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EXPONENTIAL DECAY FOR
A CLASS OF NON-LOCAL NON-LINEAR SCHRÖDINGER

EQUATIONS WITH LOCALISED DAMPING∗

MARIANO DE LEO†

Abstract. In this paper we study the exponential decay of both the charge and the free energy
for solutions of a family of non-linear, non-local Schrödinger equations with localised damping on the
whole line. We first establish an observability inequality for the linear flow, from which we obtain the
result in the linear case. Then we consider the non-linear case and by perturbative arguments we obtain
the exponential decay for solutions with small initial data. Finally we discuss qualitative aspects of the
dynamics and show that the stabilisation rate becomes smaller as the free damping region is chosen
around the origin.
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1. Introduction
We are mainly concerned with the exponential decay of solutions for the following

class of 1-D Schrödinger equation posed in the Sobolev space {ϕ∈H1(R) :
∫
µ(x)|ϕ|2<

∞}, where µ is a positive regular function satisfying µ(x)≡|x|, for |x|>1:

iut=−uxx+µ(x)u− ia(x)u+m(u)u, x∈R, t>0 . (1.1)

Here, the term −ia(x)u models the mechanism of dissipation of the system. Since
we are interested in damping terms of localised nature, throughout this article we will
assume that a∈W 1,∞(R) satisfies a(x)≥0 for x∈R, a(x)≡0 for x∈ [K1,K2] and a(x)≥
α for x∈R\ [K̃1,K̃2], with [K1,K2]⊆ (K̃1,K̃2). On the other hand, the non-linear term
is of non-local nature:

m(ϕ)(x)=

∫
ϱ(x,y)|ϕ(y)|2dy,

where the kernel satisfies the estimate |ϱ(x,y)|≤µ(y).
The model Equation (1.1) was first used in [6] to handle the controllability of the

self-consistent 1-D Schrödinger-Poisson equation. The motivation of this choice is as
follows: When coupling the Schrödinger equation with the Poisson equation in the whole
line, we get a Hartree type potential V (u)= 1

2

(
|x|∗

(
D−|u|2

))
, where D(x) denotes the

fixed positively charged background or impurities, see [8] and references therein for
semiconductor models. After a suitable splitting, V (u) reads as

V (u)= qµ(x)+

∫
1

2
(|x−y|−µ(x))

(
D(y)−|u(y)|2

)
dy,

where q=∥D∥L1(R)−∥ϕ∥2L2(R) is a constant that depends on the difference between the
impurities and the size of the initial datum. Besides, due to the regularity requirements
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of the unique continuation technique used in Lemma 2.3, the regular function µ(x)
appears as a regularised approximation of a locally constant electric field, which is
modelled with |x|. It is also worth mentioning that, since the impurities give rise to a
bounded potential

Vd(x)=
1

2

∫
(|x−y|−µ(x))D(y)dy,

and hence enters the model equation as a bounded multiplication operator, and since our
results remain valid for bounded perturbations, there is no loss of generality by restrict-
ing to the case D≡0. Let us finally mention that results on controllability/stabilisation
with local nonlinearities as |u|2σu are extensively developed, see [7,9,11], and will there-
fore not be taken into account.

Regarding the problem of controllability/stabilisation for Schrödinger–like equa-
tions, we shall mention the work [1] in which the authors present stabilisation results
for the free Schrödinger equation in the complement of a bounded interval. Concerning
bounded domains, in [11] the authors show exact controllability results in Hs for the
Schrödinger equation

iut=−△u+γ|u|2u, x∈Ω⊆RN ,

where s>N/2, or 0≤s<N/2 with 1≤N <2s+2, or s=0,1 with N =2.
In [12], the author considers the equation in the whole space

iut=−△u+λ|u|2/Nu, x∈RN ,

N =1,2,3, with a dissipation term given by a complex constant λ∈C, and shows that
for Im(λ)<0 the solutions with small initial data are globally defined and decay in L∞

as (t log(t))−N/2.
Concerning the results that include a localised damping, we shall mention [4] in

which the authors consider a defocusing NLS equation

iut=−△u+ |u|2u− iη(x)u, x∈R2,

and show the exponential decay for the L2-norm of solutions (here η∈W 1,∞(R2) with
η(x)≥η0>0 for |x|>1). In [9], the author establishes the exponential decay of the L2

norm for the solutions of the cubic-like Schrödinger equation

iut=−uxx+λ|u|α−1u− iη(x)u, x∈R,

in both focusing and defocusing cases (λ<0 and λ>0 respectively). Moreover, in [3],
the authors treat also the case in which the damping is given by ib(x)|u|2u and show
that the L2–norm of the solutions decay with a polynomial rate.

It should be noted that the key ingredient in achieving exponential stabilisation is
to first establish the existence of an observability inequality, which at the level of L2, as
in the papers cited above, means:∫ T

0

∫
|x|≤1

|u(x,t)|2dxdt≤C(T )
∫ T

0

∫
η(x)|u(x,t)|2dxdt.

Concerning nonlocal interactions with unbounded kernels, such as happens when
coupling with the Poisson equation in one spatial dimension, in [6] we treat the problem
of exact internal controllability for the nonlocal, nonlinear Schrödinger equation

iut=−uxx+µ(x)u+m(u)u, x∈R,
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posed in the Sobolev space {ϕ∈H1(R) :
∫
µ(x)|ϕ|2}, in which µ is a positive regular

function that coincides with |x| away from the origin. In this work, we show an observ-
ability inequality at the H–level which, as we have pointed out above, together with the
unique continuation property, are the starting points for the present work. Finally, we
mention that in [2] we give numerical evidence of the exponential decay for the solutions
of the model equation considered.

The paper is organised as follows. In Section 1 we state the problem. In Section 2,
we treat the existence of dynamics and establish the exponential decay of the total charge
and the free energy (given by the L2 and H norms, respectively) for the linear evolution.
Section 3 is devoted to the nonlinear problem: We first establish the local existence of
solutions for arbitrary initial data and then show the existence of an invariant set in
which the evolution shows exponential decay rates. In Section 4 we deal with the
problem of obtaining bounds for the stabilisation rate: We first discuss qualitative
aspects of the dynamics and then show that the rate becomes smaller as the free–
damping region is chosen closer to the origin.

Notation 1.1. Throughout this article we will use the notation:

{f,g} :=Re⟨f,g⟩=Re

∫
fg∗dx.

2. Stabilisation: linear problem

2.1. Existence of dynamics. In order to get the exponential decay we shall
show the global existence of the solutions for the linear problem given by the equation:

ivt=−vxx+µ(x)v(x)− ia(x)v, x∈R, t> t0, (2.1)

together with the initial datum v(t0)=ϕ∈H, in which the localised damping satisfies
a∈W 1,∞(R), a(x)≥0 for x∈R, a(x)≡0 for x∈ [K1,K2] and a(x)≥α>0 for x∈R\
[K̃1,K̃2], with [K1,K2]⊆ (K̃1,K̃2):

This problem is posed in the energy space, H :={ϕ∈H1(R) :∥ϕ∥2L2
µ
:=

∫
|ϕ|2µ<∞}

with ∥ϕ∥2H :=∥ϕx∥2L2 +∥ϕ∥2L2
µ
, here µ(x)∈C∞(R), µ≥max{|x|,1} and µ(x)= |x| for

|x|≥2.
We introduce the notation for the linear operator L :D(L)→L2 given by L(ϕ) :=

−ϕxx+µϕ. Following [6] we know that L is a self–adjoint operator with compact re-
solvent; in addition, a straightforward computation shows the identity ∥ϕ∥2H= ⟨ϕ,L(ϕ)⟩
and therefore we have H=D(L1/2), H′=D(L−1/2) and L :H→H′.

Since a∈W1,∞, we have that the damping term a acts as a bounded operator in
H. According to a standard perturbative argument, see [10], it follows that −iL−a
generates a strongly continuous semigroup.

Thus, we have proved the existence of dynamics:

Theorem 2.1. For any ϕ∈H there exists a unique solution v of Equation (2.1)
satisfying v(0)=ϕ and v∈C([0,∞),H)∩C1([0,∞),H′). Besides, the solution satisfies:
∥v(t)∥H≤C(t)∥ϕ∥H.

In order to complete the well–posedness result we shall consider the continuity with
respect to the damping term; since a sharper result concerning some continuity in the
rates is valid we will give the details after we have proved the exponential decay of the
solutions, see Lemma 4.1.

Once the well–posedness result is established, we take into account the exponential
decay of the energy, given by the H–norm. To get this result, the main challenge is
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to manage the current-like terms, such as ⟨axv,vx⟩. This will be accomplished by first
showing the exponential decay of the total charge, from where a uniform-in-time bound
for the kinetic energy ∥vx∥2L2 is easily deduced, see Corollary 2.1.

2.2. Exponential decay for the total charge. To deal with the evolution of
the L2–norm of solutions to the linear problem (2.1) we develop a useful observability
inequality. To start with, we present some lemmas:

Lemma 2.1. Let ϕ∈H and let v∈C([0,+∞),H) be the solution of the problem (2.1).
Then the total charge satisfies:

d

dt
∥v∥2L2 =−2

∫
a(x)|v(x,t)|2dx (2.2)

Proof. It is a straightforward computation and will be omitted.

Lemma 2.2 (Observability inequality: L2−level). Let T >0 be fixed. Then there exists
a positive constant C=C(T ) such that for any t0∈R and ϕ∈H the solution v of (2.1)
with initial datum v(t0)=ϕ satisfies the estimate:∫ t0+T

t0

∫
R
|v(x,t)|2dxdt≤C(T )

∫ t0+T

t0

∫
R
a(x)|v(x,t)|2dxdt. (2.3)

Proof. We argue by contradiction. Let us suppose that (2.3) is not true. Let
J =[t0,t0+T ], with t0≥0, and let ϕk ∈H be a sequence of initial data with ∥ϕk∥H≤1
such that the corresponding solutions of (2.1) vk ∈C(J,H) satisfies the estimate:∫

J

∫
R
|vk(x,t)|2dxdt≥k

∫
J

∫
R
a(x)|vk(x,t)|2dxdt. (2.4)

Since previous estimate is equivalent to∫
J

∫
R
a(x)|vk(x,t)|2dxdt≤

1

k

∫
J

∫
R
|vk(x,t)|2dxdt

and since the total charge is a nonincreasing function, we get the uniform bound∫
J

∫
R
a(x)|vk(x,t)|2dxdt≤

1

k

∫
J

∫
R
|vk(x,t)|2dxdt≤

1

k
T∥ϕk∥2L2 ≤

1

k
T

from where we deduce the convergence, strong in L2(J,L2), a1/2vk→0 valid for a∈L∞,
and conclude:

avk→0. (2.5)

Since the sequence of initial data is uniformly bounded and H being a Hilbert space,
there exist ϕ∈H and a subsequence, still denoted {ϕk}k∈N, such that ϕk⇀ϕ weak in
H; since the embedding H⊆L2 is compact, we have ϕk→ϕ strong in L2. Let {vk}k∈N
be the sequence of the solutions satisfying vk(t0)=ϕk (t0=min(J)), using the well-
posedness result of Theorem 2.1 we know that for a fixed T >0 the solution satisfies
∥vk(t)∥H≤M(T ), valid for all t∈J ; in addition, L2(J,H) being a Hilbert space, there
exist w∈L2(J,H) and a subsequence, still denoted {vk}k∈N, such that vk⇀w weak in
L2(J,H). From the compact embedding H⊆L2 we have vk→w strong in L2(J,L2) and
also, from uniqueness of weak limits in L2, we have w(0)=ϕ.
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Since a∈L∞ we get avk→aw strong in L2(J,L2), taking into account the conver-
gence (2.5) and the uniqueness of the strong limits we deduce that aw≡0 in L2(J,L2);
in addition, using that w(t)∈H⊆H1, for t∈J , we conclude that w(t) :R→C is a con-
tinuous function and therefore a(x)w(x,t)=0 is valid in R×J . It is worth remarking

that w(x,t)=0 is valid for x∈R\ [K̃1,K̃2].
Up to now we have shown that w satisfies both the equation iwt=−wxx+µw and

the condition w(x,t)=0 in [K̃1,K̃2]×J , in order to derive a contradiction we are willing
to use the unique continuation property; with this in mind we consider the auxiliary
problem, where ψ∈C∞

0 (R) is given by ψ(x)=1 for x∈ [K̃1,K̃2] and ψ(x)=0 for x∈
[−1+K̃1,1+K̃2]:

iWt=−Wxx+µ(x)ψ(x)W

W (x,t0)=w(x,t0).

Since ψw=w we have that w is a solution of the auxiliary problem, in which the initial
datum is of compact support. We then apply the results of Proposition 2.3 of [11] with
A(x,t)=µ(x)ψ(x)∈C∞

0 (R) and B(x,t)=0 to conclude that w∈C∞(R×(t0,t0+T )).
By the unique continuation property we deduce w≡0 on R×(t0,t0+T ). In view of
inequality (2.4) we conclude that this is a contradiction. Then, we have shown the
observability inequality.

Using previous estimates, we can adapt the proof given in [3] about the exponential
decay of the L2−norm of the solutions for the linear problem.

Theorem 2.2. Let a∈W1,∞(R) be a localised damping with a(x)=0 for x∈ [K1,K2]

and a(x)≥α>0 for x∈R\ [K̃1,K̃2], with [K1,K2]⊆ (K̃1,K̃2). Then, there are constants
C and β such that, for any ϕ∈H, the solution v∈C([0,+∞),H) of the problem (2.1)
with initial datum ϕ, satisfies:

∥v∥L2(t)≤Ce−βt∥ϕ∥L2 .

As it was stated before, the proof is similar to the proof of Th. 3.1 in [3] and will be
omitted. However, the stronger result for theH−norm is based on a slight generalisation
of this result and will be given in detail, see Theorem 2.3.

Below are some useful estimates that follow directly from previous theorem:

Corollary 2.1. Let ϕ∈H and let v∈C([0,+∞),H) be the solution of the linear
problem (2.1) with initial datum ϕ. Then the following estimates are valid:

• ∥vx∥L2(t)≤∥ϕ∥H1 +C ·(∥ax∥L∞ +∥µx∥L∞) ·∥e−βt∥L1(0,+∞) ·∥ϕ∥L2 .

• ∥v∥L∞(t)≤Ce−β/2t∥ϕ∥H.

Proof. The first assertion is obtained as follows. We compute the time deriva-
tive of the kinetic energy 1

2
d
dt∥vx∥

2
L2 ={vxt,vx}, see Notation (1.1), and then apply an

integration by parts to obtain the identity {vxt,vx}=−{vt,vxx}. Thus, we get

1

2

d

dt
∥vx∥2L2 =−{ivxx− iµv−av,vxx}

=−{iµxv,vx}−{axv,vx}−{avx,vx}

from where we deduce

∥vx∥L2 · d
dt

∥vx∥L2 ≤|{(iµx+ax)v,vx}|≤ (∥µx∥L∞ +∥ax∥L∞) ·∥v∥L2 ·∥vx∥L2 ,
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d

dt
∥vx∥L2 ≤C ·(∥µx∥L∞ +∥ax∥L∞) ·∥ϕ∥L2 ·e−βt.

Integrating in the time interval [0,t], we obtain the first estimate.
The second assertion is a direct consequence of the well known estimate ∥ψ∥2L∞ ≤

C∥ψx∥L2 ·∥ψ∥L2 .

2.3. Main result. We turn to the main result of this section, that is the expo-
nential decay at the H−level whose proof relies on the following observability inequality
at the H−level, see [6], inequality (3.14) of Lemma 3.4 for details.

Lemma 2.3 (Observability inequality: H−level). Let ψ∈W1,∞(R) be a posi-

tive function satisfying ψ(x)≡0 for x∈ [K1,K2] and ψ(x)≡1 for x∈R\ [K̃1,K̃2], with

[K1,K2]⊆ (K̃1,K̃2). Then for any fixed T >0 there exists a constant Co=Co(T ) such
that for any time interval J with |J |=T and any ϕ∈H the solution v∈C(J,H) of (2.1)
with initial datum ϕ satisfies the estimate:∫

J

∥v∥2Hdt≤Co

∫
J

∥ψv∥2Hdt. (2.6)

The stabilisation result is obtained as follows.

Theorem 2.3. Let a∈W1,∞(R) be a localised (positive) damping satisfying α(x)=0

for x∈ [K1,K2] and a(x)≥α>0 for x∈R\ [K̃1,K̃2], with [K1,K2]⊆ (K̃1,K̃2). Then
there are constants C and η such that for any initial datum ϕ the solution v of (2.1)
satisfies the estimate, valid for t≥0:

∥v∥H(t)≤Ce−ηt∥ϕ∥H.

Proof. Since we are in the linear case we take ∥ϕ∥H≤1 and consider v∈C(0,∞,H)
the solution of (2.1), with initial datum ϕ. The starting point is the identity∫ T

0

∥v∥2Hdt=
∫ T

0

∥vx∥2L2dt+

∫ T

0

∥v∥2L2
µ
dt

from where we deduce the estimate, in which R=R\ [K̃1,K̃2]:∫ T

0

∥v∥2Hdt=
∫ T

0

∫
[K̃1,K̃2]

(
µ|v|2+ |vx|2

)
dxdt+

∫ T

0

∫
x∈R

(
µ|v|2+ |vx|2

)
dxdt

≤
∫ T

0

∫
[K̃1,K̃2]

(
µ|v|2+ |vx|2

)
dxdt+

1

α

∫ T

0

∫
x∈R

a
(
µ|v|2+ |vx|2

)
dxdt

≤
∫ T

0

∫
[K̃1,K̃2]

(
µ|v|2+ |vx|2

)
dxdt+

1

α

∫ T

0

∫
R
a
(
µ|v|2+ |vx|2

)
dxdt.

On the other hand, since

d

dt

1

2
∥v∥2H=−{axv,vx}−

∫
R
a
(
µ|v|2+ |vx|2

)
dx

we have∫ T

0

∫
R
a
(
µ|v|2+ |vx|2

)
dxdt=−

∫ T

0

{axv,vx}dt+
1

2
∥v∥2H(0)− 1

2
∥v∥2H(T ). (2.7)
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Thus, we combine these results in order to produce the estimate∫ T

0

∥v∥2H≤
∫ T

0

∫
[K̃1,K̃2]

(
µ|v|2+ |vx|2

)
− 1

α

∫ T

0

{axv,vx}+
1

2α
∥v∥2H(0)− 1

2α
∥v∥2H(T ).

(2.8)

To introduce the observability inequality (2.6), we take ψ∈C∞(R) such that ∥ψ2−
a∥

W 1,2([K̃1,K̃2])
<ε and ψ2(x)=α for x /∈ [K̃1,K̃2]. Since

∥ψv∥2H=∥ψv∥2L2
µ
+∥ψvx∥2L2 +∥ψxv∥2L2 +2{ψψxv,vx}

we deduce an estimate for the first term in the right-hand side of (2.8):∫ T

0

∫
[K̃1,K̃2]

(
µ|v|2+ |vx|2

)
dxdt≤Co

∫ T

0

∫
a(x)

(
µ|v(x,t)|2+ |vx(x,t)|2

)
dxdt

+Co

∫ T

0

{axv,vx}(t)dt+Co

∫ T

0

∫
(ψx(x))

2|v(x,t)|2dxdt.

We recall that, in view of Theorem 2.2, the last two terms are uniformly bounded
in time; in addition, from Corollary 2.1, we have the following estimate, in which C1=
C1(∥a∥W1,∞ ,∥µx∥L∞) is a constant:∫ T

0

∫
(ψx(x))

2|v(x,t)|2dxdt≤C1∥e−2βt∥L1[0,+∞)∫ T

0

|{axv,vx}(t)|dt≤C1∥e−βt∥L1[0,+∞). (2.9)

This leads to the estimate∫ T

0

∫
x/∈R

(
µ|v|2+ |vx|2

)
dxdt≤Co

∫ T

0

∫
a(x)

(
µ|v(x,t)|2+ |vx(x,t)|2

)
dxdt

+CoC1∥e−βt∥L1[0,+∞). (2.10)

Since the total energy is not a decreasing function of time, it is necessary to re-
formulate the arguments of [3] to bound the term T∥v∥2H(T ). With this in mind we
write:

∥v∥2H(T )=∥v∥2H(s)−2

∫ T

s

{axv,vx}dt−2

∫ T

s

∫
a
(
µ|v|2+ |vx|2

)
dxdt,

valid for s∈ [0,T ]. Integrating in the interval [0,T ] and neglecting the last term, we get
the estimate

T∥v∥2H(T )≤C2∥te−βt∥L1[0,+∞)+

∫ T

0

∥v∥2H(s)ds (2.11)

in which the current–like term {axv,vx} was treated as in (2.9) and C2=
C2(∥µx∥L∞ ,∥ax∥L∞) is a constant.

Replacing the last term in (2.11) by the estimate (2.8), neglecting the negative
terms and using the estimates (2.9)–(2.10), we obtain

T∥v∥2H(T )≤ 1

2α
∥v∥2H(0)+C1 (Co+

1

α
)∥e−βt∥L1[0,+∞)+C2∥te−βt∥L1[0,+∞)
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+Co

∫ T

0

∫
a
(
µ|v|2+ |vx|2

)
.

Thus, we replace the last term using identity (2.7) to get the following inequality,
in which we have used estimate (2.9),

T∥v∥2H(T )≤ 1

2α
∥v∥2H(0)+

Co

2
∥v∥2H(0)− Co

2
∥v∥2H(T )

+2C1 (Co+
1

2α
)∥e−βt∥L1[0,+∞)+C2∥te−βt∥L1[0,+∞). (2.12)

Next, we introduce the notation C(T )=2C1 (Co+
1
2α )∥e

−βt∥L1[0,+∞)

+C2∥te−βt∥L1[0,+∞) and write previous expression as follows:

∥v∥2H(T )≤ 1

T

(
1

2α
+
Co

2

)
∥v∥2H(0)− Co

2T
∥v∥2H(T )+

C(T )

T
,

from where we conclude(
1+

Co

2T

)
∥v∥2H(T )≤ 1

T

(
1

2α
+
Co

2

)
∥v∥2H(0)+

C(T )

T
. (2.13)

We now recall that we are interested in showing the exponential decay of ∥v∥2H(t).
For this purpose we fix T > (2α)−1 and introduce the constants

γ1 :=
1

2αT + Co

2T

1+ Co

2T

=
1+αCo

2αT +αCo
<1,

d1 :=
C(T )

T
(
1+ Co

2T

) = 2C(T )

2T +Co
,

which lead us to write the bound (2.13) in the form

∥v∥2H(T )≤γ1∥v∥2H(0)+d1. (2.14)

We obtain the exponential decay by means of an inductive argument, typical from
semigroup theory, which consists in getting bounds for time intervals of the form Jk :=
[kT,(k+1)T ]. With this in mind we consider the time interval [T,2T ] and adapt previous
computations to obtain the following estimate, similar to the one previously given in
(2.12) for the interval [0,T ],

2T∥v∥2H(2T )≤
(

1

2α
+
Co

2

)
∥v∥2H(T )− Co

2
∥v∥2H(2T )

+2(Co+
1

2α
)∥e−βt∥L1[T,+∞)+C2∥(t−T )e−βt∥L1[T,+∞).

It is worth remarking that the constant Co=Co(T ) given by Lemma 2.3 depends
only on the length of the interval and therefore is the same for all of Jk=[kT,(k+1)T ].

Recalling the exponential decay of both terms ∥e−βt∥L1[T,+∞)=e
−βT ∥e−βt∥L1[0,+∞)

and ∥(t−T )e−βt∥L1[T,+∞)=e
−βT ∥te−βt∥L1[0,+∞), we are led to obtain the bound(

1+
Co

4T

)
∥v∥2H(2T )≤ 1

2T

(
1

2α
+
Co

2

)
∥v∥2H(T )+e−βT C(T )

2T
.
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As we did for [0,T ], we introduce the constants

γ2 :=
1

4αT + Co

4T

1+ Co

4T

=
1+αCo

4αT +αCo
,

d2 :=
C(T )

2T
(
1+ Co

4T

) = 2C(T )

4T +Co
,

and write

∥v∥2H(2T )≤γ2∥v∥2H(T )+d2e
−βT . (2.15)

Applying inductively previous estimates to the interval [(k−1)T,kT ], we get se-
quences {γk}k and {dk}k given by

γk :=
1

2kαT + Co

2kT

1+ Co

2kT

=
1+αCo

2kαT +αCo
,

dk :=
2C(T )

2kT
(
1+ Co

2kT

) = 2C(T )

2kT +Co
,

such that the following estimate holds

∥v∥2H((k+1)T )≤γk+1∥v∥2H(kT )+dk+1e
−kβT . (2.16)

Since both sequences satisfy 1>γ1>γ2> ·· ·>γk and d1>d2> ·· ·>dk, by means of
an inductive argument we get the upper bound, in which ζ=max{γ1,e−βT }<1,

∥v∥2H((k+1)T )≤ ζk
(
γ1∥v∥2H(0)+(k+1)d1

)
from where we deduce

(
∥v∥2H((k+1)T )

)1/(k+1)→ ζ <1 and therefore we conclude that

there exists a constant C̃ such that ∥v∥2H(kT )≤ C̃∥v∥2H(0)ζk. We finally take t>0, write
t=kT +r with r∈ [0,T ), and apply previous estimates to obtain

∥v∥2H(kT +r)≤ C̃∥v∥2H(r)ζk≤ C̃∥v∥2H(r)ζ−1ζk+
r
T .

In addition, from (2.7)–(2.9) we have the uniform estimate, valid for r∈ [0,T ]:

∥v∥2H(r)≤∥v∥2H(0)(1+T )C1.

Collecting previous estimates and setting C= C̃C1ζ
−1(1+T ), η=− ln(ζ)

T , we obtain
the estimate

∥v∥2H(t)≤Ce−ηt.

This finishes the proof.

3. Non-linear problem

3.1. Local existence. The local existence for the non-linear problem is derived
from standard arguments, see the Appendix for details.
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3.2. Global existence and exponential decay. Once the local existence is
established we consider the exponential decay for solutions with small initial data. The
key idea here is to show the existence of a suitable bounded invariant set; this will allow
us to get both the global existence and the exponential decay.

Theorem 3.1. There exist ε>0, C>0 and γ>0 such that for ϕ∈H with ∥ϕ∥H<ε
the local solution u for the nonlinear problem (A.1), given by Theorem A.1, satisfies
both u∈C([0,∞),H)∩C1([0,∞),H′) and the exponential decay:

∥u∥H(t)<Ce−γt∥ϕ∥H.

Proof. The starting point is the semigroup estimate ∥Ua(t)ϕ∥H≤Ce−ηt∥ϕ∥H
given by Theorem 2.3. We thus introduce the norm in H: ∥ϕ∥η := sup

t≥0
∥eηtUa(t)ϕ∥H. A

straightforward computation shows the following well–known identities:

∥ϕ∥H≤∥ϕ∥η ≤C∥ϕ∥H (3.1a)

∥Ua(τ)ϕ∥η ≤e−ητ∥ϕ∥η (3.1b)

We then apply a fixed-point argument to bounded sets of Hη := (H,∥·∥η), with
η>0. Let r,δ>0 be positive constants and set the Banach space Xr,δ =C([0,δ],Br)
equipped with the norm ∥v∥L∞(0,δ,Hη). We also consider the fixed-point operator:

Γ(v)(t) :=Ua(t)v(0)− i
∫ t

0

Ua(t−s)N(v(s))ds.

Applying ∥·∥η and using the estimates of (3.1) and Lemma A.1, we get the following
estimate, here C represents different constants, none of them depending upon r,δ:

∥Γ(v)(t)∥η ≤∥Ua(t)v(0)∥η+
∫ t

0

∥Ua(t−s)N(v(s))∥ηds

≤e−ηt∥v(0)∥η+C
∫ t

0

∥N(v(s))∥Hds

≤e−ηt∥v(0)∥η+C
∫ t

0

∥v(s)∥3Hds

≤e−ηt∥v(0)∥η+C
∫ t

0

∥v(s)∥3ηds.

Since v : [0,δ]→Br we have the estimate, valid for r>0 and for t∈ [0,δ], ∥Γ(v)(t)∥η ≤
r
(
e−ηt+Cr2t

)
. We set g(t) :=e−ηt+Cr2t. Since g(0)=1 and e−ηt≤1−ηt+ 1

2η
2t2 we

have g(t)<1−(η−Cr2)t+ 1
2η

2t2. We thus take

r2<
η

C
and δ<2η−2(η−Cr2) (3.2)

from where we conclude that g(t)≤1 is valid for t∈ [0,δ]. This shows that Γ(Xr,δ)⊆Xr,δ.
Next, we consider the Lipschitz property of Γ. To this end we take v,w∈Xr,δ such

that v(0)=w(0) and compute: Γ(v)(t)−Γ(w)(t)=
∫ t

0
Ua(t−s)(N(v(s))−N(w(s)))ds.

Proceeding as above we get:

∥Γ(v)(t)−Γ(w)(t)∥η ≤
∫ t

0

∥Ua(t−s)(N(v(s))−N(w(s)))∥ηds
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≤Cr2
∫ t

0

∥v(s)−w(s)∥ηds

≤Cr2δ∥v−w∥L∞(0,δ,Br)

from where we obtain ∥Γ(v)−Γ(w)∥L∞(0,δ,Br)≤Cr2δ∥v−w∥L∞(0,δ,Br). Taking (r,δ)
such that Cr2δ<1, together with the conditions (3.2), we have that, for ϕ∈Br,
Γϕ :Xr,δ →Xr,δ is a well defined Lipschitz continuous operator with ∥Γϕ∥Lip<1 and
therefore exists w∈C([0,δ],Br), the unique fixed point of ΓΦ. This means that, for
ϕ∈Br, the local solution given by Theorem A.1 remains in Br as t∈ [0,δ]. We shall
show that w can be extended to [0,+∞). From Duhamel’s formula we have the identity,

valid in [0,δ]: w(t)=Ua(t)ϕ− i
∫ t

0
Ua(t−s)N(w(s))ds, in which Ua(t) is the semigroup

generated by the linear term. Taking norm in H, we get the estimate, valid for t∈ [0,δ]:

∥w∥η(t)≤∥Ua(t)ϕ∥η+
∫ t

0

∥Ua(t−s)N(w(s))∥ηds.

Using the estimate of Lemma A.1 and the exponential decay of the linear evolution, we
obtain:

∥w∥η(t)≤e−ηt∥ϕ∥η+Cr2
∫ t

0

e−η(t−s)∥w(s)∥ηds,

valid for t∈ [0,δ], which is equivalent to the estimate:

eηt∥w∥η(t)≤∥ϕ∥η+Cr2
∫ t

0

eηs∥w(s)∥ηds.

Using the result of Gromwall lemma with z(t)=eηt∥w∥η(t), we deduce eηt∥w∥H(t)≤
∥ϕ∥ηeCr2t, which means:

∥w∥η(t)≤∥ϕ∥ηe−(η−Cr2)t.

Let γ :=η−Cr2, since (r,δ) satisfy estimate (3.2), we have γ>0 and therefore we
also obtain the exponential decay valid for t∈ [0,δ]: ∥w∥η(t)≤∥ϕ∥ηe−γt. This shows
that the Hη–ball with radius r is an invariant set for the non-linear flow; from where we
conclude that for any ϕ∈H with ∥ϕ∥η<r the solution u is globally defined and satisfies
the estimate:

∥u∥η(t)≤C∥ϕ∥ηe−γt,

for all t>0.
Since ∥u∥η and ∥u∥H are equivalent norms, the proof is complete.

4. Stabilisation rates: qualitative aspects of the dynamics
Since we have so far only used the size of the damping term, as ∥a∥W1,∞ , and not

its precise location to derive the estimates, it is natural to expect that, for terms of
similar size, the values of the rates are strongly dependent on the configuration. In this
section we will focus on how rates vary as a function of the location of the free damping
region. More precisely, we will take damping terms satisfying:

a∈W1;∞, a≡0 in [K1;K2], a≡α in [K̃1;K̃2]
c, K̃1<K1<K2<K̃2, (4.1)
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and show that when the free–damping region is chosen as [−K2;K2] and for large times,
the rates for charge and energy could be made smaller than those given in Theorems
2.2–2.3; we also provide estimates for the length of these time intervals. Finally, let
us mention that the following analysis is based on the spectral decomposition of the
operator L0(ϕ)=−ϕxx+ |x|ϕ on the space H0 := (H,∥·∥0) where ∥ϕ∥20 := ⟨ϕ;L0ϕ⟩, we
refer [6] for details on the spectral decomposition; however; it is worth remarking that
L−L0 is the multiplication operator with compact support given by µ(x)−|x| and that
∥·∥0 and ∥·∥H are equivalent norms.

We start with the following lemma relating the rates of solutions with different
damping terms for the linear Equation (2.1); this will provide both the continuity of the
rates with respect to the size of the damping term and also the basic estimates involved
in the proof of the main result, see Theorem 4.1. We consider the rates for both the
charge and the energy.

Lemma 4.1. Let a0,a1∈W1,∞(R) both satisfying (4.1), let ϕ∈H and let u0, u1 be the
related solution of (2.1) with initial datum ϕ. Let also β0 be the decaying rate given by
Theorem 2.2 for ∥u0∥L2 , and η0 be the decaying rate given by Theorem 2.3 for ∥u0∥H.
Then, the following estimates hold, in which C and D are constants:

∥u0(t)−u1(t)∥L2 ≤∥ϕ∥L2

(
etC∥a0−a1∥L∞ −1

)
e−β0t.

∥u0(t)−u1(t)∥H≤∥ϕ∥H
(
etD∥a0−a1∥W1,∞ −1

)
e−η0t.

Proof. It is based upon a classical argument stemming from Duhamel’s identity.
We outline some details for further reference.

Let Uj(t), j=0,1, denote the C0–semigroups of contractions with generators iL−
Aj , in which L(ϕ)=−ϕxx+µϕ and Aj is the multiplication operator given by aj ; let
also δA be the multiplication operator given by δa=a1−a0. The starting point is the
identity:

U1(t)ϕ−U0(t)ϕ=

∫
U0(t−s)δAU1(s)ϕds. (4.2)

Setting E(0)(t)=U0(t)ϕ and E(m+1)(t)=
∫ t

0
U0(t−s)δAE(m)(s)ds, m≥0, we shall

show the convergence of the formal series: E(∞)=
∑
m=1

E(m).

Let M ≥1 and γ>0 be such that ∥U0(t)ϕ∥X ≤Me−γt∥ϕ∥X , here X=L2 or X=H.
Taking norm in X and performing an inductive argument, we get the estimate:

∥E(m)(t)∥X ≤e−γt∥ϕ∥L2

Mm tm

m!
∥δA∥mL(X). (4.3)

On the other hand, a straightforward computation gives the estimates ∥δA∥L(L2)≤
∥δa∥L∞ and ∥δA∥L(H)≤2∥δa∥W1,∞ . Using the estimates ∥U0(t)ϕ∥L2 ≤C0e

−βt∥ϕ∥L2 and
∥U0(t)ϕ∥H≤D0e

−ηt∥ϕ∥X of Theorems 2.2–2.3 respectively, where C0 and D0 are the
bounding constants, we obtain the desired estimates.

Remark 4.1. In the nonlinear case, identity (4.2) and the related error term become:

u(t)ϕ−U0(t)ϕ=

∫
U0(t−s) (δAu(s)+N(u(s)))ds.

E(m+1)(t)=

∫ t

0

U0(t−s)
(
δAE(m)(s)+N(E(m)(s))

)
ds.
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Following Lemma A.1 and taking CR2<ε, we get the estimate for the nonlinear
term: ∥N(ϕ)∥H≤ε∥ϕ∥H valid for ∥ϕ∥H<R.

Thus, for small initial data, the perturbation δA+N satisfies the estimate:

∥(δA+N)(ϕ)∥H≤
(
∥δA∥L(H)+ε

)
∥ϕ∥H.

From Theorem 3.1 we have the exponential decay for the solutions in the nonlinear
equation, from where we deduce the estimate:

∥E(m)(t)∥X ≤e−γt∥ϕ∥L2

Mm tm

m!

(
∥δA∥L(H)+ε

)m
, (4.4)

which is similar to the one given in (4.3).

The main result relies upon the use of the method outlined in the proof of Lemma
4.1 for some suitable splitting of the given damping operator. Previous remark lead
us to state the result for the nonlinear problem. This will be done with the aim of
the behaviour of the Airy functions involved in the spectral decomposition of the linear
term L0(ϕ)=−ϕxx+ |x|ϕ. The following lemma gives the basic estimates.

Lemma 4.2. Let the damping term a satisfy (4.1). Let A(ϕ) :=aϕ be the related mul-
tiplication operator. Then, for any ε>0, there exists 0<K2 such that for J =[−K2,K2]
the following estimates hold, in which P0 is the projection on the first eigenfunction of
L0 and X=L2 or X=H:

∥AP0∥X ≤ε,
∥P0AP0∥X ∈ε2[C1;C2],

here Cj are constants depending only on φ0.

Proof. We first notice that the first eigenfunction of L0 is given by:

φ0(x)= c0 Ai(|x|−λ0),

in which λ0 is the first zero of Ai′(−x) and c0=(2λ0)
−1/2 |Ai(−λ0)|−1

is the normaliza-
tion constant; in addition, we have P0ϕ= ⟨φ0;ϕ⟩φ0 and thus AP0ϕ= ⟨φ0;ϕ⟩Aφ0.

Since a≡0 in [−K2;K2], we have

∥Aφ0∥2L2 =

∫
|x|≥K2

a2(x)φ2
0(x)dx≤α2 ∥φ0∥2L2(|x|≥K2)

.

We now consider X=H0 and we recall that L0(ϕ)=−ϕxx+ |x|ϕ. Since ∥ϕ∥2H0
=

⟨ϕ;L0ϕ⟩, we get:

∥Aφ0∥2H0
≤∥a∥2L∞∥φ0∥2L2

µ(|x|≥K2)
+∥ax∥2L∞∥φ0∥2L2(|x|≥K2)

+∥a∥2L∞∥(φ0)x∥2L2(|x|≥K2)
+2∥ax∥L∞ ∥a∥L∞∥φ0∥L2(|x|≥K2)∥(φ0)x∥L2(|x|≥K2),

from where we deduce:

∥Aφ0∥2H0
≤3∥a∥2W1,∞

(
∥φ0∥2L2

µ(|x|≥K2)
+ ∥(φ0)x∥2L2(|x|≥K2)

)
.

For the quadratic term, we have the identity:

⟨φ0;Aφ0⟩=
∫
|x|≥K2

a(x)φ2
0(x)dx=

∫
K̃2≥|x|≥K2

a(x)φ2
0(x)dx+α

∫
|x|≥K̃2

φ2
0(x)dx,
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from where we deduce the estimates

α∥φ0∥2L2(|x|≥K̃2)
≤⟨φ0;Aφ0⟩≤α∥φ0∥2L2(|x|≥K2)

.

In order to obtain the required estimates we take advantage of the following prop-
erties of the Airy function, which are valid for x>1 and ξ= 2

3x
3/2, see [13]:

Ai(x)=x−1/4e−ξF1(x), ∥F1∥L∞ ≤ 1

2
√
π
.

Ai′(x)=−x1/4e−ξF2(x), ∥F2∥L∞ ≤ 1

4
√
π
.∫

z>M

Ai(z)2dz=Ai′(M)2−MAi(M)2∫
z>M

zAi(z)2dz=
1

3
MAi′(M)2− 1

3
M2Ai(M)2− 1

3
Ai(M)Ai′(M)∫

z>M

Ai′(z)2dz=−1

3
MAi′(M)2+

1

3
M2Ai(M)2− 2

3
Ai(M)Ai′(M)

and obtain the inequalities:

∥φ0∥2L2(|x|>K2)
≤ (20πλ0)

−1 Ai(−λ0)2(K2−λ0)1/2e−4/3(K2−λ0)
3/2

.

∥φ0∥2L2
µ(|x|>K2)

+∥(φ0)x∥2L(|x|>K2)
≤ (8πλ0)

−1 Ai(−λ0)2e−4/3(K2−λ0)
3/2

.

Taking K2≫1 such that

αC(λ0)(K2−λ0)1/2e−4/3(K2−λ0)
3/2

<e−(K2−λ0)
3/2

<ε2, (4.5)

we conclude the required inequalities:

∥AP0∥X ≤ε,

∥P0AP0∥X ∈ε2[C1;C2].

This finishes the proof.

The main result of this section is based on the continuity of the rates with respect
to the damping term given by Lemma 4.1 and expresses that, for finite times, the closer
the origin is to the non-damping region, the smaller the rates are.

Theorem 4.1. Let the damping term a∈W1,∞ satisfy the assumptions (4.1). Let
ϕ∈H and u be the solution of the nonlinear Equation (A.1) with small initial datum
ϕ. Let T >0 and ζ >0 be fixed, then there exists K≫1, 0<ν≪1 and S(t) a C0–
semigroup such that: eνt∥S(t)ϕ∥X ≥∥P0ϕ∥X and, for t∈ [0;T ], the solution u(t) satisfies
the estimate:

eνt∥u(t)−S(t)ϕ∥X ≤ ζ.

Proof. To start with, we consider the split: A=A0+δA, in which A0=
P0AP0+P1AP1 and δA=P1AP0+P0AP1. Since A0 is a bounded perturbation of
A (in both X=L2 and X=H), the operator iL−A0 indeed generates a C0–semigroup
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of contractions, which will be denoted by S(t). Let X0=span{φ0} and X1=X
⊥
0 , valid

in both X=L2 and X=H, since X0 and X1 are A0–invariant subspaces, we have that
PjS(t)=S(t)Pj , for j=0,1, and therefore:

P0S(t)ϕ=e
−νXt+iλ0tP0ϕ,

P1S(t)ϕ=S(t)P1ϕ,

where νX =∥P0AP0∥X .
Since the damping term satisfies assumptions (4.1), we apply the results of Lemma

4.2 and get the inequalities:

∥δA∥X =∥P1AP0+P0AP1∥X ≤∥AP0∥X ≤Cε.
∥P0AP0∥X ∼ε2,

with ε to be especified and C=C(α,φ0) a constant. Let θX expresses any of the rates
{β,η,γ} provided by Theorems 2.2–2.3–3.1, we have the following estimates for the
semigroups:

P0S(t)ϕ∼e−ε2tϕ,

∥P1S(t)ϕ∥X ≤e−θXtM∥ϕ∥L2 .

Thus, setting ε<min{β1/2;η1/2;γ1/2}, we deduce the estimates for the semigroup:

∥S(t)ϕ∥X ≤e−ε2tM∥ϕ∥X and ∥S(t)P0ϕ∥X ∼e−ε2t∥ϕ∥X . From previous estimates and
recalling the inequality (4.4), we have ∥δA∥X ≤Cε, from where we get:

∥E(m)(t)∥X ≤e−ε2t∥ϕ∥X
(M̃εt)m

m!
.

Applying the results of Lemma 4.1, we get the bound:

∥u(t)−S(t)ϕ∥X ≤e−ε2t(eM̃εt−1)∥ϕ∥X .

Finally, we take: K2>λ0+
(
ln( M̃T

ζ )
)2/3

, ν=e−(K2−λ0)
3/2

and ε=ν1/2, and the

result follows from estimate (4.5).

Appendix. Local existence for the nonlinear problem. For the sake of
completeness, and since the local existence of solutions for the non-linear case are derived
from standard arguments mainly from fixed-point techniques, we devote this appendix
to present the related details.

To start with, we focus on the local existence of solutions for the problem given by
the equation

iut=−uxx+µ(x)u− ia(x)u+N(u), (A.1)

together with the initial condition u(x,0)=u0(x0)∈H; here, the non-linearity N is of
non-local nature and is given by N(ϕ)=ϕm(ϕ) with

m(ϕ)(x) :=

∫
ϱ(x,y)|ϕ(y)|2dy, (A.2)

In the sequel we made the following assumptions on the kernel,

|ϱ(x,y)|≤µ(x), |ϱx(x,y)|≤C, (A.3)
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this choice is motivated by the Schrödinger–Poisson equation whose kernel is given by
ϱ(x,y)= 1

2 (|x−y|−|x|), see [5].
We also recall that µ(x)∈C∞(R), µ≥max{|x|,1} with µ(x)= |x| for |x|≥2, and a∈

W1,∞(R), α(x)=0 for x∈ [K1,K2] and a(x)≥α>0 for x∈R\ [K̃1,K̃2], with [K1,K2]⊆
(K̃1,K̃2).

As usual, the nonlinear result is obtained from the linear case by means of pertur-
bative arguments. With these ideas in mind we present some useful estimates.

Lemma A.1. Let m(ϕ) be given by (A.2), with the kernel satisfying the estimates
(A.3), let also N(ϕ)=ϕm(ϕ). Then for ϕ,ψ∈H the following estimates hold, in which
C are different constants depending only upon the kernel ϱ.

• ∥N(ϕ)∥H≤C∥ϕ∥3H.

• ∥N(ϕ)−N(ψ)∥H≤CR2∥ϕ−ψ∥H, valid for ∥ϕ∥H, ∥ψ∥H<R.
Proof. It is a straightforward computation and will be omitted.

We now move to the local existence result.

Theorem A.1. For any ϕ∈H there exists δ= δ(ϕ)>0 such that the nonlin-
ear Equation (A.1) with initial datum u(0)=ϕ has a unique solution u∈C([0,δ],H)∩
C1([0,δ],H′).

Proof. It is based on a fixed-point argument. Let ϕ∈H and let Ua(t) be the
semigroup generated by −iL−a. For ε,τ >0 we define Xε,τ (ϕ)={w∈C([0,τ ],H)∩
C1([0,τ ],H′) :∥v−Ua(t)ϕ∥L∞([0,τ ],H)≤ε} and equipped it with ∥w∥L∞(0,τ,H). We also
define the fixed-point operator:

Γ(w)(t) :=Ua(t)ϕ− i
∫ t

0

Ua(t−s)N(w(s))ds.

Since Ua(t) is a C0–semigroup it is clear that Γ(Xε,τ (ϕ))⊆C([0,τ ],H)∩
C1([0,τ ],H′). In order to show the invariance of Xε,τ (ϕ) for a suitable choice of the
parameters we consider the estimate, in which we have used Lemma A.1:

∥Γ(w)(t)−Ua(t)ϕ∥H≤
∫ t

0

∥N(w(s))∥H

≤C
∫ t

0

∥w(s)∥3H

≤Cτ (∥ϕ∥H+ε)
3

from where we conclude ∥Γ(w)−Ua(t)ϕ∥L∞([0,τ ],H)≤Cτ (∥ϕ∥H+ε)
3
.

On the other hand, in order to get the Lipschitz constant we take w1,w2∈Xε,τ (ϕ)
and apply previous estimates. We thus have:

∥Γ(w1)(t)−Γ(w2)(t)∥H≤
∫ t

0

∥Ua(t−s)(N(w1(s))−N(w2(s)))∥Hds

≤C (∥ϕ∥H+ε)
2
∫ t

0

∥w1−w2∥H(s)ds

≤C (∥ϕ∥H+ε)
2
τ∥w1−w2∥L∞([0,τ ],H)

and therefore ∥Γ∥Lip≤C (∥ϕ∥H+ε)
2
τ .
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We finally take, for ϕ∈H, some ε>0 and get δ>0 such that C (∥ϕ∥H+ε)
2
δ<1 from

where we conclude that Γ :Xε,δ(ϕ)→Xε,δ(ϕ) is a contraction and therefore there ex-

ists u∈C([0,δ],H)∩C1([0,δ],H′) such that u(t)=Ua(t)ϕ− i
∫ t

0
Ua(t−s)N(u(s))ds. This

finishes the proof.

REFERENCES

[1] L. Aloui and M. Khenissi, Stabilisation of Schrödinger equations in exterior domains, ESAIM:
Control Optim. Calc. Var., 13:570–579, 2007. 1

[2] N. Biedma and M. De Leo, Decaimiento de la carga para una ecuación de Schrödinger–Poisson
con amortiguación localizada, Proceedings VII MACI, 129–132, 2019. 1

[3] M.M. Cavalcanti, V.N. Domingos Cavalcanti, J.A. Soriano, and F. Natali, Qualitative aspects for
the cubic nonlinear Schrödinger equations with localised damping: exponential and polynomial
stabilisation, J. Differ. Equ., 248:2955–2971, 2010. 1, 2.2, 2.2, 2.3

[4] M.M. Cavalcanti, V.N. Domingos Cavalcanti, R. Fukuoka, and F. Natali, Exponential stability for
the 2–D defocusing Schrödinger equation with locally distributed damping, Differ. Integral Equ.,
22:617–636, 2009. 1

[5] M. De Leo and D. Rial, Well–posedness and smoothing effect of nonlinear Schrödinger–Poisson
equation, J. Math. Phys., 48:093509, 2007. 4

[6] M. De Leo, C. Sánchez Fernández de la Vega, and D. Rial, Controllability of Schrödinger equation
with a nonlocal term, ESAIM: Control Optim. Calc. Var., 20:23–41, 2014. 1, 2.1, 2.3, 4

[7] R. Illner, H. Lange, and H. Teismann, A note on the exact internal control of nonlinear Schrödinger
equations, in A.D. Bandrauk, M.C. Delfour, and C. Le Bris (eds.), Quantum Control: Mathe-
matical and Numerical Challenges, Amer. Math. Soc., 33:127–137, 2003. 1

[8] P. Markowich, C. Ringhofer, and C. Schmeiser, Semiconductor Equations, Springer, Vienna, 1990.
1

[9] F. Natali, Exponential stabilisation for the nonlinear Schrödinger equation with localised damping,
J. Dyn. Control Syst., 21(2):461–474, 2015. 1

[10] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,
Springer–Verlag, 1983. 2.1

[11] L. Rosier and B. Zhang, Exact boundary controllability of the nonlinear Schrödinger equation, J.
Differ. Equ., 246:4129–4153, 2009. 1, 2.2

[12] A. Shimomura, Asymptotic behavior of solutions for Schrödinger equations with dissipative non-
linearities, Commun. Partial Differ. Equ., 31:1407–1423, 2006. 1

[13] O. Vallee and M. Soares, Airy Functions and Applications to Physics, World Scientific Publishing,
2004. 4

https://doi.org/10.1051/cocv:2007024
https://doi.org/10.1016/j.jde.2010.03.023
https://projecteuclid.org/journalArticle/Download?urlId=die%2F1356019541
https://doi.org/10.1063/1.2776844
https://doi.org/10.1051/cocv/2013052
https://mathscinet.ams.org/mathscinet-getitem?mr=2043524
https://link.springer.com/book/10.1007/978-3-7091-6961-2
https://link.springer.com/article/10.1007/s10883-015-9270-y
http://scans.hebis.de/02/79/04/02790468_toc.pdf
https://doi.org/10.1016/j.jde.2008.11.004
https://mathscinet.ams.org/mathscinet-getitem?mr=2254620
https://doi.org/10.1142/p345

