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STABILITY OF THE PLANAR RAREFACTION WAVE TO
THREE-DIMENSIONAL COMPRESSIBLE MODEL

OF VISCOUS IONS MOTION∗

YEPING LI† , ZHEN LUO‡ , AND JIAHONG WU§

Abstract. The compressible Navier-Stokes-Poisson equations model the motion of viscous ions
and play important roles in the study of self-gravitational viscous gaseous stars and in the simulations
of charged particles in semiconductor devices and plasmas physics. This paper establishes the stability
and precise large-time behavior of perturbations near the planar rarefaction wave to three-dimensional
isentropic compressible Navier-Stokes-Poisson equations. The results presented in this paper are new.
Previous studies focused on the one-dimensional compressible Navier-Stokes-Poisson equations and little
has been done for the multi-dimensional case. In order to prove the desired asymptotic stability, we
take into account both the effect of the self-consistent electrostatic potential and the decay rate of the
planar rarefaction wave. Due to the complexity of the nonlinearity and the effect of the self-consistent
electric field, the proof involves highly non-trivial a priori bounds.
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1. Introduction
The three-dimensional (3D) compressible isentropic Navier-Stokes-Poisson system

for viscous ions motion is given by∂tρ+div(ρu)=0,
∂t(ρu)+div(ρu⊗u)+∇p(ρ)=ρ∇ϕ+µ∆u+(µ+ν)∇divu,
∆ϕ=ρ−e−ϕ,

(1.1)

where ρ(t,x1,x2,x3)≥0 denotes the density, u =u(t,x1,x2,x3)=(u1,u2,u3)(t,x1,x2,x3)
denotes the velocity field and ϕ=ϕ(t,x1,x2,x3) is the electrostatic potential. The shear
viscosity µ and the bulk viscosity ν both are constants satisfying the physical restrictions

µ>0, µ+ν≥0.

The pressure p=p(ρ) is given by the γ-law p(ρ)= ργ

γ with γ≥1 being the fluid con-

stant. The spatial domain is taken to be R×T2, namely x1∈R being the real line and
(x2,x3)∈T2 := (R/Z)2 being a two-dimensional unit flat torus. (1.1) has many phys-
ical applications. For example, (1.1) models the transport of charged particles under
the influence of the self-consistent electrostatic potential force as in the study of self-
gravitational viscous gaseous stars. (1.1) is also useful in the simulations of the motion of
charged particles in semiconductor devices and plasmas physics. Here we only consider
a fluid description for ions, in which ions and electrons interact through the electro-
static potential. Electrons are assumed to be thermalized and follow a nondimensional
Maxwell-Boltzmann distribution ρe=e

−ϕ connecting the scaled electron density ρe and
the potential ϕ. Moreover, the electron potential is determined by the density and the
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background doping profile b(x), namely, the third equation in (1.1) is ∆ϕ=ρ−b(x).
More background information on the compressible Navier-Stokes-Poisson equations can
be found in, for example, [4, 8, 18,29].

The compressible Navier-Stokes-Poisson system has recently attracted considerable
interest and many important results have been established. In what follows, we only
mention those closely related to our study. Assuming that the initial data are small
perturbations near the non-vacuum constant states, Li, Matsumura and Zhang [20] were
able to obtain the global existence and algebraic decay estimates for solutions of the 3D
unipolar isentropic compressible Navier-Stokes-Poisson equations. Li and Zhang [22]
showed the optimal decay rates of solutions in [20]. Li and Zhang [23] further obtained
the decay rates for the derivatives of solutions when the initial perturbation is also in the
negative Sobolev space H−s(R3) with 0≤s<3/2. By analyzing the Green’s function
of the corresponding linearized equations, Wang and Wu [37] obtained the pointwise
estimates of the solution to the unipolar isentropic compressible Navier-Stokes-Poisson
system in Rn(n≥3). More recently Wang and Wang [38] established further new decay
estimate of classical solutions to the unipolar isentropic compressible Navier-Stokes-
Poisson equations in three and higher dimensions. More interesting results for unipolar
non-isentropic, and bipolar isentropic and non-isentropic compressible Navier-Stokes-
Poisson equations can be found in [21, 32, 33, 41, 42]. In addition, the global strong
solution to the one-dimensional non-isentropic Navier-Stokes-Poisson system with large
data for density-dependent viscosity was established in [34] and the nonexistence was
discussed in [3]. The results mentioned above showed that the momentum of the Navier-
Stokes-Poisson system decays at a slower rate than that of the compressible Navier-
Stokes system in the absence of the electric field (see [20, 41]). This demonstrates that
the electric field can affect the large-time behavior of the solution.

There are also substantial developments on the stability and large-time behavior
around nonlinear wave patterns such as the stationary wave, discontinuity wave and the
rarefaction wave. The stability of stationary states for the multi-dimensional isentropic
compressible Navier-Stokes-Poisson system was studied by Tan, Wang and Wang in [31],
and by Cai and Tan [2] in the case of non-flat doping profile and with an external force
under the assumption that the gas states at far fields ±∞ are equal. Duan and Liu [10]
were able to obtain the stability of rarefaction waves of the one-dimensional unipolar
isentropic compressible Navier-Stokes-Poisson equations with different gas states at far
fields. Another interesting and challenging problem is to study the stability of the
isentropic compressible Navier-Stokes-Poisson equations on half space with different
far field and different gas states at boundary. In general, the large-time behavior of
solutions in the half space case is much more complicated due to boundary effect. For
outflow problem on the unipolar isentropic compressible Navier-Stokes-Poisson system
with doping profile, Jiang, Lai, Yin, and Zhu [17] and Wang, Zhang, and Zhang [35]
studied the existence and stability of stationary solutions, respectively. Li and Zhu [25]
investigated the asymptotic stability of the superposition of a stationary solution and a
rarefaction wave for the out-flow problem of the unipolar compressible Navier-Stokes-
Poisson equations in which the electron is assumed to be thermalized and follows the
nondimensional Maxwell-Boltzmann distribution ρe=e

−ϕ relating the scaled electron
density ρe and potential ϕ. We mention that there is a large literature on the stability of
the two-fluids isentropic and non-isentropic compressible Navier-Stokes-Poisson system
(see, e.g., [7, 11,12,15,40]).

Most of the existing studies on the stability and large-time behavior near nonlinear
wave patterns focus on the one-dimensional compressible Navier-Stokes-Poisson equa-
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tions. Very little has been done for the corresponding multi-dimensional case. The goal
of this work is to initiate the study on the three-dimensional compressible isentropic
Navier-Stokes-Poisson equations. More precisely, we consider the time-asymptotic non-
linear stability of the planar rarefaction wave to the initial value problem for the three-
dimensional compressible isentropic Navier-Stokes-Poisson equations. The initial data
to the model (1.1) are specified as follows:

(ρ,u)(x1,x2,x3,0) :=(ρ0,u10,u20,u30)(x1,x2,x3), (1.2)

which satisfy

(ρ0,u10,u20,u30)(x1,x2,x3)→ (ρ±,u±,0,0) as x1→±∞. (1.3)

In order to solve (1.1)3, we also need

lim
x1→±∞

ϕ(t,x)=ϕ±. (1.4)

Here ρ±, u± and ϕ± are constants satisfying

ρ±>0, ρ±=e−ϕ± . (1.5)

The periodic boundary conditions are imposed on (x2,x3)∈T2 for the solution (ρ,u1,u2,
u3,ϕ)(t,x1,x2,x3).

Duan and Liu in [10] have shown that the one-dimensional compressible Navier-
Stokes-Poisson equations near the rarefaction wave converge to the Riemann problem
on the corresponding one-dimensional hyperbolic conservation laws{

ρt+(ρu)x1
=0,

(ρu)t+(ρu2+p(ρ)+ρ)x1
=0

(1.6)

with the initial data

(ρr0,u
r
0)(x1)=

{
(ρ−,u−), if x1<0,

(ρ+,u+), if x1>0,
(1.7)

and ϕ=−lnρ. This hints that the large-time behavior of the solution to the compressible
Navier-Stokes-Poisson Equations (1.1)-(1.5) is closely related to the Riemann problem
on the corresponding three-dimensional compressible Euler equations{

∂tρ+div(ρu)=0,
∂t(ρu)+div(ρu⊗u)+∇(p(ρ)+ρ)=0,

(1.8)

with the Riemann initial data

(ρ0,u0)(x1)=

{
(ρ−,u−,0,0), if x1<0,

(ρ+,u+,0,0), if x1>0,
(1.9)

and ϕ=−lnρ.

As we know from the results in [5, 6, 9, 14], there are essential differences between
the one-dimensional Riemann problem (1.6)-(1.7) and the three-dimensional Riemann
problem (1.8)-(1.9) even with (u2,u3)-component continuous on both sides of x1=0 in
(1.9). Partially motivated by [16, 24, 28, 39], we study the time-asymptotic nonlinear
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stability of the planar rarefaction wave to the three-dimensional compressible isentropic
Navier-Stokes-Poisson Equations (1.1)-(1.5). We first give the description of the planar
rarefaction wave to (1.8). It is well-known that the inviscid Euler system (1.6) is strictly
hyperbolic for ρ>0 with two distinct eigenvalues

λ1(ρ,u)=u−
√
p′(ρ)+1, λ2(ρ,u)=u+

√
p′(ρ)+1

with the corresponding right eigenvectors denoted by r1(ρ,u) and r2(ρ,u), respec-
tively, and both characteristic fields are genuinely nonlinear. The i-Riemann invariant
zi(ρ,u)(i=1,2) is given by

zi(ρ,u)=u+(−1)i+1

∫ ρ√
p′(ξ)+1ξ−1dξ,

satisfying ∇(ρ,u)zi(ρ,u) ·ri(ρ,u)≡0,(i=1,2) for any ρ and u. Without loss of generality,
we only consider the 2-rarefaction wave case. The cases of 1-rarefaction wave and the
superposition of two rarefaction waves can be dealt with similarly. It is well-known that
if the states (ρ±,u±) satisfy

u+−
∫ ρ+

ρ−

√
p′(ξ)+1ξ−1dξ=u−, λ2(ρ+,u+)>λ2(ρ−,u−), (1.10)

i.e., 2-Riemann invariant z2(ρ,u) is constant and the second eigenvalue λ2(ρ,u) is ex-
panding along the 2-rarefaction wave curve, then the Riemann problem (1.6)-(1.7) would
admit a self-similar wave fan (ρr,ur)(x/t) which consists of only the constant states
and the centered rarefaction waves (see, e.g., [19]). Then the planar rarefaction wave
solution to the three-dimensional compressible Euler Equations (1.8)-(1.9) is defined
by (ρr,ur,0,0)(x1,t) with (ρr,ur)(x1,t) being the one-dimensional rarefaction wave to
(1.6)-(1.7). We also define ϕr=−lnρr.

We shall use the following notation. Throughout this paper, C and c denote
generic positive constants, which are independent of time t unless otherwise stated. Let
1≤p<∞, Lp

x1
(R) and Lp(R×T2) denote the space of Lebesgue measurable functions

whose p-powers are integrable over R and R×T2, with the norm ∥·∥Lp
x1

=
(∫

R | · |
pdx1

) 1
p

and ∥·∥Lp =
(∫

T2

∫
R | · |

pdx1dx2dx3
) 1

p , respectively. For simplicity we denote dx2dx3 by
dy, and ∥·∥L2 by ∥·∥. L∞

x1
(R) and L∞(R×T2) are the space of bounded measur-

able functions over R and R×T2, with the norm ∥·∥L∞
x1

=ess supx1∈R| · | and ∥·∥L∞ =

ess sup(x1,x2,x3)∈R×T2 | · |. For a non-negative integer k, Hk(R×T2) denotes the stan-

dard Hilbert spaces of order k, and we write ∥·∥k for the usual norm of Hk(R×T2).
In addition, we denote by C0([0,T ];Hk(R×T2)) (resp. L2(0,T ;Hk(R×T2))) the space
of continuous (resp. square integrable) functions on [0,T ] taking values in the space
Hk(R×T2).

We are now in a position to state the main results of this paper.

Theorem 1.1. Let the planar 2-rarefaction wave (ρr,ur,0,0)(x1,t) connecting the
constant states (ρ±,u±,0,0) and satisfying (1.10) with ρ±>0, and ϕr=−lnρr. Suppose
that the initial data satisfy (ρ0−ρr0,u10−ur0,u20,u30)∈L2(R×T2), which is periodic in
the directions (x2,x3)∈T2, and (∇ρ0,∇u0)∈H1(R×T2),

∥(ρ0−ρr0,u10−ur0,u20,u30)∥+∥(∇ρ0,∇u0)∥1+ε≤ε0, (1.11)



YEPING LI, ZHEN LUO, AND JIAHONG WU 1739

where ε is defined in (2.5)2, and the positive constant ε0 is sufficiently small. Then
the initial value problem (1.1)-(1.5) admits a unique global smooth solution (ρ,u,ϕ)=
(ρ,u1,u2,u3,ϕ) satisfying

(ρ−ρr,u1−ur1,u2,u3,ϕ−ϕr)(t,x1,x2,x3)∈C([0,+∞);L2(R×T2)),

(∇ρ,∇u,∇ϕ)(t,x1,x2,x3)∈C([0,+∞);H1(R×T2)),

(∇3u,∇3ϕ)(t,x1,x2,x3)∈L2(0,+∞;L2(R×T2)).

Moreover, it holds that

lim
t→+∞

sup
(x1,x2,x3)∈R×T2

|(ρ,u1,u2,u3,ϕ)(t,x1,x2,x3)−(ρr,ur1,0,0,ϕ
r)(x)|=0. (1.12)

Remark 1.1. Theorem 1.1 gives a first stability result of the planar rarefaction
wave to the multi-dimensional system (1.1) with physical viscosities. Our stability
analysis could also be applied to the time-asymptotic stability of the superposition of
1-rarefaction wave and 2-rarefaction wave to the three-dimensional compressible Navier-
Stokes Equations (1.1) and the wave interaction estimates as in [26] will be considered
additionally. Moreover, it is also interesting for researchers to study similar problems
for the full compressible Navier-Stokes-Poisson system and the bipolar compressible
Navier-Stokes-Poisson system. Finally, in this article we only consider the initial value
problem to three-dimensional compressible Navier-Stokes-Poisson equations. However
we should mention that the corresponding initial boundary value problem such as the
out-flow problem and the inflow problem for the multi-dimensional compressible Navier-
Stokes-Poisson equations is surely more difficult. These are expected to be done in the
forthcoming papers.

The proof of Theorem 1.1 is outlined as follows. We use some of the ideas in [24] for
the compressible Navier-Stokes system. However, due to the complexity of nonlinearity
and the effect of the self-consistent electric field, it is highly non-trivial in establishing
the suitable energy estimates for the compressible Navier-Stokes-Poisson system, as can
be seen in the proof of Lemma 4.1. Our attention will be focused on the effect of the
self-consistent electric field. Being different to the compressible Navier-Stokes equations,
the main difficulty in this paper is to estimate the interacting terms of the potential
function ϕ and the density under the case that the unknown ϕ has a slow time-decay rate
(see [10]). To estimate those interacting terms, we use some of the ideas in [10] to make
use of the good dissipation property of the Poisson equation by expanding the term e−ϕ,
up to the third-order, around the rarefaction wave. We combine not only the equations of
the density and the velocity to cancel the terms such as (µ+λ)∇divΨ ·∇φ+µ∆Ψ ·∇φ,
but also the equations of the density and the electrostatic potential to cancel the terms
such as ∇W ·∇φ in order to get the estimate of ∇φ and its derivatives.

The rest of the paper is organized as follows. In the next section, we first review a
smooth approximate rarefaction wave which tends to the rarefaction wave fan uniformly
as the time t tends to infinity. Then we reformulate the system for the perturbation
around the approximate rarefaction wave in Section 3 and establish the a priori estimates
for the perturbation in Section 4. Finally, in the last section, by applying these a priori
estimates, we prove Theorem 1.1.

2. Smooth approximation rarefaction wave
In this section, we will construct a smooth approximation rarefaction wave in or-

der to overcome the difficulty that the rarefaction wave is only Lipschitz continuous.
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As in [26, 39], we construct a smooth approximation of the rarefaction waves through
the Burgers equation. For this, we make use of the Riemann problem of the Burgers
equation: 

wt+wwx1
=0,

w(x1,0)=w0(x1)=

{
w−, x1<0,

w+, x1>0.

(2.1)

If w−<w+, it is well known that problem (2.1) admits a continuous weak solution
wr(x1

t ) connecting w− and w+ (see, for instance, [30]), taking the form of

wr
(x1
t

)
=


w−, x1<w−t,

x1

t , w−t≤x1≤w+t,

w+, x1>w+t.

(2.2)

Recall the definition of λ2 and set w−=λ2(ρ−,u−),w+=λ2(ρ+,u+). It is easy to check
that the 2-rarefaction wave (ρr,ur)(t,x1)=(ρr,ur)(x1/t) to the Riemann problem (1.6)-
(1.7) is given explicitly by λ2(ρ

r,ur)(t,x1)=w
r(t,x1),z2(ρ

r,ur)(t,x)=z2(ρ±,u±). That
is, (ρr,ur)(t,x) satisfies the following Riemann problem of the Euler equations{

ρrt +(ρrur)x1
=0,

ρr(urt +u
rurx1

)+(p′(ρr)+1)ρrx1
=0,

(2.3)

and

(ρ,u)(0,x1)=(ρ0,u0)(x1)=

{
(ρ−,u−), if x1<0,

(ρ+,u+), if x1>0.
(2.4)

Further, let ϕr=−lnρr.
We now turn to the approximate rarefaction wave for the Euler system (2.3)-(2.4).

Here and in what follows, the constant states (ρ±,u±) are fixed so that they are con-
nected by the 2-rarefaction wave. Following [26, 27], we recall that wr(x1

t ) may be
approximated by a smooth function w(x1,t) which solves{

wt+wwx1 =0,
w(x1,0)=w0(x)=

1
2 (w−+w+)+

1
2 (w+−w−)tanh(εx1).

(2.5)

Here 0<ε≤1 is a constant to be determined later on. Then, by the characteristic
methods, the solution w(t,x1) of the problem (2.5) has the following properties and
their proofs can be found in [26,27].

Lemma 2.1. Let w̃=w+−w−>0 be the wave strength of the 2-rarefaction wave.
Then the problem (2.5) has a unique smooth solution w(t,x) which satisfies the following
properties

(i ) w−<w(t,x1)<w+ , wx1 >0 for x1∈R and t≥0.

(ii ) For any 1≤p≤+∞ there exists a constant Cp such that for t>0,

∥wx1∥Lp
x1

≤Cpmin
{
w̃ε1−

1
p ,w̃

1
p t−1+ 1

p

}
,

∥∂iw∥Lp
x1

≤Cpmin
{
w̃εi−

1
p ,εi−1− 1

p t−1
}
, where i=2,3.
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(iii ) lim
t→+∞

sup
x∈R

∣∣w(t,x1)−wr
(
x1

t

)∣∣=0.

Now we shall approximate the rarefaction wave (ρr,ur,ϕr)(x1

t ) by the smooth func-
tion (ρ̄, ū,ϕ̄)(t,x1), which can be constructed by

λ2(ρ̄, ū)(t,x1)=w(1+ t,x1), z2(ρ̄, ū)(t,x1)=z2(ρ±,u±), ϕ̄=−ln ρ̄.

Here w(t,x1) is the smooth solution to the Burgers equation in (2.5). One can easily
check that the above approximate rarefaction wave (ρ̄, ū,ϕ̄)(t,x1) satisfies the system:{

ρ̄t+(ρ̄ū)x1 =0,

ρ̄(ūt+ ūūx1
)+p(ρ̄)x1

=−ρ̄x1
,

(2.6)

with

(ρ̄, ū)(0,x1)=

{
(ρ−,u−), if x1<0,

(ρ+,u+), if x1>0,
(2.7)

and

ϕ̄=−ln ρ̄. (2.8)

With Lemma 2.1 at our disposal, we have the following result concerning (ρ̄, ū,ϕ̄)(t,x1).

Lemma 2.2. Set δ := |ρ+−ρ−|+ |u+−u−|. The smoothed rarefaction wave
(ρ̄, ū,ϕ̄)(t,x1) which satisfies (2.6)-(2.8), possesses the following properties:

(i ) ρx1 >0,ūx1 >0, and ρ−<ρ̄(t,x1)<ρ+, u−<ū(t,x1)<u+ for x1∈R and t≥0.

(ii ) For any 1≤p≤+∞, there exists a constant Cp such that for t>0,

∥(ρ̄x1
,ūx1

,ϕ̄x1
)∥Lp

x1
≤Cpmin

{
δε1−

1
p ,δ

1
p t−1+ 1

p

}
,

∥(∂ix1
ρ̄,∂ix1

ū,∂ix1
ϕ̄)∥Lp

x1
≤Cpmin

{
δεi−

1
p ,εi−1− 1

p t−1
}
, here i=2,3.

(iii ) lim
t→+∞

sup
x1∈R

∣∣(ρ̄, ū,ϕ̄)(t,x1)−(ρr,ur,ϕr)
(
x1

t

)∣∣=0.

3. Reformulation of the problem
In this section, we reformulate the original problem (1.1)-(1.5) in terms of the

perturbed variables. To begin with, we define the new unknowns (φ,Ψ,W ) by

φ(t,x1,x2,x3)=ρ(t,x1,x2,x3)− ρ̄(t,x1),
Ψ(t,x1,x2,x3)=(ψ1,ψ2,ψ3)(t,x1,x2,x3)=(u1,u2,u3)(t,x1,x2,x3)−(ū,0,0)(t,x1),

W (t,x1,x2,x3)=ϕ(t,x1,x2,x3)− ϕ̄(t,x1).

Then from (1.1), (2.6) and (2.8), it is easy to check that the perturbed variable (φ,Ψ,W )
satisfiesφt+ρdivΨ+ρx2

ψ2+ρx3
ψ3+u1φx=f,

ρ(Ψt+u1Ψx1 +ψ2Ψx2 +ψ3Ψx3)+p
′(ρ)∇φ=µ∆Ψ+(µ+λ)∇divΨ+ρ∇W +ρg,

∆W =φ+ ρ̄
(
1−e−W

)
− ϕ̄x1x1 ,

(3.1)

where f and g are given by

f =−φūx1
−ψ1ρ̄x1

,
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g=
(2µ+λ

ρ
ūx1x1 ,0,0

)t

−(ūx1ψ1,0,0)
t−

((p′(ρ)
ρ

− p′(ρ̄)

ρ̄
p′(ρ̄)

)
ρ̄x1 ,0,0

)t

.

The initial conditions are

(φ,Ψ)(0,x1,x2,x3)= : (φ0,Ψ0)(x1,x2,x3)=(φ0,ψ10,ψ20,ψ30)(x1,x2,x3)

=(ρ0− ρ̄0,u10− ū0,u20,u30)(x1,x2,x3), (3.2)

and the far-field condition becomes

lim
x1→±∞

W (t,x1,x2,x3)=0. (3.3)

Our main result in terms of the perturbed variable (φ,Ψ,W )(t,x1,x2,x3) can then
be restated as follows.

Theorem 3.1. Suppose that all the assumptions of Theorem 1.1 are met. Then there
exists a unique global solution (φ,Ψ,W )(t,x1,x2,x3) to problem (3.1)-(3.3), satisfying

(φ,Ψ,W )(t,x1,x2,x3)∈C([0,+∞);H2(R×T2)),

∇φ(t,x1,x2,x3)∈L2([0,+∞);H1(R×T2)),

(∇Ψ,∇W )(t,x1,x2,x3)∈L2(0,+∞;H2(R×T2)),

and

sup
(x1,x2,x3)∈R×T2

|(φ,Ψ,W )(t,x1,x2,x3)|→0 as t→+∞. (3.4)

To prove this theorem, we shall employ the standard continuation argument based
on a local existence theorem and on a priori estimates stated in the following proposition.

Proposition 3.1. Assume that (φ,Ψ,W )(t,x1,x2,x3) is the classical solution to
problem (3.1)-(3.3) satisfying

(φ,Ψ,W )(t,x1,x2,x3)∈C([0,T ];H2(R×T2)),

∇φ(t,x1,x2,x3)∈L2([0,T ];H1(R×T2)),

(∇Ψ,∇W )(t,x1,x2,x3)∈L2([0,T ];H2(R×T2))

for any fixed T >0. Then there exists a suitably small constant ε1>0 such that if

sup
0≤t≤T

∥(φ,ψ,W )(t)∥22+ε≤ε1, (3.5)

then the following estimate holds:

sup
0≤t≤T

∥(φ,Ψ,W )(t)∥22+
∫ T

0

[
∥ū1/2

x (φ,ψ1)∥2+∥(∇φ,∇Ψ,∇W )∥21+∥(∇3Ψ,∇3W )∥2
]
dt

≤C[∥(φ0,Ψ0)∥22+ε1/8]. (3.6)
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4. The energy estimates
This section is devoted to the derivation of the a priori estimates for the unknown

function (φ,Ψ,W )(t,x1,x2,x3) and their derivatives, that is, we are going to show Propo-
sition 3.1. To derive those a priori estimates, we assume that there exists a solution
(φ,Ψ,W )(t,x1,x2,x3) to the problem (3.1)-(3.3), such that

(φ,Ψ,W )(t,x1,x2,x3)∈C([0,T ];H2(R×T2),

∇φ(t,x1,x2,x3)∈L2([0,T ];H1(R×T2)),

(∇Ψ,∇W )(t,x1,x2,x3)∈L2([0,T ];H2(R×T2)),

sup
t∈[0,T ]

∥(φ,Ψ,W )(t)∥2≤ε1

for any T >0. For the sake of simplicity, we set E=supt∈[0,T ]∥(φ,Ψ,W )(t)∥2. Note
that if ε1 is suitably small, then the condition supt∈[0,T ]∥(φ,Ψ,W )(t)∥2≤ε1 and Sobolev
embedding theorem:

∥f(x1,x2,x3)∥L∞ ≤C∥f(x1,x2,x3)∥2 for anyf(x1,x2,x3)∈H2(R×T2), (4.1)

imply that

|φ|≤ 1

2
ρ−,

which, together with Lemma 2.2, yields

0<
1

2
ρ−≤ρ≤ 1

2
ρ−+ρ+. (4.2)

We also have

|u|= |(u1,u2,u3)|≤C, |W |≤C. (4.3)

For the sake of clarity, we will divide the proof of Proposition 3.1 into some lemmas.
First, we establish the energy estimate for the unknown variable (φ,Ψ,W )(t,x1,x2,x3)
to problem (3.1)-(3.3). For this, we introduce

Φ(ρ,ρ̄)=

∫ ρ

ρ̄

p(η)−p(n̄)
η2

dη.

Combining this and (4.2) yields

cφ2≤Φ(ρ,ρ̄)≤Cφ2. (4.4)

Next, multiplying (1.1) and (3.1)2 by Φ(ρ,ρ̄) and Ψ, respectively, and after tedious
computations, we arrive at

(
1

2
ρ|Ψ|2+ρΦ)t+µ|∇Ψ|2+(µ+λ)|divΨ|2+ρūxψ2

1+[p(ρ)−p(ρ̄)−p′(ρ̄)φ]ūx

=divR1+(2µ+λ)ūxxψ1+ρΨ∇W, (4.5)

where

R1=µ(ψ1∇ψ1+ψ2∇ψ2+ψ3∇ψ3)+(µ+λ)ΨdivΨ−
[
ρuΦ+

1

2
ρu|Ψ|2+(p(ρ)−p(ρ̄))Ψ

]
.
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Then we have the following lemma.

Lemma 4.1. Assume that (φ,Ψ,W )(t,x1,x2,x3) is a solution to (3.1)-(3.3), satisfying
the conditions in Proposition 3.1, then there exists a positive constant C such that the
following estimate holds

sup
0≤t≤T

[∥(φ,Ψ,W )(t)∥2+∥∇W (t)∥2]+
∫ T

0

[
∥ū

1
2
x1(φ,ψ1)(t)∥2+∥∇Ψ(t)∥2

]
dt

≤C(∥(φ0,Ψ0)∥2+∥W0∥21+ε
1
8 )+C(η+E+ε)

∫ T

0

∥(∇φ,∇W,∇2W )(t)∥2dt. (4.6)

Here and in the subsequent, η>0 is a suitably small constant.

Proof. Integrating (4.5) with respect to (x1,x2,x3) over R×T2 yields

d

dt

∫
T2

∫
R
(
1

2
ρΨ2+ρΦ)dx1dy+µ∥∇Ψ∥2+(µ+λ)∥divΨ∥2+

∫
T2

∫
R
ūx1

[ρψ2
1+p(ρ)

−p(ρ̄)−p′(ρ̄)φ]dx1dy=(2µ+λ)

∫
T2

∫
R
ūx1x1

ψ1dx1dy+

∫
T2

∫
R
ρΨ∇Wdx1dy. (4.7)

First, using (4.2) and (4.4), it is obvious that∫
T2

∫
R
(
1

2
ρΨ2+ρΦ)dx1dy≥ c(∥φ∥2+∥Ψ∥2) (4.8)

and ∫
T2

∫
R
ūx[ρūxψ

2
1+p(ρ)−p(ρ̄)−p′(ρ̄)φ]dx1dy≥ c

∫
T2

∫
R
ūx1(ψ

2
1+φ

2)dx1dy. (4.9)

Second, we employ Lemma 2.2 and the Sobolev’s inequality

∥f∥L∞
x1

≤
√
2∥f∥

1
2

L2
x1

∥fx1∥
1
2

L2
x1

(4.10)

for any f(x1)∈H1(R), to obtain∫
T2

∫
R
ūxxψ1dx1dy≤C

∫
T2

∥ūxx∥L1
x1
∥ψ1∥L∞

x1
dy

≤Cε 1
8

∫
T2

(1+ t)−
7
8 ∥ψ1∥

1
2

L2
x1

∥ψ1x1
∥

1
2

L2
x1

dy

≤Cε 1
8

∫
T2

[∥ψ1x1
∥2L2

x1
+C(1+ t)−

7
6 ∥ψ1∥

2
3

L2
x1

]dy

≤Cε 1
8 [∥ψx1

∥2+(1+ t)−
9
8 +(1+ t)−

5
4 ∥ψ∥2]. (4.11)

Finally, we deal with the term
∫
T2

∫
RρΨ∇Wdx1dy. Noting (3.1)1 and (3.1)3, we have

div(ρΨ)=−φt−(ūφ)x1 , (4.12)

and

∆Wt=φt+[ρ̄(1−e−W )]t− ϕ̄x1x1t. (4.13)
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which, together with integration by parts, leads to∫
T2

∫
R
ρΨ∇Wdx1dy=−

∫
T2

∫
R
div(ρΨ)Wdx1dy

=−1

2

d

dt

∫
T2

∫
R
|∇W |2dx1dy+

∫
T2

∫
R
Wϕ̄x1x1tdx1dy

−
∫
T2

∫
R
W (ρ̄(1−e−W ))tdx1dy+

∫
T2

∫
R
W (ūφ)x1dx1dy. (4.14)

Invoking Lemma 2.2, by integration by parts, Hölder’s inequality and Young’s inequality,
we obtain∫

T2

∫
R
Wϕ̄x1x1tdx1dy=−

∫
T2

∫
R
Wx1

ϕ̄x1tdx1dy

≤C
∫
T2

∫
R
|Wx1

(ρ̄2x1
+ ρ̄x1x1

+ ρ̄x1
ūx1

+ ūx1x1
)|dx1dy

≤η∥Wx1
∥2+Cε(1+ t)−2. (4.15)

For the third term on the right-hand side of (4.14), we note

1−e−W =W − 1

2
W 2+R2, (4.16)

where R2 is the Taylor remainder. This implies

−
∫
T2

∫
R
W (ρ̄(1−e−W ))tdx1dy=−

∫
T2

∫
R
W (ρ̄(W − 1

2
W 2+R2))tdx1dy

=−1

2

d

dt

∫
T2

∫
R
ρ̄W 2dx1dy+

1

3

d

dt

∫
T2

∫
R
ρ̄W 3dx1dy+H1+H2, (4.17)

where

H1=

∫
T2

∫
R
(ρ̄ū)x1

(
1

2
W 2− 1

6
W 3)dx1dy,

H2=

∫
T2

∫
R
W (ρ̄ū)x1

R2dx1dy−
∫
T2

∫
R
Wρ̄R2tdx1dy.

We remark that H1 cannot be directly controlled for the time being and it will be
treated by cancelation with other terms later on. Here we first deal with H2. Since,
∥W∥L∞ ≤C, it follows that

R2∼O(W 3), R2t∼O(W 2Wt). (4.18)

Further, making use of Young’s inequality, we have

H2≤C(∥W 3∥2+∥(ρ̄ū)x1W∥2)+η∥Wt∥2. (4.19)

In addition, we get from (3.1)1 and (3.1)3 that

∥Wt∥2+∥∇Wt∥2≤C(∥φt∥2+∥ρ̄tW∥2+∥ϕ̄x1x1t∥2)

≤C[∥div(φΨ)∥2+∥(ūφ)x1
∥2+∥div(ρ̄Ψ)∥2+∥ρ̄tW∥2+∥ϕ̄x1x1t∥2]
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≤C[∥(∇φ,∇Ψ)(t)∥2+∥ūx1φ∥2+∥ρ̄x1ψ1∥2

+∥(ρ̄ū)x1
W∥2+∥ϕ̄x1x1t∥2]. (4.20)

Applying the interpolation inequality in the domain D=:R×T2 in [1, 36], that is,

∥g∥2L∞(D)≤C(∥g∥L2(D)∥∇g∥L2(D)+∥∇g∥L2(D)∥∇2g∥L2(D))

for g∈H2(D), we have

∥W 3∥2≤C∥W∥4L∞∥W∥2

≤C∥W∥2(∥W∥2∥∇W∥2+∥∇W∥2∥∇2W∥2)
≤CE2(∥∇W∥2+∥∇2W∥2). (4.21)

From Hölder’s inequality and Lemma 2.2, one has

∥ūx1
φ∥2+∥ρ̄x1

ψ1∥2+∥(ρ̄ū)x1
W∥2+∥ϕ̄x1x1t∥2

≤C∥(ρ̄, ū)x1
∥2L∞

x1
∥(φ,ψ1,W )∥2+∥ϕ̄x1x1t∥2

≤Cε(1+ t)−2∥(φ,ψ1,W )∥2+Cε(1+ t)−2. (4.22)

Inserting now inequalities (4.20)-(4.22) into (4.19), we then arrive at

H2≤CE(∥∇W∥2+∥∇2W∥2)+Cη∥(∇φ,∇Ψ)(t)∥2

+Cε(1+ t)−2∥(φ,ψ1,W )(t)∥2+Cε(1+ t)−2. (4.23)

We now turn to deal with the fourth term on the right-hand side of (4.14). Utilizing
(3.1)3, it follows that∫

T2

∫
R
W (ūφ)x1

dx1dy

=

∫
T2

∫
R
(Wūφx1

+Wφūx1
)dx1dy

=

∫
T2

∫
R
Wū

(
∆Wx1 −(ρ̄(1−e−W ))x1 + ϕ̄x1x1x1

)
dx1dy

+

∫
T2

∫
R
Wūx1

(
∆W − ρ̄(1−e−W )+ ϕ̄x1x1

)
dx1dy=:H3+H4+H5, (4.24)

where

H3=
1

2

∫
T2

∫
R
ūx1

(W 2
x1

−W 2
x2

−W 2
x3
)dx1dy−

∫
T2

∫
R
ūϕ̄x1x1

Wx1
dx1dy,

H4=−
∫
T2

∫
R
Wū(ρ̄(1−e−W ))x1dx1dy,

H5=−
∫
T2

∫
R
Wūx1

ρ̄(1−e−W )dx1dy.

We have used in (4.24) the following identities:∫
T2

∫
R
Wū∆Wx1

dx1dy+

∫
T2

∫
R
Wūx1

∆Wdx1dy=
1

2

∫
T2

∫
R
ūx1

(W 2
x1

−W 2
x2

−W 2
x3
)dx1dy,
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and ∫
T2

∫
R
ūϕ̄x1x1x1

Wdx1dy+

∫
T2

∫
R
ūx1

ϕ̄xxWdx1dy=−
∫
T2

∫
R
ūϕ̄x1x1

Wx1
dx1dy.

By Lemmas 2.2, and Hölder’s and Young’s inequalities,

H3≤C
∫
T2

∥ūx1∥L∞
x1
∥∇W∥2L2

x1
dy+C

∫
T2

∥Wx1∥L2
x1
∥ϕ̄x1x1∥L2

x1
dy

≤η∥Wx1
∥2+Cε(1+ t)−2+Cε∥∇W∥2. (4.25)

To estimate H4 and H5, we use the Taylor expansion (4.16) to get

H4=−
∫
T2

∫
R
Wū[ρ̄(W − 1

2
W 2+R2)]x1

dx1dy

=−
∫
T2

∫
R
ρ̄x1

ūW 2dx1dy+
1

2

∫
T2

∫
R
ρ̄x1

ūW 3dx1dy+
1

2

∫
T2

∫
R
(ρ̄ū)x1

W 2dx1dy

−1

3

∫
T2

∫
R
(ρ̄ū)x1W

3dx1dy−
∫
T2

∫
R
Wū(ρ̄R2)x1dx1dy,

and

H5=−
∫
T2

∫
R
Wūx1 ρ̄(W − 1

2
W 2+R2)dx1dy

=−
∫
T2

∫
R
ρ̄x1

ūW 2dx1dy+
1

2

∫
T2

∫
R
ρ̄x1

ūW 3dx1dy−
∫
T2

∫
R
ρ̄ūx1

WR2dx1dy.

Then, with the help of integration by parts and (4.21), summation of H1,H4 and H5

yields

H1+H4+H5=−
∫
T2

∫
R
Wū(ρ̄R2)x1

dx1dy−
∫
T2

∫
R
Wūx1

ρ̄R2dx1dy

=

∫
T2

∫
R
Wx1

ρ̄ūR2dx1dy≤η∥Wx1
∥2+C∥W 3∥2

≤C(η+E2)(∥∇W∥2+∥∇2W∥2). (4.26)

Therefore, combining (4.15), (4.23), (4.25) and (4.26), and recalling (4.14), (4.17)
and (4.24), we evaluate the term

∫
T2

∫
RρΨ∇Wdx1dy as∫

T2

∫
R
ρΨ∇Wdx1dy

≤− d

dt

(
1

2

∫
T2

∫
R
|∇W |2dx1dy+

1

2

∫
T2

∫
R
ρ̄W 2dx1dy−

1

3

∫
T2

∫
R
ρ̄W 3dx1dy

)
+C(η+E+ε)∥(∇φ,∇Ψ,∇W,∇2W )(t)∥2+Cε(1+ t)−2+Cε(1+ t)−2∥(φ,ψ1,W )(t)∥2,

which is combined together with (4.7), (4.8), (4.9) and (4.11), then is integrated with
respect to t, choosing Cη< 1

2 and finally implies (4.6) since E+ε≤ε1 and ε1 is assumed
sufficiently small. This completes the proof of Lemma 4.1.

Lemma 4.2. There exists a positive constant C such that for 0≤ t≤T ,

∥(φ,Ψ,W,∇φ,∇W )(t)∥2+
∫ t

0

[∥ū1/2x (φ,ψ1)(s)∥2+∥(∇φ,∇Ψ,∇W,∇2W )(s)∥2]dt
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≤C[∥(φ0,W0)∥21+∥Ψ0∥2+ε
1
8 ]+CE

∫ t

0

∥∇3Ψ(s)∥2dt. (4.27)

Proof. Applying the operator ∇ to (3.1)1 and then multiplying the resulting
equation by ∇φ/ρ2 yield

(
|∇φ|2

2ρ2
)t+div(

u|∇φ|2

2ρ2
)+

(µ+λ)∇φ ·∇divΨ+µ∇φ ·∆Ψ

(2µ+λ)ρ
+
ūx1

φ2
x1

ρ2

+
µ

2µ+λ

[
(
φx1ψ2x1

ρ
)x2

+(
φx1ψ3x1

ρ
)x3

+(
φx2ψ1x2

ρ
)x1

+(
φx2ψ3x2

ρ
)x3

+(
φx3ψ1x3

ρ
)x1 +(

φx3ψ2x3

ρ
)x2 −(

φx1ψ1x2

ρ
)x2 −(

φx2ψ2x1

ρ
)x1 −(

φx3ψ3x1

ρ
)x1

−(
φx3ψ3x2

ρ
)x2 −(

φx1ψ1x3

ρ
)x3 −(

φx2ψ2x3

ρ
)x3

]
=

|∇φ|2divΨ
2ρ2

+
ūx1

|∇φ|2

2ρ2
− (ρ̄x1x1

ψ1+ ūx1x1
φ)φx1

ρ2
− ρ̄x1

∇φ ·∇ψ1

ρ2

− ρ̄x1
φx1

divΨ

ρ2
− (φx1

∇ψ1+φx2
∇ψ2+φx3

∇ψ3) ·∇φ
ρ2

−µρ̄x1
[φx2

(ψ1x2
−ψ2x1

)+φx3
(ψ1x3

−ψ3x1
)]

(2µ+λ)ρ2
, (4.28)

and multiplying (3.1)2 by ∇φ
ρ gives

(Ψ ·∇φ)t−div(Ψφt)+
p′(ρ)

ρ
|∇φ|2− (µ+λ)∇divΨ ·∇φ+µ∆Ψ ·∇φ

ρ

+(u1φψ2x1
)x2

+(u1φψ3x1
)x3

−(u1φψ2x2
)x1

−(u1φψ3x3
)x1

=ρ(divΨ)2+∇W ·∇φ+ 2µ+λ

ρ
ūx1x1φx1 −

(p′(ρ)
ρ

− p′(ρ̄)

ρ̄

)
ρ̄x1φx1 + ρ̄x1ψ1divΨ

−ūx1(φψ1x1 −ψ1φx1)+ψ2(φx2ψ1x1 +φx2ψ3x3 −φx1ψ1x2 −φx3ψ3x2)

+ψ3(φx3
ψ1x1

+φx3
ψ2x2

−φx1
ψ1x3

−φx2
ψ2x3

)

+φ(ψ1x2
ψ2x1

+ψ1x3
ψ3x1

−ψ1x1
ψ2x2

−ψ1x1
ψ3x3

). (4.29)

Then multiplying the equality (4.28) by 2µ+λ, and then adding the resulting equation
and (4.29) together, and then integrating the final equation over T2×R, we have

d

dt

∫
T2

∫
R
(
2µ+λ

2ρ2
|∇φ|2+Ψ ·∇φ)dx1dy+

∫
T2

∫
R
[
2µ+λ

ρ2
ūx1

φ2
x1

+
p′(ρ)

ρ
|∇φ|2]dx1dy

=

∫
T2

∫
R
ρ(divΨ)2dx1dy+

∫
T2

∫
R
∇W ·∇φdx1dy+

∫
T2

∫
R

{ |∇φ|2divΨ
2ρ2

+
ūx1 |∇φ|2

2ρ2

− (ρ̄x1x1ψ1+ ūx1x1φ)φx1

ρ2
− ρ̄x1∇φ ·∇ψ1

ρ2
− ρ̄x1φx1divΨ

ρ2
+

2µ+λ

ρ
ūx1x1φx1

− (φx1∇ψ1+φx2∇ψ2+φx3∇ψ3) ·∇φ
ρ2

− µρ̄x1 [φx2(ψ1x2 −ψ2x1)+φx3(ψ1x3 −ψ3x1)]

(2µ+λ)ρ2

−(p
′(ρ)
ρ − p′(ρ̄)

ρ̄ )ρ̄x1
φx1

+ ρ̄x1
ψ1divΨ− ūx1

(φψ1x1
−ψ1φx1

)+ψ2(φx2
ψ1x1

+φx2
ψ3x3
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−φx1ψ1x2 −φx3ψ3x2)+ψ3(φx3ψ1x1 +φx3ψ2x2 −φx1ψ1x3 −φx2ψ2x3)

+φ(ψ1x2
ψ2x1

+ψ1x3
ψ3x1

−ψ1x1
ψ2x2

−ψ1x1
ψ3x3

)
}
dx1dy. (4.30)

Moreover, applying the operator ∇ to (3.1)3, we obtain

∇∆W =∇φ+(ρ̄x1
,0,0)t(1−e−W )+ ρ̄∇(1−e−W )−(ϕ̄x1x1x1

,0,0)t. (4.31)

Then multiplying (4.31) by ∇W , and integrating the resulting equalities over R×T2 by
parts, one has∫

T2

∫
R
|∇2W |2dx1dy+

∫
T2

∫
R
ρ̄e−W |∇W |2dx1dy

=−
∫
T2

∫
R
∇W ·∇φdx1dy−

∫
T2

∫
R
ρ̄x1

(1−e−W )Wx1
dx1dy+

∫
T2

∫
R
ϕ̄x1x1x1

Wx1
dx1dy,

which, together with (4.30) and (4.2), yields

d

dt

∫
T2

∫
R
(
2µ+λ

2ρ2
|∇φ|2+Ψ ·∇φ)dx1dy+[∥ū1/2x φx1(t)∥2+∥(∇φ,∇W,∇2W )(t)∥2]

≤C(∥divΨ∥2+I1+I2+I3+I4+I5). (4.32)

Here

I1=

∫
T2

∫
R
|ϕ̄x1x1x1Wx1 |dx1dy+

∫
T2

∫
R
|ūx1x1φx1 |dx1dy,

I2=

∫
T2

∫
R
|divΨ||∇φ|2dx1dy+

∫
T2

∫
R
|(φx1

∇ψ1+φx2
∇ψ2+φx3

∇ψ3) ·∇φ|dx1dy,

I3=

∫
T2

∫
R
|ψ2(φx2

ψ1x1
+φx2

ψ3x3
−φx1

ψ1x2
−φx3

ψ3x2
)|dx1dy

+

∫
T2

∫
R
|ψ3(φx3ψ1x1 +φx3ψ2x2 −φx1ψ1x3 −φx2ψ2x3)|dx1dy

+

∫
T2

∫
R
|φ(ψ1x2

ψ2x1
+ψ1x3

ψ3x1
−ψ1x1

ψ2x2
−ψ1x1

ψ3x3
)|dx1dy,

I4=

∫
T2

∫
R
|(ρ̄x1x1

ψ1+ ūx1x1
φ)φx1

|dx1dy,

and

I5=

∫
T2

∫
R
|ρ̄x1φx1divΨ|dx1dy+

∫
T2

∫
R
|ρ̄x1ψ1divΨ|dx1dy+

∫
T2

∫
R
|ρ̄x1∇φ∇ψ1|dx1dy

+

∫
T2

∫
R
|ρ̄x1φx1φ|dx1dy+

∫
T2

∫
R
|ρ̄x1Wx1W |dx1dy+

∫
T2

∫
R
|ρ̄x1φx2(ψ1x2 −ψ2x1)|dx1dy

+

∫
T2

∫
R
|ρ̄x1φx3(ψ1x3 −ψ3x1)|dx1dy+

∫
T2

∫
R
|ūx1(φψ1x1 −ψ1φx1)|dx1dy.

In the following we focus on the estimate of I1−I5 in (4.32). First, using the
Hölder’s, Young’s inequalities and Lemma 2.2, we have

I1≤C
∫
T2

∥Wx1
∥L2

x1
∥ϕ̄x1x1x1

∥L2
x1
dy+C

∫
T2

∥φx1
∥L2

x1
∥ūx1x1

∥L2
x1
dy
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≤ 1

8
∥Wx1

(t)∥2+ 1

16
∥φx1

(t)∥2+C(∥ūx1x1
(t)∥2+∥ϕ̄x1x1x1

(t)∥2)

≤ 1

8
∥Wx1

(t)∥2+ 1

16
∥φx1

(t)∥2+Cε(1+ t)−2. (4.33)

By Sobolev’s inequality (4.1) and Young’s inequality,∫
T2

∫
R
|divΨ||∇φ|2dx1dy≤C∥divΨ∥L∞∥∇φ∥2≤C∥∇Ψ∥2∥∇φ∥2

≤C(∥∇Ψ∥+∥∇2Ψ∥)∥∇φ∥2+C∥∇3Ψ∥∥∇φ∥2

≤CE(∥∇3Ψ(t)∥2+∥∇φ(t)∥2). (4.34)

Similarly, we can deal with the other terms of I2. Then, we have

I2≤CE(∥∇3Ψ∥2+∥∇φ∥2). (4.35)

Next, using Hölder’s, Young’s inequalities and Sobolev’s inequality (4.1), we have∫
T2

∫
R
|ψ2φx2

ψ1x1
|dx1dy≤∥ψ2∥L∞∥ψ1x1

∥∥φx2
∥

≤∥ψ2∥2∥ψ1x1∥∥φx2∥

≤CE(∥∇φ∥2+∥∇ψ1∥2). (4.36)

Similarly, we can deal with each term of I3. Then, we have

I3≤CE(∥∇φ∥2+∥∇ψ1∥2). (4.37)

By Young’s inequality, Hölder’s inequality and Lemma 2.2,

I4≤C
∫
T2

∥ρ̄x1x1
∥L∞

x1
∥ψ1∥L2

x1
∥φx1

∥L2
x1
dy+C

∫
T2

∥ρ̄x1x1
∥L∞

x1
∥ψ1∥L2

x1
∥φx1

∥L2
x1
dy

≤ 1

16
∥∇φ∥2+Cε(1+ t)−2∥(φ,ψ1)(t)∥2. (4.38)

Finally, we focus on I5. First, it follows from Lemma 2.2 that∫
T2

∫
R
|ūx1

||∇φ|2dx1dy≤Cε∥∇φ∥2.

Moreover, making use of Young’s inequality, Hölder’s inequality and Lemma 2.2, we
have ∫

T2

∫
R
|ρ̄x1φx1divΨ|dx1dy≤

∫
T2

∥ρ̄x1∥L∞
x1
∥φx1∥L2

x1
∥divΨ∥L2

x1
dy

≤C∥divΨ1∥2+Cε
1
2 (1+ t)−

3
2 ∥φx1∥2,

and ∫
T2

∫
R
|ρ̄x1

φx1
φ|dx1dy≤

∫
T2

∥ρ̄x1
∥L∞

x1
∥φx1

∥L2
x1
∥φ∥L2

x1
dy

≤ 1

40
∥φx1

∥2+Cε 1
2 (1+ t)−

3
2 ∥φ∥2.
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The other terms in I5 can be analyzed similarly. Thus,

I5≤C∥∇Ψ∥2+ 1

8
∥(∇φ,∇W )(t)∥2+Cε∥∇φ(t)∥2+Cε 1

2 (1+ t)−
3
2 ∥φ,ψ1,W )(t)∥2.

(4.39)
Since E+ε≤ε1 and ε1 is assumed sufficiently small, inserting the estimates of Ii(i=
1,2,3,4,5) in (4.32), we have

d

dt

∫
T2

∫
R
(
2µ+λ

2ρ2
|∇φ|2+Ψ ·∇φ)dx1dy+[∥ū1/2x φx1

∥2+∥(∇φ,∇W,∇2W )(t)∥2]

≤C∥∇Ψ∥2+CE∥∇3Ψ∥2+Cε 1
2 (1+ t)−

3
2 ∥(φ,ψ1,W )(t)∥2

+Cε(1+ t)−2∥(φ,ψ1)(t)∥2+Cε(1+ t)−2.

Integrating in t, and using (4.6), we have (4.27). This completes the proof of Lemma
4.2.

Lemma 4.3. There exists a positive constant C such that for 0≤ t≤T ,

∥(φ,Ψ,W )(t)∥21+
∫ t

0

[∥ū1/2x (φ,Ψ)(s)∥2+∥∇φ(s)∥2+∥(∇Ψ,∇W )(s)∥21]ds

≤C[∥(φ0,Ψ0,W0)∥21+ε1/8]+CE
∫ t

0

∥∇3Ψ(s)∥2ds. (4.40)

Proof. Multiplying (3.1)2 by −∆Ψ
ρ gives

(
|∇Ψ|2

2
)t−div(Ψt∇Ψ+

µ+λ

ρ
divΨ∇divΨ− µ+λ

ρ
divΨ∆Ψ)+

1

2
(u1|Ψx2 |

2+u1|Ψx3 |
2

−u1|Ψx1 |
2)x1 −(u1Ψx1 ·Ψx2)x2 −(u1Ψx1 ·Ψx3)x3 +

1

2
ūx1 |Ψx1 |

2+
µ

ρ
|∆Ψ|2+ µ+λ

ρ
|∇divΨ|2

=
p′(ρ̄)

ρ̄
∇φ ·∆Ψ−∇W∆Ψ+ψ2Ψx2 ·∆Ψ+ψ3Ψx3 ·∆Ψ+

µ+λ

ρ2
divΨ∇φ ·∇divΨ

−µ+λ
ρ2

divΨ∇φ ·∆Ψ+
1

2
ψ1x1(|Ψx2 |

2+ |Ψx3 |
2−|Ψx1 |

2)−ψ1x1ψ2x1ψ2x2 −ψ1x3ψ3x1ψ3x3

−2µ+λ

ρ
ūx1x1∆ψ1+

1

2
ūx1(|Ψx2 |

2+ |Ψx3 |
2)+ ūx1ψ1∆ψ1+(

p′(ρ)

ρ
− p′(ρ̄)

ρ̄
)ρ̄x1∆ψ1

+
µ+λ

ρ2
ρ̄x1divΨdivΨx1 −

µ+λ

ρ2
ρ̄x1divΨ∆ψ1.

Integrating over R×T2 and making use of (4.2) yield

1

2

d

dt
∥∇Ψ∥2+∥ū1/2

x Ψx1∥
2+∥∆Ψ∥2+∥∇divΨ∥2

≤C
∫
T2

∫
R
(|∇φ ·∆Ψ|+ |∇W ·∆Ψ|)dx1dy+C

∫
T2

∫
R
(|ψ2Ψx2 ·∆Ψ|

+|ψ3Ψx3 ·∆Ψ|)dx1dy+C
∫
T2

∫
R
(|divΨ∇φ ·∇divΨ|+ |divΨ∇φ ·∆Ψ|)dx1dy

+C

∫
T2

∫
R
(|ψ1x1 |(|Ψx2 |

2+ |Ψx3 |
2+ |Ψx1 |

2)+ |ψ1x1ψ2x1ψ2x2 |+ |ψ1x3ψ3x1ψ3x3 |)dx1dy

+C

∫
T2

∫
R
|ūx1x1∆ψ1|dx1dy+C

∫
T2

∫
R
[|ūx1 |(|Ψx2 |

2+ |Ψx3 |
2)+ |ūx1ψ1∆ψ1|

+|ρ̄x1divΨdivΨx1 |+ |ρ̄x1divΨ∆ψ1|+ |ρ̄x1φ∆ψ1|]dx1dy :=
6∑

i=1

Ji. (4.41)
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We estimate each term on the right-hand side of (4.41) as follows. By Cauchy’s and
Young’s inequalities,

J1≤
1

8
∥∆Ψ∥2+C∥(∇φ,∇W )(t)∥2. (4.42)

As in (4.34) and (4.36), we have

J2≤C∥ψ2∥L∞∥Ψx2∥∥∆Ψ∥+C∥ψ3∥L∞∥Ψx3∥∥∆Ψ∥
≤C∥ψ2∥2∥Ψx2∥∥∆Ψ∥+C∥ψ3∥2∥Ψx3∥∥∆Ψ∥≤CE(∥∇Ψ∥2+∥∆Ψ∥2), (4.43)

and

J3≤C∥divΨ∥L∞∥∇φ∥∥∇divΨ∥+C∥divΨ∥L∞∥∇φ∥∥∆Ψ∥
≤C(∥∇Ψ∥+∥∇2Ψ∥)∥∇φ∥∥∇2Ψ∥+C∥∇3Ψ∥∥∇φ∥∥∇2Ψ∥
≤CE(∥∇3Ψ∥2+∥∇2Ψ∥2+∥∇φ∥2). (4.44)

Similarly, we can deal with J4 as follows:

J4≤C∥ψ1x1∥L∞∥∇Ψ∥2+C∥ψ1x1∥L∞∥ψ2x1∥∥ψ2x2∥+C∥ψ1x1∥L∞∥ψ3x1∥∥ψ3x3∥
≤C(∥∇Ψ∥+∥∇2Ψ∥)∥∇Ψ∥2+C∥∇3Ψ∥∥∇Ψ∥2

≤CE(∥∇3Ψ∥2+∥∇2Ψ∥2+∥∇Ψ∥2). (4.45)

By Cauchy’s inequality, Young’s inequality and Lemma 2.2,

J5≤
1

8
∥∆ψ1∥2dt+Cε(1+ t)−2. (4.46)

Finally, as in (4.39), we also have

J6≤Cε∥∇Ψ∥2+ 1

8
∥∇2Ψ(t)∥2+Cε 1

2 (1+ t)−
3
2 ∥(φ,ψ1,∇Ψ)(t)∥2. (4.47)

Inserting the estimates for J1−J6 in (4.41) and using the elliptic estimate ∥∆Ψ∥∼
∥∇2Ψ∥, and noting E+ε≤ε1 and ε1 is assumed sufficiently small, we have

1

2

d

dt
∥∇Ψ(t)∥2+∥ū1/2x Ψx1

(t)∥2+∥∇2Ψ(t)∥2

≤C∥(∇φ,∇W )(t)∥2+C(E+ε)(∥∇3Ψ(t)∥2+∥∇Ψ(t)∥2)+Cε 1
2 (1+ t)−

3
2 ∥(φ,ψ1)(t)∥2.

Integrating in t, and using (4.27), we have (4.40). This completes the proof of Lemma
4.3.

Lemma 4.4. There exists a positive constant C such that for 0≤ t≤T ,

∥(φ,Ψ,W )(t)∥21+∥∇2φ(t)∥2+
∫ t

0

[∥ū1/2x (φ,ψ1)(s)∥2+∥(∇φ,∇Ψ)(s)∥21+∥∇W (s)∥22]dt

≤C[∥(Ψ0,W0)∥21+∥φ0∥22+ε1/8]+CE
∫ t

0

∥∇3Ψ(s)∥2ds. (4.48)

Proof. Applying the operator ∇2 on (3.1)1 and then multiplying the resulting
equation by ∇2φ/ρ2, we have

(
|∇2φ|2

2ρ2
)t+

2ūx1
|∇φx1

|2

ρ2
+

(µ+λ)∇2φ ·∇2divΨ+µ∇2φ ·∇∆Ψ

(2µ+λ)ρ
+div(

u|∇2φ|2

2ρ2
)
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+
µ

2µ+λ

[
(
∇φx2

·∇ψ1x2

ρ
)x1

+(
∇φx3

·∇ψ1x3

ρ
)x1

+(
∇φx1

·∇ψ2x1

ρ
)x2

+(
∇φx3

·∇ψ2x3

ρ
)x2 +(

∇φx1
·∇ψ3x1

ρ
)x3 +(

∇φx2
·∇ψ3x2

ρ
)x2 −(

∇φx2
·∇ψ2x1

ρ
)x1

−(
∇φx1

·∇ψ1x2

ρ
)x2

−(
∇φx3

·∇ψ3x1

ρ
)x1

−(
∇φx3

·∇ψ3x2

ρ
)x2

−(
∇φx2

·∇ψ2x3

ρ
)x3

−(
∇φx1 ·∇ψ1x3

ρ
)x3

]
=K1(t,x,y)+K2(t,x,y), (4.49)

where

K1(t,x,y)=
|∇2φ|2divΨ

2ρ2
− φx1∇φx1 ·∇divΨ

ρ2
− φx2∇φx2 ·∇divΨ

ρ2
− φx3∇φx3 ·∇divΨ

ρ2

+
µφx1

(2µ+λ)ρ2
(∇φx2 ·∇ψ1x2 +∇φx3 ·∇ψ1x3 −∇φx2 ·∇ψ2x1 −∇φx3 ·∇ψ3x1)

+
µφx2

(2µ+λ)ρ2
(∇φx1 ·∇ψ2x1 +∇φx2 ·∇ψ2x3 −∇φx1 ·∇ψ1x2 −∇φx3 ·∇ψ3x2)

+
µφx3

(2µ+λ)ρ2
(∇φx1 ·∇ψ3x1 +∇φx2 ·∇ψ3x2 −∇φx2 ·∇ψ2x3 −∇φx1 ·∇ψ1x3)

−∇φ ·(divΨx1∇φx1 +divΨx2∇φx2 +divΨx3∇φx3)

ρ2
− φx1x2∇ψ2 ·∇φx1

ρ2

−φx1x3∇ψ3 ·∇φx3

ρ2
− φx2x2∇ψ2 ·∇φx2 +φx3x3∇ψ3 ·∇φx3

ρ2

− (ψ2x1∇φx1 +ψ2x2∇φx2) ·∇φx2

ρ2
− (φx1∇2ψ1+φx2∇2ψ2+φx3∇2ψ3) ·∇2φ

ρ2

− (ψ3x1∇φx1 +ψ3x3∇φx3) ·∇φx3

ρ2
− (ψ1x1∇φx1 +ψ1x2∇φx2 +ψ1x3∇φx3) ·∇φx3

ρ2

−∇ψ1(φx1x1∇φx1 +φx1x2∇φx2 +φx1x3∇φx3)

ρ2
,

and

K2(t,x,y)=
ūx1

|∇2φ|2

2ρ2
− ρ̄x1x1

divΨφx1x1

ρ2
− 2ρ̄x1

∇φx1
·∇divΨ

ρ2
− ρ̄x1

∇2φ ·∇2ψ1

ρ2

+
µρ̄x

(2µ+λ)ρ2
(∇φx2

·∇ψ1x2
+∇φx3

·∇ψ1x3
−∇φx2

·∇ψ2x1
−∇φx3

·∇ψ3x1
)

−2ρ̄x1x1
∇ψ1 ·∇φx1

ρ2
− ūx1x1

φx1
φx1x1

ρ2
− 2ūx1x1

∇φ ·∇φx1

ρ2

− ρ̄x1x1x1
ψ1φxx

ρ2
− ūx1x1x1

φφx1x1

ρ2
.

On the other hand, dividing (3.1)2 by ρ, applying the operator ∇ on the resulting
equation and then multiplying the final equation by ∇2φ, we have

(∇Ψ ·∇2φ)t+
p′(ρ)

ρ
|∇2φ|2− µ∇2φ ·∇∆Ψ+(µ+λ)∇2φ ·∇2divΨ

ρ
−div(φx1t∇ψ1

+φx2t∇ψ2+φx3t∇ψ3)+(u1∇φ ·Ψx1x2
)x2

+(u1∇φ ·Ψx1x3
)x3

−(u1∇φ ·Ψx2x2
)x1

−(u1∇φ ·Ψx3x3
)x1

=ρ∇divΨ ·∆Ψ+∇2W ·∇2φ+K3(t,x,y)+K4(t,x,y), (4.50)
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where

K3(t,x,y)=divΨ∇φ ·∆Ψ+ψ2∇φx2 ·∆Ψ+ψ3∇φx3 ·∆Ψ−ψ1x1∇ψ1 ·∇φx1

−p
′′′(ρ)

γ−1
φx1∇φ ·∇φx1 −

µ

ρ2
∆ψ1∇φ ·∇φx1 −

µ+λ

ρ
divΨx1∇φ ·∇φx1

+φx2∇ψ2 ·∆Ψ+φx3∇ψ3 ·∆Ψ+φx1∇ψ1 ·∆Ψ+ψ1x2∇φ ·Ψx1x2

+ψ1x3∇φ ·Ψx1x3 −ψ1x1∇φ ·Ψx2x2 −ψ1x1∇φ ·Ψx3x3 −ψ2x1∇ψ1 ·∇φx2

−ψ3x1∇ψ1 ·∇φx3 −ψ2∇Ψx2 ·∇
2φ−ψ3∇Ψx3 ·∇

2φ−ψ1x2∇ψ2 ·∇φx1

−ψ1x3∇ψ3 ·∇φx1 −ψ2x2∇ψ2 ·∇φx2 −ψ3x3∇ψ3 ·∇φx3 −
p′′′(ρ)

γ−1
φx2∇φ ·∇φx2

−p
′′′(ρ)

γ−1
φx3∇φ ·∇φx3 −

µ

ρ2
∆ψ2∇φ ·∇φx2 −

µ

ρ2
∆ψ3∇φ ·∇φx3

−µ+λ
ρ2

divΨx2∇φ ·∇φx2 −
µ+λ

ρ2
divΨx3∇φ ·∇φx3 ,

K4(t,x,y)= ρ̄x1
divΨ∆ψ1+ ūx1

∇φ ·Ψx1x1
+ ρ̄x1x1

ψ1∆ψ1+ ūx1x1
φ∆ψ1

−(
p′′′(ρ)

γ−1
− p′′′(ρ̄)

γ−1
)ρ̄x1

φx1x1
−(

p′(ρ)

ρ
− p′(ρ̄)

ρ̄
)ρ̄x1x1

φx1x1
− µ

ρ2
ρ̄x1

∇φx1
·∆Ψ

−2µ+λ

ρ2
ūx1x1∇φ ·∇φx1 + ūx1φx1∆ψ1+ ρ̄x1∇ψ1 ·∆Ψ− ūx1Ψx1 ·∇φx1

−ūx1x1
ψ1φx1x1

− ūx∇ψ1 ·∇φx−
2p′′′(ρ)

γ−1
ρ̄x∇φ ·∇φx−

µ+λ

ρ2
ρ̄x∇φx ·∇divΨ,

and

K5(t,x,y)=−2µ+λ

ρ2
ρ̄x1

ūx1x1
φx1x1

+
2µ+λ

ρ
ūx1x1x1

φx1x1
.

Multiplying (4.49) by 2µ+λ, adding to (4.50), and then integrating the final equation
over R×T2, one has

d

dt

∫
T2

∫
R

(
2µ+λ

2ρ2
|∇2φ|2+∇Ψ ·∇2φ)]dx1dy

+

∫
T2

∫
R

[
(2µ+λ)

2ρ2
ūx|∇φx1 |2+

p′(ρ)

ρ
|∇2φ|2]dx1dy

=

∫
T2

∫
R

(ρ∇divΨ ·∆Ψ+∇2W ·∇2φ)dx1dy+(2µ+λ)

∫
T2

∫
R

(K1(t,x,y)

+K2(t,x,y))dx1dy+

∫
T2

∫
R

(K3(t,x,y)+K4(t,x,y))dx1dy. (4.51)

Moreover, applying the operator ∇2 to (3.1)3, multiplying it by ∇2W , and integrating
the resulting equalities over R×T2 by parts, one has∫

T2

∫
R
|∇3W |2dx1dy+

∫
T2

∫
R
ρ̄e−W |∇2W |2dx1dy

=−
∫
T2

∫
R
∇2W ·∇2φdx1dy+

∫
T2

∫
R
(K6(t,x,y)+K7(t,x,y)+K8(t,x,y))dx1dy,

here

K6(t,x,y)= ρ̄e
−W∇W∇W∇2W,
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K7(t,x,y)=−2ρ̄x1e
−W∇W ·

3∑
i=1

∇Wxi − ρ̄x1x1(1−e−W )

3∑
i=1

Wx1xi ,

K8(t,x,y)= ϕ̄x1x1x1x1
(Wx1x1

+Wx1x2
+Wx1x3

)dx1dy.

Then combining (4.51) and (4.52), and using (4.2) yield

d

dt

∫
T2

∫
R

(
2µ+λ

2ρ2
|∇2φ|2+∇Ψ ·∇2φ)]dx1dy+[∥ū1/2x ∇φx1∥2+∥(∇2φ,∇2W,∇3W )∥2]

≤C∥∇divΨ∥∥∆Ψ∥+C
∫
T2

∫
R

(|K1(t,x,y)+K3(t,x,y)+K4(t,x,y)

+K6(t,x,y)+K7(t,x,y)+K8(t,x,y)|)dx1dy. (4.52)

Now we estimate the terms on the right-hand side of (4.52). First, using Hölder’s
and Young’s inequalities, (4.2) and (4.1), we have∫

T2

∫
R

|∇2φ|2|divΨ|
2ρ2

dx1dy≤C∥divΨ∥L∞∥∇2φ∥2≤C∥divΨ∥2∥∇2φ∥2

≤C(∥∇Ψ∥+∥∇2Ψ∥)∥∇2φ∥2+C∥∇3Ψ∥∥∇2φ∥2

≤CE(∥∇3Ψ(t)∥2+∥∇2φ(t)∥2), (4.53)

and ∫
T2

∫
R

|φx1∇φx1 ·∇divΨ|
ρ2

dx1dy≤C∥φx1∥L3∥∇divΨ∥L6∥∇φx1∥

≤C(∥φx1∥+∥∇φx1∥)∥∇2divΨ∥∥∇φx1∥
≤CE(∥∇3Ψ(t)∥2+∥∇2φ(t)∥2). (4.54)

Similarly, we can estimate the other terms of
∫
T2

∫
R |K1(t,x,y)|dx1dy. Therefore, we

have ∫
T2

∫
R
|K1(t,x,y)|dx1dy≤Cε1(∥∇3Ψ(t)∥2+∥∇2φ(t)∥2). (4.55)

Next, we bound
∫
T2

∫
R |K2(t,x,y)|dx1dy. First, it follows from Lemma 2.2 that∫

T2

∫
R
|ūx1 ||∇2φ|2dx1dy≤C∥ūx1∥L∞

x1
∥∇2φ∥2≤Cε∥∇2φ∥2.

Moreover, making use of Young’s inequality, Hölder’s inequality and Lemma 2.2, we
have ∫

T2

∫
R
|ρ̄x1x1

φx1x1
divΨ|dx1dy≤

∫
T2

∥ρ̄x1x1
∥L∞

x1
∥φx1x1

∥L2
x1
∥divΨ1∥L2

x1
dy

≤ 1

16
∥∇2φ∥2+Cε(1+ t)−2∥∇Ψ∥2,

and ∫
T2

∫
R
|ρ̄x1

∇φx1
∇divΨ|dx1dy≤

∫
T2

∥ρ̄x1
∥L∞

x1
∥∇φx1

∥L2
x1
∥∇divΨ∥L2

x1
dy

≤ 1

16
∥∇φx1

∥2+Cε 1
2 (1+ t)−

3
2 ∥∇2Ψ∥2.
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The other terms in
∫
T2

∫
R |K2(t,x,y)|dx1dy can be analyzed similarly. Therefore,∫

T2

∫
R
|K2(t,x,y)|dx1dy≤

1

8
∥∇2φ∥2+Cε∥∇2φ(t)∥2+Cε 1

2 (1+ t)−
3
2 ∥∇Ψ(t)∥2

+Cε(1+ t)−2∥(φ,ψ1,∇φ,∇Ψ)(t)∥2. (4.56)

Furthermore, as in (4.55), we have∫
T2

∫
R
|K3(t,x,y)|dx1dy≤CE(∥∇3Ψ(t)∥2+∥∇2Ψ(t)∥2+∥∇2φ(t)∥2), (4.57)

and ∫
T2

∫
R
|K6(t,x,y)|dx1dy≤CE(∥∇3W (t)∥2+∥∇2W (t)∥2+∥∇W (t)∥2). (4.58)

As in (4.56), we have∫
T2

∫
R
|K4(t,x,y)|dx1dy≤

1

8
∥∇2φ(t)∥2+C∥∇2Ψ(t)∥2+Cε 1

2 (1+ t)−
3
2 ∥(φ,∇φ,∇Ψ)(t)∥2

+Cε(1+ t)−2∥(φ,ψ1,∇φ)(t)∥2, (4.59)

and ∫
T2

∫
R
|K7(t,x,y)|dx1dy

≤ 1

8
∥∇2W∥2+Cε 1

2 (1+ t)−
3
2 ∥∇W (t)∥2+Cε(1+ t)−2∥W (t)∥2. (4.60)

Finally, as in (4.33), we can obtain∫
T2

∫
R
|K5(t,x,y)|dx1dy≤

1

8
∥∇2φ∥2+Cε(1+ t)−2, (4.61)

and ∫
T2

∫
R
|K8(t,x,y)|dx1dy≤

1

8
∥∇3W∥2+Cε(1+ t)−2. (4.62)

Inserting the estimates of Ki(t,x,y)(i=1,2,·· · ,8) in (4.52), using the elliptic estimates
∥∆Ψ∥∼∥∇2Ψ∥ and ∥∇∆Ψ∥∼∥∇3Ψ∥, and noting E+ε≤ε1 and ε1 is assumed suffi-
ciently small, we have

d

dt

∫
T2

∫
R

(
2µ+λ

2ρ2
|∇2φ|2+∇Ψ ·∇2φ)]dx1dy+[∥ū1/2x ∇φx1

∥2+∥(∇2φ,∇2W,∇3W )∥2]

≤C∥∇2Ψ∥2+Cε(1+ t)−2.

Integrating in t, and using (4.40), we have (4.48). This completes the proof of Lemma
4.4.

Lemma 4.5. There exists a positive constant C such that, for 0≤ t≤T ,

∥(φ,Ψ)(t)∥22+∥W (t)∥21+
∫ t

0

[∥ū1/2x (φ,ψ1)(s)∥2+∥(∇φ,∇Ψ,∇W )(s)∥21
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+∥(∇3Ψ,∇3W )(s)∥2]ds≤C[∥(φ0,Ψ0)∥22+∥W0∥21+ε1/8]. (4.63)

Proof. We first divide (3.1)2 by ρ, apply the operator ∇ on the resulting equation
and then multiply by −∇∆Ψ to obtain

(
|∇2Ψ|2

2
)t+

1

2
ūx1

|Ψx1x1
|2+ µ

ρ
|∇∆Ψ|2+ µ+λ

ρ
|∇2divΨ|2−div

[
ψ1tx1

∇ψ1x1

+ψ1tx2∇ψ1x2 +ψ1tx3∇ψ1x3 +ψ2tx1∇ψ2x1 +ψ2tx2∇ψ2x2 +ψ2tx3∇ψ2x3

+ψ3tx1∇ψ3x1 +ψ3tx2∇ψ3x2 +ψ3tx3∇ψ3x3 +
µ+λ

ρ
(divΨx1∇divΨx1 +divΨx2∇divΨx2

+divΨx3
∇divΨx3

)− µ+λ

ρ
(divΨx1

∆divΨx1
+divΨx2

∆divΨx2
+divΨx3

∆divΨx3
)
]

+(
u1
2
|Ψx2x2

|2+ u1
2
|Ψx3x3

|2− u1
2
|Ψx1x1

|2)x1
−(u1Ψx1x1

·Ψx1x2
+u1Ψx1x2

·Ψx2x2
)x2

−(u1Ψx1x1
·Ψx1x3

+u1Ψx1x3
·Ψx3x3

)x3

=L1(t,x,y)+L2(t,x,y)+L3(t,x,y)+L4(t,x,y), (4.64)

where

L1(t,x,y)=
p′(ρ)

ρ
∇2φ ·∇∆Ψ−∇2W ·∇∆Ψ,

L2(t,x,y)=
2µ+λ

ρ2
ρ̄x1 ūx1x1∆ψ1x1 −

2µ+λ

ρ
ūx1x1x1∆ψ1x1 ,

L3(t,x,y)=ψ1x1∇ψ1 ·∇∆ψ1+ψ2∇Ψx2 ·∇∆Ψ−ψ1x2Ψx1x2 ·∆Ψ−ψ1x3Ψx1x3 ·∆Ψ

+ψ3∇Ψx3 ·∇∆Ψ+ψ2x1∇ψ1 ·∇∆ψ2+ψ3x1∇ψ1 ·∇∆ψ3+
1

2
ψ1x1(|Ψx2x2 |2

+|Ψx3x3
|2−|Ψx1x1

|2)+∇ψ2 ·(ψ1x2
∇∆ψ1+ψ2x2

∇∆ψ2)+∇ψ3 ·(ψ1x3
∇∆ψ1

+ψ3x3∇∆ψ3)+
p′′′(ρ)

γ−1
φx1∇φ ·∇∆ψ1+

µ

ρ2
∆ψ1∇φ ·∇∆ψ1+

p′′′(ρ)

γ−1
φx2∇φ ·∇∆ψ2

+
µ+λ

ρ2
∇φ ·(divΨx1

∇ψ1+divΨx2
∇∆ψ2+divΨx3

∇∆ψ3)+
µ+λ

ρ2
divΨx1

∇φ ·∆Ψx1

+
p′′′(ρ)

γ−1
φx3∇φ ·∇∆ψ3+

µ

ρ2
∆ψ3∇φ ·∇∆ψ3+

µ+λ

ρ2
∇φ ·(divΨx2∆Ψx2

+divΨx3∆Ψx3 −divΨx1∇divΨx1 −divΨx2divΨx2 −divΨx3divΨx3),

and

L4(t,x,y)=
1

2
ūx1

|Ψx2x2
|2+ 1

2
ūx1

|Ψx3x3
|2+ ūx1

Ψx1
·∆Ψx1

+ūx1x1
ψ1∆ψ1x1

+ ūx1
∇ψ1 ·∇∆ψ1

+(
p′′′(ρ)

γ−1
− p′′′(ρ̄)

γ−1
)ρ̄2x1

∆ψ1x1
+(

p′(ρ)

ρ
− p′(ρ̄)

ρ̄
)ρ̄x1x1

∆ψ1x1
+
µ

ρ2
ρ̄x1

∆Ψ ·∆Ψx1

+
2µ+λ

ρ2
ūx1x1∇φ ·∇∆ψ1+

p′′′(ρ)

γ−1
ρ̄x1∇φ ·(∆Ψx1 +∇∆ψ1)+

µ

ρ2
∆ψ2∇φ ·∇∆ψ2

+
µ+λ

ρ2
ρ̄x1

∇divΨ ·(∇∆ψ1−∇divΨx1
)+

µ+λ

ρ2
ρ̄x1

∇divΨ ·∆Ψx1
.

Integrating the equation (4.64) over R×T2 yields that

1

2

d

dt
∥∇2Ψ∥2+[∥ū1/2x1

Ψx1x1
(t)∥2+∥∇∆Ψ(t)∥2+∥∇2divΨ(t)∥2]
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≤C
∫
T2

∫
R
[|L1(t,x,y)|+ |L2(t,x,y)|+ |L3(t,x,y)|+ |L4(t,x,y)|]dx1dy. (4.65)

Now we estimate the terms on the right-hand side of (4.65). As in (4.42) and (4.46),∫
T2

∫
R
|L1(t,x,y)|dx1dy≤

1

8
∥∇∆Ψ∥2+C∥(∇2φ,∇2W )(t)∥2, (4.66)

and ∫
T2

∫
R
|L2(t,x,y)|dx1dy≤

1

8
∥∇3ψ1∥2dt+Cε(1+ t)−2. (4.67)

As in (4.43), (4.44) and (4.45), we have∫
T2

∫
R
|L3(t,x,y)|dx1dy≤CE(∥∇3Ψ∥2+∥∇2Ψ∥2+∥∇2φ∥2). (4.68)

Finally, similar as (4.39), we also have∫
T2

∫
R
|L4(t,x,y)|dx1dy≤

1

8
∥∇3Ψ∥2+Cε∥∇2Ψ∥2+Cε 1

2 (1+ t)−
3
2 ∥(∇φ,∇Ψ,∇2Ψ)(t)∥2

+Cε(1+ t)−2∥(φ,ψ1,∇φ)(t)∥2+Cε(1+ t)−3∥φ(t)∥2. (4.69)

Then putting (4.66)-(4.69) into (4.65), using the elliptic estimates ∥∆Ψ∥∼∥∇2Ψ∥
and ∥∇∆Ψ∥∼∥∇3Ψ∥, and and noting E+ε≤ε1 and ε1 is assumed sufficiently small,
it holds that

1

2

d

dt
∥∇2Ψ(t)∥2+[∥ū1/2x1

Ψx1x1
(t)∥2+∥∇3Ψ(t)∥2]

≤C∥(∇2φ,∇2W )(t)∥2+CE(∥∇2Ψ∥2+∥∇2φ∥2)+Cε∥∇2Ψ∥2+Cε(1+ t)−3∥φ(t)∥2

+Cε
1
2 (1+ t)−

3
2 ∥(∇φ,∇Ψ,∇2Ψ)(t)∥2+Cε(1+ t)−2∥(φ,ψ1,∇φ)(t)∥2+Cε(1+ t)−2.

Integrating the above inequality with respect to t, and using (4.48), we have (4.63).
This completes the proof of Lemma 4.5.

Proof of Proposition 3.1. First, from (3.1)3 and Lemmas 2.2, we have

∥∇2W∥22≤C∥φ∥2+C∥W∥2+Cε,

which, together with (4.63), yields

∥(φ,Ψ,W )(t)∥22+
∫ t

0

[∥ū1/2x (φ,ψ1)(s)∥2+∥(∇φ,∇Ψ,∇W )(s)∥21+∥(∇3Ψ,∇3W )(s)∥2]ds

≤C[∥(φ0,Ψ0,W0)∥22+ε1/8]≤C[∥(φ0,Ψ0)∥22+ε1/8]. (4.70)

Here we have used that

∥W0∥22≤C∥φ0∥2+Cε,

which is derived by using (3.1)3 and Lemma 2.2, we thus arrive finally at (3.6). The
proof of Proposition 3.1 is complete.
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5. The proof of Theorem 1.1
This section proves our main theorem. First, we focus on the proof of Theorem

3.1. To prove Theorem 3.1 we employ the standard continuation argument based on a
local existence theorem and the a priori estimates. It should be noted that the uniform
lower and upper bounds of the density function ρ(t,x1,x2,x3) in (4.2) guarantee the
strict parabolicity of the momentum equation, which is crucial for the local and global-
in-time existence of the classical solution to the system (3.1). Similar to [13], we can
prove the local existence theorem, so we omit the details. On the other hand, the a
priori estimates have been given in Proposition 3.1. Therefore, to complete the proof
of Theorem 3.1, we need only to investigate the large-time behavior of the solution
(φ,Ψ,W )(t,x1,x2,x3) to problem (3.1)- (3.3) as time tends to infinity.

Proof. (The completion of the proof of Theorem 3.1.) First we have, by
(3.6), ∫ +∞

0

∥(∇φ,∇Ψ,∇W )(t)∥2dt<+∞. (5.1)

To prove (3.4), we only need to show∫ +∞

0

| d
dt

∥(∇φ,∇Ψ,∇W )(t)∥2|dt<+∞. (5.2)

In fact, by Cauchy’s inequality, Lemma 2.2, (3.6) and the standard elliptic estimates,
one has∫ +∞

0

| d
dt

∥∇φ∥2|dt

=

∫ +∞

0

|
∫
T2

∫
R
∇φ ·∇φtdx1dy|dt

=2

∫ +∞

0

|
∫
T2

∫
R
div(φt∇φ)−φt∆φdx1dy|dt

=2

∫ +∞

0

|
∫
T2

∫
R
φt∆φdx1dy|dt

=2

∫ +∞

0

|
∫
T2

∫
R
(ρdivΨ+ψ2φx2 +ψ3φx3 +u1φx1 + ρ̄x1ψ1+ ūx1φ)∆φdx1dy|dt

≤C
∫ +∞

0

∫
T2

∫
R
(|∇Ψ|2+ |∇φ|2+ ūx1

ψ2
1+ ūx1

φ2+(∆φ)2)dx1dydt

≤C[∥(φ0,Ψ0)∥22+ε1/8]<+∞, (5.3)

and ∫ +∞

0

| d
dt

∥∇Ψ∥2|dt

=2

∫ +∞

0

|
∫
T2

∫
R
Ψt ·∆Ψdx1dy|dt

=C

∫ +∞

0

∫
T2

∫
R
(|∇Ψ|2+ ūx1ψ

2
1+ |∇φ|2+ |∇W |2+ ρ̄x1φ

2+ |∇2Ψ|2+ ū2x1x1
)dx1dydt

≤C[∥(φ0,Ψ0)∥22+ε1/8]<+∞. (5.4)
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Moreover, we also note∫ ∞

0

| d
dt

∥∇W∥2|dt=2

∫ +∞

0

|
∫
T2

∫
R
∇Wt ·∇Wdx1dy|dt

≤C
∫ ∞

0

∥∇W (t)∥2dt+C
∫ ∞

0

∥∇Wt(t)∥2dt,

which, together with (4.20) and (3.6), yields∫ ∞

0

| d
dt

∥∇W∥2|dt<+∞. (5.5)

Thus (5.3), (5.4) and (5.5) give (5.2). (5.1) and (5.2) imply that

lim
t→+∞

∥(∇φ,∇Ψ,∇W )(t, ·)∥=0, (5.6)

which, together with Sobolev’s inequality and Proposition 3.1, yields

lim
t→+∞

sup
(x1,x2,x3)∈R×T2

|(φ,Ψ,W )(t,x1,x2,x3)|=0. (5.7)

This completes the proof of Theorem 3.1.

Finally, we give the proof of Theorem 1.1.

Proof. (Proof of Theorem 1.1.) Due to Theorem 3.1, it remains to show (1.12).
In fact, by (3.4) and (iii) in Lemma 2.2, we have

lim
t→+∞

sup
(x1,x2,x3)∈R×T2

|ρ(x1,x2,x3,t)−ρr(x1,t)|

= lim
t→+∞

sup
(x1,x2,x3)∈R×T2

|φ(x1,x2,x3,t)+ ρ̄(x1,t)−ρr(x1,t)|=0,

lim
t→+∞

sup
(x1,x2,x3)∈R×T2

|u(x1,x2,x3,t)−(ur,0,0)t(x1,t)|

= lim
t→+∞

sup
(x1,x2,x3)∈R×T2

|Ψ(x1,x2,x3,t)+(ū,0,0)t(x1,t)−(ur,0,0)t(x1,t)|=0,

lim
t→+∞

sup
(x1,x2,x3)∈R×T2

|ϕ(x1,x2,x3,t)−ϕr(x1,t)|

= lim
t→+∞

sup
(x1,x2,x3)∈R×T2

|W (x1,x2,x3,t)+ ϕ̄(x1,t)−ϕr(x1,t)|=0.

The proof of Theorem 1.1 is now completed.
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