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GLOBAL WEAK SOLUTIONS TO A THREE-DIMENSIONAL
COMPRESSIBLE NON-NEWTONIAN FLUID∗

LI FANG† AND ZHENHUA GUO‡

Abstract. The paper concerns on the existence of global weak solutions to a compressible non-
Newtonian fluid with the power-law type. The main contribution of this paper is to handle the power-
law structure with the exponent r> 12γ

5γ−3
when the pressure is related to ργ with γ >1. The exponent r

is forced by the convective term and the convergent argument of approximate solution. Inspired by the
weak formulation of the momentum equation, the existence of global weak solutions is proved relying
on the Faedo-Galerkin method, weak compactness techniques and the monotonicity method.
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1. Introduction
The motion of a three-dimensional compressible non-Newtonian fluid is governed

by the following generalized Navier-Stokes system{
∂tρ+div(ρu)=0,
∂t(ρu)+div(ρu⊗u)+∇p=div(|Du|r−2Du+η(|divu|)divuI), (1.1)

where ∇=∇x, div=divx, (x,t)∈Ω×R+, ρ, u and p denote the density, velocity and
pressure, respectively. I is the 3×3 identity matrix. The set Ω⊂R3 is a bounded
domain with a regular boundary ∂Ω (of class, say C2+ν , ν >0, taken for convenience).
The tensor Du= 1

2 (∇u+∇Tu) is a symmetric part of the velocity gradient. The bulk
viscosity coefficient η is a continuous function of |divu|. The positive constant r satisfies
r>1.

The main reason to investigate the non-Newtonian fluid with the power-law type
is the phenomena of rapidly increasing fluid viscosity under various stimuli such as
shear rate, electric or magnetic field. The power-law models are quite popular among
rheologists, in chemical engineering and colloidal mechanics.

It is an important issue to study the global existence of weak solutions to the system
(1.1), and significant progress has been made recently on this topic. Ladyzhenskaya ini-
tiated the incompressible non-Newtonian fluids of power-law type in [18,19], where the
global existence of weak solutions for the exponent r⩾1+ 2d

d+2 (d stands for space dimen-
sion) was proved for Dirichlet boundary conditions. The modern state of the art in the
mathematical theory of non-Newtonian fluids is described in [20], where homogeneous
incompressible fluids are studied in sufficient details, while compressible non-Newtonian
fluids are hardly considered (only very weak measure-valued solutions are obtained). By
Lipschitz truncation methods, Frehse-Málek-Steinhauer [11] established the weak solu-
tions for the constant exponent r> 2d

d+2 with d⩾2. Wolf [26] proved existence of weak
solutions to an incompressible homogenous fluid with shear rate dependent viscosity for

r> 2(d+1)
d+2 without assumptions on shape and size of Ω. The existence of global weak
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solutions with Dirichlet boundary conditions for r> 2(d+1)
d+2 was achieved in [2] by Lip-

schitz truncation and local pressure methods. For the nonhomogenous incompressible
non-Newtonian fluids, the first result goes back to [10], where existence of Dirichlet weak
solutions was obtained for r⩾ 12

5 if d=3, existence of space-periodic weak solutions for
r⩾2 with some regularity properties of weak solutions was achieved in [15] for r⩾ 20

9
with d=3. For the details on the existence, uniqueness, regularity and long-time behav-
ior of solutions to the initial-boundary value problem of incompressible non-Newtonian
fluids, one can refer the papers [1, 12,13] and the references therein.

For the compressible non-Newtonian fluids, Mamontov [21] established the global
existence of sufficiently regular solutions to two-dimensional and three-dimensional
equations provided that the initial density is without vacuum. Later, Mamontov [22,23]
(see also the references therein) considered a model with linear pressure equation and
an exponential dependence of the viscosity on the velocity gradient in two-dimensional
domains. Zhikov-Pastukhova [28] obtained the existence of weak solutions to the initial-
boundary-value problem for multidimensional fluids under some restrictions. Feireisl-
Liao-Málek [9] studied the large-data existence result of weak solutions to a compressible
non-Newtonian fluid with nonlinear constitutive equation guaranteeing the divergence of
the velocity field remains bounded, provided that the initial density is strictly positive.
Fang-Kong-Liu [4] investigated the existence of weak solutions to a one-dimensional
full compressible non-Newtonian fluid. Recently, Fang-Guo [5], Shi-Wang-Zhang [25]
discussed the stability of rarefaction waves for the isentropic and nonisentropic com-
pressible non-Newtonian fluids, respectively. Guo-Dong-Liu [14] studied the existence
and large-time behaviors of boundary layer solution of the inflow problem on the half
space for an isentropic compressible non-Newtonian fluid. For the details on the exis-
tence of strong solutions to the one-dimensional compressible non-Newtonian fluid, one
can refer the papers [6, 27] and the references therein.

The analysis of the degenerations and nonlinearity in system (1.1) requires some
special attentions. The major concerns are stated as follows.

(1) The degeneration of the initial density containing vacuum. It is rather difficult
and challenging to investigate the global existence of weak solutions to the system
(1.1). And the possible appearance of vacuum in the fluid density (that is, the fluid
density is zero) is one of the essential difficulties in the analysis of the well-posedness
and related problems. For the compressible Navier-Stokes equation, the artificial
viscosity terms and artificial pressure terms were introduced by Lions in [17] and
improved by Feireisl in [8].

(2) The strong degeneration and nonlinearity of the elliptic operator div(|Du|r−2Du)
in momentum Equations (1.1)2. Mathematically, this degeneration and nonlinear-
ity leads to a difficulty which makes it hard to find a reasonable way to get the
convergence of velocity under the uniform bound.

(3) The strong nonlinearity for the pressure term p(ρ). It should be pointed out here
that unlike the case of p(ρ)=ργ , despite the weak regularizing effect on solutions,
the pressure term p(ρ) also causes some troubles in the strong convergence of the
density. Therefore, much attention needs to be paid in order to control the strong
nonlinearity of the pressure term.

Recently, there is some interesting work that overcomes these difficulties mentioned
above. Zhikov-Pastukhova [28] handled the strong degeneration and nonlinearity of the
term div(|Du|r−2Du) by regularization and convex analysis under the assumption that

r>3. Feireisl-Liao-Málek [9] handled the term div((1+ |Ddu|2) r−2
2 Ddu) based on the
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assumption that the divergence of the velocity field is under all circumstances bounded
and that the initial density is without vacuum. However, those results require r>3 or

allow div((1+ |Ddu|2) r−2
2 Ddu) in the case the initial density being with lower bound and

upper bound.
In this paper, we consider the global weak solution to a three-dimensional compress-

ible non-Newtonian fluid with large data. More precisely, we study the initial-boundary
value problem of system (1.1) in a bounded domain Ω⊂R3 subjected with the initial
data

(ρ,ρu)|t=0=(ρ0,m0)(x) (x∈Ω), (1.2)

and the no-slip boundary condition

u |∂Ω=0. (1.3)

The aim of this paper is to establish the global existence theory of weak solutions to
the problem (1.1)-(1.3). We are interested in the case that 12γ

5γ−3 <r<3 and the case

that r⩾3, when the pressure p(ρ) is a positive function of the density satisfying{
p′(s)⩾a1sγ−1 for all s>0, p(s)⩽a2sγ for all s⩾0,
p∈C[0,∞)∩C1(0,∞), p(0)=0

(1.4)

for some positive constants a1, a2,γ.
The global existence of weak solutions is proved with the help of the Faedo-Galerkin

method, the vanishing viscosity method and the monotonicity method. To prove the
existence of weak solution, we use an approximation scheme similar to that in [7],
which consists of Faedo-Galerkin approximation, artificial viscosity and artificial pres-
sure. Then, we get an improvement on the integrability of density, which can ensure the
effectiveness and convergence of our approximation scheme. More specifically, we show
that the uniform bound of ργ in Lθ(Ω×(0,T )), with some θ>1 (stated in Lemma 5.1)
depends on the value of r and q given in Theorem 2.1 and Theorem 2.2. To overcome the
difficulty arising from possible large oscillations of the density ρ, we adopt the method
in Lions [17] and Feireisl [7], which is based on the celebrated weak continuity of the
effective viscous flux p(ρ)I− [|Du|r−2Du+η(|divu|)divuI] and the properties of convex
function. The nonlinear term |Du|r−2Du+η(|divu|)divuI is going to be dealt with by a
weak formulation of the momentum equation arising in [9].

The rest of this paper is organized as follows. In Section 2, we introduce the
definition of weak solutions to the compressible non-Newtonian fluids, and also state
the main existence results. In Section 3, a series of a priori estimates on the solution is
derived. In Section 4, we construct a three-level approximation scheme inspired by [8,9]
for the problem (1.1)-(1.3). In Section 5, we prove Theorem 2.1 through a vanishing
viscosity and vanishing artificial pressure limit passage using the weak convergence
method. Finally, the proof of Theorem 2.2 is given in Section 6.

2. Main results
The aim of this section is to give the definition of the weak solution to the problem

(1.1)-(1.3) and state the main results.
Before we state our main results, we need to specify the definition of weak solutions.

It is necessary to require that the weak solutions should satisfy the natural energy
estimates. From the viewpoint of physics, the conservation laws on mass, momentum
and energy also should be satisfied at least in the sense of distributions. Based on those
considerations, the definition of reasonable global-in-time weak solutions goes as follows.
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Definition 2.1. Let r>1. A pair of functions (ρ,u) is said to be a weak solution to
the problem (1.1)-(1.3) on the time interval (0,T ) for any fixed T >0 if the following
conditions hold:

•

ρ⩾0, ρ ∈C([0,T ];L1(Ω))∩L∞(0,T ;Lγ(Ω)),

u∈Lr(0,T ;W 1,r
0 (Ω)), η(|divu|)|divu|2∈L1(Ω×(0,T ));

• the density ρ⩾0 and the velocity u satisfy (1.1) in D′(Ω×(0,T )) and∫ τ

0

∫
Ω

(ρ∂tφ+ρu ·∇φ)dxdt=
(∫

Ω

ρφdx

)∣∣∣∣τ
0

for any τ ∈ [0,T ] and any test function φ∈C∞(Ω× [0,T ]) with φ(x,0)=
φ(x,T )=0 for x∈Ω;

• the functions ρ and ρu satisfy the initial conditions in the following weak sense

ess lim
t→0+

∫
Ω

(ρ,ρu)(x,t)ω(x)dx=

∫
Ω

(ρ0,m0)ωdx

holds for any ω∈C∞
0 (Ω).

Remark 2.1. Suppose that r> 12γ
5γ−3 . Then one can get the following three properties.

(1) The energy inequality∫
Ω

(
1

2
ρ|u|2+ρP (ρ)

)
dx

∣∣τ
0
+

∫ τ

0

∫
Ω

(|Du|r+η(|divu|)|divu|2)dxdt⩽0

holds for a.e. τ ∈ [0,T ], where P (ρ)=
∫ ρ

1
p(z)
z2 dz is the elastic potential.

(2) Inspired by Feireisl-Liao-Málek [9], any weak solution in Definition 2.1 satisfies the
following weak formulation of the momentum equation

[
1

2

∫
Ω

ρ|u|2dx]
∣∣τ
0
− [

∫
Ω

ρu ·φdx]
∣∣τ
0
+

∫ τ

0

∫
Ω

[ρu ·∂tφ+ρu⊗u :∇φ]dxdt

+

∫ τ

0

∫
Ω

|Du|r−2Du :D(u−φ)dxdt+
∫ τ

0

∫
Ω

p(ρ)div(φ−u)dxdt

⩽
∫ τ

0

∫
Ω

[Λ(divφ)−Λ(divu)]dxdt

for any τ ∈ [0,T ] and any test function φ∈C∞
c (Ω× [0,T ];R3), where Λ′(z)=η(z)z

and Λ′′(z)⩾0 for any z>0.

(3) It follows immediately from (1.1) that any weak solution in Definition 2.1 belongs
to the class

ρ∈C([0,T ];Lγ
weak(Ω)), ρu∈C([0,T ];L

2γ
γ+1

weak(Ω)).

Consequently, the initial conditions (1.2) make sense. Accordingly, the initial data
ρ0 and m0 are supposed to comply with compatibility conditions of the form

ρ0∈Lγ(Ω), ρ0⩾0, m0(x)=0 whenever ρ0(x)=0,
|m0|2

ρ
∈L1(Ω).
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Now, we are in a position to address our main results on the global existence of
weak solution to the problem (1.1)-(1.3) in this paper.

Theorem 2.1 (Main Theorem). Let Ω⊂R3 be a bounded domain of class C2+ν for
some ν >0 and η(z)= |z|q−1. Suppose that the following conditions hold:

(i) the pressure p(ρ) is given by p(ρ)=ργ with the adiabatic exponent γ>1;

(ii) the initial data satisfy{
ρ0∈Lγ(Ω),ρ0⩾0 on Ω,
|m0|2
ρ0

∈L1(Ω);

(iii) the positive constants r and q satisfy the case that

12γ

5γ−3
<r<3 and q>

r+2γ−1

(r−1)(2γ−1)

or the case that

r⩾3 and q>1.

Then, the problem (1.1)-(1.3) has a weak solution (ρ,u) on Ω×(0,T ) for any given
T >0.

Remark 2.2. The solution constructed in Theorem 2.1 admits that

divu∈Lq+1(Ω×(0,T )) and ∇u∈Lr(Ω×(0,T )).

Moreover,

ργ ∈L
q+1
q (Ω×(0,T ))

holds for the case that 12γ
5γ−3 <r<3 and max{r−1,γ, (6+r)γ

(5r−6)γ−3r}<q⩽
11γ
γ−3 , and

ργ ∈L
r

r−1 (Ω×(0,T ))

holds for the case that 12γ
5γ−3 <r<3 and q⩾ r+2γ−1

(r−1)(2γ−1) and the case that r⩾3 and q>1.

The details can be found in Lemma 5.1.

Theorem 2.2 (Main Theorem). Let Ω⊂R3 be a bounded domain of class C2+ν for
some ν >0 and η(z)= |z|q−1. Suppose that the following conditions hold:

(i) the pressure p(ρ) is given by{
p′(s)⩾a1sγ−1 for all s>0, p(s)⩽a2sγ for all s⩾0,
p∈C[0,∞)∩C1(0,∞), p(0)=0

with the adiabatic exponent γ>1;

(ii) the initial data satisfy{
ρ0∈Lγ(Ω), ρ0⩾ρ>0 on Ω,
u0∈Lr(Ω);

(iii) the positive constants r and q satisfy the case that

12γ

5γ−3
<r<3 and q>

r+2γ−1

(r−1)(2γ−1)
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or the case that

r⩾3 and q>1.

Then, the problem (1.1)-(1.3) has a weak solution (ρ,u) on Ω×(0,T ) for any given
T >0.

Remark 2.3. The solution constructed in Theorem 2.1 and Theorem 2.2 satisfies the
continuity equation in the sense of re-normalized solutions, more specifically,

∂t[b(ρ)]+div[b(ρ)u]+(b′(ρ)ρ−b(ρ))divu=0

holds in the sense of distributions for any b∈C1(R) such that |b′(z)z|⩽ c|z|
γ
2 for z larger

than some positive constant z0.

Remark 2.4. Our results also hold for the bulk viscosity coefficient η(z)∼zq−1 for
any z>0, where the symbol ∼ refers that η(z)+zη′(z)>0 for any z>0 and there exist
positive constants C1 and C2 such that

C1z
q−1⩽η(z)⩽C2z

q−1

holds for any z>0.

Remark 2.5. When r> 12γ
5γ−3 , the direct calculation gives that

div(ρu⊗u)∈L
r

r−1 (0,T ;W−1, r
r−1 (Ω))

since u∈Lr(0,T ;W 1,r(Ω)).

Remark 2.6. Our method also works for the case with nonzero external force f in
the momentum equation. It is obvious that in our analysis the presence of the external
force does not add any additional difficulty, and usually can be dealt with by using
classical Young’s inequality under the assumptions that f ∈L

r
r−1 (Ω×(0,T )).

Next, we give the inverse Hölder inequality, which can be found in [24]. The inverse
Hölder inequality is a critical key to deal with convergence of pressure by using the
convex analysis. Here the proof of Lemma 2.1 is given for completeness.

Lemma 2.1 ( [24]). Let Ω⊂R3 be a bounded domain with a regular boundary ∂Ω,
p,q∈R with 0<p<1 and 1

p +
1
q =1. Then(∫

Ω

|f |pdx
) 1

p
(∫

Ω

|g|qdx
) 1

q

⩽
∫
Ω

|fg|dx

holds for any measurable functions f, g with
∫
Ω
|f |pdx,

∫
Ω
|fg|dx being finite and∫

Ω
|g|qdx>0 being finite.

Proof. Since 0<p<1, it is deduced that 1
p >1 and∫

Ω

|f |pdx=
∫
Ω

|fg|p

|g|p
dx ( set

0

0
=0)

⩽

(∫
Ω

(|fg|p)
1
p dx

)p(∫
Ω

(|g|−p)
1

1−p dx

)1−p

=

(∫
Ω

(|fg|p)
1
p dx

)p(∫
Ω

|g|−
p

1−p dx

)1−p
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by the Hölder inequality. So,(∫
Ω

|f |pdx
)(∫

Ω

|g|−
p

1−p dx

)p−1

⩽

(∫
Ω

(|fg|p)
1
p dx

)p

,

which gives that (∫
Ω

|f |pdx
) 1

p
(∫

Ω

|g|−
p

1−p dx

)− 1−p
p

⩽
∫
Ω

|fg|dx. (2.1)

The assumption 1
p +

1
q =1 implies that q=− p

1−p , and the desired result follows from

(2.1) directly.

Finally, we give a key tool to deal with convergence of the nonlinear term by using
the monotonicity method. Let Aε(x,ξ) : Ω×Rd→R3 be Carathéodory vector functions.
These vector functions are assumed to satisfy the minimal monotonicity and convergence
conditions

(Aε(x,ξ)−Aε(x,η)) ·(ξ−η)⩾0,Aε(x,0)≡0,

|Aε(x,ξ)|⩽ c0(|ξ|)<∞, lim
ε→0

Aε(x,ξ)=A(x,ξ)

for a.e. x∈Ω and any ξ,η∈R3. In fact, the minimal monotonicity of the Carathéodory
vector function is the foundation for the monotonicity method.

Lemma 2.2 ([29]). Suppose that vε⇀v, Aε(x,vε)⇀z in L1(Ω). Let K⊂Ω be a
measurable set such that z ·v∈L1(K). Then

lim inf
ε→0

∫
K

Aε(x,vε) ·vεdx⩾
∫
K

z ·vdx.

In particular,

z|K =A|K , A=A(x,v)

when lim inf
ε→0

∫
K
Aε(x,vε) ·vεdx=

∫
K
z ·vdx.

3. A priori estimates
The energy associated with the problem (1.1)-(1.3) takes the form

E(t)=

∫
Ω

(
1

2
ρ|u|2+ρP (ρ)

)
dx

where P (ρ)=
∫ ρ

1
p(z)
z2 dz is the elastic potential. If the fluid is smooth, the energy balance

dE

dt
+

∫
Ω

(
|Du|r+η(|divu|)|divu|2

)
dx=0 (3.1)

holds. The energy conservation (3.1) implies that∫
Ω

(
1

2
ρ|u|2+ρP (ρ)

)
dx⩽

∫
Ω

(
ρ0P (ρ0)+

1

2
ρ0|u0|2

)
dx. (3.2)
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The assumption (1.4) implies that there is a positive constant c such that

ρP (ρ)⩾ cργ− 1

c
for any ρ⩾0.

Thus, (3.2) ensures that ργ and ρ|u|2 are bounded in L∞(0,T ;L1(Ω)). Hence,

ρ∈L∞(0,T ;Lγ(Ω)), ρu∈L∞(0,T ;L
2γ

γ+1 (Ω)).

Next, we turn to the estimates on the velocity. Indeed, integrating (3.1) over Ω×
(0,T ), one can get that∫

Ω

(
1

2
ρ|u|2+ρP (ρ)

)
dx+

∫ T

0

∫
Ω

(
|Du|r+η(|divu|)|divu|2

)
dxdt

⩽
∫
Ω

(
ρ0P (ρ0)+

1

2
ρ0|u0|2

)
dx

and so

u∈Lr(0,T ;W 1,r
0 (Ω)), η(|divu|)|divu|2∈L1(Ω×(0,T )).

Moreover, one can use Hölder inequality to get that

∥ρu∥Lr(0,T ;Lc1 (Ω))⩽∥ρ∥L∞(0,T ;Lγ(Ω))∥u∥Lr(0,T ;Lc2 (Ω))

where c1 and c2 depend on the value of r.
In summary, if ρ0|u0|2∈L1(Ω) and ρ0P (ρ0)∈L1(Ω), the weak solution to the prob-

lem (1.1)-(1.3) satisfies the following estimates
ρP (ρ) is bounded in L∞(0,T ;L1(Ω)),
ρ is bounded in L∞(0,T ;Lγ(Ω)),

ρu is bounded in L∞(0,T ;L
2γ

γ+1 (Ω))∩Lr(0,T ;Lc1(Ω)),

u is bounded in Lr(0,T ;W 1,r
0 (Ω)),

η(|divu|)|divu|2 is bounded in L1(Ω×(0,T )),

where c1 depends on the value of r.

4. The approximation scheme and approximation solutions
Inspired by [16] and Chapter 7 in [8], we introduce the following approximate system

{
∂tρ+div(ρu)= ϵ∆ρ,

∂t(ρu)+div(ρu⊗u)+∇(p+δρβ)+ϵ∇u ·∇ρ=div((δ+ |Du|2) r−2
2 Du+η(|divu|)divuI)

(4.1)
with the initial-boundary conditions{

∇ρ ·n|∂Ω=0, ρ|t=0=ρ0,δ,
u|∂Ω=0, ρu|t=0=m0,δ,

(4.2)

where the operator ∆=∆x, ϵ and δ are two positive parameters, β>0 is a fixed constant
large enough, and n is the unit outer normal of ∂Ω. The initial data are chosen in such
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a way that
ρ0,δ ∈C3(Ω), 0<δ⩽ρ0,δ ⩽ δ

− 1
2β ;

ρ0,δ →ρ0 in Lγ(Ω), |{x∈Ω:ρ0,δ(x)<ρ0(x)}|→0 as δ→0;

δ
∫
Ω
ρβ0,δdx→0 as δ→0;

m0,δ =

{
m0, if ρ0,δ ⩾ρ0,
0, if ρ0,δ<ρ0.

(4.3)

Modified by Section 4.1 in [9] and Proposition 7.2 in [8], we know that the approxi-
mate problem (4.1)-(4.3) with fixed positive parameters ϵ and δ can be solved by means
of a modified Faedo-Galerkin method. The detailed explanation is given below.

Since C∞
0 (Ω) is compactly and densely embedded in the Hilbert space L2(Ω), we can

choose a countable set {wn}∞n=1⊂C∞
0 (Ω) as an orthogonal basis in the inner product

< ·,·>L2(Ω) . Let Xn be the linear span of {w1,w2, ·· · ,wn}. For a given u∈C([0,T ];Xn),
let ρ=ρ[u] be the unique solution to∂tρ+div(ρu)= ϵ∆ρ,

ρ|t=0=ρ0,δ,
∇ρ ·n|∂Ω=0.

(4.4)

Thanks to the standard results for the parabolic equation (see e.g. [3]), the mapping
assigning the velocity field u to the solution ρ=ρ[u] is continuous, from L1([0,T ];Xn)
to C([0,T ];Xn). Using the same arguments as in Chapter 7 of [8], we may find an ap-
proximate solution un∈C([0,T ];Xn) required to satisfy the following integral equation(∫

Ω

ρun ·φdx
)∣∣τ

0
+

∫ τ

0

∫
Ω

(−ρun⊗un :∇φ)dxdt−
∫ τ

0

∫
Ω

(p(ρ)+δρβ)divφdxdt

−ϵ
∫ τ

0

∫
Ω

∇ρ ·∇un ·φdxdt+
∫ τ

0

∫
Ω

(δ+ |Dun|2)
r−2
2 Dun :Dφdxdt

+

∫ τ

0

∫
Ω

η(|divun|)divundivφdxdt=0 (∀τ ∈ [0,T ]) (4.5)

for all φ∈Xn, where ρ=ρn=ρ[un]. Differentiating Equation (4.5) with respect to τ,
integrating by parts and then choosing the test function φ=un, we obtain the modified
energy equality for (ρn,un) :(∫

Ω

(
1

2
ρn|un|2+ρnP (ρn)+

δ

β−1
ρβn

)
dx

)∣∣∣∣τ
0

+ϵ

∫ τ

0

∫
Ω

(
p′(ρn)

ρn
+δβ(ρn)

β−2)|∇ρn|2dx

+

∫ τ

0

∫
Ω

(
|Dun|r+η(|divun|)|divun|2

)
dxdt=0 (∀τ ∈ [0,T ]). (4.6)

Now, our goal is to identify a limit for n→∞ of the approximate solutions (ρn,un)
as a solution of problem (4.1)-(4.3). In order to achieve this, some additional estimates
are needed. It is easy to see that the energy Equation (4.6) yields that

√
δρ

β
2
n is bounded in L2(0,T ;W 1,2(Ω)).

Evoking the imbedding inequality, one can get that

ρβn is bounded in L1(0,T ;L3(Ω)).
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Moreover,

ρβn is bounded in L∞(0,T ;L1(Ω))

and so ∥ρβn∥L2(Ω)⩽C(Ω)∥ρβn∥
1
4

L1(Ω)∥ρ
β
n∥

3
4

L3(Ω). Consequently,

∥ρn∥Lβ+1(Ω×(0,T ))⩽C(ϵ,δ,T,m0,ρ0),

provided that β⩾3. Besides, (4.4) multiplied on ρn yields

ϵ

∫ T

0

∥∇ρn(t)∥2L2(Ω)dt⩽
1

2
∥ρ0∥2L2(Ω)+C

∫ T

0

∫
Ω

ρ2n|divun|dxdt

⩽C(ρ0)+C(∥ρn∥2
L

2r
r−1 (Ω)

+∥∇u∥rLr(Ω×(0,T ))) (β⩾
2r

r−1
).

Thus, we deduce the estimate

√
ϵ∥∇ρn∥L2(Ω×(0,T ))⩽C(δ,T,m0,ρ0),

provided that β⩾max{3,γ, 2r
r−1}.

In conclusion, we put together all estimates obtained above.

Proposition 4.1. Let β⩾max{3,γ, 2r
r−1}. Suppose the assumption in Theorem 2.1 is

satisfied with pressure p(ρ) satisfying (1.4). Then the solutions (ρn,un) to the approxi-
mate problem (4.1)-(4.3) satisfy the following estimates:

∥ρn∥L∞(0,T ;Lγ(Ω))⩽C(δ,T,m0,ρ0), (4.7)

ϵ∥ρn∥L∞(0,T ;Lβ(Ω))⩽C(δ,T,m0,ρ0), (4.8)

∥ρn∥Lβ+1(Ω×(0,T ))⩽C(δ,T,m0,ρ0), (4.9)

∥√ρnun∥L∞(0,T ;L2(Ω))⩽C(δ,T,m0,ρ0), (4.10)

∥un∥Lr(0,T ;W 1,r
0 (Ω))⩽C(δ,T,m0,ρ0), (4.11)

∥η(|divun|)|divun|2∥L1(Ω×(0,T ))⩽C(δ,T,m0,ρ0), (4.12)
√
ϵ∥∇ρn∥L2(Ω×(0,T ))⩽C(δ,T,m0,ρ0), (4.13)

where all the constants are independent of n.

It follows from Equation (4.4)1 and the estimates obtained in Proposition 4.1 that
∂tρ is bounded in L2(0,T ;W−1,2(Ω)) provided β⩾max{3,γ, 2r

r−1}. According to the
Aubin-Lions Lemma, the sequence {ρn}∞n=1 contains a subsequence (not relabeled) such
that

ρn→ρ strongly in Lβ(Ω×(0,T )), (4.14)

where ρ is a non-negative function. Analogously, we can find a subsequence (not rela-
beled) such that

un→u weakly in Lr(0,T ;W 1,r
0 (Ω)), (4.15)

where the limit velocity u satisfies the boundary condition u|∂Ω=0 in the sense of traces.
It deduces from (4.14) and (4.15) that

ρnun→ρu weakly∗ in L∞(0,T ;L
2γ

2γ+1 (Ω)),
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η(divun)divun→η(divu)divu weakly in L
q+1
q (Ω×(0,T ))

according to the estimates (4.10), (4.7), (4.11) and (4.12). Furthermore,

p(ρn)→p(ρ) strongly in Ls(Ω×(0,T )) (s∈ (1,
β+1

γ
))

and

(ρn)
β →ρβ strongly in Ls(Ω×(0,T )) (s∈ (1,

β+1

β
))

provided β⩾max{3, 2r
r−1 ,γ}.

In particular, we have proved that the limit function (ρ,u) solves problem (4.4) in
D′(Ω×(0,T )). In order to continue, we have to show that (4.4) holds in the strong sense
and the corresponding result can be found in [8].

Lemma 4.1 ([8]). There exist α>1 and s>2 such that

∂tρn, ∆ρn are bounded in Lα(Ω×(0,T )),

∇ρn is bounded in Ls(0,T ;L2(Ω))

independently of n. Accordingly, the limit function ρ belongs to the same class and
satisfies the Equation (4.4)1 for a.a (x,t)∈Ω×(0,T ) together with the homogeneous
Neumann boundary conditions in the sense of traces. In particular,

∇ρn→∇ρ strongly in L2(Ω×(0,T ))

and

∇ρn ·∇un→∇ρ ·∇u weakly in L
2r

r+2 (Ω×(0,T )). (4.16)

Next, we turn to the limit of the approximate velocity. One can deduce from (4.5)
that the following inequality(

1

2

∫
Ω

ρ|u|2dx
)∣∣∣∣τ

0

−
(∫

Ω

ρu ·φdx
)∣∣∣∣τ

0

+

∫ τ

0

∫
Ω

(ρu ·∂tφ+ρu⊗u :∇φ)dxdt

+

∫ τ

0

∫
Ω

(p(ρ)+δρβ)(divφ−divu)dxdt−
∫ τ

0

∫
Ω

ϵ∇ρ ·∇u ·φdxdt

+

∫ τ

0

∫
Ω

(
(δ+ |Du|2) r−2

2 |Du|2−(δ+ |Du|2) r−2
2 Du :Dφ

)
dxdt

⩽
∫ τ

0

∫
Ω

[Λ(divφ)−Λ(divu)]dxdt for a.e. τ ∈ [0,T ] (4.17)

for all φ∈C∞
c (Ω× [0,T ]), with weak limit (δ+ |Du|2) r−2

2 |Du|2 of sequence (δ+

|Dun|2)
r−2
2 Dun :Dun being a measure on Ω× [0,T ]. Using the idea of Zhikov and Pas-

tukhova in [28], we intend to show (δ+ |Du|2) r−2
2 |Du|2=(δ+ |Du|2) r−2

2 |Du|2 by consid-
ering a family of regularized kernels

ηh(t) :=
1

h
I[−h,0](t) and η−h(t) :=

1

h
I[0,h](t) (h>0),
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together with the cut-off functions

ξσ ∈C∞
c (0,τ), 0⩽ ξ⩽1, ξσ(t)=1 whenever t∈ [σ,τ−σ] and σ>0.

Noticing that ηh ∗u= 1
h

∫ t+h

t
uds∈W 1,r(0,T ;W 1,r

0 (Ω)), we can take the quantities

φh,σ = ξση−h ∗ηh ∗(ξσu) (σ,h>0)

as test functions in (4.17). Obviously, one can obtain that

lim
σ→0

lim
h→0

∫ τ

0

∫
Ω

(Λ(divφh,σ)−Λ(divu))dxdt=0,(∫
Ω

ρu ·φh,σdx

)∣∣∣∣τ
0

=0 (for all σ,h>0),

lim
σ→0

lim
h→0

∫ τ

0

∫
Ω

(
(δ+ |Du|2) r−2

2 |Du|2−(δ+ |Du|2) r−2
2 Du :Dφh,σ

)
dxdt⩾0.

Moreover, one can observe that∫ τ

0

∫
Ω

ρu ·∂tφh,σdxdt=

∫ τ

0

∫
Ω

ρu ·∂tξση−h ∗ηh ∗(ξσu)dxdt

+

∫
R1

∫
Ω

(ηh ∗(ρξσu)) ·∂t[ηh ∗(ξσu)]dxdt, (4.18)

where the members on the right-hand side of (4.18) are estimated as

lim
σ→0

lim
h→0

∫ τ

0

∫
Ω

ρu ·∂tξση−h ∗ηh ∗(ξσu)dxdt

= lim
σ→0

∫ τ

0

(
1

2

∫
Ω

ρ|u|2dx)∂t|ξσ|2dt

=−
(
1

2

∫
Ω

ρ|u|2dx
)∣∣∣∣τ

0

(4.19)

and ∫
R1

∫
Ω

(ηh ∗(ρξσu)) ·∂t[ηh ∗(ξσu)]dxdt

=−
∫
R1

∫
Ω

∂t[ηh ∗(ρξσu)] · [ηh ∗(ξσu)]dxdt

=−
∫
R1

∫
Ω

(ρξσu)(t+h)−(ρξσu)(t)

h
· [ηh ∗(ξσu)]dxdt (4.20)

=−
∫
R1

∫
Ω

(ρξσu)(t+h)−(ρξσu)(t)

h
· [ηh ∗(ξσu)]dxdt

+

∫
R1

∫
Ω

ρ
(ξσu)(t+h)−(ξσu)(t)

h
· [ηh ∗(ξσu)]dxdt−

∫
R1

∫
Ω

1

2
ρ∂t|ηh ∗(ξσu)|2dxdt

=−
∫
R1

∫
Ω

ρ(t+h)−ρ(t)
h

(ξσu)(t+h) · [ηh ∗(ξσu)]dxdt−
∫
R1

∫
Ω

1

2
ρ∂t|ηh ∗(ξσu)|2dxdt.

Note that

∂t(ηh ∗ρ)+div[ηh ∗(ρu)]= ϵ∆(ηh ∗ρ).



LI FANG AND ZHENHUA GUO 1715

Setting

(ρ,u)(t)=(ρ0,δ,0) for t<0 and (ρ,u)(t)=(ρ0,δ(T ),0) for t>T,

one can obtain that

−
∫
R1

∫
Ω

ρ(t+h)−ρ(t)
h

(ξσu)(t+h) · [ηh ∗(ξσu)]dxdt

=−
∫
R1

∫
Ω

∂

∂t
(ηh ∗ρ)(ξσu)(t+h) · [ηh ∗(ξσu)]dxdt

=

∫
R1

∫
Ω

div(ηh ∗(ρu))(ξσu)(t+h) · [ηh ∗(ξσu)]dxdt

−ϵ
∫
R1

∫
Ω

∆(ηh ∗ρ)(ξσu)(t+h) · [ηh ∗(ξσu)]dxdt

=−
∫
R1

∫
Ω

ηh ∗(ρu) ·∇[(ξσu)(t+h) · [ηh ∗(ξσu)]]dxdt

−ϵ
∫
R1

∫
Ω

∆(ηh ∗ρ)(ξσu)(t+h)[ηh ∗(ξσu)]dxdt

and

−
∫
R1

∫
Ω

1

2
ρ∂t|ηh ∗(ξσu)|2dxdt

=−
∫
R1

∫
Ω

1

2
∂t[ρ|ηh ∗(ξσu)|2]dxdt+

∫
R1

∫
Ω

1

2
∂tρ|ηh ∗(ξσu)|2dxdt

=−
∫
R1

∫
Ω

1

2
div(ρu)|ηh ∗(ξσu)|2dxdt+

∫
R1

∫
Ω

1

2
ϵ∆ρ|ηh ∗(ξσu)|2dxdt

=

∫
R1

∫
Ω

1

2
ρu ·∇|ηh ∗(ξσu)|2dxdt+ϵ

∫
R1

∫
Ω

1

2
∆ρ|ηh ∗(ξσu)|2dxdt.

Thus, it is not difficult to get that

lim
σ→0

lim
h→0

(

∫ τ

0

∫
Ω

ρu⊗u :∇φσ,hdxdt+

∫
R1

∫
Ω

1

2
ρu ·∇|ηh ∗(ξσu)|2dxdt

+ϵ

∫
R1

∫
Ω

1

2
∆ρ|ηh ∗(ξσu)|2dxdt−

∫ τ

0

∫
Ω

ϵ∇ρ ·∇u ·φσ,hdxdt

−ϵ
∫
R1

∫
Ω

∆(ηh ∗ρ)(ξσu)(t+h) · [ηh ∗(ξσu)]dxdt

−
∫
R1

∫
Ω

ηh ∗(ρu) ·∇[(ξσu)(t+h) · [ηh ∗(ξσu)]]dxdt)=0. (4.21)

Based on the estimates (4.16)-(4.21), one can take the aforementioned calculation to
arrive at ∫ τ

0

∫
Ω

(
(δ+ |Du|2) r−2

2 |Du|2−(δ+ |Du|2) r−2
2 Du :Du

)
dxdt⩽0.

Then, it is deduced from Lemma 2.2 that

(δ+ |Du|2) r−2
2 Du=(δ+ |Du|2)

r−2
2 Du
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and so

(δ+ |Du|2) r−2
2 |Du|2=(δ+ |Du|2)

r−2
2 |Du|2.

Next, one can find that

η(divu)divu=η(divu)divu,

since η(z)=zq−1, Λ′(z)=η(z)z and Λ′′(z)⩾0 for any z>0.

According to the fact that the function Λ is continuous and convex, one can get the
existence result for the problem (4.1)-(4.3) achieved in this section, which is stated in
Proposition 4.2.

Proposition 4.2. Let Ω⊂R3 be a bounded domain with C2+ν boundary with ν >0.
Let ϵ>0, δ >0 and β>max{3, 2r

r−1 ,γ} be fixed. Suppose the assumption in Theorem 2.1
is satisfied with pressure p(ρ) satisfying (1.4). Then there exists a weak solution (ρ,u)
to the approximate problem (4.1)-(4.3) such that

∥ρ∥L∞(0,T ;Lγ(Ω))⩽C(δ,m0,ρ0),

δ∥ρ∥β
L∞(0,T ;Lβ(Ω))

⩽C(δ,m0,ρ0),

∥ρ∥Lβ+1(Ω×(0,T ))⩽C(δ,T,m0,ρ0),

∥√ρu∥L∞(0,T ;L2(Ω))⩽C(δ,m0,ρ0),

∥u∥Lr(0,T ;W 1,r
0 (Ω))⩽C(δ,m0,ρ0),

∥η(|divu|)|divu|2∥L1(Ω×(0,T ))⩽C(δ,m0,ρ0),
√
ϵ∥∇ρ∥L2(Ω×(0,T ))⩽C(δ,T,m0,ρ0),

and the following weak formulation of the momentum equation(
1

2

∫
Ω

ρ|u|2dx
)∣∣∣∣τ

0

−
(∫

Ω

ρu ·φdx
)∣∣∣∣τ

0

+

∫ τ

0

∫
Ω

(ρu ·∂tφ+ρu⊗u :∇φ)dxdt

+

∫ τ

0

∫
Ω

(p(ρ)+δρβ)(divφ−divu)dxdt−
∫ τ

0

∫
Ω

ϵ∇ρ ·∇u ·φdxdt

+

∫ τ

0

∫
Ω

(
(δ+ |Du|2)

r−2
2 |Du|2−(δ+ |Du|2)

r−2
2 Du :Dφ

)
dxdt

⩽
∫ τ

0

∫
Ω

(Λ(divφ)−Λ(divu))dxdt for a.a. τ ∈ [0,T ]

holds for any test function φ∈C∞
c (Ω× [0,T ];R3).

In the next two steps, in order to obtain the weak solution of the problem (1.1)-
(1.3), we need to take the vanishing limits of the artificial viscosity ϵ→0 and artificial
pressure coefficient δ→0 in the solutions to the approximate problem (4.1)-(4.3). In
some sense, the step of taking ϵ→0 is much easier than the step of taking δ→0 due to
the higher integrability of ρ, based on the technique used in the step of taking n→∞.
Hence, we are going to omit the step of taking ϵ→0 and focus on the step of taking
δ→0, since the techniques used in those two procedures are rather similar. Here, we
state the result without proof as follows after taking ϵ→0.

Proposition 4.3. Let Ω⊂R3 be a bounded domain with C2+ν boundary with ν >0. Let
δ>0 and β>max{3, 2r

r−1 ,γ} be fixed. Suppose the assumption in Theorem 2.1 is satisfied
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with pressure p(ρ) satisfying (1.4). Then the problem (1.1)-(1.3) admits an approximate
solution (ρ,u) with parameter δ (as the limit of the solutions to the approximate problem
(4.1)-(4.3) when ϵ→0) in the following sense:

(1) the density ρ is a non-negative function, and

ρ∈C([0,T ];Lβ
weak(Ω))

satisfying the initial condition in (4.2);

(2) the functions (ρ,u) solve the equations{
∂tρ+div(ρu)=0,

∂t(ρu)+div(ρu⊗u)+∇(p+δρβ)=div((δ+ |Du|2) r−2
2 Du+η(|divu|)divuI)

(4.22)
in D′(Ω×(0,T )); moreover, ρ∈Lβ+1(Ω×(0,T )) and the Equation (4.22)1 holds in
the sense of renormalized solutions in D′(R3×(0,T )) provided (ρ,u) were prolonged
to be zero on R3\Ω;

(3) the functions (ρ,u) satisfy the estimates

∥ρ∥L∞(0,T ;Lγ(Ω))⩽C(T,m0,ρ0),

δ∥ρ∥β
L∞(0,T ;Lβ(Ω))

⩽C(T,m0,ρ0),

δ∥ρ∥β+1
Lβ+1(Ω×(0,T ))

⩽C(δ,T,m0,ρ0),

∥√ρu∥L∞(0,T ;L2(Ω))⩽C(T,m0,ρ0),

∥u∥Lr(0,T ;W 1,r
0 (Ω))⩽C(T,m0,ρ0),

∥η(|divu|)|divu|2∥L1(Ω×(0,T ))⩽C(T,m0,ρ0).

In fact, the following weak formulation of the momentum equation(
1

2

∫
Ω

ρ|u|2dx
)∣∣∣∣τ

0

−
(∫

Ω

ρu ·φdx
)∣∣∣∣τ

0

+

∫ τ

0

∫
Ω

(ρu ·∂tφ+ρu⊗u :∇φ)dxdt

+

∫ τ

0

∫
Ω

(p(ρ)+δρβ)(divφ−divu)dxdt

+

∫ τ

0

∫
Ω

(
(δ+ |Du|2)

r−2
2 |Du|2−(δ+ |Du|2)

r−2
2 Du :Dφ

)
dxdt

⩽
∫ τ

0

∫
Ω

(Λ(divφ)−Λ(divu))dxdt for a.a. τ ∈ [0,T ] (4.23)

holds for any test function φ∈C∞
c (Ω× [0,T ];R3).

5. The limit of vanishing artificial pressure

In this section, we take the limit as δ→0 to eliminate the δ−dependent terms
appearing in (4.22). Denote by {ρδ,uδ}δ>0 the sequence of approximate solutions ob-
tained in Proposition 4.3. Except the possible oscillation effects on density, the strong
non-linear term on velocity is also a major issue of this section. To deal with these
difficulties, we employ a variant of well-known Feireils-Lions method [8, 17] and [28] in
our new context.
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5.1. The density estimates. Our aim in this subsection is to derive uniform
estimates on ρδ. To begin with this, we introduce a linear operator B=[B1,B2,B3]
defined as

B :{f ∈Ls(Ω) : |Ω|−1

∫
Ω

fdx=0} 7→W 1,s
0 (Ω) (1<s<∞)

satisfying

divB(g)=g, B(f)|∂Ω=0,

∥B(g)∥W 1,s(Ω)⩽C(p)∥g∥Ls(Ω) (1<s<∞),

∥B(divg)∥Ls(Ω)⩽C(p)∥g∥Ls(Ω) (1<s<∞),

where g∈Ls(Ω) and g ·n|∂Ω=0. Since the continuity Equation (4.22)1 is satisfied in
the sense of renormalized solutions in D′(R3×(0,T )), we can regularize the Equation
(4.22)1 to get that

∂t<b(ρδ)>σ +div[<b(ρδ)>σ uδ]+< (b′(ρδ)ρδ−b(ρδ))divuδ>σ= rσ a.e. on R3 (5.1)

with

rσ →0 strongly in Lλ(R3×(0,T )) as σ→0 (
1

λ
=

1

r
+

1

γ
). (5.2)

We are going to use the operator B to improve the estimates of the density component
by constructing multiplications of the form

φi(x,t)=ψ(t)Bi[<b(ρδ)>σ −
1

|Ω|

∫
Ω

<b(ρδ)>σ dx] (i=1,2,3) (5.3)

with ψ∈D(0,T ). Obviously, the functions φi are smooth with respect to the x−variable
while ∂tφi are bounded in L2(0,T ;W 1,λ(Ω)) in view of (5.1) and (5.2). Consequently,
the quantities φi (i=1,2,3) may be used as test functions for the Equation (4.22)2.
Taking (5.1) into account, one can arrive at the following formula∫ T

0

ψ

∫
Ω

(p(ρδ)+δρ
β
δ )<b(ρδ)>σ dxdt=

∫ T

0

ψ

∫
Ω

(p(ρδ)+δρ
β
δ )dx

∮
Ω

<b(ρδ)>σ dxdt

+

∫ T

0

ψ

∫
Ω

(δ+ |Duδ|2)
r−2
2 Duδ :DB[<b(ρδ)>σ −

∮
Ω

<b(ρδ)>σ dx]dxdt

+

∫ T

0

ψ

∫
Ω

η(divuδ)divuδI :DB[<b(ρδ)>σ −
∮
Ω

<b(ρδ)>σ dx]dxdt

+

∫ T

0

ψ

∫
Ω

ρδuδ ·B[< (b′(ρδ)ρδ−b(ρδ))divuδ>σ −
∮
Ω

< (b′(ρδ)ρδ−b(ρδ))divuδ>σ dx]dxdt

+

∫ T

0

ψ

∫
Ω

ρδuδ ·B[div(<b(ρδ)>σ uδ)]dxdt−
∫ T

0

ψ

∫
Ω

ρδuδ ·B[rσ+
∮
Ω

rσdx]dxdt

−
∫ T

0

ψt

∫
Ω

ρδuδ ·B[<b(ρδ)>σ −
∮
Ω

<b(ρδ)>σ dx]dxdt

−
∫ T

0

ψ

∫
Ω

ρδuδ⊗uδ :∇B[<b(ρδ)>σ −
∮
Ω

<b(ρδ)>σ dx]dxdt.

Due to the fact that (5.2), uδ ∈Lr(0,T ;W 1,r
0 (Ω)) and ρδ ∈L∞(0,T ;Lβ(Ω)), we can pass

to the limit for σ→0 in (5.3) in two different cases according to the value of r and q.
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Case 1. 12γ
5γ−3 <r<3 and max{r−1,γ, (6+r)γ

(5r−6)γ−3r}<q⩽
11γ
γ−3 . Note that 12γ

5γ−3 <3

if and only if γ >3. Moreover, 12γ
5γ−3 >

12
5 for any γ>1. We approximate the function

b(z)=z
γ
q (q>γ) to deduce that∫ T

0

ψ

∫
Ω

(p(ρδ)+δρ
β
δ )(ρδ)

γ
q dxdt=

∫ T

0

ψ

∫
Ω

(p(ρδ)+δρ
β
δ )dx

∮
Ω

(ρδ)
γ
q dxdt

+

∫ T

0

ψ

∫
Ω

(δ+ |Duδ|2)
r−2
2 Duδ :DB[(ρδ)

γ
q −

∮
Ω

(ρδ)
γ
q dx]dxdt

+

∫ T

0

ψ

∫
Ω

η(divuδ)divuδI :DB[(ρδ)
γ
q −

∮
Ω

(ρδ)
γ
q dx]dxdt

+(1− γ

q
)

∫ T

0

ψ

∫
Ω

ρδuδ ·B[ρ
γ
q

δ divuδ−
∮
Ω

ρ
γ
q

δ divuδdx]dxdt

+

∫ T

0

ψ

∫
Ω

ρδuδ ·B[div(ρ
γ
q

δ uδ)]dxdt−
∫ T

0

ψt

∫
Ω

ρδuδ ·B[(ρδ)
γ
q −

∮
Ω

(ρδ)
γ
q dx]dxdt

−
∫ T

0

ψ

∫
Ω

ρδuδ⊗uδ :∇B[(ρδ)
γ
q −

∮
Ω

(ρδ)
γ
q dx]dxdt :=

7∑
i=1

Ii. (5.4)

Now, each term on the right hand of (5.4) can be estimated one by one as follows:

|I1|= |
∫ T

0

ψ

∫
Ω

(p(ρδ)+δρ
β
δ )dx

∮
Ω

ρ
γ
q

δ dxdt|

⩽C
∫ T

0

(

∫
Ω

(p(ρδ)+δρ
β
δ )dx)(

∫
Ω

ργδdx)
1
q dt

⩽C(ρ0,m0,T ),

|I2|= |
∫ T

0

ψ

∫
Ω

(δ+ |Duδ|2)
r−2
2 Duδ :DB[ρ

γ
q

δ −
∮
Ω

ρ
γ
q

δ dx]dxdt|

⩽C
∫ T

0
[∥Duδ∥r−1

Lr(Ω)∥B[ρ
γ
q

δ −
∮
Ω
ρ

γ
q

δ dx]∥W 1,r(Ω)+∥Duδ∥Lr(Ω)∥B[ρ
γ
q

δ −
∮
Ω
ρ

γ
q

δ dx]∥W 1,r(Ω)]dt

⩽C
∫ T

0

[∥Duδ∥r−1
Lr(Ω)∥ρ

γ
q

δ ∥Lr(Ω)+∥Duδ∥Lr(Ω)∥ρ
γ
q

δ ∥Lr(Ω)]dt

⩽C(ϵ)
∫ T

0

∥Duδ∥rLr(Ω)dt+ϵ

∫ T

0

[∥ρ
γ
q

δ ∥
r
Lr(Ω)+∥ρ

γ
q

δ ∥
r

r−1

Lr(Ω)]dtdt

⩽ε
∫ T

0

∫
Ω

ρ
q+1
q γ

δ dxdt+C(ρ0,m0,T )

provided that q⩾ r−1,

|I3|= |
∫ T

0

ψ

∫
Ω

η(divuδ)divuδI :DB[ρ
γ
q

δ −
∮
Ω

ρ
γ
q

δ dx]dxdt|

⩽C
∫ T

0

∥divuδ∥qLq+1(Ω)∥ρ
γ
q

δ ∥Lq+1(Ω)dt

⩽ε
∫ T

0

∫
Ω

ρ
q+1
q γ

δ dxdt+C(ρ0,m0,T ),

|I4|= |1− γ

q
||
∫ T

0

ψ

∫
Ω

ρδuδ ·B[(ρ
γ
q

δ divuδ)−
∮
Ω

ρ
γ
q

δ divuδdx]dxdt|
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⩽C
∫ T

0

∥ρδ∥
1
2

L
q+1
q

γ
(Ω)

∥B[(ρ
γ
q

δ divuδ)−
∮
Ω

ρ
γ
q

δ divuδdx]∥
L

2(q+1)γ
(q+1)γ−q (Ω)

dt

⩽ε
∫ T

0

∫
Ω

ρ
q+1
q γ

δ dxdt+C(ρ0,m0,T )

provided that q⩽ 11γ
γ−3 ,

|I5|= |
∫ T

0

ψ

∫
Ω

ρδuδ ·B[div(ρ
γ
q

δ uδ)]dxdt|

⩽C
∫ T

0

∥ρδ∥
1
2

L
q+1
q

γ
(Ω)

∥√ρδuδ∥L2(Ω)∥B[div(ρ
γ
q

δ uδ)]∥
L

2(q+1)γ
(q+1)γ−q (Ω)

dt

⩽C
∫ T

0

∥ρδ∥
1
2

L
q+1
q

γ
(Ω)

∥ρ
γ
q

δ uδ∥
L

2(q+1)γ
(q+1)γ−q (Ω)

dt

⩽ε
∫ T

0

∫
Ω

ρ
q+1
q γ

δ dxdt+C(ρ0,m0,T )

provided that q⩾ (6+r)γ
(5r−6)γ−3r for the case 12γ

5γ−3 <r<3 by using the fact that 1⩽ 3r
5r−6 ⩽

3
2

on the interval [2,3],

|I6|= |
∫ T

0

ψt

∫
Ω

ρδuδ ·B[ρ
γ
q

δ −
∮
Ω

ρ
γ
q

δ dx]dxdt|

⩽C
∫ T

0

|ψt|∥ρδ∥
1
2

L
q+1
q

γ
(Ω)

∥√ρδuδ∥L2(Ω)∥B[ρ
γ
q

δ −
∮
Ω

ρ
γ
q

δ dx]∥
L

2(q+1)γ
(q+1)γ−q (Ω)

dt

⩽C
∫ T

0

|ψt|∥ρδ∥
1
2

L
q+1
q

γ
(Ω)

∥B[ρ
γ
q

δ −
∮
Ω

ρ
γ
q

δ dx]∥W 1,q+1(Ω)dt

⩽C
∫ T

0

|ψt|∥ρδ∥
1
2

L
q+1
q

γ
(Ω)

∥ρδ∥
γ
q

L
q+1
q

γ
(Ω)
dt

⩽ε
∫ T

0

∫
Ω

ρ
q+1
q γ

δ dxdt+C

∫ T

0

|ψt|
2(q+1)γ

2(γ−1)q+γ dt

for any fixed q>1, and

|I7|= |
∫ T

0

ψ

∫
Ω

ρδuδ⊗uδ :∇B[ρ
γ
q

δ −
∮
Ω

ρ
γ
q

δ dx]dxdt|

⩽C
∫ T

0

∥ρδ∥
1
2

L
q+1
q

γ
(Ω)

∥∇uδ∥Lr(Ω)∥ρ
γ
q

δ ∥Lq+1(Ω)dt

⩽ε
∫ T

0

∫
Ω

ρ
q+1
q γ

δ dxdt+C(ρ0,m0,T )

provided that q⩾ (6+r)γ
(5r−6)γ−3r for the case 12γ

5γ−3 <r<3. Then,∫ T

0

∫
Ω

(ρ
q+1
q γ

δ +δρ
β+ γ

q

δ )dxdt⩽C

holds for 12γ
5γ−3 <r<3 and max{r−1,γ, (6+r)γ

(5r−6)γ−3r}<q⩽
11γ
γ−3 , by taking suitable small

ε>0.
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Case 2. 12γ
5γ−3 <r<3 and q⩾ r+2γ−1

(r−1)(2γ−1) . We approximate the function b(z)=zθ for

some suitable θ to deduce that∫ T

0

ψ

∫
Ω

(p(ρδ)+δρ
β
δ )(ρδ)

θdxdt=

∫ T

0

ψ

∫
Ω

(p(ρδ)+δρ
β
δ )dx

∮
Ω

(ρδ)
θdxdt

+

∫ T

0

ψ

∫
Ω

(δ+ |Duδ|2)
r−2
2 Duδ :DB[(ρδ)θ−

∮
Ω

(ρδ)
θdx]dxdt

+

∫ T

0

ψ

∫
Ω

η(divuδ)divuδI :DB[(ρδ)θ−
∮
Ω

(ρδ)
θdx]dxdt

+(1− γ

q
)

∫ T

0

ψ

∫
Ω

ρδuδ ·B[ρθδdivuδ−
∮
Ω

ρθδdivuδdx]dxdt

+

∫ T

0

ψ

∫
Ω

ρδuδ ·B[div(ρθδuδ)]dxdt−
∫ T

0

ψt

∫
Ω

ρδuδ ·B[(ρδ)θ−
∮
Ω

(ρδ)
θdx]dxdt

−
∫ T

0

ψ

∫
Ω

ρδuδ⊗uδ :∇B[(ρδ)θ−
∮
Ω

(ρδ)
θdx]dxdt :=

7∑
i=1

I ′i.

The estimate of I ′i (i=1,2, ·· · ,7) can be obtained by the similar way in the case q>γ
and also see in [7]. So, there exists C, independent of δ>0, such that∫ T

0

∫
Ω

(ργ+θ
δ +δρβ+θ

δ )dxdt⩽C

with 0<θ⩽min{1, γr ,
γ

q+1 ,
5r−3
3r γ−1}. Since r> 12γ

5γ−3 , one can get

div(ρδuδ⊗uδ)∈L
r

r−1 (0,T ;W−1, r
r−1 (Ω)).

So, one can increase the integrability of ρ as∫ T

0

∫
Ω

(ρ
r

r−1γ

δ +δρ
β+ γ

r−1

δ )dxdt⩽C

by iterating the above step.

Case 3. r⩾3 and q>1. We can take the same argument to increase the integrability
of ρ as ∫ T

0

∫
Ω

(ρ
r

r−1γ

δ +δρ
β+ γ

r−1

δ )dxdt⩽C.

It should be mentioned here that

|
∫ T

0

ψ

∫
Ω

ρδuδ ·B[(ρθδdivuδ)−
∮
Ω

ρθδdivuδdx]dxdt|

is estimated in the iterating step, provided that q⩾ r+2γ−1
(r−1)(2γ−1) if

12γ
5γ−3 <r<3 and q>1

if r⩾3.
Consequently, we have the following result.

Lemma 5.1. Let the assumption in Theorem 2.1 be satisfied with pressure p(ρ) satis-
fying (1.4). Then there exists a positive constant C, independent of δ, such that∫ T

0

∫
Ω

(ρ
q+1
q γ

δ +δρ
β+ γ

q

δ )dxdt⩽C
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holds for the case that 12γ
5γ−3 <r<3 and max{r−1,γ, (6+r)γ

(5r−6)γ−3r}<q⩽
11γ
γ−3 , and∫ T

0

∫
Ω

(ρ
r

r−1γ

δ +δρ
β+ γ

r−1

δ )dxdt⩽C

holds for the case that 12γ
5γ−3 <r<3 and q⩾ r+2γ−1

(r−1)(2γ−1) and the case that r⩾3 and q>1.

5.2. The limit passage. Passing to subsequences as the case may be, we use
the uniform energy estimates in Proposition 4.3 to get that

ρδ →ρ strongly in C([0,T ];Lγ
weak(Ω)),

uδ →u weakly in Lr(0,T ;W 1,r
0 (Ω)),

ρδuδ →ρu in C([0,T ];L
2γ

γ+1

weak(Ω)),

ργδ →ργ weakly in L
r

r−1 (Ω×(0,T ))

the case that 12γ
5γ−3 <r<3 and q⩾ r+2γ−1

(r−1)(2γ−1) and the case that r⩾3 and q>1, or

ργδ →ργ weakly in L
q+1
q (Ω×(0,T ))

the case that 12γ
5γ−3 <r<3 and max{r−1,γ, (6+r)γ

(5r−6)γ−3r}<q⩽
11γ
γ−3 .

In fact, the limits ρ and ρu satisfy the initial condition (1.2)-(1.3). The convergence

ρδu
i
δu

j
δ →ρuiuj in D′(Ω×(0,T )) (i,j=1,2,3),

requires that r> 12γ
5γ−3 which is our assumption. Moreover, Lemma 5.1 implies that

δρβδ →0 in L1(Ω×(0,T )).

Consequently, ρ and u satisfy

∂tρ+div(ρu)=0

and

∂t(ρu)+div(ρu⊗u)+∇p(ρ)=div(|Du|r−2Du+η(divu)divuI) (5.5)

in D′(Ω×(0,T )), where the term |Du|r−2Du+η(divu)divuI refers to the weak limit of

the sequence (δ+ |Duδ|2)
r−2
2 Duδ+η(|divuδ|)divuδI.

Now, the remaining question is to prove the following two equalities

p(ρ)=p(ρ) and |Du|r−2Du+η(divu)divuI= |Du|r−2Du+η(divu)divuI.

For this purpose, we need all the possibilities available.

5.3. The amplitude of oscillations. For the cut-off operators introduced by
Jiang and Zhang in [16] and [8], we consider a family of functions

Tk(z)=kT (
z

k
) for z∈R (k=1,2,·· ·), (5.6)

where T ∈C∞(R) is chosen so that

T (z)=z for z⩽1, T (z)=2 for z⩾3, T concave.
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Lemma 5.2. Let Tk be the cut-off functions introduced in (5.6) and the assumption in
Theorem 2.1 be satisfied with pressure p(ρ) satisfying (1.4). Then there exists a positive
constant C, independent of k, such that

lim
δ→0

sup∥Tk(ρδ)−Tk(ρ)∥
L

q+1
q

γ
(Ω×(0,T ))

⩽C

holds for the case that 12γ
5γ−3 <r<3 and max{r−1,γ, (6+r)γ

(5r−6)γ−3r}<q⩽
11γ
γ−3 , and

lim
δ→0

sup∥Tk(ρδ)−Tk(ρ)∥Lγ+1(Ω×(0,T ))⩽C

holds for the case that 12γ
5γ−3 <r<3 and q⩾ r+2γ−1

(r−1)(2γ−1) and the case that r⩾3 and q>1.

Proof. Similarly to Section 5.3 in [8], we consider the operators

Ai[v]=∆−1[∂xi
v] (i=1,2,3),

where ∆−1 stands for the inverse of the Laplace operator on R3. To be more specific,
the Fourier symbol of Ai is

Âj [ξ]=
−iξj
|ξ|2

(j=1,2,3).

Notice that divA[v]=v and ∆Ai=∂i. The classical Mikhlin multiplier theorem yields
that  ∥Ai[v]∥W 1,s(Ω)⩽C(s,Ω)∥v∥Ls(R3), 1<s<∞,

∥Ai[v]∥Lα(Ω)⩽C∥Ai[v]∥W 1,s(Ω)⩽C(s,α,Ω)∥v∥Ls(R3),
1
α ⩾ 1

s −
1
3 ,

∥Ai[v]∥L∞(Ω)⩽C(s,Ω)∥v∥Ls(R3), s>3.

Here, we give the proof for the case that 12γ
5γ−3 <r<3 and max{r−1,γ, (6+r)γ

(5r−6)γ−3r}<
q⩽ 11γ

γ−3 . The quantities

φi(x,t)=ψ(t)h(x)Ai[T
γ
q

k (ρδ)] (i=1,2,3)

with ψ∈D(0,T ) and h∈D(Ω), can be taken as test function for the equation

∂t(ρδuδ)+div(ρδuδ⊗uδ)+∇p(ρδ)+δ∇ρβδ
=div((δ+ |Duδ|2)

r−2
2 Duδ+ |divuδ|q−1divuδI)

using the fact that ρδ and uδ are the renormalized solutions of the continuity Equation
(4.22)1 in D′(R3×(0,T )). A lengthy but straightforward computation shows that∫ T

0

∫
Ω

ψ(t)h(x)(p(ρδ)+δρ
β
δ )T

γ
q

k (ρδ)dxdt

−
∫ T

0

∫
Ω

ψ(t)h(x)((δ+ |Duδ|2)
r−2
2 Duδ+ |divuδ|q−1divuδI) :∇A[T

γ
q

k (ρδ)]dxdt

=

∫ T

0

∫
Ω

ψ(t)((δ+ |Duδ|2)
r−2
2 Duδ+ |divuδ|q−1divuδI)∇h ·A[T

γ
q

k (ρδ)]dxdt

−
∫ T

0

∫
Ω

ψ(t)(p(ρδ)+δρ
β
δ )∇h ·A[T

γ
q

k (ρδ)]dxdt
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−
∫ T

0

∫
Ω

hρδuδ ·{ψtA[T
γ
q

k (ρδ)]+ψA[(T
γ
q

k (ρδ)−
γ

q
T

γ
q −1

k (ρδ)T
′
k(ρδ)ρδ)divuδ]}dxdt

−
∫ T

0

∫
Ω

ψ(t)ρδuδ⊗uδ∇h ·A[T
γ
q

k (ρδ)]dxdt

+

∫ T

0

∫
Ω

ψ(t)uiδ{T
γ
q

k (ρδ)Ri,j [hρδu
j
δ]−hρδu

j
δRi,j [T

γ
q

k (ρδ)]}dxdt (5.7)

where the operators Ri,j [v]=∂xjAi[v] and the summation convention is used to simplify
notations.

On the other hand, we consider the equation

∂t(ρu)+div(ρu⊗u)+∇p(ρ)=div(|Du|r−2Du+η(divu)divuI) (5.8)

with the test function φi(x,t)=ψ(t)h(x)Ai[T
γ
q

k (ρ)] (i=1,2,3). Following the argument
of Section 4.3 in [7], one can arrive at∫ T

0

∫
Ω

ψ(t)h(x)[p(ρ)T
γ
q

k (ρ)−|Du|r−2Du+η(divu)divuI :∇A[T
γ
q

k (ρ)]dxdt

=

∫ T

0

∫
Ω

ψ(t)|Du|r−2Du+η(divu)divI∇h ·A[T
γ
q

k (ρ)]dxdt

−
∫ T

0

∫
Ω

ψ(t)p(ρ)∇h ·A[T
γ
q

k (ρ)]dxdt

−
∫ T

0

∫
Ω

hρu ·{ψtA[T
γ
q

k (ρ)]+ψA[(T
γ
q

k (ρ)− γ

q
T

γ
q −1

k (ρ)T ′
k(ρ)ρ)divu]}dxdt

−
∫ T

0

∫
Ω

ψ(t)ρu⊗u∇h ·A[T
γ
q

k (ρ)]dxdt

+

∫ T

0

∫
Ω

ψ(t)ui{T
γ
q

k (ρ)Ri,j [hρu
j ]−hρujRi,j [T

γ
q

k (ρ)]}dxdt.

The Div-Curl Lemma can be used in order to show that the right-hand side of (5.7)
converges to that of (5.8), that is,

lim
δ→0

∫ T

0

∫
Ω

ψ(t)h(x)p(ρδ)T
γ
q

k (ρδ)dxdt

− lim
δ→0

∫ T

0

∫
Ω

ψ(t)h(x)((δ+ |Duδ|2)
r−2
2 Duδ+η(divuδ)divuδI) :∇A[T

γ
q

k (ρδ)dxdt

=

∫ T

0

∫
Ω

ψ(t)h(x)[p(ρ)T
γ
q

k (ρ)−|Du|r−2Du+η(divu)divuI :∇A[T
γ
q

k (ρ)]]dxdt.

In other words,

lim
δ→0

∫ T

0

∫
Ω

ψ(t)h(x)p(ρδ)T
γ
q

k (ρδ)dxdt−
∫ T

0

∫
Ω

ψ(t)h(x)p(ρ)T
γ
q

k (ρ)dxdt

= lim
δ→0

∫ T

0

∫
Ω

ψ(t)h(x)((δ+ |Duδ|2)
r−2
2 Duδ+η(divuδ)divuδI) :∇A[T

γ
q

k (ρδ)]dxdt
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−
∫ T

0

∫
Ω

ψ(t)h(x)|Du|r−2Du+η(|divu|)divuI :∇A[T
γ
q

k (ρ)]dxdt.

The convexity of functions z→p(z) and z→−T
γ
q

k (z), implies that

lim sup
δ→0+

∫ T

0

∫
Ω

(
p(ρδ)T

γ
q

k (ρδ)−p(ρ)T
γ
q

k (ρ)

)
dxdt

=lim sup
δ→0+

∫ T

0

∫
Ω

(p(ρδ)−p(ρ))(T
γ
q

k (ρδ)−T
γ
q

k (ρ))dxdt

+

∫ T

0

∫
Ω

(p(ρ)−p(ρ))(T
γ
q

k (ρ)−T
γ
q

k (ρ))dxdt

⩾ lim sup
δ→0+

∫ T

0

∫
Ω

(p(ρδ)−p(ρ))(T
γ
q

k (ρδ)−T
γ
q

k (ρ))dxdt.

According to the fact

p(y)−p(z)=
∫ y

z

p′(s)ds⩾a1

∫ y

z

sγ−1ds⩾a1

∫ y

z

(s−z)γ−1ds=
a1
γ
(y−z)γ

and

yα−zα=α
∫ y

z

sα−1ds⩾α
∫ y

z

sα−1ds⩾α(y−z)α (α>1)

holds for all y⩾z⩾0, one can get that

[p(y)−p(z)][T
γ
q

k (y)−T
γ
q

k (z)]⩾C|y−z|γ |T
γ
q

k (y)−T
γ
q

k (z)|⩾C|T
γ
q

k (y)−T
γ
q

k (z)|q+1

holds for all y,z⩾0. So,

lim
δ→0

∫ T

0

∫
Ω

[p(ρδ)T
γ
q

k (ρδ)−p(ρ)T
γ
q

k (ρ)]dxdt

= lim
δ→0

∫ T

0

∫
Ω

((δ+ |Duδ|2)
r−2
2 Duδ+η(divuδ)divuδI) :∇A[T

γ
q

k (ρδ)]dxdt

−
∫ T

0

∫
Ω

|Du|r−2Du+η(|divu|)divuI :∇A[T
γ
q

k (ρ)]dxdt

= lim
δ→0

∫ T

0

∫
Ω

((δ+ |Duδ|2)
r−2
2 Duδ+η(divuδ)divuδI) :∇A[T

γ
q

k (ρδ)−T
γ
q

k (ρ)]dxdt

+ lim
δ→0

∫ T

0

∫
Ω

((δ+ |Duδ|2)
r−2
2 Duδ+η(divuδ)divuδI) :∇A[T

γ
q

k (ρ)]dxdt

−
∫ T

0

∫
Ω

|Du|r−2Du+η(divu)divuI :∇A[T
γ
q

k (ρ)]dxdt

= lim
δ→0

∫ T

0

∫
Ω

((δ+ |Duδ|2)
r−2
2 Duδ+η(divuδ)divuδI) :∇A[T

γ
q

k (ρδ)−T
γ
q

k (ρ)]dxdt

⩽ lim
δ→0

sup{∥Duδ∥r−1
Lr(Ω×(0,T ))∥∇A[T

γ
q

k (ρδ)−T
γ
q

k (ρ)]∥Lr(Ω×(0,T ))+

+∥divuδ∥qLq+1(Ω×(0,T ))∥∇A[T
γ
q

k (ρδ)−T
γ
q

k (ρ)]∥Lq+1(Ω×(0,T ))}
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⩽C lim
δ→0

[∥T
γ
q

k (ρδ)−T
γ
q

k (ρ)∥Lr(Ω×(0,T ))+∥T
γ
q

k (ρδ)−T
γ
q

k (ρ)∥Lr(Ω×(0,T ))

+∥T
γ
q

k (ρδ)−T
γ
q

k (ρ)∥Lq+1(Ω×(0,T ))+∥T
γ
q

k (ρ)−T
γ
q

k (ρ)∥Lq+1(Ω×(0,T ))].

Hence, there exists a constant C independent of k such that

lim
δ→0

∥T
γ
q

k (ρδ)−T
γ
q

k (ρ)∥Lq+1(Ω×(0,T ))⩽C,

which, in particular, implies that

lim
δ→0

∫ T

0

∫
Ω

|Tk(ρδ)−Tk(ρ)|
q+1
q γdxdt

⩽ lim
δ→0

q

γ

∫ T

0

∫
Ω

|T
γ
q

k (ρ)+T
γ
q

k (ρδ)|(
q
γ −1) q+1

q γ |T
γ
q

k (ρδ)−T
γ
q

k (ρ)|
q+1
q γdxdt

⩽C

under consideration the function f(z)=z
q
γ . Thus, there exists a constant C independent

of k such that

lim
δ→0

sup∥Tk(ρδ)−Tk(ρ)∥
L

q+1
q

γ
(Ω×(0,T ))

⩽C.

For the case that 12γ
5γ−3 <r<3 and q⩾ r+2γ−1

(r−1)(2γ−1) and the case that r⩾3 and q>1,

the quantities φi(t,x)=ψ(t)h(x)Ai[Tk(ρδ)] (i=1,2,3) with ψ∈D(0,T ) and h∈D(Ω),
can be taken as test function for the equation

∂t(ρδuδ)+div(ρδuδ⊗uδ)+∇p(ρδ)+δ∇ρβδ

=div((δ+ |Duδ|2)
r−2
2 Duδ+ |divuδ|q−1divuδI).

Using the similar argument in the case that 12γ
5γ−3 <r<3 and max{r−1,γ, (6+r)γ

(5r−6)γ−3r}<
q⩽ 11γ

γ−3 , one can get that there exists a constant C, independent of k, such that

lim
δ→0

∥Tk(ρδ)−Tk(ρ)∥Lγ+1(Ω×(0,T ))⩽C.

Therefore, the proof of Lemma 5.2 is completed.

With the help of Lemma 5.2, one can derive that that the limit functions ρ and u
satisfy the continuity Equation (1.1)1 in the sense of renormalized solutions by taking
the similar argument to prove Proposition 6.3 in [8].

We are going to complete the proof of Theorem 2.1. To this end, we start with the
momentum Equations (1.1)2.

5.4. The momentum equation. The first key point is to prove ργ =ργ . The
approximation solutions ρδ and uδ satisfy

∂t

(
ρδ|uδ|2

2
+

ργδ
γ−1

+
δ

β−1
ρβδ

)
+div(

1

2
ρδ|uδ|2uδ+

γ

γ−1
ργδuδ+

β

β−1
ρβδ uδ)

−div((δ+ |Duδ|2)
r−2
2 Duδ+ |divuδ|q−1divuδI)uδ)+(δ+ |Duδ|2)

r−2
2 |Duδ|2+ |divuδ|q+1=0.
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in the sense of distributions. Deducing from Lemma 2.2 and standard compactness
lemmas of the Aubin-Lions type, we can get that

∂t

(
1

2
ρ|u|2+ 1

γ−1
ργ

)
+div(

1

2
ρ|u|2u+ γ

γ−1
ργu)

−div((|Du|r−2Du+ |divu|q−1divuI) u)+ |Du|r−2Du+ |divu|q−1divuI :Du⩽0 (5.9)

holds in the sense of distributions. Now, we use φuh as the test function of (5.5) with
φ∈C∞(Ω×(0,T )) with

uh=
1

h

∫ t+h

t

u(·,s)ds

being the Steklov average, and pass to the limit as h→0. Note that

divu∈Lq+1(Ω×(0,T )) and ∇u∈Lr(Ω×(0,T )).

Moreover,

ργ ∈L
r

r−1 (Ω×(0,T ))

holds for the case that r> 12γ
5γ−3 and q⩾ r+2γ−1

(r−1)(2γ−1) and the case that r⩾3 and q>1,
or

ργ ∈L
q+1
q (Ω×(0,T ))

holds for the case that 12γ
5γ−3 <r<3 and max{r−1,γ, (6+r)γ

(5r−6)γ−3r}<q⩽
11γ
γ−3 . The above

passage to the limit gives that

∂t

(
1

2
ρ|u|2

)
+div(

1

2
ρ|u|2u)+∇ργ ·u−div(|Du|r−2Du+ |divu|q−1divuI u)

+|Du|r−2Du+ |divu|q−1divuI :Du=0 (5.10)

also holds in the sense of distributions. Comparing (5.9) and (5.10), one can derive the
inequality

∂tργ+γdiv(ργu)−div
(
(|Du|r−2Du+ |divu|q−1divuI) u−|Du|r−2Du+ |divu|q−1divuI u

)
⩽ (γ−1)∇ργ ·u (5.11)

holds in the sense of distributions. Moreover, the functions ρ and u satisfy the continuity
Equation (1.1)1 in the sense of renormalized solutions. That is,

∂tρ
γ+γdiv(ργu)=(γ−1)∇ργ ·u (5.12)

holds in the sense of distributions. Since γ >1, we know that ργ−ργ ⩾0 by convexity.
So, it is deduced from (5.11) and (5.12) that

∂t (ργ−ργ)+γdiv((ργ−ργ)u)

−div
(
(|Du|r−2Du+ |divu|q−1divuI) u−|Du|r−2Du+ |divu|q−1divuI u

)
⩽ (γ−1)∇(ργ−ργ) ·u
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holds in the sense of of distributions. Thus, it is deduced from Hölder inequality that

d

dt

∫
Ω

(ργ−ργ)dx⩽−(γ−1)

∫
Ω

(ργ−ργ)divudx

⩽C
∫
Ω

(ργ−ργ) |divu|dx.

So, the condition (ργ−ργ)|t=0=0 ensures that∫
Ω

(ργ−ργ)dx⩽C
(∫

Ω

(ργ−ργ)θdx
) 1

θ

(5.13)

holds for t∈ [0,T ], where θ=max{ q+1
q , r

r−1}. For any given number α>0,

(∫ t

0

∫
Ω

(ργ−ργ)θdxds
) 1

θ

=

[(∫ t

0

∫
Ω

(
(ργ−ργ)−αθ

)− 1
α

dxds

)−α

×
(∫ t

0

∫
Ω

(
(ργ−ργ)αθ

) 1
1+α

dxds

)1+α

×
(∫ t

0

∫
Ω

(
(ργ−ργ)αθ

) 1
1+α

dxds

)−(1+α)
]− 1

αθ

⩽

(∫ t

0

∫
Ω

1dxds

)− 1
α
(∫ t

0

∫
Ω

(
(ργ−ργ)αθ

) 1
1+α

dxds

) 1+α
α

⩽C

(∫ t

0

∫
Ω

(ργ−ργ)
αθ
1+α dxds

) 1+α
αθ

(5.14)

holds for t∈ [0,T ], where q=− 1
α and p= 1

1+α in the inverse Hölder inequality stated in

Lemma 2.1. Taking α= 1
θ−1 such that αθ

1+α =1, it is follows from (5.13) and (5.14) that∫
Ω

(ργ−ργ)dx⩽C
∫ t

0

∫
Ω

(ργ−ργ)dxds. (5.15)

Thus, Gronwall’s inequality and the condition (ργ−ργ) |t=0=0 ensure that∫
Ω

(ργ−ργ)dx=0 a.e on [0,T ],

and so ργ =ργ a.e on Ω.
The second key equality |Du|r= |Du|r is obtained by applying the technique in

Section 3. Taking the limit in (4.23) as δ→0, we can obtain the following inequality(
1

2

∫
Ω

ρ|u|2dx
)∣∣∣∣τ

0

−
(∫

Ω

ρu ·φdx
)∣∣∣∣τ

0

+

∫ τ

0

∫
Ω

(ρu ·∂tφ+ρu⊗u :∇φ)dxdt

+

∫ τ

0

∫
Ω

ργ(divφ−divu)dxdt+

∫ τ

0

∫
Ω

(
|Du|r−|Du|r−2Du :Dφ

)
dxdt

⩽
∫ τ

0

∫
Ω

(Λ(divφ)−Λ(divu))dxdt for a.e.τ ∈ [0,T ] (5.16)
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holds for all φ∈C∞
c (Ω× [0,T ]) with the weak limit |Du|r of the sequence (δ+

|Duδ|2)
r−2
2 Duδ :Duδ being a measure on Ω× [0,T ]. Using the idea of regularized ker-

nels in [28] again, a family of regularizing kernels

ηh(t) :=
1

h
I[−h,0](t) and η−h(t) :=

1

h
I[0,h](t) (h>0),

is considered together with the cut-off functions

ξσ ∈C∞
c (0,τ), 0⩽ ξ⩽1, ξσ(t)=1 whenever t∈ [σ,τ−σ] and σ>0.

Noticing that ηh ∗u= 1
h

∫ t+h

t
uds∈W 1,r(0,T ;W 1,r

0 (Ω)), we can take the quantities

φh,σ = ξση−h ∗ηh ∗(ξσu) (σ,h>0)

as test functions in (5.5). Obviously,

lim
σ→0

lim
h→0

∫ τ

0

∫
Ω

(Λ(divφh,σ)−Λ(divu))dxdt=0,(∫
Ω

ρu ·φh,σdx

)∣∣∣∣τ
0

=0 (for all σ,h>0),

lim
σ→0

lim
h→0

∫ τ

0

∫
Ω

(
|Du|r−|Du|r−2Du :Dφh,σ

)
dxdt⩾0.

On one hand∫ τ

0

∫
Ω

ρu ·∂tφh,σdxdt=

∫ τ

0

∫
Ω

ρu ·∂tξση−h ∗ηh ∗(ξσu)dxdt

+

∫
R1

∫
Ω

(ηh ∗(ρξσu)) ·∂t[ηh ∗(ξσu)]dxdt. (5.17)

On the other hand, the terms on the left-hand side of (5.17) can be estimated as follows:

lim
σ→0

lim
h→0

∫ τ

0

∫
Ω

ρu ·∂tξση−h ∗ηh ∗(ξσu)dxdt

= lim
σ→0

∫ τ

0

(
1

2

∫
Ω

ρ|u|2dx)∂t|ξσ|2dt=−[
1

2

∫
Ω

ρ|u|2dx]
∣∣∣∣τ
0

(5.18)

and ∫
R1

∫
Ω

(ηh ∗(ρξσu)) ·∂t[ηh ∗(ξσu)]dxdt

=−
∫
R1

∫
Ω

∂t[ηh ∗(ρξσu)] · [ηh ∗(ξσu)]dxdt

=−
∫
R1

∫
Ω

(ρξσu)(t+h)−(ρξσu)(t)

h
· [ηh ∗(ξσu)]dxdt (5.19)

=−
∫
R1

∫
Ω

(ρξσu)(t+h)−(ρξσu)(t)

h
· [ηh ∗(ξσu)]dxdt

+

∫
R1

∫
Ω

ρ
(ξσu)(t+h)−(ξσu)(t)

h
· [ηh ∗(ξσu)]dxdt−

∫
R1

∫
Ω

1

2
ρ∂t|ηh ∗(ξσu)|2dxdt
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=−
∫
R1

∫
Ω

ρ(t+h)−ρ(t)
h

(ξσu)(t+h) · [ηh ∗(ξσu)]dxdt−
∫
R1

∫
Ω

1

2
ρ∂t|ηh ∗(ξσu)|2dxdt.

Note that

∂t(ηh ∗ρ)+div[ηh ∗(ρu)]=0.

We also set

(ρ,u)(t)=(ρ0,δ,0) for t<0 and (ρ,u)(t)=(ρ0,δ(T ),0) for t>T.

So, we can obtain that

−
∫
R1

∫
Ω

ρ(t+h)−ρ(t)
h

(ξσu)(t+h) · [ηh ∗(ξσu)]dxdt

=−
∫
R1

∫
Ω

∂

∂t
(ηh ∗ρ)(ξσu)(t+h) · [ηh ∗(ξσu)]dxdt

=

∫
R1

∫
Ω

div(ηh ∗(ρu))(ξσu)(t+h) · [ηh ∗(ξσu)]dxdt

=−
∫
R1

∫
Ω

ηh ∗(ρu) ·∇[(ξσu)(t+h) · [ηh ∗(ξσu)]]dxdt

and

−
∫
R1

∫
Ω

1

2
ρ∂t|ηh ∗(ξσu)|2dxdt

=−
∫
R1

∫
Ω

1

2
∂t[ρ(ηh ∗(ξσu))2]dxdt+

∫
R1

∫
Ω

1

2
∂tρ|ηh ∗(ξσu)|2dxdt

=−1

2

∫
R1

∫
Ω

div(ρu)|ηh ∗(ξσu)|2dxdt

=

∫
R1

∫
Ω

1

2
ρu ·∇|ηh ∗(ξσu)|2dxdt.

Moreover,

lim
σ→0

lim
h→0

(

∫ τ

0

∫
Ω

ρu⊗u :∇φσ,hdxdt+

∫
R1

∫
Ω

1

2
ρu ·∇[ηh ∗(ξσu)]2dxdt

−
∫
R1

∫
Ω

ηh ∗(ρu) ·∇[(ξσu)(t+h) · [ηh ∗(ξσu)]]dxdt=0. (5.20)

According to the estimate (5.16)-(5.20), one can arrive at∫ τ

0

∫
Ω

(
|Du|r−|Du|r−2Du :Du

)
dxdt⩽0.

It is also deduced from Lemma 2.2 that

|Du|r−2Du= |Du|r−2Du and |Du|r= |Du|r.

Recalling that η(z)=zq−1, Λ′(z)=η(z)z and Λ′′(z)⩾0 for any z>0, one can deduce
from the convexity analysis that

η(divu)divu=η(divu)divu.

Finally, the fact that Λ is a convex and low continuous function, helps us to complete
the proof of Theorem 2.1.
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6. Proof of Theorem 2.2
Taking the same idea as in Section 4, we also introduce an approximate problem

which consists of a system of regularized equations{
∂tρ+div(ρu)= ϵ∆ρ,

∂t(ρu)+div(ρu⊗u)+∇(p+δρβ)+ϵ∇u ·∇ρ=div((δ+ |Du|2) r−2
2 Du+η(|divu|)divuI)

(6.1)
with the initial-boundary conditions{

∇ρ ·n|∂Ω=0, ρ|t=0=ρ0,δ,
u|∂Ω=0, ρu|t=0=m0,δ,

(6.2)

where the operator ∆=∆x, ϵ and δ are two positive parameters, β>0 is a fixed constant
large enough, and n is the unit outer normal of ∂Ω. The initial data are chosen in such
a way that

ρ0,δ ∈C3(Ω), 0<ρ⩽ρ0,δ ⩽ δ
− 1

2β ;
ρ0,δ →ρ0 in Lγ(Ω), |{x∈Ω:ρ0,δ(x)<ρ0(x)}|→0 as δ→0;

δ
∫
Ω
ρβ0,δdx→0 as δ→0;

m0,δ =

{
m0, if ρ0,δ ⩾ρ0,
0, if ρ0,δ<ρ0.

(6.3)

According to the proof of Theorem 2.1, the approximate problem (6.1)-(6.3) with
fixed positive parameters ϵ and δ can be solved by means of a modified Faedo-Galerkin
method, and the vanishing limits of the artificial viscosity ϵ→0 and artificial pressure
coefficient δ→0 in the solutions to the approximate problem (6.1)-(6.3) can be handled
by a similar way. Moreover, the limit (ρ,u) of the approximate solutions {ρδ,uδ}δ>0

(maybe subsequence) is proved to satisfy the continuity Equation (1.1)1 in the sense of
renormalized solutions. And we can obtain the following inequality as δ→0(

1

2

∫
Ω

ρ|u|2dx
)∣∣∣∣τ

0

−
(∫

Ω

ρu ·φdx
)∣∣∣∣τ

0

+

∫ τ

0

∫
Ω

(ρu ·∂tφ+ρu⊗u :∇φ)dxdt

+

∫ τ

0

∫
Ω

(
p(ρ)divφ−p(ρ)divu

)
dxdt+

∫ τ

0

∫
Ω

(
|Du|r−|Du|r−2Du :Dφ

)
dxdt

⩽
∫ τ

0

∫
Ω

(Λ(divφ)−Λ(divu))dxdt for a.e.τ ∈ [0,T ] (6.4)

holds for all φ∈C∞
c (Ω× [0,T ]) with the weak limit |Du|r of the sequence (δ+

|Duδ|2)
r−2
2 Duδ :Duδ being a measure on Ω× [0,T ]. Taking the regularized kernels in [28]

again, we can arrive at∫ τ

0

∫
Ω

(p(ρ)divu−p(ρ)divu)dxdt⩽0 for a.a τ ∈ [0,T ]. (6.5)

In order to finish the proof, we have to establish point-wise convergence of the
densities ρδ. Since the limit (ρ,u) satisfy the continuity Equation (1.1)1 in the sense of
renormalized solutions, we know that

∂t[ρP (ρ)]+div[ρP (ρ)u]+p(ρ)divu=0 (6.6)

and

∂t[ρP (ρ)]+div[ρP (ρ)u]+p(ρ)divu=0, (6.7)
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where P (ρ)=
∫ ρ

1
p(z)
z2 dz. Taking (6.5) into account, we conclude that(∫

Ω

(
ρP (ρ)−ρP (ρ)

)
dx

)∣∣∣∣τ
0

=−
∫ τ

0

∫
Ω

(p(ρ)divu−p(ρ)divu)dxdt

⩽−
∫ τ

0

∫
Ω

(p(ρ)−p(ρ))divudxdt, (6.8)

where

[ρP (ρ)−ρP (ρ)](0,·)=0.

The convexity of the function zP (z) implies that there exists a certain α>0 such that∫
Ω

(
ρP (ρ)−ρP (ρ)

)
dx⩾α limsup

δ→0

∫
Ω

|ρδ−ρ|2dx,

while

−
∫ τ

0

∫
Ω

(p(ρ)−p(ρ))divudxdt=− lim
δ→0

∫ τ

0

∫
Ω

(p(ρδ)−p(ρ))divudxdt

⩽ lim
δ→0

∫ τ

0

∫
Ω

p′(ρ)(ρδ−ρ)divudxdt+C limsup
δ→0

∫ τ

0

∫
Ω

|ρδ−ρ|2dxdt.

Thus, one can use (6.8), together with the standard Gronwall argument, to conclude
that

ρP (ρ)=ρP (ρ).

In particular,

ρδ →ρ in L2(Ω×(0,T )), p(ρ)=p(ρ),∫ τ

0

∫
Ω

(p(ρ)−p(ρ))divudxdt=0.

Then, one can arrive at∫ τ

0

∫
Ω

(
|Du|r−|Du|r−2Du :Du

)
dxdt⩽0.

Using the fact that ∫ τ

0

∫
Ω

(
|Du|r−|Du|r−2Du :Du

)
dxdt⩾0,

one can get that

|Du|r−2Du= |Du|r−2Du and |Du|r= |Du|r.

Finally,

η(divu)divu=η(divu)divu

is deduced from the fact that η(z)= |z|q−1, Λ′(z)=η(z)z and Λ′′(z)⩾0 for any z>0.
Therefore, the proof of Theorem 2.2 is completed.
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[24] Z. Nehari, Inverse Hölder inequalities, J. Math. Anal. Appl., 21:405–420, 1968. 2, 2.1
[25] X.D. Shi, T. Wang, and Z. Zhang, Asymptotic stability for one-dimensional motion of non-

Newtonian compressible fluids, Acta Math. Appl. Sin. Engl. Ser., 30:99–110, 2014. 1
[26] J. Wolf, Existence of weak solutions to the equations of non-stationary motion of non-Newtonian

fluids with shear rate dependent viscosity, J. Math. Fluid Mech., 9:104–138, 2007. 1
[27] H.Z. Yuan and X.J. Xu, Existence and uniqueness of solutions for a class of non-Newtonian fluids

with singularity and vacuum, J. Differ. Equ., 245:2871–2916, 2008. 1
[28] V.V. Zhikov and S.E. Pastukhova, On the solvability of the Navier-Stokes system for a compress-

ible non-Newtonian fluid (Russian), Dokl. Math., 80:511–515, 2009. 1, 1, 4, 5, 5.4, 6
[29] V.V. Zhikov, On the weak convergence of fluxes to a flux (Russian), Dokl. Akad. Nauk, 81:58–62,

2010. 2.2

https://doi.org/10.1006/jmaa.1998.6242
https://mathscinet.ams.org/mathscinet-getitem?mr=2668872https://mathscinet.ams.org/mathscinet-getitem?mr=2668872
https://link.springer.com/article/10.1007/BF01393835
https://doi.org/10.1002/mma.4837
10.3934/cpaa.2017010
https://doi.org/10.1016/S0252-9602(14)60148-X
https://link.springer.com/article/10.1007/PL00000976
https://mathscinet.ams.org/mathscinet-getitem?mr=2040667
https://doi.org/10.1002/mma.3432
https://doi.org/10.1016/S0362-546X(97)82861-1
https://doi.org/10.1137/S0036141002410988
https://doi.org/10.1006/jdeq.2000.3958
http://dx.doi.org/10.3934/cpaa.2019096
https://link.springer.com/article/10.1007/s10587-004-6414-8
https://link.springer.com/article/10.1007/PL00005543
https://www.oxford.co.za/book/9780198514879-mathematical-topics-in-fluid-mechanics#.YmJeLhKOOUk
https://doi.org/10.1063/1.3051412
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tm&paperid=2939&option_lang=eng
https://doi.org/10.1201/9780367810771
https://link.springer.com/article/10.1007/BF02674554
https://mathscinet.ams.org/mathscinet-getitem?mr=2375792
https://mathscinet.ams.org/mathscinet-getitem?mr=2375792
https://mathscinet.ams.org/mathscinet-getitem?mr=2586682
https://kilthub.cmu.edu/articles/journal_contribution/Inverse_Holder_inequalities/6477647/1/files/11909558.pdf
https://link.springer.com/article/10.1007/s10255-014-0273-3
https://link.springer.com/article/10.1007/s00021-006-0219-5
https://doi.org/10.1016/j.jde.2008.04.013
https://link.springer.com/article/10.1134/S1064562409040164
https://link.springer.com/article/10.1134/S1064562410010175
https://link.springer.com/article/10.1134/S1064562410010175

