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STABILITY OF
NON-DEGENERATE STATIONARY SOLUTION IN INFLOW
PROBLEM FOR A 1-D RADIATION HYDRODYNAMICS MODEL*

KWANG-IL CHOET, HAKHO HONG#, AND JONGSUNG KIMS$

Abstract. This paper is concerned with the large-time behavior of the solutions to the inflow
problem for a 1-D compressible viscous heat-conducting gas with radiation in the half line (0,00). We
first give the existence of non-degenerate (supersonic and subsonic) stationary solutions with the aid
of center manifold theory. In addition, using an energy method, we show the time-asymptotic stability
of the non-degenerate stationary solutions under smallness assumptions on the initial perturbation and
the boundary data in the Sobolev space.
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1. Introduction and main results

The equations describing the one-dimensional motion of a compressible viscous heat-
conducting gas with radiation in Eulerian coordinates, can be written in the following
form (see [1])

ﬁt + (ﬁ~)i =0,
(pi)s 4‘_55@2 +D)z= M%ﬁ, i (1.1)
[p(e+ )¢ +[pu(é+ 5 ) +pi)z + Gz = Kkbzz + p(Utz)z,

where the unknown functions are the density p(Z,t) >0, the velocity @(Z,t), the temper-
ature é(i",t) >0, and the radiative heat flux ¢(&,t). Moreover, é= e([),é) and p=p(p, é) is
the internal energy and the pressure, while x>0 and p > 0 denote the heat-conductivity
and the viscosity respectively.

We consider system (1.1) on [0,00) supplemented with the far-field condition and

the initial data

(ﬁ,ﬂ,é) |t:0: (50717'0750)(‘%)7 S [0700)7

: SR (1.2)
iz 400 (9,4, 6,9)(Z,) = (p4,u+,04,0),
and the inflow boundary condition
plico=p—, Glimo=u_>0, Olz—0=0_, §ls=0=0, (1.3)

where py >0, uy, 0+ >0 are prescribed constants.
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1764 INFLOW PROBLEM FOR A 1-D RADIATION HYDRODYNAMICS MODEL

When the radiation effect is involved, the mathematical study for radiating gas
models starts from Hamer’s work [2]. The model considered in [2] can be understood
as Burgers equation coupled with an elliptic equation:

{wt+f(w)ac +q, =0,

1.4
Gz +q+w, =0, ( )

where w is a scalar unknown function. It is the simplest possible model and the third-
order approximation of the compressible Euler system with radiation (see Appendix A
in [3]):

pt+ (pu)e =0,

(pu)e+ (pu® +p)s =0,

[o(e+ )]+ [pule+ %) +pul, + ¢, =0,
o +q+(0%), =0.

(1.5)

For Hamer’s model (1.4), Kawashima-Nishibata [4] proved asymptotic stability of shock
profiles. Kawashima-Tanaka [5] showed the stability of rarefaction waves. Then this
result has been extended to multi-D cases by Gao-Ruan-Zhu in [3,6,7]. Recently,
Ohnawa [8] has extended the result in [4] to continuous shock cases.

On the other hand, there are also some results on the nonlinear stability of elemen-
tary waves for Euler system with radiation (1.5). In [9], the authors proved the global
existence of shock profiles for the Euler-Poison system, and Lattanzio-Mascia-Serre [10]
extended the proof to a general hyperbolic-elliptic system. Lin-Coulombel-Goudon stud-
ied the stability of shock profiles under the zero mass perturbation assumption in [11].
Then Nguyen-Plaza-Zumbrun removed the zero mass perturbation assumption by us-
ing a Green function method in [12]. The stability of a single “viscous contact wave” is
studied in [13,14] and the stability of a rarefaction wave is considered in [15]. Xie [16]
proved the stability for the combination of viscous contact wave with rarefaction waves.

Moreover, for system (1.1) of compressible viscous heat-conducting gas with radi-
ation, there are a few mathematical results for the stability of elementary waves. For
Cauchy problem of system (1.1), Wang-Xie [1] proved the stability of a single viscous
contact wave and Hong [17] showed the stability of the combination of contact discon-
tinuity with rarefaction waves. Recently, for the outflow problem of system (1.1) in
the half line, Choe-Hong-Kim [18] proved the existence, stability and convergence rate
toward the non-degenerate stationary solution.

However, to the best of our knowledge, there is little work about the stability of
nonlinear wave patterns for the inflow problem of system (1.1), so we consider the inflow
problem, that is, system (1.1)-(1.3).

Throughout this paper, we assume that the pressure p and the inertial energy e are
smooth functions of density p and temperature 6, and

Pp(p,0) >0, eq(p,0)>0. (1.6)

Because the system (1.1)-(1.3) that we consider is in one dimension of the space
variable Z, it is convenient to use the following Lagrangian coordinate transformation
(see [19]):

(t.%)
(t,x)= <t/( ﬁ(T,y)dy—ﬁ@(ﬂwdT)-

0,0)
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Thus, system (1.1)-(1.3) can be transformed into the following moving boundary prob-
lem in the Lagrangian coordinates:

v — Uy =0, r>o_t, t>0,
Ut+pmzﬂ(u71)za

(e+ 5 et () + o = (5% + 5 ),

— (%), +vg+(6*), =0,

(v,1,0) [e=0=(vo,u0,00)(x),

lim, 400 (v,u,0,9)(x,t) = (v4,u4,04,0),
(v,u,0,9) |o=o_t= (v_,u_,0_,0), wu_>0,

where v(z,t)=p"1(2,t), u(z,t) =u(z,t), 0(z,t) :é(i’,t), q(z,t)=q(Z,t),ve=pi', 0 =
—p_u_<0.

To fix the moving boundary x=o0_t, if we introduce a new variable {=x—o_t,
then (1.7) yields the following inflow problem in half-line

vy —0_ve —ug =0, £>0, t>0,
U — T _Ug +Pe = (75)
2 2 o
(e+%) —0_(e+ %)+ (pu)e +qe = (K2 + 125,
*(%)ﬁvﬁ(ﬁ)g—o, (1.8)
(v,u,0) |t=0= (vo,u0,00)(§),
lim5%+w(v’uaqu)(fat):(v+7u+a9+70)a
(v,u,0,9) |¢=o=(v—,u_,0_,0), u_>0.

Notation: Throughout this paper, O(1),c or C denote a generic positive constant, and
¢i(+,+) or Ci(+,-)(i € Z4) denote some generic constants depending only on the quantities
listed in the parentheses. As long as no confusion arises, we denote the usual Sobolev
space with norm || ||, by H*:= H*(0,00) and ||-|[o=]|-|| denotes the usual L?—norm.

Our main results are as follows. The solution (9,4,60,§)(£)(E=x—o0_t) of system
(1.8) must satisfy the system

— 0 — g =0, £€(0,+00),

S g
—U—ufﬂ?s:u(g)@

I +(PU)e +Ge = ., e
o\ ) TP Y T . (1.9)

,(j)(()):(v_,u_,e_,()), (ﬁa 0@)(+OO) (U+,U+,0+,O),

where p=p(0,0), é=e(d,6).
We denote the sound speed and define the Mach number, respectively, by
Ip(p,s)

c(v,0) = Tp: —v2py(v,8), M(U’“’Q):c(%)’

(1.10)
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where s=s(v,0) is the entropy.
Then, we first state the existence result of solutions (4, ,6,4)(€) to the system (1.9):

THEOREM 1.1 (Existence of non-degenerate stationary solution).  Let vy >0, u_ >

0,0+ >0. The necessary condition of the existence for the stationary solution to system
(1.9) s

__ueWE) | use
e T 7J+,vg>0. (1.11)

If uy <0, there is no stationary solution to system (1.9).
For the case My =M (vy,uy,04)#1, if uyp >0 and (1.6) hold, then there exists
a positive constant &y and a local manifold M C Ms, :={(v,0) € R%|0<|(v—v4,0—

04)| <00} such that if (v_,0_) € M, then system (1.9) has a unique solution, (9,4,0,4)(€)
satisfying

|6§(’1A)—U+7’IAJ,—U+79A—9+,(D‘SCéeXp(—éf), k:071723"'a (112)

where § =|(v— —v4,0_ —04)| and C,¢ are positive constants.

REMARK 1.1.  Inequality (1.12) shows that for My #1, the solution of system (1.9)
converges to the spatial asymptotic state with an exponential rate, which is called non-
degenerate stationary solution. For the case M, =1, the solution of system (1.9) may
converge with an algebraic rate, which is called the degenerate stationary solution. The
case will be pursued by the authors in the future.

REMARK 1.2.  Compared with the results of [20] and [21] for inflow problem of full
compressible Navier-Stokes equations, inflow problem (1.8) is different in that there
exists a stationary solution even for the case M™ > 1.

Next, we state the result for the stability toward the non-degenerate stationary
solution for inflow problem (1.8). We set the perturbation (¢,%,(,w)(§,t) by

((ba'(/JvC’w)(gvt) = (Uauaevq) (f,t) - (Aaa’é7QA)(£)

and the solution space X (0,T) as

X(0,T)={(¢,¢,¢,w) | (¢,9,¢,w,we) € C([0,T; HY),
d)i ELQ(OvT;LQ)v (d)f,Cvaawf) €L2(03T;H1)}

for any 0<T < oc.

THEOREM 1.2 (Stability of the solution). Let vy >0,ux >0,0L >0. Suppose that
there exists a solution (0,4,0,4)(§) to the system (1.9) satisfying (1.12). In addition,
suppose that (1.6) holds and

(6,0,0)(-,0) € H', up(0) =u_, O(0) =6_.

Then, there exists a constant €9 >0 such that if

||(¢7¢7<—)(70)||1 +6§<€07
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where 6 = |(v— —vy,0_ —01)|, then inflow problem (1.8) has a unique global stationary
solution (v,u,0,q)(&,t) satisfying (¢,1¢,(,w) € X(0,00) and

||(¢7w,<,w7w§)(t)||§+/0 (lee (M1 + 11 (e, Ce.w,we) (7)) dr < Cl(,4,€) (- 0) I3

(1.13)
for any t €[0,00), where C' is a positive constant independent of t and e9. Moreover, the
solution (v,u,0,q)(§,t) tends time-asymptotically to the stationary solution (0,4,0,§)(€)
in the sense that

tlim sup |(v,u,0,q,q¢)(&,t) —(f),ﬁ,é,@,fk)(fH =0. (1.14)
T0¢e(0,00)
REMARK 1.3. Note that the stability analysis in Theorem 1.2 is the first result for
inflow problem (1.8) of a compressible viscous heat-conducting gas with radiation in
the half line. Moreover, we would like to emphasize that a similar stability result can
be applied to the case with the combination of the following four basic waves: the 1,

3-rarefaction waves, stationary solution and viscous contact wave by similar arguments
as in [22] or [23]. It will be left in the future work.

Here, we briefly review some main difficulties of our problem, compared to the
inflow problem to compressible Navier-Stokes equations. As we know, when omitting
the radiation effect, system (1.1) reduces to the classical compressible Navier-Stokes
equations. For the inflow problem of compressible Navier-Stokes equations, there have
been many mathematical studies about the existence and stability of the stationary
solutions, please refer to [19,24,25]) for the isentropic case and to [20, 22,23, 26-28] for
the non-isentropic case. Compared to Navier-Stokes system, our problem is more general
and more complex for the radiation effect is taken into account. For instance, in order
to obtain the existence of stationary solutions, they, in [20], consider a 2 x 2 system of
autonomous ordinary differential equations, but we have to introduce the new variable E
(see (2.5)) to deduce the stationary equations to a 4 x 4 system of autonomous ordinary
differential equations, and examine the dynamics around an equilibrium by applying
the manifold theory (Section 2). Next, to show the stability of the stationary solutions
by the elementary energy method, it is sufficient (see Proposition 3.1) to deduce certain
uniform (with respect to the time t) a priori estimates on the perturbations (¢,%,¢,w)
around stationary solutions (@,ﬁ,é,(j). In the first step of a priori estimates, comparing
with the Navier-Stokes equations, the main difficulty is to control the energy form (3.8)
so that we get the uniform estimate for Lo—norm of the perturbations, which is not
trivial due to control of the new leading term —% (see (3.16) in Section 3). Moreover,
to prove the uniform estimate for ||(¢(¢)||, we have to control the more difficult leading

term —(ee (% - ﬁ) (see (3.32) in Section 3), which is also not trivial.

2. The existence of non-degenerate stationary solutions

It is known that the following relationship between thermodynamic variables (p,v,e,
6 and s) is established (see [21]).

eg(v,0
50(0,0) =pg(v,0), s6(v,0)= 0(9 )a ev(v,0) =0pg(v,0) —p(v,0), (2.1)
or
gv(v,s):_ﬁ(v73)’ 53(0,5)29,
gv(v73):pve(v7g})9:9(:z§+:z)))7 ﬁ%v,s):%%bg))v (22)
0u(v,8) = =Ty 0s(v:8) = Gtwm)
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From (2.2) and (1.6) we have

0(po(v,0))

Do (v,8) =py(v,0) — co(v.0) <0,
~ _ 5 (v :_Hpg(v,ﬁ)
) e A X (2.3
€vp(V,8) =—py(v,0)+ W >0,
€g(V,

which means that €(v,s) is a convex function with respect to (v,s).

2.1. Reformulation of stationary problem. Integrating (1.9),_, over [{,00)
yields

—U_(QA}—U+)—(@—U+):O,§ZO,

N N Uu,
—o_(@—ug)+(p-pi)=p

Qe (2.4)
’[} b)

. 1. . .
—0_ ((e—e+)+2(u2—ui)> +(pu—p+u+)+q:mf+u

de +/:O(ﬁd)(y)dy— (é‘*—Hi) =0,

0]
where e =e(vy,04), p+=p(v4,0+).

Let £=0in (2.4); then we get o_v4 +uy =0_v_+u_ =0 and (2.4); yields (1.11).
If uy <0, there is no stationary solution of system (1.9).

Suppose that uy >0. Setting E’(f):—fgoo(f)qA)(y)dy, and using (2.4) and (1.11)
yields

v

Ug = T (03(@—%) +(—p4)),
0 = g (—a_(é—e+) —0_p+(7}—v+)+(72§(17—v+)2+q> ) (2.5)
quﬁ(é4791+E), Be =14,
where we used
p U = o2 b=~ (0 (0 v1) + (1)
Moreover, we have
(8,0,4)(0) = (v-,0-,0),  (8,0,4, E)(00) = (v1,0+.0,0). (2.6)

To discuss the solvability of system (2.5), (2.6) near the infinity asymptotic state
(vy,04,0,0), we need to introduce the stationary perturbation variables given by

(©,0,3,E) == (9,0,4,E) — (v1,604,0,0).
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Then, system (2.5), (2.6) is transformed into the vector equations for (v, 0, O.E)

v N 0@
i g =J, 6~) g2(§3€7@ . £>0
E E 94(v,q)

(©,0,)(0)= (v —v4,0_—64,0), (,0,q,E)(c0)=(0,0,0,0),
where J is Jacobian matrix at an equilibrium point (0,0,0,0) defined by

*%(UQ—JFP;F) *%p;r 0 0 a;; aiz 0

0
J.= (e +p4) € = _ |G an < 98
. 0 wiot 0 v, 0 4v,6% 0 v, (28)
0 0 vy 0 0 0 vy 0

and g;(i=1,2) are nonlinear terms such that

~ v ~ ~
g1(0,0)=— . (c20+(p—ps))
— 2 (p—py —piT—pi8) = O +6%),
Mo —
~ B o_v

7= (6—ey—efv— eb"g)

gQ(EH’(Aj): K (é_e+)_

3

— 0_ __ ~ ~

—M%Q-F;US—EZO(’UZ—FQQ—FZ]Q),
K 2K K

gg(a;,’é,E):5((§+9+)4791+E)+v+ ((5+9+)4*9i*4915)
=0(?+ 6%+ E?),
94(0,9) =0q=0(0* +¢%),
where pt=p,(vy,01), ef =e,(vy,04) and so on.

2.2. Proof of Theorem 1.1. By (2.8), we have

(111—)\ ai2 0 0

- . as1 Qo9 — A v: 0
J+ A= 0 4U+93_ - V4
0 0 V4 -

and the characteristic determinant of J; is

air—A a0 air—A a2 0
|J+—>\I‘:(—)\) any agg—)\ % — U4 a1 a22_)\ 0
0 4’U+9_3i_ —A 0 4’U+03_ V4
2 2y |@1—A a2 4?03
:()\ —’U+> a9y a227/\ )\(&11—)\).

Assume that uy >0 and (1.6). Then, the eigenvalues X;(¢=1,---,4) of J; must
satisfy
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/\4+bl)\3+b2)\2+b3)\+b4=0, (29)
where
40263
512*(011+a22), 52:(a11a22*a12a21)*v_2~_* ++,
K
(2.10)
402 63
.2 +Y9+ .2
b3 =—vib1+ ai, by=—vi(ai1a22 —aizaz).

K

Noticing (see (2.2), (2.1)) that

~ + 9+(p;_)2 + + o+
Po(v4,84) =Dy S and el =0,py; —pT,
0

and using (2.8), we get

v _ 0, (p)? o_v
(1114-&22:—7Jr (02+py(?}+,8+)+ +(+9) - +€;’
Lo p K

v? (U it n
a11a22 — 12091 = — (2 +Pj> eg —— (el +p4) g
1% LK

Uy
2 /.2
:;}TJ,; <Zéﬁ+'p}(v+,s+)) ey, (2.11)
a11=—% <02 +5v<v+,s+)+9+(6’f)2).
Using (1.10) and (1.11), we have
My >1(<1)5 (02 +Py(vg,54)) >0(<0). (2.12)

From Vieta’s formula, the roots of system (2.9) have the following properties:

A+ A+ A3+ =—by,

A1A2 + A1 A3+ A1 Ay + Ao A3 + Ao Ay + Az Ay =ba,
A1 A2 A3+ A1 Ao Ay + A1 A3 A0 + Ao A3 Ay = —b3,

A Ao A3 Ay =by.

(2.13)

For the case M, > 1: Using (1.6), (2.11), (2.12) and o_ <0, we obtain from (2.10)
b1<0, b3>0, b4<07
which implies, together with (2.13)

A1 A2 A3 <0,
)\1)\2(>\3+)\4)+(>\1 +)\2))\3)\4<0, (214)
)\1+/\2+>\3+)\4>0.

The first inequality of (2.14) implies (2.9) doesn’t have any zero real root and we can
assume A1 g <0, AgA4 >0 without loss of generality. Moreover, using the second and
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third inequalities of (2.14), we have A3+ Ay >0. Therefore, without loss of generality,
we can assume

A1 <0, Aa>0, ReA3>0 and Rely >0.

To make the manifold theory directly applicable, we need to reduce system (2.7)
to the block diagonal form. From elementary linear algebra, there is a real nonsingular
matrix @ =(¢;j)axa such that

QI Q=diag(\1,A), (2.15)

where A is a 3 x 3 matrix corresponding to the eigenvalues \;(i =2,3,4). Therefore, the
linear transformation

=Q !

1O

v
i
q
FE

—
—

applied to system (2.7) yields the equivalent boundary value problem

‘7 ‘7 Hl(vvngvE)
d|e . 5 H,(V,06,Q,2)
— | = | =diag(\,A) | < | + T >0, 2.16
| o g(A1,A) Q Hy(V,6,Q,5) € (2.16)
= = H4(V7®7Q75)
711V (0) +q120(0) + q13Q(0) + q14=(0) =v_ — v,
421V (0) +¢220(0) + 423Q(0) + g24=(0) =0 — 0., (2.17)
431Q(0) +320(0) +g33Q(0) + g34=(0) =0,
(V,6,Q,8)(c0) =(0,0,0,0), (2.18)
where H;(i=1,---,4) are defined by
H80D\ ([ wEd
HQ(Y7(?7Q7§) — —1 92(579,@
H3(Y:7§)7Q7§) g3(5767E)
H4(V7@7Q7:) 94(:@@

For the sake of technique only, it is convenient to introduce an undetermined pa-
rameter Ep: —E(O), simultaneously add the auxiliary boundary condition Q41V( )+
2420(0) +q43Q(0) 4 44=(0) = E which is combined with (2.17) and described very suc-
cinctly as

(=]

V- — U4
=Q! 9*69+ . (2.19)

Eq

MO D <
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Since the previous argument proceeds inductively to yield the fact that J; has one
negative eigenvalue \; as well as three eigenvalues with positive real part. By virtue
of the manifold theory in [29], there exist a C'™ local stable manifold W} _(0,0,0,0)
corresponding to A; and a C* local unstable manifold W} _(0,0,0,0) corresponding to
Ai(i=2,3,4). More specifically, W .(0,0,0,0) can locally be represented by a graph over
the V variable, i.e.,

W;.(0,0,0,0)={(V,0,Q,E) € R*| 3C* functions . h% and hZ such that

6=n5(V),Q=h5(V)andE=h (V) with h§(0) = Dhg(0)

0,

h5(0) = Dh;(0) =0 and h%(0) = Dhg(0) =0, for |V | sufficiently small}.

Furthermore, if (V(0),0(0),Q(0),2(0)) is located on the stable manifold
W .(0,0,0,0), then problem (2.16), (2.18) and (2.19) has a unique smooth solution
(V,0,Q,Z) which approaches the origin (0,0,0,0) at an exponential rate asymptotically
as £ > oo, ie.,

105(V,0,Q,2)(€)| <C|V(0)|e~, for k=0,1,2,---. (2.20)

Next, we assert that if

(V(0),6(0),Q(0),2(0) € {(V,0,Q.E) € R*[©=hg(V), Q=h5(V), E=hZ(V)},
(2.21)
original stationary problem (1.9) with |v_ —vy|+]0_ — 0| < 1 is equivalent to boundary
value problem (2.16), (2.18) and (2.19) with |V (0)| < 1. It suffices to show that V(0)
depends locally on the original data (v— —v4,0_ —64) in a continuous differentiable
way.
Using (2.21), the first and second equations in (2.17) can be rewritten as

[me

a1V (0) +Q12hf§(‘7(0)) +Q13hz§(‘7(0)) +Q14hsg(‘7(0)) =U— — Uy, (2.22)
021V (0)+ ga2h (V(0)) +q23hz§(17(0)) +2ah(V(0)) =0_ 0. '

If we do not maintain
q11=¢21=0, (2.23)

then by using implicit function theorem, one easily solves equation (2.22) for V(0) to
obtain a unique C! function of (v_ —v,,0_ —6.) in a neighborhood of the origin (0,0).
Thus, by using differential mean value theorem, we have

V(0)| < C(jv- —vi|+0- —04]) (2.24)

if lv_ —vy|+]6—-—04+]<1. This implies the assertion mentioned at the beginning of
this paragraph holds. In addition, from (2.24), it follows that condition (2.20) is also
equivalent to (1.12). If (2.23) holds, then we prove

411 =q21 =q31 =q41 =0,

which is impossible since the matrix @ is nonsingular. By premultiplying both sides of
equality (2.15) by @ and using (2.8), we immediately deduce that J,Q=Qdiag(A1,A)
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including the following algebraic equations:

a11q11 +a12q21 = A\14q11,
a21q11 + a22q21 + “Fq31 = A1qo1, (2.25)

4040% o1 +v4qa1 = A1q31,  V4g31=A1qa1

according to the definition of matrix multiplication. By (2.25) and (2.23), we get (2.23).
For the case M >1, the proof of Theorem 1.1 is completed.

For the case M, <1: Using (1.6), (2.11), (2.12) and o_ <0, we obtain from (2.10)
by <0, bs4>0,
which implies, together with (2.13)

)\1)\2)\3)\4 >0,

(2.26)
AMA2+ Az A+ (A1 +A2) (A +)\4) <0.

Using (2.26), we deduce that (2.9) doesn’t have any zero real root and the following
possible cases:

(1) A2 >0, A3y >0, (/\1 +)\2)()\3+)\4) <0,

(2.27)
(2) Ao >0, A3Ay <O0.
Therefore, we can assume from (2.27), without the loss of generality,
Re)l < 0, Rels < 0, A3>0 and \g>0. (228)

Using (2.28), by similar arguments as above, we can prove Theorem 1.1 in the case of
My <1 (see [18] for more detail).

3. Stability of non-degenerate stationary solution
Rewriting (1.8), as

u?

0
et—0—65+pu5+%=“(f)5+/ﬁf, (3.1)

it is convenient to work with the equation for the entropy s and the temperature 6

2 2
_ ge_, (O | 0w
SEmo-sety H(v9)€+nv92+ﬂv9’
Opo(v,0) 1 K 0 TR 3.2)
0 —0c_0 A% - e Ye
1m0t eo(v,0) uf+eg(v,9)q§ eq(v,0) <v)£ eo(v,0) v’

where we used €, (v,s) =—p(v,s) and €s(v,s) =6 due to (2.2). Moreover, rewriting (1.9),
as

e\ |, %
3
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it is convenient to work with the equation for §=s(¢,0) and 6

By (1.8), (1.9), (3.2) and (3.3), we have
Pt —0_¢pe —1he =0,
wt—0¢g+(z?—ﬁ)5=ﬂ<—> ;

3

- <q55> +(vg—04) + (9444) —0,
v ¢ I3

>

(6,%,€) lt=0=(d0,%0,C0) (€) = (vo — ¥, u0 — @, 00 — ) (£),
hm (@5 ¥,¢w)(€,t)=(0,0,0,0),

(¢71/}ﬂ ng) |£:0: (0703070)

3.1. A priori estimate. To prove Theorem 1.2, we show the following a priori
estimate:

PROPOSITION 3.1 (A priori estimate). Besides the assumptions of Theorem 1.2, sup-
pose that (¢,1,(,w) € X(0,T) is a stationary solution to system (3.4) for some positive
constant T >0. Then, there exists a constant £, >0 such that if

sup [|(¢,9,C,w,we)(t)[[1<er and S=|(v- —vy,0- —01)[<eq, (3.5)
0<t<T

then for any t €[0,T], holds that

||(¢,w,<7w,%)(t)l\f+/o ||¢>s(7)||2d7+/O (e, e w,we) (T) [ Fdr < Cl(¢,4,¢)(0)].
(3.6)

In this subsection, we will prove Proposition 3.1. For notational simplicity, we in-
troduce A < B if A<CyB holds uniformly on the constant Cy independently of ¢,£,T,e1.

We first give the following energy estimate.

LEMMA 3.1.  Under the assumptions of Proposition 3.1, holds that

||(¢7¢,C)(t)||2+/0 ||(¢57Cs7w7w§)(7)|\2d75||(¢7w74)(0)\|2+81/0 lge(m)*dr. (3.7)
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Proof. Let

2

E=e(v,s)—e(0, §)+%+§(@ §w—0)—0(s—35), (3.8)

where &= s(0,0), then using (3.1)-(3.4) yields

202
Ei—o_ &= —pu5+pu5+ﬁ< ) (vf @5>_wg

vt (=5 o pto A=) 4w deto 3

N N N g e
S/ A Y (e S Y (S ) (S .
: (v@ @9)5 & <v92 62 H vl 56 + 0 0 (39)

Noticing that

—pug +ple —Y(p—p)e +Pbe = —[1(p—D)le — (p— D) tie,
(5-4) o(5-8) A(5-5)-(-)08
voD . vl 50 : v 00 Ve
(G 0 | fecce 0¢
—<av>5+e<v> T
¢
w(“sf{) +<%fg§>é<1@%>w<wf@> +<1é>u§
v 0/ v 0 vl P v v /) 0] v

:<¢(“§_ﬁ€)> U§C¢E+@_%+¢w§ﬂg,
13

vl vl vl V0

and using (3.3) and (1.9), by the same lines as in [17, (3.12)], we drive from (3.9) that

6
5t*0_5§+,uﬁ?/1§+ Cg <w§+H1§+H27u§A1+J SEAQ, (3.10)

where
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Using (2.3), é,(v,s)=—p(v,s) and €,(v,s) =0, it is easy to check that

(* +*+ ) SES (PP +02+ ). (3.11)

ow.0wi+ [ [ <uf9w§+n£2<§> s [ "o (5) dcar
<001+ [ [ (Ml +lac + s dcar. 12
Noticing that by (3.5), there exist positive constants C' and ¢ such that
c<(§,1),0(8,1) <C (3.13)
if we choose €1 to be small, we have

o] < [C g ||| + ICl e * (9] +[C1) + el 9] e
+\C|(|é££|(|¢|+|C|)+|95\(|¢>£\+|@£\(|¢|+\C|)))+|95\|¢||Cs|7 (3.14)
AL (87 +¢P). A S(6°+P).
By using (3.14), (1.12) and the inequality |f ()| <|f(0)|++/€]| fel|, we have
/0 |H2|d555/0 €™ (% 4+ (2)dE + 3| (e, e, Co) I S Ol (e v0e G I,
| tieailas<s [ e @ e sl oecol” (3.15)
| tsetalaes [ (ol +10eD@+ ¢ £ 0e oI
0 0
Noticing that
<C> C"&@(‘Iéqé> g(”q@‘i)
0)c 66 4°\v o), 405 445
due to (3.4), and using w |¢=o=0, we get
S
IO
T e [T e [T ey [T O (L1,
_/O 4@95w5d§+/0 e /0 weéd§+/0 4095%(1] ﬁ>q§d£h

< (e G 0 * (v D

I
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By using (3.13), (1.12), (3.5) and the inequality |f(&)] <|f(0)|++/€]| fell, we have
ni< /[ 0 e ) d
hhA(MWdewm)ﬁ
<6/ (@2 +C2 w2 + 62)dE S (G, enwe 1,

A (3.17)
\MS/O {IWI(\%I+|¢|Iés|)(|<5|+l9§l)+IWIIQI(|¢|+|CI)]d£
NG +5)H(C5,w,wE)||2+5/0 e (w4 ¢ +P)dE Serll(¢e, Gy wrwe) |1
By using (3.15), (3.16) and (3.17), we obtain (3.7) from (3.12). |
Next, we estimate ||(¢¢,%¢) ()]
LEMMA 3.2.  Under the assumptions of Proposition 3.1, it holds that
t
||(¢5,¢g)(t)\\2+/0 (¢, 0ee) (T 12dT S 11 (6,,€, 0,10 ) (0)1*. (3.18)

Proof.  Applying ¢ to (3.4); and multiplying the resulting equality by ,u 5 yields

& % UeBE  peibee
— | —0_ — — — =0. 3.19
u<2v2 t o1t 55 fJru R (3.19)
Multiplying (3.4), by % yields

t ¢ v v v ¢

v v v v 0 v

Subtracting (3.19) and (3.20), we have

A K U R A CR) B
202 v/, 202 v ¢ v €

w ugqﬁgzﬁ Ve e M@§¢§1/)s

v v2 v2 v
uuf}fg u(%ﬁ) %ﬂL(Z’Q)%Cs
£ I
+ (0.8 =20 (0.0) 36+ o (00) = (0000 5 . )

Integrating (3.21) over (&,t) € (0,00) % (0,t), and using 1 |e=0=0, p,(v,0) <0 and
(3.13), we get

nmwﬂﬂwwWw

ﬁWWﬂWHWHQ“ﬁ/%M&+Z//|ﬂMT (3.22)
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By using —o_¢¢(0,t) =1¢(0,t) due to (3.4); and ¢(0,t)=0 and the inequality
[FOI<V2I £l fellz, we have

t 1 t 7 t t
| etomir=— [wzomarsn [welaren [ lweltar 2

for any n>0.
By using (3.13), (1.12), (3.5) and the inequality |f(&)| <|f(0)|+ <]/ fell, we have

[ mldes [ (2 taeloclhol + aellol + ol igel ) de
SVl +8 [ o402+ 0+ 0RE S e+ 106, vo)
[ nldeis [ laellod? + el +10eDiollel+ oelGe] de
(3.24)
S0 [ o0+ 621 + 10clGel S 81+ el 471Gl
| imsides [ oel +16¢l) 1+ ¢DIselde
0 0
S [ e @GRSl e ol

for any n>0.
Combining (3.22)-(3.24) and using (3.7) yields

()2 + / () 12dr < (L0 )II(6.6.C.6¢) O] +1 / lee(r)|2dr  (3.25)

for any 1> 0.
Multiplying (3.4), by —t¢¢, we have

1 _
5 (00, + (G vd ) +5ude

1 1 3
=(p—D)etee — WPeetice (—)ﬂt% (uw& W}&) : (3.26)
1,

D2

[

Integrating (3.26) over (0,00) x (0,t), and using o_ <0 and 1:(0,t) =0, we get

t t o)
1% 2dr < 0)|? Igldedr. 3.27
()] +/0 e () |%dr < [[6e(0)] +// \To|dédr (3.27)
Noticing that

(p—P)e =Po(v,0)de + (po(v,0) e + (P (v,0) — Py (8,0)) e + (po (v,0) —pa (©,0)) e,

16| < [chs\ +1Cel+ (|0l +1<1) (|0 +|é5\)} [Vee |+ |teel| Pl eel
+[Yee|([evel + [tede| + || e ve ),
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and using (3.13), (1.12) and (3.5), we have
> 3 1
/0‘[6|d§§||w€§”(||¢§||+||C§||)+Hw&”i‘hpﬁ“j‘w&”
+5/ e (PP + P+ VEe + dF + 7 )dE
0
Sntllveell? 07 I (de, ) I + el (Pes e, Ces toee) I (3.28)

for any n>0.
By using (3.28), (3.7) and (3.25), we obtain from (3.27)

e (8)]2 + / e (7)1 2dr < [0 (O)]2 + / [ (ferbe,Ce)(7) |2

(3.29)
t
§||(¢,¢,C,¢5)(0)||2+/0 l[pe(D)|IPdr S11(6,%,C, be,10e) (0)]|.
By (3.29) and (3.25), we get (3.18). 0
Last, we estimate ||Cc(t)]|
LEMMA 3.3.  Under the assumptions of Proposition 3.1, it holds that
t
IICE(t)Her/O 1(Ceesweewe) () |2dr S [1(¢,%,O) (0) 13- (3.30)

Proof. Multiplying (3.4), by —Ce¢, we have

Opo(v.0)  Ope(0,0) .\ ug g
+ ( eq(v,0) ue eq(0,0) uf) Gee — Hege (ee(v,e)v eg(z},é)@>l . (3:31)

Noticing that

C:i g G\ vg—1iq (9379*")(;
STul\ v b ¢ ¢

T 403y 403 460302 463

_ W W weve 1 <¢45> 04 (0°—0%),

due to (3.4),, we have

_ [~ 9 G _  Cewee o0 1 )
/0 Cgé(ee(v,@) eo(@j)>d€ /0 eg(v,o)d“/o C5“5<69(U,9) £d§
1

dé +Ce(0,1) <69(qj 5 Qe ) (0,¢)

3
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S wgg p 0o v 2d 0o v g
7/0 463veg(v,0) £+/0 4603eg(v,0) e £+/0 463eg(v,0) gwwg d
& WeVg 1 QS(jg ¢(j (93 — éB) A Wee
- — Rl 0 d
/0 [49%2 RTE ( b >£+ w e | e ™

I1o
o[ () )« Kee@l},e) i eaml%é)) %Ldg

(0. 1)we(0.1) . (3.32)

Iy

where we used

[T wee o [T v v
/0 49369(U,9)d£ /0 40369(0,0)w5d£+/0 <49369(v,9)>§ww5d§'

Integrating (3.31) over (0,00) x (0,t), and using (3.32), o_ <0, (;(0,t) =0, eg(v,0) >
0 and (3.13), we get

t 8 t %) 12 t
e (®)12 + / (o) P S GO+ 3 / / i+ / L, |dr.
(3.33)

Noticing that
17| < [Ceel1Bee| (16] + 1€ 1) + |Ceel|0eve — Be D | +[Cee |10 e (1] + 1),
Is| < [Ceel [ |+ (101 + IC1) [aie ] + [Cee | [Jug — aZ] + (o] + 1<)l [*]
and using (3.13), (1.12) and (3.5), we have
/0 |I7|d§56/0 e (e + 0P+ + 7+ (D)dE Senll(Ceer s Co) 1P

/0 Tslde < [1Cee el + l1Cee el 1oee |+ / (G + g2+ 2 u)de B3

Sllveel? +n7 e ll® +e1ll(de, e, G vee, Cee) 1P

for any n>0.
Moreover, using (3.13), (1.12) and (3.5) yields

1515 [ (fol+ e luclde S eal e, Gl
|110|s/0 [Iwel(lee]+ [oel) + e ldel + 161 (Idze] + el + I bel + 5e) + IC1el | lweelde

1 3 1 3 2 2
S llwell % lweell 2 llgell + @11 lldell ? Nlwee |+ 611 (we , wee, de, Ce) I S e ll(we s wee, be, Ce) I
(3.35)

1l | Gellel (el e+ o+ 1) e

[ IGel001 D + e+ e+ o1 1<l ac e (536

1 1
S llwell = llwee [ e llllde | + 611 (G we, de) 1 S enll (Ge e, be) 1%,

1 1 1 1 _
T2 SNl e 12 [lwel 12 lwee 12 Sl (Ceeswee) 1P +n7 I (Ce,we) 1
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for any n>0.
Substituting (3.34)-(3.36) into (3.33), we get

t t
1))+ / I (Ceerwee we) () 27 < e (0)] 2+ / (b, e Certbec,we) [Pdr. (3.37)

By (3.37), (3.18) and (3.7), we get (3.30). 0
Proof. (Proof of Proposition 3.1.) By Lemmas 3.1- 3.3, we obtain

2. (3.38)

||(¢7¢»C)(t)||?+/0 H¢>£(T)||2d7+/o (e, Cerw,we) (7) R dr < [[(¢,3,)(0)

We rewrite (3.4), as
1 1 A
—(fj)g—f—vwz((U—@)d£>§—¢(i—(94—94>5- (3.39)

Multiplying (3.39) by w and integrating the resulting equality over £ € (0,00), we

have
oo w2 oo 1 1
[ (ot Jag=— [~ Daewecs
0 v 0 v v Ins

_ /O m¢qwd§1 n /0 - (04—é4) wed€ (3.40)

14 Iy5

Using (3.13), (1.12) and (3.5) yields

|113|+|114L|§/O |¢Hésl|%|d§+/o |0lldl|wlde Serll(pe.we)l?,

o (3.41)
sl < / 1¢llwe e S el |+ 1 C12
for any n>0. By (3.40), (3.13) and (3.41), we get
e 2+ ]2 < 1l 6. O 1% (3.42)

Multiplying (3.39) by w and integrating the resulting equality over £ € (0,00), we

have
> wgg 2 d 00@{ d > d
/0 T+UW5 5—/0 ﬁwgwggé' —/0 VWWee fl
+ 0*—0*) weede . (3.43
| (0t =it) wecte . (349)

/1 1.

By using (3.13), (1.12), (3.5) and (3.42), we have

I16

“r/ (b@x)ggdf
0
18

Iig

I

oo
1L 3
|116|§/0 [vellwe llwee € < llgellllwe | lwgell= +dllwe [[lwee | S €1l (we,wee) 17,

o
17| 5/0 Jwllwee|dg < llw] lweell S nllweell +n7 lw]?,
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Ls|< / [0]1dee] + (e +[01)1del] lwee [d€ S 1 | (Be eI
L] < / (611l lweelde < (e wee) 12, (3.44)

120 5/0 (ICel +1¢D|weeldg S mllweell* +n~ ¢

for any n>0. By (3.43), (3.13) and (3.44), we get
lwee | +llwe | < Nl (w, b, ¢ Ge) I (3.45)

By (3.38), (3.42) and (3.45), we get (3.6). The proof of Proposition 3.1 is completed. O

3.2. Proof of Theorem 1.2. In this subsection, we prove Theorem 1.2. Since
it is easy to check the following local (in time) existence, we just state it and omit its
proof for brevity.

ProrosITION 3.2 (Local existence). Suppose that the initial data ($o,10,C0) satisfy

1

5m and (6,4,0)(€0) € H.

2m <wp(§),00(§) <

Then, the system (3.4) admits a unique stationary solution (¢,v,(,w)€ X(0,t1) for
sufficiently small t1 >0 satisfying

m<wv(&,1),0(¢, t)gm

for all 0 <t <ty, where C is a positive constant depending on m,m and independent of
t,11(¢,4,0)(0)|[1. Here t1 depends only on m,m, ||(¢,1,¢)(0)]1-

Using the local existence of solution (see Proposition 3.2) and a priori estimate
of solution (see Proposition 3.1), we can show the existence of stationary solution
(v,u,0,q)(&,t) to inflow problem (1.8) on the [0,00) satisfying (¢,1,(,w) € X(0,00) and
(1.13) by standard continuum argument. It is easy to identify (1.14), using (1.13) and
the inequality ||f||L., < \/§||fH%Hf§H% Moreover, the proof of uniqueness for solution
is standard.
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