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SECOND ORDER ACCURATE DIRICHLET BOUNDARY
CONDITIONS FOR LINEAR NONLOCAL DIFFUSION PROBLEMS∗

HWI LEE† AND QIANG DU‡

Abstract. We present an approach to handle Dirichlet type nonlocal boundary conditions for
nonlocal diffusion models with a finite range of nonlocal interactions. Our approach utilizes a linear
extrapolation of prescribed boundary data. A novelty is, instead of using local gradients of the boundary
data that are not available a priori, we incorporate nonlocal gradient operators into the formulation to
generalize the finite differences-based methods which are pervasive in literature; our particular choice
of the nonlocal gradient operator is based on the interplay between a constant kernel function and the
geometry of nonlocal interaction neighborhoods. Such an approach can be potentially useful to address
similar issues in peridynamics, smoothed particle hydrodynamics and other nonlocal models. We first
show the well-posedness of the newly formulated nonlocal problems and then analyze their asymptotic
convergence to the local limit as the nonlocality parameter shrinks to zero. We justify the second order
localization rate, which is the optimal order attainable in the absence of physical boundaries.
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1. Introduction
Nonlocal integro-differential models are increasingly becoming active fields of many

scientific and engineering research fronts [1, 3, 4, 8, 27, 48]. Of particular interest to
us are those models wherein the nonlocal operators have the feature of a finite range
of nonlocal interactions that is parameterized by what is called the nonlocal horizon
δ [11, 45]. On one hand such nonlocal models have been effective in capturing singular
physical phenomena such as material defects in the peridynamic setting [41]. On the
other hand they were the underlying motivations for the development of some meshless
numerical methods like the smoothed particle hydrodynamics (SPH) [22, 31]. In this
work we are concerned with the following nonlocal linear diffusion models

Lδu(x) :=

∫
Bδ(x)

(u(x)−u(y))wδ(x,y)dy=f(x), x∈Ω

on a domain Ω where wδ(x,y) is a nonlocal interaction kernel. Those appear in the
bond-based peridynamic models [34,42] with connections to the SPH setting [14,16].

There have been a large number of theoretical and numerical studies on the linear
nonlocal diffusion models, see for example [9, 13, 17, 33, 39, 47, 54] and the references
cited therein. An outstanding issue in the existing body of literature, however, is to
seek suitable nonlocal analogues of local boundary conditions, which in the language of
nonlocal vector calculus amounts to imposing the so-called volume constraints [12]. In
the presence of physical boundaries an intrinsic challenge is to prescribe the nonlocal in-
teractions in the δ-layer outside the domain, which is in fact a distinct feature of generic
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nonlocal models with a finite δ range of nonlocal interactions. Our work here provides
a nonlocal formulation of volumetric constraints with an emphasis on the convergence
rates of the nonlocal solutions to the nonlocal models to those of the corresponding local
PDEs as δ→0, when the latter are well-defined. In particular, we rigorously establish
the second order convergence that is expected to be of optimal order since the nonlocal
diffusion operators are second order accurate approximations of the local counterpart
in the bulk domain, away from the boundaries.

Specifically, we focus on the nonlocal Dirichlet volume constraints in parallel with
the previous works on the Neumann cases [44,53], wherein the authors rigorously prove
the second order convergences of their formulations for one and two dimensional set-
tings, respectively. To our best understanding, the predominant approaches for the
Dirichlet case have been based on linear extrapolations of the given boundary data
on the co-dimension 1 surface into some volumetric data. The methods of Morris et
al. [37], for example, are the “unofficial standard” [24] in the SPH context of enforc-
ing no-slip boundary conditions via extrapolation, which can lead to a higher order of
accuracy than that of the constant extension approach [32] though the latter allows a
more straightforward implementation. However the methods in [37] have two shortcom-
ings as pointed out in [26]; the first is the computational costs of determining distances
between particles and the domain boundaries, which could be costly, whereas the sec-
ond is the implementation of a safety parameter to cap the relative magnitudes of the
computed distances for numerical stabilities. The paper [51] proposes a modification
of [37], addressing the complication of non-unique normal distances of a point to the
boundary, yet the two drawbacks of the original method remain unresolved in this new
approach. The work of [24] proposes an efficient way to approximate the ratios of dis-
tances needed for the extrapolation given in [37]. It, being an estimation after all, might
potentially deteriorate the accuracy of the generated numerical solutions. Turning to
the peridynamics community, we note that the recent work [56] presents an algorithm
for nonlocal computations of normal derivatives to locate the mirror nodes in the so-
called mirror-based fictions nodes methods, an equivalent to the SPH ghost particle
method [7]. Although the ghost methods are designed to avoid the numerical stabil-
ity issue of [37], they could however yield less accurate approximations of the second
derivatives. In [40] the authors provide a new version of Taylor series fictitious nodes
methods [49] based on the idea of centering the series expansion at the closest node to a
given fictitious node. One issue with such an approach, however, is that the constructed
approximations of the local derivatives by the conventional finite differences may not be
readily accessible depending on the distribution of the nodes. We are hence motivated
to consider nonlocal integral approximations of local derivatives which take into account
(possibly truncated) circular nonlocal interaction neighborhoods.

Our main contribution is to provide a well-posed nonlocal continuum formulation,
the solution to which is proved to be second order convergent to the local counterpart
as δ→0. What distinguishes our work from the existing literature is that, other than
the prescribed local boundary data, we do not require further information about the
local solutions. The authors in [19,50] prove the quadratic convergence of their nonlocal
solutions given the first order local derivatives of the local solutions on the boundaries.
The latter is generally not given a priori. The strategy adopted in [10] is to first solve for
a family of local problems parameterized by δ subject to the local boundary data on the
outer rim of the δ-layer, and then to use the computed solutions as the volumetric data
for the nonlocal problems. Instead of relying on the information about local solutions
beyond the given boundary data, we propose to incorporate suitable nonlocal gradient



HWI LEE AND QIANG DU 1817

operators into the nonlocal model to mimic the extrapolation of the boundary data
to the volumetric data. This amounts in effect to a generalization of the conventional
finite-difference based approaches such as in [37] which would correspond to choosing
suitable singular delta measures in our nonlocal gradient operators.

We should point out that Zhang and Shi in their recent work [55] have already
used nonlocal gradient operators to provide O(δ2) accurate nonlocal solutions to the
nonlocal Poisson problems on manifolds with Dirichlet boundary. They are able to
achieve the second order accuracy by enforcing the O(δ) truncation errors in the inner
δ-layer. However we demonstrate that our lower order nonlocal approximations with
the O(1) truncation errors in the layer still yield the optimal quadratic convergence
rate under suitable assumptions on the nonlocal interaction kernels. This reinforces
the view suggested in [11] that nonlocal operators can be seen as a continuum weighted
average of discrete finite difference operators; the zeroth order truncation errors near the
boundaries do not deteriorate the global second order accuracy of the finite difference
approximations for the Poisson problems [52]. The general form of our nonlocal gradient
operators is marked by the extra degree of freedom to specify the nonlocal interaction
kernels, which may prove advantageous over the finite difference approximation. For
instance we illustrate that one can exploit the interplay between the constant nonlocal
kernel and the geometry of nonlocal interaction neighborhoods to implicitly compute
the appropriate normalization factors to enforce consistency of the nonlocal operators
with the local ones. The overarching rationale behind our work is to enforce the coupling
of the nonlocal diffusion operator in the bulk domain with another nonlocal operator
for boundary treatment. In order to clearly demonstrate our idea we focus on the one
dimensional setting just as the analogous result in one dimensional setting for Neumann
boundary conditions [44] is established first before its extension to two dimensions in a
subsequent work [53].

Among other existing works, the authors of [21] presented explicit rates of local-
ization for the solutions to a vector-valued system of nonlocal state-based linear elastic
equations subject to general nonlocal Dirichlet-type constraints. Despite the generality
of analysis therein, the authors pointed out the suboptimality of their theoretical results
which fall O(δ

1
2 ) short of their numerically demonstrated rates. We illustrate here that

such a theoretical gap can be filled in under a more specialized setting of scalar bond-
based models which are indeed later generalized to state-based ones [43]. The simplified
setting of our work allows us to harness the comparison principles to establish the opti-
mal quadratic convergence rates. At the same time, however, the present work aims to
generalize the nonlocal modeling approach behind the conventional approaches [21] to
impose nonlocal Dirichlet boundary conditions. That is, we allow the material points
in the inner δ-layers to take into account possibly different nonlocal Dirichlet bound-
ary values as opposed to constructing a set of nonlocal boundary values on the outer
δ-layer for all the points close to the boundaries. This is achieved by perturbation of
the nonlocal diffusion operator by yet another nonlocal operator in the vicinities of the
domain boundaries. The present study is in the similar spirit as in various strategies to
counteract the surface effects in peridynamics [28,36] by means of modifying the nonlo-
cal models near the boundaries. We opt for a “position-aware”, in the language of [36],
nonlocal formulation in order to align more closely with the SPH standards of Morris
et al. [37] to motivate more practical approaches without requiring the full solution of
related local limit.

The paper is organized as follows. In Section 2, we present the nonlocal Dirichlet
type constrained value problem which incorporates extrapolation via nonlocal gradi-
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ents. We provide the well-posedness of the equivalent integral equation formulation. In
Section 3, we prove that the weak solution of the nonlocal problem converges to the
corresponding local one as the nonlocal horizon vanishes. Moreover we establish the
O(δ2) convergence rate in uniform norm when the local solution is sufficiently smooth,
followed by the analogous results for some of the existing approaches to enforce the
Dirichlet boundary conditions. In Section 4, we provide concluding remarks as well as
future directions to extend our current work.

2. Well-posedness of nonlocal formulation
For the rest of the paper we consider the one dimensional domain Ω=(0,1) un-

less otherwise noted. We seek a nonlocal relaxation of the classical local PDE with
homogeneous boundary conditions{

−∆u(x)=f(x), x∈Ω,

u(0)=u(1)=0,
(2.1)

in the form of {
L̃δu(x) :=(Lδ−Mδ)u(x)=f(x), x∈Ω,

u(x)=0, x∈ (−δ,0)∪(1,1+δ).
(2.2)

Here Mδ is a perturbation of Lδ given by

Mδu(x)=

∫
Bδ(x)\Ω

(u(x)+Gδu(x)(y−x))wδ(x,y)dy

where Gδ(u)(x) is a nonlocal gradient operator given by

Gδu(x)=


1∫

Bδ(x)∩Ω

dist(y,∂Ω)ρ(x,y)dy


∫
Bδ(x)∩Ω

u(y)ρ(x,y)dy, x∈ (0,δ),∫
Bδ(x)∩Ω

(−u(y))ρ(x,y)dy, x∈ (1−δ,1),

0, otherwise,

for some nonlocal interaction kernel ρ, which we want to choose in order to dispense
with calculating the distances dist(y,∂Ω) to the boundaries. Indeed there is such a
choice, namely ρ≡1, which we utilize for the rest of the paper. Considering without
loss of generality x∈ (0,δ), we note that the convexity of Bδ(x)∩Ω gives∫

Bδ(x)∩Ω

dist(y,∂Ω)dy=

∫ x+δ

0

|y−0|dy=
∫ x+δ

0

|y−x−δ|dy= (x+δ)2

2
.

Our nonlocal gradient operator Gδ can be seen as a modification of the one studied by
Mengesha and Spector in [35], if we modify our definition in the bulk of the domain to

Gδu(x)=

∫
Bδ(x)

(u(y)−u(x))(y−x)ρ̃(x,y)dy, x∈ (δ,1−δ)

for yet another nonlocal kernel ρ̃. We however choose the definition above as it is the
effect of Gδ in the inner δ layer that matters in our current study. We can nevertheless
follow their work to show the localization of Gδ in some topologies as follows.
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Lemma 2.1. For any u∈C1(Ω) with u|∂Ω=0, Gδu→u′ uniformly on (0,δ)∪(1−δ,1)
as δ→0. For any u∈H1

0 (Ω), Gδu→u′ in L2((0−δ)∪(1−δ,1)) as δ→0.

Proof. For the first claim, we consider x∈ (0,δ) so that

|Gδu(x)−u′(x)|=

∣∣∣∣∣ 2

(x+δ)2

∫ x+δ

0

(u(y)−u′(x)y)dy

∣∣∣∣∣
=

∣∣∣∣∣ 2

(x+δ)2

∫ x+δ

0

(u(y)−u(0)−u′(x)y)dy

∣∣∣∣∣=
∣∣∣∣∣ 2

(x+δ)2

∫ x+δ

0

(u′(η(y))−u′(x))ydy

∣∣∣∣∣
where η is between 0 and y by the mean value theorem. Then the conclusion follows
from the uniform continuity of u′.

For the second claim, we use the standard density argument to establish the result.
By the first claim, it is straightforward to see that the result is true for ϕ∈C∞

c (Ω).
Given ϵ>0, let ϕ∈C∞

c (Ω) such that ∥u′−ϕ′∥2L2(0,1)<ϵ. Then since

∥Gδ(u)∥2L2(0,δ)=

∫ δ

0

4

(x+δ)4

∣∣∣∣∣
∫ x+δ

0

u(y)

y
ydy

∣∣∣∣∣
2

dx

≤
∫ δ

0

4

(x+δ)4

(∫ 1

0

∣∣∣∣u(y)y
∣∣∣∣2dy

)(∫ x+δ

0

y2dy

)
dx

≤C∥u′∥L2(0,1)

for some constant C independent of δ, where the last inequality is due to the Hardy’s
inequality [5], we have

∥Gδ(u)−Gδ(ϕ)∥2L2((0,δ)∪(1−δ,1))=∥Gδ(u−ϕ)∥2L2((0,δ)∪(1−δ,1))≤2Cϵ.

Then, if we take δ→0 in

∥Gδ(u)−u′∥2L2((0,δ)∪(1−δ,1))≤∥Gδ(u)−Gδ(ϕ)∥2L2((0,δ)∪(1−δ,1))

+∥Gδ(ϕ)−ϕ′∥2L2((0,δ)∪(1−δ,1))+∥ϕ′−u′∥2L2((0,δ)∪(1−δ,1))

we obtain the desired conclusion.

Next, we specify the assumptions on the kernel wδ(x,y) of the nonlocal diffusion

operator Lδ. We assume wδ(x,y)=
1
δ3w

(
|x−y|

δ

)
wherew is continuous, nonincreasing and positive on [0,1) outside

which it vanishes, and satisfies

∫
R
w(|z|)|z|2dz=2.

(A1)

We can then rewrite the Equation (2.2) as the following equivalent integral equation

Ñδu=f in Ω (2.3)

where

Ñδu(x) :=aδ(x)u(x)−
∫
Ω

u(y)
(
wδ(x,y)−bδ(x)χ[0,δ](|y−x|)

)
dy.
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Here χ[·] denotes the characteristic function,

aδ(x)=

∫
Ω

wδ(x,y)dy

and

bδ(x)=



2

(x+δ)2

∫
Bδ(x)\Ω

(x−y)wδ(x,y)dy, x∈ (0,δ),

2

(1−x+δ)2

∫
Bδ(x)\Ω

(y−x)wδ(x,y)dy, x∈ (1−δ,1),

0, otherwise.

We note the kernel in the second term of Ñδ is in general sign changing and translation-
variant. This poses a challenge for us to adapt the technique of [33] because the kernel
considered therein is translation invariant. Instead we will resort to the idea of Os-
trowski’s comparison matrix [29,38] and introduce analogously the comparison operator

P̃δ(u)(x) :=aδ(x)u(x)−
∫ 1

0

u(y)w̃δ(x,y)dy

where w̃δ(x,y)= |wδ(x,y)−bδ(x)χ(0,δ)(|y−x|)|. We in turn present the comparison
problem

P̃δvδ =f in Ω, (2.4)

the solvability of which will lead to that of the original problem (2.3). In the meantime,

it is not difficult to deduce from the assumptions on w that both Ñδ and P̃δ are bounded
operators on L2(Ω), which then leads us to consider f ∈L2(Ω). With the aforementioned
preparations we can now state the well-posedness of (2.4).

Proposition 2.1. Suppose that in addition to (A1), the kernel wδ satisfies

aδ(x)≥
∫
Ω

w̃δ(x,y)dy, x∈Ω. (A2)

Then P̃δ is invertible with

∥(P̃δ)
−1∥2≤C

for some C(w,δ)>0.

Proof. We first argue P̃δ satisfies the Fredholm alternative. Since aδ(x)>0 we
have that aδ(x)I is an invertible operator. Meanwhile the square integrability of wδ

implies

∫
Ω

u(y)w̃δ(x,y)dy is a compact operator.

Next, we show that the kernel of P̃δ is trivial, which then would imply that P̃δ is
invertible. To this end let v∈L2(Ω) such that P̃δv≡0. That is,

v(x)=
1

aδ(x)

∫
Ω

v(y)w̃δ(x,y)dy.

We see v is continuous on Ω due to the continuities of aδ and w̃δ(·,y), and due to the
square integrability of the w̃δ(x, ·), which is compactly supported. Then we apply the
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assumption (A2) to obtain that v is a constant function. To rule out nonzero constants
it is sufficient to show that the inequality in (A2) is strict in some subdomain of Ω.
Indeed for x∈ (0,δ) we have

bδ(x)=
2

(x+δ)2

∫ 0

x−δ

(x−y)wδ(x,y)dy=
2

(x+δ)2

∫ x+δ

2x

(y−x)wδ(x,y)dy≤wδ(x,z)

for 0≤z≤2x due to the assumption that w is even and non-increasing, thus

aδ(x)−
∫ 1

0

w̃δ(x,y)dy≥ (3x−δ)bδ(x)>0, ∀x∈
(
δ

2
,
3δ

4

)
where the last inequality is due to the positivity of wδ.

Finally we conclude the proof by invoking the bounded inverse theorem.

Remark 2.1. Since w is assumed to be a scaled kernel and Ω is an interval, the
condition (A2) holds for all δ∈ (0,δ0) if it is satisfied for some δ0. In particular, the
constant function as well as the piecewise linear function similar to the one used in [18]
satisfy (A2): for x∈ (0,δ), if wδ(|x|)= 3

δ3χ[0,δ](|x|) then

aδ(x)−
∫ 1

0

w̃δ(x,y)dy=
6x

δ3
≥0

whereas for wδ(|x|)= 12
δ3

(
1− |x|

δ

)
χ[0,δ](|x|) we have aδ(x)−

∫ 1

0

w̃δ(x,y)dy= bδ(x)(x+

δ−bδ(x))≥0. An analogue of the condition in the discrete setting would amount to
diagonal dominance.

The next result to be presented is concerned with a comparison principle of the
comparison problem (2.4) which will play a critical role in establishing the main result
of the section, Theorem 2.1 on the well-posedness of the original problem (2.3). Let us
first introduce the quadratic form associated with the comparison operator

Qδ(u) :=(P̃δu,u)=
1

2

∫ 1

0

∫ 1

0

(u(y)−u(x))2w̃s
δ(x,y)dxdy

+

∫ 1

0

u(x)2
(∫ 1

0

(wδ(x,y)− w̃s
δ(x,y))dy

)
dx (2.5)

where w̃s
δ(x,y)=

1
2 (w̃δ(x,y)+ w̃δ(y,x)). It is the positiveness of Qδ and w̃δ that leads to

the comparison principle.

Lemma 2.2. Suppose that wδ satisfies (A1), (A2) and

aδ(x)≥
∫
Ω

w̃δ(y,x)dy, ∀x∈Ω. (A3)

Then P̃δϕ≥0 implies ϕ≥0 for ϕ∈L2(Ω).

Proof. The proof is essentially an adaption of the argument in [23] in the finite
dimensional setting, but we include it here for completeness. Let us first write

u=ϕ+−ϕ−
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into positive and negative parts. Then since w̃δ is nonnegative we have

(P̃δϕ
+,ϕ−)L2 =

∫ 1

0

aδ(x)ϕ
+(x)ϕ−(x)dx︸ ︷︷ ︸
=0

−
∫ 1

0

(∫ 1

0

ϕ+(y)w̃δ(x,y)dy

)
︸ ︷︷ ︸

≥0

ϕ−(x)dx≤0,

so that if ϕ− ̸=0,

0≤ (P̃δϕ,ϕ
−)=(P̃δϕ

+,ϕ−)−(P̃δϕ
−,ϕ−)<0,

which is a contradiction. Here the last inequality is due to the fact that Qδ is positive
definite by the assumptions on wδ.

Remark 2.2. The assumption (A3) would amount to column diagonal dominance in
a discrete setting. It is to be checked on 2δ-inner layer of Ω, that is, (0,2δ)∪(1−2δ,1),
as opposed to the δ inner layer which is the case for (A2). For instance, the constant
and linear kernels in Remark 2.1 satisfy the assumption:

aδ(x)−
∫
Ω

w̃δ(y,x)dy=
3

δ3

∫ δ

max(0,x−δ)

δ−y
δ+y

dy≥0, x∈ (0,2δ),

if wδ is the constant kernel. Meanwhile, in the case of the linear kernel, if we write
x= rδ for r∈ (0,2), we obtain

aδ(x)−
∫
Ω

w̃δ(y,x)dy

=
12

δ2

∫ 1

max(0,r−1)

(
1−|r−z|−

∣∣∣∣1−|r−z|− (1−z)2(1+2z)

3(z+1)2

∣∣∣∣)dz︸ ︷︷ ︸
J(r)

,

which can be (numerically) shown to be non-negative (Figure 2.1).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

r

0

0.02

0.04

0.06

0.08

0.1

0.12

J
(r

)

Fig. 2.1. Verification of the condition (A3) for the “hat” linear kernel.

Theorem 2.1. Under the assumptions (A1) and (A2), the same conclusions as in
Proposition 2.1 hold for the problem (2.3) in place of (2.4).

Proof. By linearity it is sufficient to consider the case f ≥0. Since aδ(x)>0 we
can write

Ñδ = I−N̂δ, and P̃δ = I− P̂δ,
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where

N̂δϕ(x)=

∫
Ω

ϕ(y)
wδ(x,y)−bδ(x)χ[0,δ](|y−x|)

aδ(x)
dy,

and

P̂δϕ(x)=

∫
Ω

ϕ(y)
|wδ(x,y)−bδ(x)χ(0,δ)(|y−x|)|

aδ(x)
dy.

By construction, we observe∣∣∣N̂n
δ f(x)

∣∣∣ := | N̂δ ◦···◦N̂δ︸ ︷︷ ︸
applied n times

f(x)|≤ P̂n
δ f(x), n∈N,x∈Ω.

On the other hand we have

(P̃δ)
−1f ≥

n∑
j=0

P̂n
δ f, n∈N,

since we can apply Lemma 2.2 to

P̃δ

(P̃δ)
−1f−

n∑
j=0

P̂ j
δ f

= P̂n+1
δ f ≥0.

Consequently we obtain ∣∣∣∣∣∣
∞∑
j=0

N̂ j
δ f(x)

∣∣∣∣∣∣≤ (P̃δ)
−1f(x), x∈Ω,

which proves the existence of Ñ−1
δ :L2(Ω)→L2(Ω). As in the proof of Proposition 2.1

the proof is complete due to the bounded inverse theorem.

Before we discuss the local limit of our formulation let us briefly mention our non-
local treatment of the case where the local PDE (2.1) is subject to the inhomogeneous
Dirichlet boundary conditions u(0)=a and u(1)= b. In that case we may take the linear
function ϕ which satisfies those boundary conditions, and solve (2.3) with f replaced by

f−Ñδϕ. Alternatively we may modify the definition of Gδu(x) for x∈ (0,δ)∪(1−δ,1)
into

1∫
Bδ(x)∩Ω

dist(y,∂Ω)ρ(x,y)dy


∫
Bδ(x)∩Ω

(u(y)−a)ρ(x,y)dy, x∈ (0,δ),∫
Bδ(x)∩Ω

(b−u(y))ρ(x,y)dy, x∈ (1−δ,1),

without affecting the validity of our analysis.

3. Asymptotic localization as δ→0
It is important to analyze consistency between our nonlocal formulation and the

corresponding local one as the former is conceived as a relaxation of the latter. We
are interested in studying the asymptotic behavior of the nonlocal solution as the non-
locality vanishes, namely its convergence to the local one when the local formulation



1824 SECOND ORDER NONLOCAL DIRICHLET BOUNDARY CONDITIONS

is mathematically valid. To this end we turn to the variational framework and prove
a sharper version of the stability result than Theorem 2.1 wherein the constant C is
independent of δ. As in the previous section we will first work with the comparison
problem by proving the uniform positivity of Qδ in (2.5). One can find in literature
the related results when nonlocal interaction kernels are radially symmetric. We would
like to make use of those results in our setting and as the first step we show that the
symmetric kernel w̃s

δ(x,y) can be bounded from below by a radially symmetric one.

Lemma 3.1. Suppose wδ satisfies (A1). Then there exists a radial, monotone, non-
negative kernel ρ that is compactly supported on (0,1) and strictly positive on (0,σ) for
some σ>0, satisfying

ρδ(|x−y|) :=
1

δ3
ρ

(
|x−y|
δ

)
≤ w̃s

δ(x,y), ∀x,y∈Ω

and

0<

∫
R
ρδ(z)|z|2<∞.

Proof. We consider two cases.
(1) w is constant, i.e. wδ(|x|)= 3

δ3χ[0,δ](|x|). In this case

w̃δ(x,y)=χ[0,δ](|x−y|)×

{
6x

δ3(x+δ) , x∈ (0,δ)∪(1−δ,1),
3
δ3 , otherwise,

so that

w̃s
δ(x,y)=

3

δ3
χ[0,δ](|x−y|)×

(
x

x+δ +
y

y+δ

)
, x,y∈ (0,δ)∪(1−δ,1),(

x
x+δ +

1
2

)
, x∈ (0,δ)∪(1−δ,1),y∈ (δ,1−δ),(

y
y+δ +

1
2

)
, x∈ (δ,1−δ),y∈ (0,δ)∪(1−δ,1),

1, x,y∈ (δ,1−δ).

We set

ρ(|x−y|)=χ[0,1](|x−y|)
3

2

|x−y|
|x−y|+1

.

(2) Otherwise we let

ρ(|x|)= 1

2
max

(
w(|x|)−2

∫ 1

0

yw(|y|)dy,0
)

which is supported on (0,σ) for some 0<σ<1 due to (A1).

In both cases one can verify that ρδ(|x−y|) := 1
δ3 ρδ

(
|x−y|

δ

)
≤ 1

2wδ(x,y), where ρ satisfies

the desired properties, completing the proof.

The next result we present is concerned with a sharper version of the inequality in
(A2). The nonlocal variational framework which we would like to rely on is pertinent
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to the case of positive definite nonlocal operators, which we have not yet established for
the operator P̃δ. The following result will help us stride towards that direction.

Lemma 3.2. Suppose that w satisfies (A1) and

|{y∈Ω:wδ(x,y)−bδ(x)χ[0,δ](|y−x|)≥0}|
≥|{y∈Ω:wδ(x,y)−bδ(x)χ[0,δ](|y−x|)≤0}|, x∈Ω. (A2s)

Then

aδ(x)−
∫
Ω

w̃δ(x,y)dy≥Cδbδ(x), x∈Ω

for some C>0 independent of δ.

Proof. We consider x∈ (0,δ) and recall wδ(|x|)≥ bδ(x) due to (A1). Then we have

P̃δ(1)=aδ(x)−
∫
Ω

w̃δ(x,y)dy=

∫ 1

0

(
wδ(x,y)−|wδ(x,y)−bδ(x)χ(0,δ)(|y−x|)|

)
dy

= bδ(x)(x+(2r(x)−1)δ)+2

∫ x+δ

x+r(x)δ

wδ(x,y)dy

where

r(x)= sup
z∈[0,1]

{wδ(x,x+zδ)−bδ(x)≥0}.

Since bδ(x) is decreasing on (0,δ) it follows from (A1) and (A2s) that r(x) is increasing
on (0,δ) with r(0)≥ 1

2 and r(δ)=1. Let us consider the different cases respectively.

• If there exists λ∈ (0,1) such that 1
2 <r(λ)<1, then we have

P̃δ(1)≥

2

∫ x+δ

x+r(λ)δ

wδ(x,x+y)dy=
2

δ2

∫ 1

r(λ)

w(y)dy, x∈ (0,λδ),

bδ(x)(2r(λ)−1)δ, x∈ (λδ,δ).

• Otherwise

r(x)=

{
1
2 , 0<x<t,

1, t<x<1,

for some t∈ (0,1), so that

P̃δ(1)≥

2

∫ x+δ

x+ δ
2

wδ(x,x+y)dy=
2

δ2

∫ 1

1
2

w(s)ds, x∈ (0,tδ),

bδ(x)δ, x∈ (tδ,δ).

The assumption (A1) implies∫ 1

s

w(y)dy=C1(s)>0, ∀s∈ (0,1),

while we have δbδ(0)=
C2

δ2 ≥ δbδ(x), hence proving the desired claim.
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Remark 3.1. The assumption (A2s) can be viewed as the dominance of the region
where the sign-changing kernel wδ(x,y)−bδ(x)χ(0,δ)(|y−x|) of the nonlocal operator

Ñδ is positive over the negative region. Since bδ(x) is decreasing on (0,δ) and wδ

is radially decreasing, one way to check that the assumption is satisfied is to show
bδ(0)≥wδ

(
x,x+ δ

2

)
=wδ

(
| δ2 |
)
. If we consider the same kernels as in Remarks 2.1 and

2.2, we note bδ(0)=
3
δ3 ≥wδ

(
| δ2 |
)
= 3

δ3 if wδ is the constant function whereas bδ(0)=
2
δ3 ≥

wδ

(
| δ2 |
)
= 6

δ3 if wδ is the linear function.

We now present the uniform Poincare’s inequality which amounts to variational
stabilities of the nonlocal solutions.

Proposition 3.1. Suppose wδ satisfies (A1), (A2s) and (A3). Then there exists
δ0>0 and C(w) such that

∥(Ñδ)
−1∥2≤C

for all δ∈ (0,δ0).

Proof. We observe

|(Ñδ)
−1f(x)|= |(Ñδ)

−1f+(x)−(Ñδ)
−1f−(x)|≤2(P̃δ)

−1|f(x)|, x∈Ω

from the proof of Theorem 2.1. Thus it is sufficient to prove

∥(P̃δ)
−1∥2≤C

for some constant C>0 uniformly in δ. We have

Qδ(u)≥
1

2

∫
Ω

∫
Ω

(u(y)−u(x))2ρδ(|x−y|)dxdy

+
C̃

2

∫
Ω

u2(x)

∫
Bδ(x)\Ω

|y−x|
δ

wδ(|y−x|)dydx

due to Lemma 3.1, (A3) and Lemma 3.2. If we now let

kδ(|x−y|)=min

{
ρδ(|x−y|),

|y−x|
δ

wδ(|y−x|)
}
,

which has a nonzero finite second moment, then we have

CQδ(u)≥
1

2

∫
Ω

∫
Ω

(u(y)−u(x))2kδ(|x−y|)dxdy+
∫
Ω

u2(x)

∫
Bδ(x)\Ω

kδ(|x−y|)dydx

=

∫
Ω

(∫
Ω

(u(x)−u(y))kδ(|x−y|)dy+u(x)
∫
Bδ(x)\Ω

kδ(|x−y|)dy

)
u(x)dx

=

∫
R

(∫
Bδ(x)

(û(x)− û(y))kδ(|x−y|)dy

)
û(x)dx,

where

û(x)=

{
u(x), x∈Ω,

0, x∈R\Ω.
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Hence, we conclude by applying Lemma 2.1 [30] that,

Qδ(u)≥C∥û∥2L2(R)=C∥u∥
2
L2(Ω).

Another ingredient that is often used to study the local limit is a compactness result
such as Lemma 5.2 in [34] which is applicable to uniformly (in δ) bounded nonlocal
energies. However we are not aware of such result when the kernel is neither radially
symmetric nor nonnegative. Instead we take a detour by considering the following
truncation error analysis.

Lemma 3.3. For ϕ∈C4(Ω̄) with ϕ(1)=ϕ(0)=0, we have

Tδ(ϕ)(x) :=(−∆+Ñδ)ϕ(x)=

{
O(δ2), x∈ (δ,1−δ),
O(1), otherwise.

More specifically there exists a constant M>0 independent of δ such that

|Tδ(ϕ)(x)|≤Mδ3bδ(x)+O(δ2).

Proof. Without loss of generality, let us consider x∈ (0,δ). We apply a Taylor
series expansion and the assumption (A1) to obtain

|Tδ(ϕ)(x)|−O(δ2)

=

∣∣∣∣∣u′′(x)
(
−
∫ 0

x−δ

(y−x)2

2
wδ(x,y)dy+

2x−δ
3

∫ x+δ

0

(y−x)wδ(x,y)dy

)

+u′′′(x)

∫ x+δ

0

(
(y−x)2

6
− 3x2−2xδ+δ2

12

)
(y−x)wδ(x,y)dy

∣∣∣∣∣
≤M

(∫ 0

x−δ

(y−x)2

2
wδ(x,y)dy+Cδ

∣∣∣∣∣
∫ x+δ

0

(y−x)wδ(x,y)dy

∣∣∣∣∣
+

∣∣∣∣∣
∫ x+δ

0

(y−x)3wδ(x,y)dy

∣∣∣∣∣
)

=M

(∫ x+δ

2x

(y−x)2

2
wδ(x,y)dy+Cδ

∫ x+δ

2x

(y−x)wδ(x,y)dy+

∫ x+δ

2x

(y−x)3wδ(x,y)dy

)

≤MC̃δ

∫ x+δ

2x

(y−x)wδ(x,y)dy=MC̃δ

∫ x+δ

0

(y−x)wδ(x,y)dy

=
MC̃δ(x+δ)2

2
bδ(x),

proving the claim.
The results are straightforward by a Taylor series expansion and (A1).

Now we establish the convergence in L2 norm of the solutions to the nonlocal
problems as the nonlocality parameter vanishes.

Theorem 3.1. Under the same assumptions as in Proposition 3.1, if uδ solves (2.3)
and u0 solves (2.1), then

lim
δ→0

∥uδ−u0∥2=0.



1828 SECOND ORDER NONLOCAL DIRICHLET BOUNDARY CONDITIONS

Proof. Without loss of generality, we consider a sequence of δn→0 and denote the
corresponding nonlocal solution uδn =(Ñδn)

−1f by un. Let {fm}∞m=1 be a sequence of
smooth functions on Ω such that limm→∞∥fm−f∥2=0. Now fix ϵ>0.

Let um,0 solve (2.1) with fm in place of f , and let um,n=(Ñδn)
−1fm. Then we

obtain

∥u0−un∥2
≤∥u0−um,0∥2+∥um,0−um,n∥2+∥um,n−un∥2
≤∥u0−um,0∥2+∥(Ñδn)

−1∥2 (∥Tδnum,0∥2+∥fm−f∥2)
≤∥u0−um,0∥2+C (∥Tδnum,0∥2+∥fm−f∥2)

where the last inequality is due to Proposition 3.1. Now a very crude estimate from
Lemma 3.3 shows

∥Tδnum,0∥2≤C1(m)(δn)
1/2.

Hence if we pick a particular m̂ so that

∥u0−um̂,0∥2+C∥fm̂−f∥2<
2ϵ

3

then we have

C∥Tδnum̂,0∥2≤C1(m̂)(δn)
1/2<

ϵ

3

for all n sufficiently large, proving the claim.

We finally turn to the order of convergence rate when the local solution is smooth.
We would like to apply the barrier function technique as done in [44]. At our disposal

is the comparison principle Lemma 2.2 for the comparison operator P̃δ so our strategy
is to consider a suitable comparison problem. In our explicit construction of a barrier
function we exploit the fact that the conclusion of Lemma 3.2 provides a lower bound
for P̃δ1 in terms of bδ which is involved in the upper bounds on the truncation error in
Lemma 3.3.

Proposition 3.2. Suppose w satisfies (A1), (A2s) and (A3). Assume further f is
regular enough such that the local solution u to (2.1) is smooth. If we denote by uδ the
nonlocal solution to (2.3), then there exists δ0>0 and C>0 such that

∥uδ−u∥∞≤Cδ2

for δ∈ (0,δ0).

Proof. We let eδ =uδ−u, which satisfies

Ñδeδ(x)=Tδu0(x),

and consider

P̃δvδ(x)= |Tδu0(x)|,

so that we have |eδ|≤2vδ as in the proof of Proposition 3.1.
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Let ϕ(x)=1+ψ(x), where ψ is the solution to the problem{
−∆ψ(x)=1, in Ω,

ψ(x)=0, on ∂Ω.

We observe that for x∈ (0,δ),

P̃δϕ(x)≥ (aδ(x)−∥w̃δ(x, ·)∥L1(Ω))+

∫
Ω

(ψ(x)−ψ(y))w̃δ(x,y)dy

=(aδ(x)−∥w̃δ(x,·)∥L1(Ω))+ψ
′(x)

∫
Ω

(x−y)w̃δ(x,y)dy

+

∫
Ω

(y−x)2

2
w̃δ(x,y)dy+

∫
Ω

ψ′′′(ξ(x,y))

6
(x−y)3w̃δ(x,y)dy

≥Cδbδ(x)+ψ′(x)

∫
Ω

(x−y)w̃δ(x,y)dy︸ ︷︷ ︸
I1

+

∫
Ω

(y−x)2

2
w̃δ(x,y)dy︸ ︷︷ ︸

I2

+

∫
Ω

ψ′′′(ξ(x,y))

6
(x−y)3w̃δ(x,y)dy︸ ︷︷ ︸
I3

for some constant C>0 due to Lemma 3.2, where the first inequality is due to the non-
negativity of ψ and ξ(x,y) is between x and y. Let us now estimate each Ik, k=1,2,3:

I1≥−M1

∣∣∣∣∫
Ω

(x−y)w̃δ(x,y)dy

∣∣∣∣
≥−M1

(∣∣∣∣∫
Ω

(x−y)wδ(x,y)dy

∣∣∣∣+bδ(x)∣∣∣∣∫
Ω

(x−y)χ(0,δ)(|y−x|)dy
∣∣∣∣)

=−M1

(
(x+δ)2

2
bδ(x)+bδ(x)

∣∣∣∣∫
Ω

(x−y)χ(0,δ)(|y−x|)dy
∣∣∣∣)≥−4M1δ

2bδ(x)

for some constant M1>0,

I2=

∫
Ω

|y−x|2

2
wδ(x,y)dy−bδ(x)

(∫
Ω

|y−x|2

2
χ(0,δ)(|y−x|)dy

)
≥
∫
Ω

|y−x|2

2
wδ(x,y)dy−δ3bδ(x)≥ C̃−δ3bδ(x)

for some constant C̃ >0 due to the assumption (A1), and

I3≥−M2

∫
Ω

|y−x|3(wδ(x,y)+bδ(x)χ[0,δ](|y−x|))dy≥−2M2(δ+δ
4bδ(x))

for some constantM2>0, where the last inequality is again due to the assumption (A1).
Putting these estimates together implies that there exists δ0>0 such that

P̃δϕ(x)≥
1

2

(
Cδbδ(x)+ C̃

)
for all δ∈ (0,δ0). Therefore we conclude

sup
x∈Ω

|vδ(x)|≤
(
sup
x∈Ω

ϕ(x)

)(
sup
x∈Ω

|Tδu0(x)|
P̃δϕ(x)

)
≤C1 sup

x∈Ω

C2δ
3bδ(x)+O(δ2)

1
2

(
Cδbδ(x)+ C̃

)
︸ ︷︷ ︸

O(δ2)
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for some C1,C2>0, where the first and second inequalities are due to Lemma 2.2 and
Lemma 3.3, respectively.

Based on our choice of the barrier function in the proof of Proposition 3.2 we can
in fact revisit the existing methods of enforcing nonlocal Dirichlet boundary conditions
to prove their convergence rates as δ→0. The two approaches that we focus on are
the constant extension methods [32] and the methods of Morris et al. [37]. Notwith-
standing their numerically demonstrated performances, we are not aware, to our best
understanding, of existing theoretical justification for the convergence rates of their
associated nonlocal solutions.

We first turn to the constant extension methods wherein the nonlocal volumetric
constraints are prescribed via constant extension of the local boundary values, that is,
u(x)=0 for x∈ (−δ,0)∪(1,1+δ). Hence the nonlocal continuum formulation, in the
case of homogeneous boundary conditions as before, is given by{

Lδu(x)=f(x), x∈Ω,

u(x)=0, x∈ (−δ,0)∪(1,1+δ).
(3.1)

One can find a multitude of thorough mathematical investigations on this formulation;
see, for example, [11] and the references cited therein. In particular, the recent work [50]
has established the first order localization rate of the formulation. Nevertheless an alter-
native proof of the linear convergence can be established if we note that the truncation
errors of the formulation, in the sense of Lemma 3.3, are bounded byMδ2bδ(x) for some
M independent of δ on (−δ,0)∪(1,1+δ). With the same choice of the barrier function
as before we can prove:

Proposition 3.3. Suppose w satisfies (A1). Assume further f is regular enough such
that the local solution u to (2.1) is smooth. If we denote by uδ the nonlocal solution to
(3.1), then there exists δ0>0 and C>0 such that

∥uδ−u∥∞≤Cδ

for δ∈ (0,δ0).

Next, we analyze the methods of Morris et al. [37], which are based on extrapola-
tion via finite difference approximations of local gradients. The underlying continuum
nonlocal formulation amounts to{

Lδ,Mu(x) :=(Lδ+Fδ)u(x)=f(x), x∈Ω,

u(x)=0, x∈ (−δ,0)∪(1,1+δ),
(3.2)

where

Fδ(u)(x)

=

u(x)
∫
Bδ(x)\Ω

∣∣∣∣(p(x)−y) · x−p(x)
|x−p(x)|2

∣∣∣∣wδ(x,y)dy, x∈ (0,δ)∪(1−δ,1),

0, otherwise.

Here p(x) denotes the closest point to x on ∂Ω. As in our formulation we can rewrite
the formulation into

Nδ,Mu=f in Ω (3.3)
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where Nδ,M is given by

Nδ,Mu(x) :=

(∫
Bδ(x)\Ω

wδ(|x−y|)dy

)
u(x)+Fδ(u)(x)

+

∫
Ω

(u(x)−u(y))wδ(|x−y|)dy.

We then define the associated energy space Vδ ={u∈L2(Ω) : (Nδ,Mu,u)<∞} for which
we have the following characterization.

Lemma 3.4. Assume w satisfies (A1). Then the problem (3.3) is well-posed over the
space Vδ, a weighted L2 space with the weight ηδ

ηδ(x)=1+

∫
Bδ(x)\Ω

|(p(x)−y) ·(x−p(x))|
|x−p(x)|2

wδ(x,y)dy.

Moreover H1
0 (Ω) is a proper subset of Vδ.

Proof. Since the operator
∫
Ω
(u(x)−u(y))wδ(|x−y|)dy is a bounded operator

on L2(Ω) we see that Vδ is the weighted L2 space which is complete, hence the well-
posedness follows due to the Riesz representation theorem. For the second claim we
consider∫ δ

0

u2(x)

x

(∫ 0

x−δ

|y|wδ(x,y)dy

)
dx≤

(∫
R
|z|wδ(|z|)dz

)(∫ 1

0

u2(x)

x2
dx

)
≤
(∫

R
|z|wδ(|z|)dz

)(∫ 1

0

(u′(x))2dx

)
for u∈H1

0 (0,1), where the last inequality is due to the Hardy’s inequality. Finally we
can take ϕ(x)=

√
x−x to show the inclusion is proper, completing the proof.

The inclusion of the Sobolev space H1
0 (Ω) in the nonlocal space Vδ clarifies the

connection that the integral Equation (3.3) is a suitable nonlocal candidate to approxi-
mate the local differential Equation (2.1). At the same time we point out Vδ is strictly
included in the solution space L2(Ω) of our formulation (2.3) since a nonzero constant
function does not belong to Vδ; the two may indeed be viewed as exploiting distinct
degrees of nonlocal relaxations. A simple calculation shows that the same truncation
error estimates hold for Nδ,M as in Lemma 3.3, and the same barrier function as before
can be used to show the following:

Proposition 3.4. Suppose w satisfies (A1). Assume further f is regular enough such
that the local solution u to (2.1) is smooth. If we denote by uδ the nonlocal solution to
(3.3), then there exists δ0>0 and C>0 such that

∥uδ−u∥∞≤Cδ2

for δ∈ (0,δ0).

In comparison with our approach, the trivial extension [32] and the linear extrap-
olation strategies in [37] admit a wider range of nonlocal interaction kernels due to
their more relaxed assumptions on the kernels. The simplicity of the constant extension
method is its attractive feature which comes with the price of being only first order
accurate. As opposed to the method of Morris et al. [37], our formulation is based on
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the nonlocal operator that is not self-adjoint. Our approach however is closely related
to the work [55] by Zhang and Shi which utilizes yet another non self-adjoint nonlocal
operator in order to obtain the second order accurate approximation. In contrast with

our choice of wδ they adopt a more regularly scaled kernel Wδ(x,y)=CδW
(

|x−y|2
4δ2

)
,

where W is radial, non-negative, smooth and compactly supported on (−2δ,2δ), and
Cδ is a normalization constant. Their formulation can be expressed in the current 1D
setting as ∫

Ω

(u(x)−u(y))Wδ(|x−y|)
δ2

dy−2Ĝδu(p(x))W δ(|x−p(x)|)

=

∫
Ω

f(y)W δ(|x−y|)dy+f(p(x))|x−p(x)|W δ(|x−p(x)|) (3.4)

where W δ(|x−y|)=CδW ( |x−y|
4δ2 ), W (r)=

∫ 1

r
W (z)dz, and

Ĝδu(x)

=


−1

2δ2W δ(0)

∫ 2δ

0

(
u(y)W δ(|y|)+δ2f(y)W δ(|y|)

)
dy, x∈ (0,2δ),

−1

2δ2W δ(0)

∫ 1

1−2δ

(
u(y)W δ(|1−y|)+δ2f(y)W δ(|1−y|)

)
dy, x∈ (1−2δ,1),

0, otherwise,

for W δ(|x−y|)=CδW ( |x−y|
4δ2 ),W (r)=

∫ 1

r
W (z)dz. The operators Ĝδ approximate the

outward normal local derivatives with O(δ2) error, contributing to O(δ) truncation
error of the overall formulation in (0,2δ)∪(1−2δ,1), which is one δ order higher than
our formulation. Nevertheless we are still able to maintain the second order accuracy
without the dependence of our nonlocal gradient operator Gδ on the source term f or the
modification of the right-hand side in the nonlocal Equation (2.3). Our approach also
admits a wider class of nonlocal kernels for the nonlocal gradient operators Gδ including
those that are constructed from the kernels of the nonlocal diffusion operators as done
in Zhang and Shi’s formulations. This may prove advantageous in terms of enhanced
modeling capabilities. Apart from the different scalings of the kernels, their approach
can be seen as a special case of ours in the sense that the nonlocally extrapolated
boundary values in the outer δ collars are no longer position dependent in the interior
δ-layers.

Notwithstanding the lack of self adjointness in our approach, we illustrate in the
sequel, a scenario in two dimensions where the method of Morris et al. [37] may lose its
optimal rate of convergence in the presence of a relatively simple circular boundary, for
which we propose ours as a viable alternative. We remark that our approach is based on
volume integrals only, as opposed to the 2D formulation of Zhang and Shi [55] wherein
the boundary surface (curve) integrals are also computed.

3.1. A two dimensional case study. In this subsection we present an exten-
sion of our formulation to a two dimensional setting focusing on its quadratic conver-
gence rate. We promote our extension as a more accurate approach than the method
of Morris et al. [37], which is expected to provide the sub-optimal convergence rate in
our chosen two dimensional domain. Specifically, let us consider as in [6] the punctured
periodic domain Ω=[−2,2]2\U where U ={x⃗=(x1,x2)∈R2 : |x⃗≤1}. We assume a suf-
ficiently smooth f such that there exists a smooth u which is periodic on ∂Ω\∂U and
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satisfies {
−∆u(x)=f, x∈Ω,

u(x)=0, x∈∂U.
(3.5)

We choose for simplicity the constant kernel wδ(x⃗, y⃗)=
16
δ4χ(0,δ)(|x⃗− y⃗|) which satisfies

the normalization condition
∫
R2wδ(|x⃗|)|x⃗|2dx⃗=4. For concreteness we fix x⃗⋆=(1+ϵ,0)

where 0<ϵ<δ. We first recall the nonlocal operator in our 1D formulation which can
be rewritten as∫ 1

0

(u(x)−u(y))wδ(x,y)dy+

(∫ 1

0

min(|z|,|z−1|)χ(0,δ)(|x−z|)dz
)−1

·(∫ 1

0

u(z)χ(0,δ)(|x−z|)dz
)∣∣∣∣∫ 1

0

(y−x)wδ(x,y)dy

∣∣∣∣ .
We benchmark this in our current two dimensional setting by first defining the direction
vector

nδ(x⃗
⋆)=−

16
δ4

∫
Ω

(y⃗− x⃗⋆)χ(0,δ)(|y⃗− x⃗⋆|)dy⃗∣∣∣∣ 16δ4 ∫
Ω

(y⃗− x⃗⋆)χ(0,δ)(|y⃗− x⃗⋆|)dy⃗
∣∣∣∣ =(−1,0).

Next, we compute a nonlocal directional derivative in the direction of nδ(x⃗
⋆):

Gnδ(x⃗
⋆)

δ u(x⃗⋆)=−
(∫

Ω

|qnδ(x⃗⋆)(y⃗)− y⃗|χIδ(x⃗⋆)(y⃗)dy⃗

)−1∫
Ω

u(y⃗)χIδ(x⃗⋆)(y⃗)dy⃗

where qnδ(x⃗⋆)(y⃗) is the projection of y⃗ onto ∂Ω along nδ(x⃗
⋆) and Iδ(x⃗⋆) is the −nδ(x⃗⋆)

shadow ofBδ(x⃗
⋆) [25], that is Iδ(x⃗⋆)={y⃗+nδ(x⃗⋆)t :y∈Bδ(x⃗

⋆),t≥0}. Now the geometry
of Iδ(x⃗⋆)∩Ω allows us to bypass the calculations of qnδ(x⃗⋆)(y⃗) by using the distance along
nδ(x⃗

⋆) to the segment {y⃗∈∂Bδ(x⃗
⋆)∩Ω: (y⃗− x⃗⋆) · n⃗δ(x⃗⋆)≥0}∫

Ω

|qnδ(x⃗⋆)(y⃗)− y⃗|χIδ(x⃗⋆)(y⃗)dy⃗=

∫
Ω

(1+ϵ+
√
δ2−y22−y1)χIδ(x⃗⋆)(y⃗)dy1dy2.

Finally our nonlocal formulation at x⃗= x⃗⋆ is given by∫
Ω∩Bδ(x⃗⋆)

(u(x⃗⋆)−u(y⃗))16
δ4
dy⃗+Gnδ(x⃗

⋆)
δ u(x⃗⋆)

∫
Ω∩Bδ(x⃗⋆)

(y⃗− x⃗) ·nδ(x⃗⋆)
16

δ4
dy⃗=f(x⃗⋆)

which has the O(1) truncation error by construction. As in our analysis of the 1D case
we can rewrite our formulation into the integral equation

aδ(x⃗)u(x⃗)−
∫
Ω

u(y⃗)

(
16

δ4
χ(0,δ)(|x⃗− y⃗|− b̂δ(x⃗)χIδ(x⃗)(y⃗)

)
dy⃗=f(x⃗) (3.6)

where

b̂δ(x⃗)=

(∫
Ω

|qnδ(x⃗)(y⃗)− y⃗|χIδ(x⃗)(y⃗)dy⃗

)−1
(∫

Ω∩Bδ(x⃗)

(x⃗− y⃗) ·nδ(x⃗)
16

δ4
dy⃗

)
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if x⃗ belongs to the δ-layer {z⃗∈Ω:dist(z⃗,∂U)<δ} whereas Lδu(x⃗)=f otherwise. Then
we have the following quadratic convergence result.

Proposition 3.5. The nonlocal Equation (3.6) is well-posed over L2(Ω). Moreover
its unique solution uδ converges in L∞ to the local solution u0 of (3.5) at the rate of
O(δ2) as δ→0.

Proof. A similar line of analysis as in 1D can be adopted, hence we only sketch
the key steps without detailed calculations. The first is to check that the comparison
operator satisfies

aδ(x⃗)−
∫
Ω

∣∣∣∣16δ4 − b̂δ(x⃗)χIδ(x⃗)(y⃗)

∣∣∣∣dy⃗≥Cδ∫
Ω

(y⃗− x⃗) ·nδ(x⃗)
16

δ4
dy⃗

for some C>0 in parallel with Lemma 3.2. The second is to apply the Fredholm
argument as in Theorem 2.1 for the well-posedness of the comparison problem, hence
the original nonlocal Equation (3.6). Lastly we use the comparison principle together
with the barrier function 1+ϕ, where ϕ solves (3.5) with f ≡1.

Returning to the method of Morris et al. [37], let us note p(x⃗⋆)=(1,0) and the
leading term in the truncation error Tδ(x⃗

⋆) is given by

16

δ4
∂1u(1+ϵ,0)

(∫
Bδ(x⃗⋆)∩Ω

(y1−1−ϵ)dy1dy2+
∫
Bδ(x⃗⋆)−Ω

(y1−1)dy1dy2

)
︸ ︷︷ ︸

O(δ3)

=O

(
1

δ

)
.

It should be noted that this estimate is sharp since the term in the parenthesis, for
instance, decays like 2.9749e−04, 3.7654e−05, 4.7393e−06, and 5.9457e−07 when
ϵ= ϵ

3 and δ=0.1 , 0,05, 0.025, and 0.00125, respectively. Consequently there is a loss
of optimal second order convergence which can be seen from the equation for the error
N̂δeδ =Tδ at x⃗= x⃗⋆, that is

δ4

16

(∫
Bδ(x⃗⋆)∩Ω

dy⃗+
1

ϵ2

∫
Bδ(x⃗⋆)\Ω

|(p(x⃗⋆)− y⃗) ·(x⃗⋆−p(x⃗⋆))|dy⃗

)
︸ ︷︷ ︸

O( 1
δ2
)

eδ(x⃗
⋆)

+
C

δ4

∫
Ω∩Bδ(x⃗⋆)

eδ(y⃗)dy⃗=Tδ(x⃗
⋆).

This shows that if eδ =O(δ2) then the left-hand side would be O(δ), which contradicts

the right-hand side being O( 1δ ). Our analysis in Section 3 suggests the action of Ñ−1
δ

lifts the order of the truncation error by O(δ2) in the δ-layer, hence we can instead
expect to get only O(δ) error in the uniform norm.

One may potentially extend our approach in the current case study to a more general
domain Ω (with an abuse of notation) provided that Iδ(x⃗)∩Ω is convex in the direction
n(x⃗) [2]: if w⃗, z⃗∈Iδ(x⃗)∩Ω with w⃗− z⃗ parallel to n(x⃗), then tw⃗+(1− t)z⃗∈Iδ(x⃗)∩Ω for
t∈ [0,1]. The corresponding nonlocal operator would then be(∫

Ω

wδ(x⃗, y⃗)dy

)
u(x⃗)−

∫
Ω

u(y⃗)
(
wδ(x⃗, y⃗)χ(0,δ)(|x⃗− y⃗|− b̂δ(x⃗)χIδ(x⃗)(y⃗)

)
dy⃗
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where

b̂δ(x⃗)=

(∫
Ω

|ζδ(x⃗, y⃗)|χIδ(x⃗)(y⃗)dy⃗

)−1
(∫

Ω∩Bδ(x⃗)

(x⃗− y⃗) ·nδ(x⃗)wδ(x⃗, y⃗)dy⃗

)
.

Here ζδ(x⃗, y⃗)=sup{t≥0 : y⃗− t ·nδ(x⃗)∈Iδ(x⃗)∩Ω)}, which would again not require com-
putation of qnδ(x⃗⋆)(y⃗).

4. Conclusion
In this work we have presented a nonlocal formulation to enforce local Dirichlet

type boundary conditions in the context of nonlocal linear diffusion problems. The
key ingredient of our method is the application of nonlocal gradient operators for a
linear extrapolation under suitable conditions on nonlocal interactions kernels to ensure
the well-posedness of the resulting nonlocal formulations. Of perhaps more interest to
scientific communities at large is our justification of the second order rate in δ at which
the solution to the nonlocal problem converges to the local counterpart uniformly in Ω.
We point out that our convergence analysis supplements the previous work [32] which
focuses on the consistency between the nonlocal and local operators as opposed to the
solutions of their continuum formulations.

Part of our ongoing research efforts is to extend our current work to more general two
dimensional domains for which characterizations of their geometries need to be carefully
taken into account. Future investigations will also include theoretical analysis of vector-
valued systems of nonlocal equations, possibly complementing the work [21], so that they
can be applied to address similar issues in the study of peridynamics, smoothed particle
hydrodynamics (SPH) and other nonlocal models. In particular, we are interested in the
viscosity formulations of the velocities subject to the no-slip boundary conditions in the
SPH-like methods, given their popularity as practical simulation tools. This in turn is
likely to warrant thorough numerical studies of our nonlocal boundary formulations with
respect to the existing criteria for effective numerical evaluations of nonlocal models,
such as the notion of asymptotic compatibilities [46]. A crucial component in numerical
discretization of our nonlocal continuum formulation would be that of our nonlocal
gradient operator Gδ; it would be of interest, for instance, to seek an extension of
the existing, effective numerical discretization of a more conventional nonlocal gradient
operator [15] with the aid of some techniques in SPH, such as in [20], that are designed
to improve accuracy.
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