uM )−z in (4.4), we have

A(z(uM )−z,z(uM )−z)+(ψ′(y(uM ))z(uM )−ψ′(y(uM ))z,z(uM )−z)
=(y(uM )−y,z(uM )−z)−(ψ′(y(uM ))z−ψ′(y)z,z(uM )−z).

(4.6)

In fact

(ψ′(y(uM ))z−ψ′(y)z,z(uM )−z)
=((ψ′(y(uM ))−ψ′(y))z,z(uM )−z)
≤C∥z∥L∞(Ω) ·∥ψ′(y(uM ))−ψ′(y)∥L2(Ω) ·∥z(uM )−z∥L2(Ω)

≤C∥y(uM )−y∥L2(Ω) ·∥z(uM )−z∥L2(Ω).

We can derive

∥z(uM )−z∥H1(Ω)≤ c1∥y(uM )−y∥L2(Ω)≤ c1∥uM −u∥L2(Ω). (4.7)

These intermediate error estimates are important for analysing a posteriori error
analysis.

Lemma 4.1. Let (yM ,zM ,uM ) and (y(uM ),z(uM )) be the solutions of optimality con-
ditions (OPT −CON)M and auxiliary Equations (4.1)-(4.2), respectively. Then there
holds

∥y(uM )−yM∥H1(Ω)+∥z(uM )−zM∥H1(Ω)≤C(η1+η2), (4.8)

where η1,η2 are defined as

η1=M
−1∥f+uM +∆yM −ψ(yM )∥L2(Ω),

and

η2=M
−1∥yM −y0+∆zM −ψ′(yM )zM∥L2(Ω).

Proof. In the light of the (OPT −CON)M and auxiliary Equations (4.1)-(4.2), we
have

A(y(uM )−yM ,vM )+(ψ(y(uM ))−ψ(yM ),vM )=0, ∀ vM ∈YM , (4.9)

and

A(qM ,z(uM )−zM )+(ψ′(y(uM ))z(uM )−ψ′(yM )zM ,qM )

=(y(uM )−yM ,qM ),∀ qM ∈YM .
(4.10)

Assume that Ez =z(uM )−zM and EM
z =P 0

1,MEz, where P
0
1,M is defined in Lemma 3.2.

According to (2.9)(b), (4.2), (4.10), we derive that

c∥z(uM )−zM∥2H1(Ω)≤(∇Ez,∇Ez)+(ψ′(y(uM ))(z(uM )−zM ),Ez)

=(∇(Ez−EM
z ),∇Ez)+(∇EM

z ,∇Ez)

+(ψ′(y(uM ))z(uM )−ψ′(yM )zM ,Ez−EM
z )

+(ψ′(y(uM ))z(uM )−ψ′(yM )zM ,E
M
z )

+((ψ′(yM )−ψ′(y(uM )))zM ,Ez)

=(y(uM )−y0+∆zM −ψ′(yM )zM ,Ez−EM
z )+(y(uM )−yM ,EM

z )

+((ψ′(yM )−ψ′(y(uM )))zM ,Ez)

=(yM −y0+∆zM −ψ′(yM )zM ,Ez−EM
z )+(y(uM )−yM ,Ez)

+((ψ′(yM )−ψ′(y(uM )))zM ,Ez)
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then applying Lemma 3.2, we get

c∥z(uM )−zM∥2H1(Ω)≤C∥yM −y0+∆zM −ψ′(yM )zM∥L2(Ω)∥Ez−EM
z ∥L2(Ω)

+C∥zM∥L4(Ω) ·∥ψ′(yM )−ψ′(y(uM ))∥L2(Ω) ·∥Ez∥L4(Ω)

+C∥yM −y(uM )∥L2(Ω) ·∥Ez∥L2(Ω)

≤C(δ)M−2∥yM −y0+∆zM −ψ′(yM )zM∥2L2(Ω)

+C(δ)∥zM∥2H1(Ω) ·∥ψ
′(yM )−ψ′(y(uM ))∥2L2(Ω)

+C(δ)∥yM −y(uM )∥2L2(Ω)+Cδ∥Ez∥2H1(Ω)

≤C(δ)M−2∥yM −y0+∆zM −ψ′(yM )zM∥2L2(Ω)

+C(δ)∥yM −y(uM )∥2L2(Ω)+Cδ∥z(uM )−zM∥2H1(Ω),

where we have used the embedding theorem ∥v∥L4(Ω)≤C∥v∥H1(Ω) and ψ(·)∈W 1,∞(Ω)
and the property ∥zM∥H1(Ω)≤C. Hence we have

∥z(uM )−zM∥H1(Ω)≤CM−1∥yM −y0+∆zM −ψ′(yM )zM∥L2(Ω)

+C∥yM −y(uM )∥H1(Ω).
(4.11)

Similarly, suppose that Ey =y(uM )−yM , and EM
y =P 0

1,MEy ∈YM , where P 0
1,M is

defined in Lemma 3.2. According to (2.9)(a), (4.1), (4.9), we obtain

∥y(uM )−yM∥2H1(Ω)≤(∇Ey,∇Ey)+(ψ(y(uM ))−ψ(yM ),Ey)

=(∇(Ey−EM
y ),∇Ey)+(ψ(y(uM ))−ψ(yM ),Ey−EM

y )

+(∇EM
y ,∇Ey)+(ψ(y(uM ))−ψ(yM ),EM

y )

=(f+uM +∆yM −ψ(yM ),Ey−EM
y )

≤C(δ)M−2∥f+uM +∆yM −ψ(yM )∥2L2(Ω)+δ∥Ey∥2H1(Ω)

≤C(δ)M−2∥f+uM +∆yM −ψ(yM )∥2L2(Ω)+δ∥y(uM )−yM∥2H1(Ω).

Hence we get

∥y(uM )−yM∥H1(Ω)≤CM−1∥f+uM +∆yM −ψ(yM )∥L2(Ω). (4.12)

Combing with (4.11)-(4.12), we arrive at

∥y(uM )−yM∥H1(Ω)+∥z(uM )−zM∥H1(Ω)≤C(η1+η2),

which completes the proof.

Theorem 4.1. Let (y,z,u) and (yM ,zM ,uM ) be the solutions of (OPT −CON) and
(OPT −CON)M , respectively. Then we derive

∥u−uM∥L2(Ω)+∥y−yM∥H1(Ω)+∥z−zM∥H1(Ω)≤C(η1+η2), (4.13)

where η1,η2 are presented in Lemma 4.1.

Proof. From [26], assume that the objective functional J(·) is locally convex in
the neighborhood of the solution, then there exists a constant c>0 satisfying

(J ′(v)−J ′(w),v−w)≥ c∥v−w∥2L2(Ω),
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then

c∥u−uM∥2L2(Ω)≤(J ′(u),u−uM )−(J ′(uM ),u−uM )

≤−(J ′(uM ),u−uM )

=(J ′
M (uM ),uM −u)+(J ′

M (uM )−J ′(uM ),u−uM )

≤(αuM +zM ,vM −u)+(J ′
M (uM )−J ′(uM ),u−uM )

=(J ′
M (uM )−J ′(uM ),u−uM )

=(zM −z(uM ),u−uM )

≤C∥z(uM )−zM∥L2(Ω)∥u−uM∥L2(Ω).

Here, using the following results:

(J ′(uM ),u−w)=(αuM +z(uM ),u−w),

and

(J ′
M (uM ),uM −wM )=(αuM +zM ,uM −wM ),

letting vM =PMu∈UM , where PM is defined in Lemma 3.1, then we have vM =PMu∈
KM . Hence we arrive at

∥u−uM∥L2(Ω)≤C∥zM −z(uM )∥L2(Ω). (4.14)

Employing the triangle inequality, we obtain

∥y−yM∥H1(Ω)≤∥y−y(uM )∥H1(Ω)+∥y(uM )−yM∥H1(Ω), (4.15)

and

∥z−zM∥H1(Ω)≤∥z−z(uM )∥H1(Ω)+∥z(uM )−zM∥H1(Ω). (4.16)

It follows from (4.15)-(4.16), and Lemma 4.1 that the error result (4.13) is proved.
In real applications, we are mostly interested in computing the error estimates using

L2-norm to derive the estimators. We need to introduce the auxiliary problems to derive
error analysis:

−∆ξ+Ψξ=f1, in Ω, ξ|∂Ω=0, (4.17)

and

−∆ζ+ψ′(y(uM ))ζ=f2, in Ω, ζ|∂Ω=0, (4.18)

where

Ψ=


ψ(y(uM ))−ψ(yM )

y(uM )−yM
, if y(uM ) ̸=yM ,

ψ′(yM ), if y(uM )=yM .

From [23], the regularity results are given as follows:

Lemma 4.2. Let ξ, ζ be the solutions of (4.17)-(4.18), respectively. Suppose that
ψ∈W 1,∞[0,∞),ψ′≥γ0>0 and Ω is a convex domain. Then we get

∥ξ∥H2(Ω)≤C∥f1∥L2(Ω),
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and

∥ζ∥H2(Ω)≤C∥f2∥L2(Ω).

The following intermediate error estimates will be obtained, which are key to prove
a posteriori error analysis.

Lemma 4.3. Let (yM ,zM ,uM ) and (y(uM ),z(uM )) be the solutions of (OPT −
CON)M and auxiliary system (4.1)-(4.2), respectively. Then there holds

∥y(uM )−yM∥L2(Ω)+∥z(uM )−zM∥L2(Ω)≤Cη3, (4.19)

where η3 is defined as

η3=M
−2∥yM −y0+∆zM −ψ′(yM )zM∥L2(Ω)+M

−2∥f+uM +∆yM −ψ(yM )∥L2(Ω).

Proof. Suppose that ζ is the solution of (4.18) with f2=z(uM )−zM and let
P 0
1,M be the projection operator defined in Lemma 3.2. According to (2.9)(b) and (4.2),

(4.10), there holds

∥z(uM )−zM∥2L2(Ω)=(∇ζ,∇(z(uM )−zM ))+(ψ′(y(uM ))(z(uM )−zM ),ζ)

=(∇ζ,∇(z(uM )−zM ))+(ψ′(y(uM ))z(uM )−ψ′(yM )zM ,ζ)

+((ψ′(yM )−ψ′(y(uM )))zM ,ζ)

=(∇(ζ−P 0
1,Mζ),∇(z(uM )−zM ))+(∇(P 0

1,Mζ),∇(z(uM )−zM ))

+(ψ′(y(uM )z(uM )−ψ′(yM )zM ,ζ−P 0
1,Mζ)

+(ψ′(y(uM )z(uM )−ψ′(yM )zM ,P
0
1,Mζ)

+((ψ′(yM )−ψ′(y(uM )))zM ,ζ)

=(y(uM )−y0+∆zM −ψ′(yM )zM ,ζ−P 0
1,Mζ)

+(y(uM )−yM ,P 0
1,Mζ)+((ψ′(yM )−ψ′(y(uM )))zM ,ζ)

=(yM −y0+∆zM −ψ′(yM )zM ,ζ−P 0
1,Mζ)+(y(uM )−yM ,ζ)

+((ψ′(yM )−ψ′(y(uM )))zM ,ζ)

then employing the Lemma 4.2, we obtain

c∥z(uM )−zM∥2L2(Ω)≤C∥yM −y0+∆zM −ψ′(yM )zM∥L2(Ω)∥ζ−P 0
1,Mζ∥L2(Ω)

+C∥zM∥L4(Ω) ·∥ψ′(yM )−ψ′(y(uM ))∥L2(Ω) ·∥ζ∥L4(Ω)

+C∥yM −y(uM )∥L2(Ω) ·∥ζ∥L2(Ω)

≤CM−2∥yM −y0+∆zM −ψ′(yM )zM∥L2(Ω) ·∥ζ∥H2(Ω)

+C∥zM∥H1(Ω) ·∥ψ′(yM )−ψ′(y(uM ))∥L2(Ω) ·∥ζ∥∞,Ω

+C∥yM −y(uM )∥L2(Ω) ·∥ζ∥L2(Ω)

≤C(δ)M−4∥yM −y0+∆zM −ψ′(yM )zM∥2L2(Ω)

+C(δ)∥yM −y(uM )∥2L2(Ω)+Cδ∥f2∥
2
L2(Ω),

where we have applied the embedding theorem ∥v∥L4(Ω)≤C∥v∥1,Ω and ψ(·)∈W 1,∞(Ω)
and ∥zM∥H1(Ω)≤C. Hence we have

∥z(uM )−zM∥L2(Ω)≤CM−2∥yM −y0+∆zM −ψ′(yM )zM∥L2(Ω)+C∥yM −y(uM )∥L2(Ω).
(4.20)
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Analogously, let ξ be the solution of (4.17) with f1=y(uM )−yM , let P 0
1,M be the

projection operator defined in Lemma 3.2. It follows from (2.9)(a) and (4.1), (4.9) that

∥y(uM )−yM∥2L2(Ω)=(∇(y(uM )−yM ),∇ξ)+(ψ(y(uM ))−ψ(yM ),ξ)

=(∇(y(uM )−yM ),∇(ξ−P 0
1,Mξ))+(ψ(y(uM ))−ψ(yM ),ξ−P 0

1,Mξ)

+(∇(y(uM )−yM ),∇(P 0
1,Mξ))+(ψ(y(uM ))−ψ(yM ),P 0

1,Mξ)

=(f+uM +∆yM −ψ(yM ),ξ−P 0
1,Mξ)

≤C∥f+uM +∆yM −ψ(yM )∥L2(Ω)∥ξ−P 0
1,Mξ∥L2(Ω)

≤C(δ)M−4∥f+uM +∆yM −ψ(yM )∥2L2(Ω)+cδ∥ξ∥
2
H2(Ω)

≤C(δ)M−4∥f+uM +∆yM −ψ(yM )∥2L2(Ω)+cδ∥y(uM )−yM∥2L2(Ω).

Hence we have

∥y(uM )−yM∥L2(Ω)≤CM−2∥f+uM +∆yM −ψ(yM )∥L2(Ω). (4.21)

This combined with (4.20)-(4.21) gives the result. This completes the proof.

Theorem 4.2. Let (y,z,u) and (yM ,zM ,uM ) be the solutions of (OPT −CON) and
(OPT −CON)M , respectively. Then we derive

∥u−uM∥L2(Ω)+∥y−yM∥L2(Ω)+∥z−zM∥L2(Ω)≤Cη3, (4.22)

where η3 is defined in Lemma 4.3.

Proof. It is easy to derive the triangle inequality, we can obtain

∥y−yM∥L2(Ω)≤∥y−y(uM )∥L2(Ω)+∥y(uM )−yM∥L2(Ω),

∥z−zM∥L2(Ω)≤∥z−z(uM )∥L2(Ω)+∥z(uM )−zM∥L2(Ω).
(4.23)

Employing (4.23), and Lemma 4.3, which completes the proof of the analysis result.

5. hp spectral element approximation
In this part, hp spectral element method is used to discretize the nonlinear con-

trol problem. More details can be referred to [11, 13, 19]. The hp spectral element
approximation of optimal control problems (OCP ) will be developed in this section.

The domain is divided into Nτ nonoverlapping subdomains (elements) τi,1≤ i≤Nτ :

Ω=

Nτ⋃
i=0

τ̄i, τi
⋂
τj =∅, i ̸= j, 1≤ i,j≤Nτ .

Let T ={τ} be a local quasi-uniform partitioning of Ω into nonoverlapping regular

elements τ . Denote the reference element τ̂ =(−1,1)
2
. Let E(T ) be the set of all edges,

and let E0(T ) be the set of all edges which do not lie on the boundary ∂Ω. Each element
τ can be the image of the reference element τ̂ under an affine map Fτ : τ̂→ τ . Set hτ : =
diam τ and assume that the triangulation is γ-shape regular:

h−1
τ ∥F ′

τ∥+hτ∥(F ′
τ )

−1∥≤γ. (5.1)

For γ-shape regular meshes T of the domain Ω, we associate a polynomial degree pτ ∈N0

with each element τ ∈T ; these polynomial degrees {pτ} are collected into the polynomial
degree vector p={pτ}. Then the spaces of hp spectral element approximation Up(T ,Ω),
Y p(T ,Ω), Y p

0 (T ,Ω) are defined as follows:
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Up(T ,Ω) :={u∈L2(Ω) :u|τ ◦Fτ ∈Ppτ (τ̂)},
Y p(T ,Ω) :={u∈H1(Ω) :u|τ ◦Fτ ∈Ppτ

(τ̂)},
Y p
0 (T ,Ω) :=Y p(T ,Ω)∩H1

0 (Ω),

where Ppτ
(τ̂) denotes the spaces of polynomials in τ̂ of degree ≤pτ in each variable,

respectively. For the polynomial degree distribution p, similar to (5.1), we assume
that the polynomial degrees of neighboring elements are comparable; i.e., there exists a
constant χ>0 such that

χ−1(pτ +1)≤p′τ +1≤χ(pτ +1) ∀ τ,τ ′∈T , τ ∩τ ′ ̸=∅. (5.2)

The order of convergence can be obtained either by increasing the degree of the poly-
nomials or by increasing the number of these nonoverlapping regular elements.

Let Kp :=K
⋂
Up and Y p be the spaces of the control and state approximation,

respectively. The hp spectral element discretization of (2.3)-(2.4) reads:

min
uhp∈Kp

J(uhp,yhp)=
1

2

∫
Ω

(yhp−y0)2+
α

2

∫
Ω

u2hp, (5.3)

and

A(yhp,vhp)+(ψ(yhp),vhp)=(f+uhp,vhp), ∀ vhp∈Y p. (5.4)

If a pair (yhp,uhp) is the solution of optimal control problem (5.3)-(5.4), then there
is an adjoint state zhp∈Y p such that (yhp,zhp,uhp) satisfies the following optimality
conditions (OPT −CON)hp:

(a) A(yhp,vhp)+(ψ(yhp),vhp)=(f+uhp,vhp), ∀ vhp∈Y p,

(b) A(qhp,zhp)+(ψ′(yhp)zhp,qhp)=(yhp−y0,qhp), ∀ qhp∈Y p,

(c) (αuhp+zhp,ηhp−uhp)U ≥0, ∀ ηhp∈Kp.

(5.5)

In order to derive error analysis, we introduce auxiliary equations to find
(y(uhp),z(uhp)):

(a) A(y(uhp),v)+(ψ(y(uhp)),v)=(f+uhp,v), ∀ v∈Y,
(b) A(q,z(uhp))+(ψ′(y(uhp))z(uhp),q)=(y(uhp)−y0,q), ∀ q∈Y.

(5.6)

Next, we will introduce three lemmas [11, 19] which are helpful for analysing a
posteriori error analysis.

Lemma 5.1 (see [11]. Clément type quasi-interpolation). Let T be a γ-shape regular
triangulation of a domain Ω⊂R2 and p be a polynomial degree distribution which is
comparable. Then there exists a bounded linear operator Π:L1(Ω)→Y p(T ,Ω), and
there exists a constant C>0, which depends only on γ, such that for every u∈H1(Ω)
and all elements τ ∈T and all edges e∈E(τ),

∥w−Πw∥L2(τ)+
hτ
pτ

∥∇(w−Πw)∥L2(τ)≤C
hτ
pτ

∥∇w∥L2(ωτ ),

∥w−Πw∥L2(e)≤C

√
he
pe

∥∇w∥L2(ωe),

where he is the length of the edge e and pe=max(pτ ,pτ ′), where τ,τ ′ are elements
sharing the edge e, ωτ , ωe are patches covering τ and e with a few layers, respectively.
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Lemma 5.2 (see [11]. Scott-Zhang type quasi-interpolation). Let T be a γ-shape
regular triangulation of a domain Ω⊂R2 and p be a polynomial degree distribution
which is comparable. Then there exists a linear operator Π̃ :H1

0 (Ω)→Y p
0 (T ,Ω), and

there exists a constant C>0, which depends only on γ, such that for every u∈H1
0 (Ω)

and all elements τ ∈T and all edges e∈E(τ),

∥w−Π̃w∥L2(τ)+
hτ
pτ

∥∇(w−Π̃w)∥L2(τ)≤C
hτ
pτ

∥∇w∥L2(ωτ ),

∥w−Π̃w∥L2(e)≤C

√
he
pe

∥∇w∥L2(ωe),

where he is the length of the edge e and pe=max(pτ ,pτ ′), where τ,τ ′ are elements
sharing the edge e, ωτ , ωe are patches covering τ and e with a few layers, respectively.

Lemma 5.3 (see [19]. New Scott-Zhang type quasi interpolation). Let T be a γ−shape
regular triangulation of a domain Ω⊂R2, and let p be a polynomial degree distribution
which is comparable. Then there exists a bounded linear operator Λ:H1

0 (Ω)∩H2(Ω)→
Y p
0 (T ,Ω)∩H1

0 (Ω), and there exists a constant C>0, which depends only on χ, such
that for every u∈H1

0 (Ω)∩H2(Ω), all elements τ ∈T , and all edges e∈E(τ),

∥w−Λw∥L2(τ)+
hτ
pτ

∥∇(w−Λw)∥L2(τ)≤C(
hτ
pτ

)2|w|H2(ωτ ),

∥w−Λw∥L2(e)≤C(
he
pe

)
3
2 |w|H2(ωe),

where he is the length of the edge e and pe=max(pτ ,pτ ′), where τ,τ ′ are elements shar-
ing the edge e, and wτ ,we are patches covering τ and e with a few layers, respectively.

It follows from (OPT −CON) and auxiliary equations that

(a)A(y−y(uhp),v)+(ψ(y)−ψ(y(uhp)),v)=(u−uhp,v), ∀ v∈Y,

(b)A(q,z−z(uhp))+(ψ′(y)z−ψ′(y(uhp))z(uhp),q)=(y−y(uhp),q), ∀ q∈Y.
(5.7)

Letting v=y−y(uhp) in (5.7)(a), which implies

∥y−y(uhp)∥H1(Ω)≤C∥u−uhp∥L2(Ω). (5.8)

Letting q=z−z(uhp) in (5.7)(b), we get

A(z−z(uhp),z−z(uhp))+(ψ′(y)z−ψ′(y(uhp))z(uhp),z−z(uhp))
=(y−y(uhp),z−z(uhp)),

in fact

A(z−z(uhp),z−z(uhp))+(ψ′(y(uhp))(z−z(uhp)),z−z(uhp))
=(y−y(uhp),z−z(uhp))−((ψ′(y)−ψ′(y(uhp)))z,z−z(uhp)),

thus

∥z−z(uhp)∥H1(Ω)≤C1∥y−y(uhp)∥L2(Ω)≤C1∥u−uhp∥L2(Ω). (5.9)

Letting v=z−z(uhp) in (5.7)(a) and q=y−y(uhp) in (5.7)(b). Then we get

(u−uhp,z−z(uhp))=(y−y(uhp),y−y(uhp))−(ψ′(y)z−ψ′(y(uhp))z(uhp),y−y(uhp))
−(ψ(y(uhp))−ψ(y),z−z(uhp)).
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Applying the above notations, we now prove the important result.

Lemma 5.4. Assume that (y,z,u) and (yhp,zhp,uhp) are the solutions of the optimality
conditions (OPT −CON) and (OPT −CON)hp, respectively. Let (y(uhp),z(uhp)) be
the solution of auxiliary equation, then there holds

∥u−uhp∥2L2(Ω)≤C(η
2
4+∥zhp−z(uhp)∥2L2(Ω)), (5.10)

where

η24 :=
∑
τ∈T

h2τ
p2τ

∥∇(αuhp+zhp)∥2L2(τ).

Proof. From [26], assume that the objective functional J(·) is locally convex in
the neighborhood of the solution. Let Eu=u−uhp, applying (2.5)(c) and (5.5)(c), we
get

c∥Eu∥2L2(Ω)≤(J ′(u),Eu)−(J ′(uhp),E
u)

≤−(J ′(uhp),E
u)+(αuhp+zhp,ηhp−uhp)

=(J ′
hp(uhp),−Eu)+(J ′

hp(uhp)−J ′(uhp),E
u)+(αuhp+zhp,ηhp−uhp)

=(αuhp+zhp,−Eu)+(zhp−z(uhp),Eu)+(αuhp+zhp,ηhp−uhp)
=(αuhp+zhp,ηhp−u)+(zhp−z(uhp),Eu)

≤(αuhp+zhp,ηhp−u)+C(δ)∥zhp−z(uhp)∥2L2(Ω)+Cδ∥E
u∥2L2(Ω).

Suppose that ηhp=Phpu, where Php is the L2-projection onto Up, and assume that
Phpu∈Kp. Let Π be as defined in Lemma 5.1, we can gain

c∥Eu∥2L2(Ω)≤
∑
τ∈T

(αuhp+zhp,ηhp−u)τ +C(δ)∥zhp−z(uhp)∥2H1(Ω)+Cδ∥E
u∥2L2(Ω)

=
∑
τ∈T

(αuhp+zhp−Π(uhp+zhp),Php(E
u)−(Eu))τ

+C(δ)∥zhp−z(uhp)∥2H1(Ω)+δ∥E
u∥2L2(Ω)

≤C(δ)
∑
τ∈T

h2τ
p2τ

∥∇(αuhp+zhp)∥2L2(τ)+C(δ)∥zhp−z(uhp)∥
2
H1(Ω)

+cδ∥Eu∥2L2(Ω).

Choosing δ= 1
2c , we get

∥u−uhp∥2L2(Ω)≤C(η
2
4+∥zhp−z(uhp)∥2L2(Ω)),

which completes the proof.

In the following lemma, the error estimates of the intermediate variables are derived
for a posteriori error analysis rigorously.

Lemma 5.5. Assume that (yhp,zhp,uhp) is the solution of the (OPT −CON)hp, let
(y(uhp),z(uhp)) be the solution of the auxiliary equation (5.6). Then there holds

∥y(uhp)−yhp∥2H1(Ω)+∥z(uhp)−zhp∥2H1(Ω)≤C(η
2
5+η

2
6), (5.11)
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where

η25 :=
∑
τ∈T

h2τ
p2τ

∥f+uhp+∆yhp−ψ(yhp)∥2L2(τ)+
∑

e∈E0(T )

he
pe

∥[∂yhp
∂ne

]∥2L2(e),

and

η26 :=
∑
τ∈T

h2τ
p2τ

∥yhp−y0+∆zhp−ψ′(yhp)zhp∥2L2(τ)+
∑

e∈E0(T )

he
pe

∥[∂zhp
∂ne

]∥2L2(e).

Proof. Set Ez =z(uhp)−zhp, and Ez
I =Π̃Ez, where Π̃ is as defined in Lemma 5.2,

we obtain

c∥Ez∥2H1(Ω)≤A(E
z,Ez)+(ψ′(y(uhp))(z(uhp)−zhp),Ez)

=A(Ez,Ez−Ez
I )+A(E

z,Ez
I )+(ψ′(y(uhp))z(uhp)−ψ′(yhp)zhp,E

z−Ez
I )

+(ψ′(y(uhp))z(uhp)−ψ′(yhp)zhp,E
z
I )+(ψ′(yhp)zhp−ψ′(y(uhp))zhp,E

z)

which then yields

c∥z(uhp)−zhp∥2H1(Ω)

≤
∑
τ∈T

∫
τ

(yhp−y0+∆zhp−ψ′(yhp)zhp)(E
z−Ez

I )+
∑

e∈E0(T )

∫
e

[
∂zhp
∂ne

](Ez−Ez
I )

+(y(uhp)−yhp,Ez)+((ψ′(yhp)−ψ′(y(uhp)))zhp,E
z)

≤C(ε)((
∑
τ∈T

h2τ
p2τ

∥yhp−y0+∆zhp−ψ′(yhp)zhp∥2L(τ)+
∑

e∈E0(T )

he
pe

∥[∂zhp
∂ne

]∥2L(e))

+∥y(uhp)−yhp∥2L2(Ω)+∥y(uhp)−yhp∥2L2(Ω)∥zhp∥
2
H1(Ω))+Cε∥E

z∥2H1(Ω)

≤C(ε)η26+C(ε)∥y(uhp)−yhp∥2L2(Ω)+Cε∥z(uhp)−zhp∥
2
H1(Ω),

Hence, we get

∥z(uhp)−zhp∥2H1(Ω)≤Cη
2
6+C∥y(uhp)−yhp∥2L2(Ω). (5.12)

Analogously, set Ey =y(uhp)−yhp, and Ey
I =Π̃Ey, where Π̃ is as defined in Lemma 5.2.

Then, we obtain

C1∥Ey∥2H1(Ω)≤A(E
y,Ey)+(ψ(y(uhp))−ψ(yhp),Ey)

=(∇(Ey−Ey
I ),∇E

y)+(ψ(y(uhp))−ψ(yhp),Ey−Ey
I )

+(∇Ey
I ,∇E

y)+(ψ(y(uhp))−ψ(yhp),Ey
I ))

=(∇(Ey−Ey
I ),∇E

y)+(ψ(y(uhp))−ψ(yhp),Ey−Ey
I )

=A(Ey−Ey
I ,E

y)+(ψ(y(uhp))−ψ(yhp),Ey−Ey
I )
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so we get

C1∥y(uhp)−yhp∥2H1(Ω)≤
∑
τ∈T

∫
τ

(f+uhp+∆yhp−ψ(yhp))(Ey−Ey
I )

−
∑

e∈E0(T )

∫
e

[
∂yhp
∂ne

](Ey−Ey
I )

≤C
∑
τ∈T

hτ
pτ

∥f+uhp+∆yhp−ψ(yhp)∥L2(τ)∥∇Ey∥L2(ωτ )

+C
∑

e∈E0(T )

√
he
pe

∥[∂yhp
∂ne

]∥L2(e)∥∇Ey∥L2(ωe)

≤C(ϑ)(
∑
τ∈T

h2τ
p2τ

∥∆yhp−ψ(yhp)+f+uhp∥2L2(τ)

+
∑

e∈E0(T )

he
pe

∥[∂yhp
∂ne

]∥2L2(e))+c1ϑ∥E
y∥2H1(Ω).

Choosing that ϑ= 1
2c1

, we have

∥y(uhp)−yhp∥2H1(Ω)≤Cη
2
5 . (5.13)

Then, we combine (5.12) and (5.13) to derive the estimates.

Theorem 5.1. Assume that (y,z,u) is the solution of optimality conditions (OPT −
CON), and (yhp,zhp,uhp) be the solution of optimality conditions (5.5). Then there
holds

∥y−yhp∥2H1(Ω)+∥u−uhp∥2L2(Ω)+∥z−zhp∥2H1(Ω)≤C(η
2
4+η

2
5+η

2
6),

where η24 ,η
2
5 ,η

2
6 are defined by Lemma 5.4 and Lemma 5.5.

Proof. It follows from triangle inequality that

∥y−yhp∥H1(Ω)≤∥y−y(uhp)∥H1(Ω)+∥y(uhp)−yhp∥H1(Ω),

∥z−zhp∥H1(Ω)≤∥z−z(uhp)∥H1(Ω)+∥z(uhp)−zhp∥H1(Ω).

Using Lemma 5.4 and Lemma 5.5 proves the result.

A posteriori error analysis in L2−L2-norms are very important for many applica-
tions. In the following, we introduce the auxiliary problems to help us to prove the error
analysis.

−∆ξ+Ψξ=f1, in Ω, ξ|∂Ω=0, (5.14)

and

−∆ζ+ψ′(y(uhp))ζ=f2, in Ω, ζ|∂Ω=0, (5.15)

where

Ψ=


ψ(y(uhp))−ψ(yhp)

y(uhp)−yhp
, if y(uhp) ̸=yhp,

ψ′(yhp), if y(uhp)=yhp.
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Similar to Lemma 4.2, we can get the regularity results.
The following intermediate error estimates will be obtained, which are key to prove

a posteriori error analysis.

Lemma 5.6. Let (yhp,zhp,uhp) and (y(uhp),z(uhp)) be the solutions of (OPT −
CON)hp and auxiliary system (5.6), respectively. Then there holds

∥y(uhp)−yhp∥2L2(Ω)+∥z(uhp)−zhp∥2L2(Ω)≤C(η
2
7+η

2
8),

where the error indicators η27 ,η
2
8 are defined as

η27 :=
∑
τ∈T

h4τ
p4τ

∥f+uhp+∆yhp−ψ(yhp)∥2L2(τ)+
∑

e∈E0(T )

h3e
p3e

∥[∂yhp
∂ne

]∥2L2(e),

and

η28 :=
∑
τ∈T

h4τ
p4τ

∥yhp−y0+∆zhp−ψ′(yhp)zhp∥2L2(τ)+
∑

e∈E0(T )

h3e
p3e

∥[∂zhp
∂ne

]∥2L2(e).

Proof. Assume that ζ is the solution of (5.15) with f2=z(uhp)−zhp and let Λ be
the projection operator defined in Lemma 5.3. We derive that

∥z(uhp)−zhp∥2L2(Ω)=(∇ζ,∇(z(uhp)−zhp))+(ψ′(y(uhp))(z(uhp)−zhp),ζ)

=(∇ζ,∇(z(uhp)−zhp))+(ψ′(y(uhp))z(uhp)−ψ′(yhp)zhp,ζ)

+((ψ′(yhp)−ψ′(y(uhp)))zhp,ζ)

=(∇(ζ−Λζ),∇(z(uhp)−zhp))+(∇(Λζ),∇(z(uhp)−zhp))

+(ψ′(y(uhp)z(uhp)−ψ′(yhp)zhp,ζ−Λζ)

+(ψ′(y(uhp)z(uhp)−ψ′(yhp)zhp,Λζ)+((ψ′(yhp)−ψ′(y(uhp)))zhp,ζ)

then employing Lemma 5.3, we get

c∥z(uhp)−zhp∥2L2(Ω)

≤
∑
τ∈T

∫
τ

(yhp−y0+∆zhp−ψ′(yhp)zhp)(ζ−Λζ)+
∑

e∈E0(T )

∫
e

[
∂zhp
∂ne

](ζ−Λζ)

+(y(uhp)−yhp,ζ)+((ψ′(yhp)−ψ′(y(uhp)))zhp,ζ)

≤C(ε)(
∑
τ∈T

h4τ
p4τ

∥yhp−y0+∆zhp−ψ′(yhp)zhp∥2L(τ)+
∑

e∈E0(T )

h3e
p3e

∥[∂zhp
∂ne

]∥2L(e))

+C(ε)∥y(uhp)−yhp∥2L2(Ω)+C(ε)∥y(uhp)−yhp∥
2
L2(Ω)∥zhp∥

2
H1(Ω)+Cε∥ζ∥

2
H2(Ω)

≤C(ε)(
∑
τ∈T

h4τ
p4τ

∥yhp−y0+∆zhp−ψ′(yhp)zhp∥2L(τ)+
∑

e∈E0(T )

h3e
p3e

∥[∂zhp
∂ne

]∥2L(e))

+C(ε)∥y(uhp)−yhp∥2L2(Ω)+Cε∥z(uhp)−zhp∥
2
L2(Ω),

where we applied the embedding theorem ∥v∥L4(Ω)≤C∥v∥1,Ω and ψ(·)∈W 1,∞(Ω) and
∥zhp∥H1(Ω)≤C. Hence we have

∥z(uhp)−zhp∥L2(Ω)≤C(
∑
τ∈T

h4τ
p4τ

∥yhp−y0+∆zhp−ψ′(yhp)zhp∥2L(τ)
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+
∑

e∈E0(T )

h3e
p3e

∥[∂zhp
∂ne

]∥2L(e))+C∥yhp−y(uhp)∥L2(Ω)

≤Cη28+C∥yhp−y(uhp)∥L2(Ω). (5.16)

Analogously, let ξ be the solution of (5.14) with f1=y(uhp)−yhp, let Λ be the
projection operator defined in Lemma 5.3. It follows from (5.3)(a), (5.4) that

∥y(uhp)−yhp∥2L2(Ω)=(∇(y(uhp)−yhp),∇ξ)+(ψ(y(uhp))−ψ(yhp),ξ)
=(∇(y(uhp)−yhp),∇(ξ−Λξ))+(ψ(y(uhp))−ψ(yhp),ξ−Λξ)

+(∇(y(uhp)−yhp),∇(Λξ))+(ψ(y(uhp))−ψ(yhp),Λξ)

=
∑
τ∈T

∫
τ

(f+uhp+∆yhp−ψ(yhp))(ξ−Λξ)

+
∑

e∈E0(T )

∫
e

[
∂yhp
∂ne

](ξ−Λξ)

≤C(δ){
∑
τ∈T

h4τ
p4τ

∥f+uhp+∆yhp−ψ(yhp)∥2L2(τ)

+
∑

e∈E0(T )

h3e
p3e

∥[∂yhp
∂ne

]∥2L2(e)}+cδ∥ξ∥
2
H2(Ω)

≤C(δ){
∑
τ∈T

h4τ
p4τ

∥f+uhp+∆yhp−ψ(yhp)∥2L2(τ)

+
∑

e∈E0(T )

h3e
p3e

∥[∂yhp
∂ne

]∥2L2(e)}+cδ∥y(uhp)−yhp∥
2
L2(Ω).

Hence we have

∥y(uhp)−yhp∥2L2(Ω)≤C(
∑
τ∈T

h4τ
p4τ

∥f+uhp+∆yhp−ψ(yhp)∥2L2(τ)

+
∑

e∈E0(T )

h3e
p3e

∥[∂yhp
∂ne

]∥2L2(e))

≤Cη27 .

(5.17)

This combined with (5.16), (5.17) gives the theoretical result.

Theorem 5.2. Let (y,p,u) and (yhp,php,uhp) be the solutions of (OPT −CON) and
(OPT −CON)hp, respectively. Then we derive

∥u−uhp∥2L2(Ω)+∥y−yhp∥2L2(Ω)+∥z−zhp∥2L2(Ω)≤C(η
2
4+η

2
7+η

2
8),

where η4 is defined in Lemma 5.4, η7,η8 are defined in Lemma 5.6.

Proof. According to the important triangle inequality, we obtain

∥y−yhp∥L2(Ω)≤∥y−y(uhp)∥L2(Ω)+∥y(uhp)−yhp∥L2(Ω),

∥z−zhp∥L2(Ω)≤∥z−z(uhp)∥L2(Ω)+∥z(uhp)−zhp∥L2(Ω).

Employing Lemma 5.4 and Lemma 5.6 completes the analysis result.
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6. Numerical examples
In this section, we carry out two numerical experiments to confirm the theoretical

analysis. The gradient projection algorithm is constructed and designed. The iterative
scheme is (n=0,1,2, ·· ·){

(un+
1
2 ,v)=(un,v)−ρn(J ′(un),v), ∀ v∈K,

un+1=PK(un+
1
2 ),

(6.1)

where ρn will be specified in the sequel.
It follows from [11,26] that the convergence result of the scheme is given as follows.

Lemma 6.1. Assume that the objective function J is locally uniformly convex near the
solution, and J ′ is locally Lipschitz and monotone near the solution, there exist different
positive constants C, c satisfying

|J ′(p)−J ′(q)|≤C∥p−q∥U , ∀ p,q∈U,
(J ′(p)−J ′(q),p−q)≥ c∥p−q∥2U , ∀ p,q∈U.

Then there exist 0<δ<1, ϵ>0 such that

∥u−un∥≤ δn∥u−u0∥, n=0,1,2, ·· · ,

provided ρn≤ ϵ.

Remark 6.1. To ensure the convergence of the algorithm (6.1), we select suitable ρn
to satisfy 0≤1+ρn(Cρn−c)≤ δ.

Suppose that PKM
:UM →KM is the discrete projection operator, then it can infer

that:

(PKM
ω−ω,PKM

ω−ω)= min
u∈KM

(u−ω,u−ω),

which is equivalent to

(PKM
ω−ω,v−PKM

ω)≥0, ∀ v∈KM ,

for given ω∈UM . It follows from (2.10) that

PKM
uM =−min{0,uM}+uM ,

for any uM ∈UM . Then we have by (6.1) that

un+1=PKM
un+

1
2 =−min{0,un+ 1

2 }+un+ 1
2 .

In the following, we will investigate the nonlinear optimal control problem with
α=1:

min
u∈K

J(y,u)=
1

2

∫
Ω

(y−y0)2+
1

2

∫
Ω

(u−u0)2, (6.2)

subject to

−∆y+y3=f+u, in Ω,

y=0, on ∂Ω.
(6.3)
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Algorithm 1 Algorithm for optimal control problem.

1: Fix ρ>0 and select an initial approximation u0M ∈UM , seek y0M ∈YM such that

(∇y0M ,∇vM )+(ψ(y0M ),vM )=(f+u0M ,vM ), ∀ vM ∈YM .

2: Find znM ∈YM such that

(∇qM ,∇znM )+(ψ′(ynM )znM ,qM )=(ynM −y0,qM ), ∀ qM ∈YM .

3: Seek u
n+ 1

2

M such that

(u
n+ 1

2

M ,pM )=(unM ,pM )−ρ(znM +αunM ,pM ), ∀ pM ∈UM ,

then

un+1
M =PKM

(u
n+ 1

2

M )=−min

(
0,u

n+ 1
2

M

)
+u

n+ 1
2

M .

4: Find yn+1
M ∈YM such that

(∇yn+1
M ,∇vM )+(ψ(yn+1

M ),vM )=(f+un+1
M ,vM ), ∀ vM ∈YM .

5: Stop if stopping criterion ∥un+1
M −unM∥0,Ω≤Tol is satisfied. Otherwise take n=n+1

and then go to Step 2.

6.1. Example one. Based on the gradient projection algorithm, we now con-
sider the problem on domain Ω=(−1,1) associated with the exact solutions

y=sinπx, z=0,

u=u0=−∆y+y3=π2 sinπx+sin3πx,

y0=sinπx, f =0.

The numerical errors are presented in Table 6.1 to show that the errors decrease
rapidly. We also plot the exact and discrete solutions whenM =13 in Figure 6.1. Based
on Table 6.1 and Figure 6.1, we can get the fact that Galerkin spectral methods obtain
high order accuracy for the nonlinear elliptic control problems when the solutions are
sufficiently regular.

M 5 7 9 11 13
∥u−uM∥L2(Ω) 2.891e-001 6.920e-002 9.300e-003 8.005e-004 5.805e-005
∥y−yM∥H1(Ω) 9.200e-003 3.288e-004 7.618e-006 1.210e-007 2.107e-008

Table 6.1. The values of discretization errors.

6.2. Example two. We now consider the integral control-constrained nonlin-
ear optimal control problem on domain Ω=(−1,1)×(−1,1), associated with the exact
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Fig. 6.1. The exact solutions and its spectral solutions for the one-dimensional case

solution

y=sinπx1 sinπx2, z=0,

u=u0=−∆y+y3=2π2 sinπx1 sinπx2+(sinπx1 sinπx2)
3,

y0=sinπx1 sinπx2, f =0.

M 5 7 9 11 13
∥u−uM∥L2(Ω) 3.774e-001 8.480e-002 1.140e-002 9.804e-004 5.885e-005
∥y−yM∥H1(Ω) 1.240e-002 4.537e-004 1.061e-005 1.705e-007 2.107e-008

Table 6.2. The values of discretization errors for the two-dimensional case.

Employing the projection algorithm to solve the example, then the approximation
errors are presented in Table 6.2. Finally, some numerical results confirm the theoretical
analysis of spectral approximation.
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7. Conclusion and future work

The gist of this article is analysing the Galerkin spectral discretization of the in-
tegral control constrained nonlinear optimal control problem. More precisely, a priori
error estimates for the Galerkin spectral discretization are derived. Next, detailed a pos-
teriori error estimates of the nonlinear control problem are established in L2−H1-norm
and in L2−L2-norm. Additionally, a posteriori error estimates of hp spectral element
discretization are also derived in L2−H1-norm and in L2−L2-norm rigorously. The
theoretical analysis of Galerkin spectral approximation is confirmed by the numerical
examples by the efficient gradient projection algorithm. The findings of this paper seem
to be new, especially, error estimates of nonlinear optimal control problems. The work
of this article is important and helpful for the future works.

In our future work, we will investigate more complex nonlinear optimal control
problems approximated by Galerkin spectral methods and hp spectral element meth-
ods. Furthermore, we shall establish a priori and a posteriori error estimates of control
problems.
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