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A SECOND-ORDER WELL-BALANCED LAGRANGE-PROJECTION
NUMERICAL SCHEME FOR SHALLOW WATER EXNER

EQUATIONS IN 1D AND 2D∗

CHRISTOPHE CHALONS† AND ALESSIA DEL GROSSO‡

Abstract. The present work is devoted to the numerical approximation of the shallow water
Exner system in both one and two dimensions, where the Exner equation expresses the evolution in
time of the bed sediment. Both the Grass and the Meyer-Peter & Müller formulas are taken into
account to model the solid transport discharge contributions. The numerical scheme is based on the
Lagrange-projection formalism which consists in splitting the mathematical model into the acoustic
and transport systems. This work is considered as a first step to understand how to include the Exner
equation in this framework and, for this reason, the Exner equation is taken into account only at the
transport level; both a decoupled and weakly coupled formulations are proposed. New strategies to
include the Exner equation at the acoustic level or in both steps will be treated in the next work. The
methods are designed in such a way to satisfy the well-balanced property as well. Details to reach the
second-order of accuracy are given; numerical results are shown to validate the numerical schemes.

Keywords. Lagrange-projection decomposition; Shallow water equations; Exner equation; Non-
conservative hyperbolic systems; Second order of accuracy; Well-balanced property.
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1. Introduction and governing equations

This work deals with the design and implementation of a second-order well-balanced
Lagrange-projection scheme applied to the 1D and 2D shallow water system with bed
sediment non-constant in time. Lagrange-Projection (LP) approach consists in splitting
the acoustic and transport waves of the model, leading to the possibility of approximat-
ing the two resulting systems with different approaches. This reveals itself to be useful,
for instance, in subsonic regimes, where the acoustic waves are the reason for the re-
strictive CFL condition one has to employ in order to have a stable numerical scheme.
Indeed, the Lagrange-projection decomposition makes possible to implicitly approxi-
mate only the acoustic system and, thus, to circumnavigate the problem of restrictive
time-steps.

Nowadays, the Lagrange-projection approach has been studied in order to satisfy
different properties and has been applied to several models. Giving a few examples,
we refer, for instance, to the work [17], where all-regime first-order explicit and semi-
implicit Lagrange-projection schemes have been applied to the gas dynamics model in
several dimensions, or to [18], where the scheme was extended to the 2D two-phase
flows model. Another possible reference is [9] with the numerical approximation of low
Mach number flows of the barotropic Euler equations where the asymptotic-preserving
property is satisfied as well. On the other hand, when it comes to the modeling of
the shallow water system in the Lagrange-projection formalism, we can refer to [19] for
an implicit well-balanced first-order scheme, to [14] for a fully well-balanced first-order
explicit method, and finally to [39] for high-order fully well-balanced schemes. Last but
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not least, and without being exhaustive, we refer, for instance, to [8,11,23,24,32,33] for
other interesting studies in this framework.

While details for the Lagrange-projection splitting are given in the following section,
let us present now the mathematical model we are interested in. It is composed of two
different ones, the hydrodynamic and the morphodynamic model. The former is simply
given by the well-known shallow water system, which is derived from the Navier-Stokes
system under the hypothesis that the vertical scale is much smaller than the horizontal
dimension. As such, it is composed of the continuity and momentum equations, which
are expressed as in the following{

∂th+∂x(hu)=0

∂t(hu)+∂x(hu
2+ gh2

2 )=−gh∂xz
(1.1)

where h(x,t)>0 is the water depth, u(x,t) the averaged velocity and z(x,t) the bed
level. In particular, H=h+z is the free surface elevation. Finally, g is the gravitational
acceleration, t>0 represents the time and x the axial coordinate. Let us briefly recall
that this system is strictly hyperbolic with real eigenvalues given by u±c with sound
speed c=

√
gh.

Then, we aim to simulate the interaction between the sediments and the flow, thus
we consider the topography z not constant in time and we make use of the so-called
Exner equation, which reads

∂tz+ζ∂xqb=0. (1.2)

Here qb= qb(h,u) is the solid transport discharge, ζ= 1
1−ρ0

and ρ0 is the porosity of the

sediment layer. The coupling of (1.1) and (1.2) leads to the final system,
∂th+∂x(hu)=0

∂t(hu)+∂x(hu
2+ gh2

2 )+gh∂xz=0

∂tz+ζ∂xqb=0,

(1.3)

which in compact form reads

∂tQ+∂xF(Q)+A(Q)∂xQ=O

where

Q=

 h
hu
z

 , F(Q)=

 hu
hu2+p
ζqb

 , A(Q)=

0 0 0
0 0 gh
0 0 0


with the pressure term p= gh2

2 . For details about shallow-water equations with and
without non-constant in time bed sediment, we refer, for instance, to [3, 6, 10, 12] and
[1, 7, 14,38,44].

It is known that there exist different formulations to express the solid transport
discharge qb, depending on the characteristics of the sediment and the flow, for instance
the Froude number, the slope of the bottom or the grain size. One of the easiest and
most frequently used formulation is the well-known Grass model, which expresses the
instantaneous sediment transport as a power law of the averaged velocity u, namely

qb=Agu|u|mg−1, 1≤mg ≤4, (1.4)
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refer to [5, 40]. This deterministic Grass formulation is suitable to model non-cohesive
granular sediment. Here Ag ∈ [0,1] is usually measured experimentally and expresses
the type of interaction between the fluid and the sediment, whose strength increases as
Ag approaches to 1. In particular, the value of the constant Ag is related to factors as
the grain size and the kinematic viscosity. Finally, we set mg =3.

In this work we will mainly take into account the Grass model, only in one of the
numerical tests the Meyer-Peter & Müller formula is also considered, see directly Section
5.3 or refer to [40] for details about other possible formulations for qb. Moreover, it is
important to stress that, depending on the formulation used for qb, system (1.3) may or
may not be hyperbolic. In particular, in [12] it has been confirmed that considering the
Grass formula leads to a strictly hyperbolic system with all real eigenvalues. Indeed,
defining the quantities

a1=−2u, a2=u2−c2(1+ζ∂huqb) and a3=−ζc2∂hqb,

one can easily see that the eigenvalues are given by the solution of the following equation

λ3+a1λ
2+a2λ+a3=0.

Hence, the three eigenvalues read

λk=2
√
−pcos(

θ+2kπ

3
)− a1

3
with k=0,1,2 (1.5)

where

p=
3a2−a21

9
, r=

9a1a2−27a3+2a31
54

and θ=arccos(
r√
−p3

).

We remark that, in order to have real eigenvalues, we need p3+r2≤0, which can be
proved in the case of the Grass model.

As mentioned at the very beginning of this work, we are also looking for a well-
balanced numerical scheme, namely able to preserve the smooth stationary solutions
of the system, that is to say the steady states which satisfy the ordinary differential
equations

∂x(hu)=0, ∂x(hu
2+

gh2

2
)+gh∂xz=0 and ∂xqb=0,

and obey

q=hu=constant= q0,
q20
2h2

+g(h+z)=constant and qb=constant.

Note that if we use the Grass formula for qb, then the only nontrivial stationary solutions
are given by

u=0 and h+z=constant, (1.6)

which is called “lake at rest” equilibrium. For well-balanced schemes for the shallow-
water equations, see for instance [1, 7, 36, 37], while for well-balanced methods in the
Lagrange-projection formalism we refer to [14,19,39]. As far as the evolution in time of
the bed sediment is considered as well, for general well-balanced schemes we refer, for
instance, to [5, 31].
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Outline of the paper. For the sake of clarity, let us briefly give the paper struc-
ture. In the next Section 2, the Lagrange-projection splitting is presented considering
both Eulerian and Lagrangian variables. A brief summary of the approximate Riemann
solver for the acoustic system is outlined as well. In Section 3, both first and second-
order numerical schemes are described, distinguishing between acoustic and transport
steps. Then, the two-dimensional extension of the mathematical model and the numer-
ical method are illustrated in Section 4. Finally, Section 5 is exploited to present the
numerical results and validate our numerical schemes. Concluding, final remarks are
drawn in Section 6.

2. Operator splitting and Lagrangian coordinates
In this section we briefly explain the decomposition which entails the splitting of

system (1.3) into two different ones, the so-called acoustic and transport systems. The
former takes into account the acoustic effects of the model and the source term related
to the topography, while the latter the transport phenomena. We will see further that
this splitting can be interpreted as a Lagrange-projection one, as we first formulate the
shallow-water system in Lagrangian coordinates (acoustic step) and then we project
the solution into Eulerian coordinates (transport step). For more details about this
decomposition, the reader can refer to [14,19,39].

Considering first only the shallow water system, it can be reformulated as{
∂th+h∂xu+u∂xh=0

∂t(hu)+hu∂xu+u∂x(hu)+∂x(
gh2

2 )=−gh∂xz,

where we used the chain rule for space derivatives. Therefore, the acoustic and transport
systems are respectively given by{

∂th+h∂xu=0

∂t(hu)+hu∂xu+∂x(
gh2

2 )=−gh∂xz,
(2.1)

and

∂tX+u∂xX=0 (2.2)

with X=h and X=hu. We also observe that the acoustic system (2.1) can be expressed
as {

∂tτ−∂mu=0

∂tu+∂mp=− g
τ ∂mz

(2.3)

where we have introduced the unknown τ = 1
h and the mass variable m such that 1

h∂x=
∂m, see [14,16–19]. Moreover, it is easy to find that the eigenvalues of system (2.3) are
±h

√
gh=±hc.

About the Exner equation. Let us now consider the Exner equation as well, for
which one could imagine at least three possibilities for numerical treatment. The first
one would account for it at the acoustic level, the second one directly inside the trans-
port step, and the third one by splitting it inside both steps. However, the issue of
coupling the Exner equation and the shallow water system has been vastly studied in
the literature. In particular, it is known that a fully decoupled scheme can lead to a nu-
merical method which produces spurious oscillations inside the numerical solutions; this
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issue has been clearly presented in [21]. Nevertheless, in many industry codes, decoupled
approaches are still exploited, also due to the fact that they are easier to implement.
However, it is not even necessary to consider a fully coupled scheme in order to avoid
this problem; indeed a weak coupling of the equations at the numerical level can lead to
satisfying results, see for instance [5]. In the latter, a three-wave approximate Riemann
solver has been described and then re-interpreted as a splitting strategy. Moreover,
they stated that one change in the fluid solver (there, the value of the wave speed in
the approximate Riemann solver) can give place to splitting methods without spurious
oscillations. We also refer to [35], where a weakly coupled method based on the HLL
scheme is presented. Another possible reference is [34] in which the authors describe two
methods based on the Roe approach. In this paper, they present not only a decoupled
approach where the oscillations are partly stabilized by controlling the stability region,
but also a fully-coupled scheme. Indeed, progresses to obtain fully coupled method for
the Shallow Water Exner (SWExner) system have also been made. See for instance [12],
where the authors describe a path-conservative Roe method and its high-order exten-
sion together with flux limiters, or [13] where Roe-type schemes have been extended to
second-order of accuracy using a new MUSCL-type reconstruction. For additional ref-
erences for both fully and weakly coupled methods, see for instance [4,10,20,29,30,40].
In this work we will mainly focus on weakly coupled numerical approach. Moreover,
in the following we completely take into account the Exner equation in the transport
(projection) step. Indeed, this work should be interpreted as a first step to understand
how to treat the Exner equation in the Lagrange-projection framework. Thus, new
strategies to include the Exner equation at the acoustic level or in both steps will be
treated successively in the next work.

Finally, in the first part of this work, the acoustic and transport systems respectively
read 

∂tτ−∂mu=0

∂tu+∂mp=− g
τ ∂mz

∂tz=0

(2.4)

and 
∂th+u∂xh=0

∂t(hu)+u∂x(hu)=0

∂tz+ζ∂xqb=0.

(2.5)

Hence, the numerical strategy will be composed of two steps:

(1) Take into account the acoustic effects of the model and the topography spatial
variations by solving system (2.4);

(2) Consider and solve the transport system (2.5).

System (1.1) in Lagrangian coordinates. In order to interpret the strategy as a Lagrange-
Projection one, we first define the fluid particle ξ and the characteristic curves{

∂x
∂t (ξ,t)=u(x(ξ,t),t)

x(ξ,0)= ξ
(2.6)

which define the trajectory : t→x(ξ,t), of ξ as the time goes on. Therefore, any function
: (x,t)→φ(x,t) in Eulerian coordinates can be written in Lagrangian coordinates,

φ̄(ξ,t)=φ(x(ξ,t),t).
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Let us now introduce the volume ratio

L(ξ,t)=
∂x

∂ξ
(ξ,t) (2.7)

such that {
∂L
∂t (ξ,t)=∂ξu(x(ξ,t),t)

L(ξ,0)=1.
(2.8)

Consequently, we note that

∂tL(ξ,t)=∂ξu(x(ξ,t),t)=∂ξū(ξ,t),

and thus

∂ξφ̄(ξ,t)=L(ξ,t)∂xφ(x,t) and ∂tφ̄(ξ,t)=∂tφ(x,t)+u(x,t)∂xφ(x,t).

We have now all the ingredients to write (1.1) in Lagrangian coordinates. More precisely,
observing that smooth solutions of (1.1) satisfy{

L(∂th+u∂xh+h∂xu)=0

L(∂t(hu)+u∂x(hu)+hu∂xu+∂xp+gh∂xz)=0

and {
L∂th̄+ h̄∂tL=0

L∂thu+hu∂tL+∂ξp̄+gh̄∂ξ z̄=0

we get {
∂t(Lh)=0

∂t(Lhu)+∂ξp̄=−gh̄∂ξ z̄.
(2.9)

Notice that in the following sections, we shall omit the bar over the Lagrangian func-
tions when there can be no confusion. This new formulation of system (1.1) exploiting
the Lagrangian coordinates makes the above numerical strategy based on an acoustic-
transport splitting strictly equivalent to a Lagrangian-projection splitting, that can be
summarized as in the following,

(1) Solve system (2.9) in Lagrangian coordinates;

(2) Project the solution into Eulerian coordinates.

To conclude this section, we derive from (2.9) an evolution equation for Lu that will be
useful in the next sections. Removing the bars and using the discharge equation on Lu,
we have in particular

h∂t(Lu)+Lu∂th+∂ξp+gh∂ξz=0

and, since 0=∂t(Lh)=h∂tL+L∂th=h∂ξu+L∂th, we get

h∂t(Lu)−hu∂ξu+∂ξp+gh∂ξz=0

and finally

∂t(Lu)−∂ξ
u2

2
=−g∂ξ(h+z). (2.10)

Note that the source term now involves the quantity h+z which is constant for station-
ary solutions.
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2.1. A well-balanced approximate Riemann solver for the acoustic sys-
tem. In this section we briefly recall the definition of a well-balanced approximate
Riemann solver proposed in [19] for the acoustic system (2.4) and that will be useful in
the following. It is based on the Gallice theory [25,26] which is an extension to balance
laws of the Harten, Lax and van Leer formalism [28] for conservation laws. For more
details about this Riemann solver, the reader can refer to [19]. Then, suppose that we
want to solve (2.4) with the following Riemann initial data

U(m,t=0)=

{
UL if m<0

UR if m≥0

where we have set

UL=

τL
uL

zL

 and UR=

τR
uR

zR

.

The proposed approximate solution has the following form

Û(
m

t
;UL,UR)=


UL if m

t <−a

U∗
L if −a< m

t <0

U∗
R if 0< m

t <a

UR if m
t >a

where a is a constant and where the intermediate states

U∗
L=

τ∗L
u∗
L

zL

, U∗
R=

τ∗R
u∗
R

zR

 (2.11)

are defined thanks to 

τ∗,L= τL+
1

a
(u∗−uL)

τ∗,R= τR− 1

a
(u∗−uR)

u∗
L=u∗

R=u∗

u∗=
1

2
(uL+uR)−

1

2a
(ΠR−ΠL)−

M
2a

Π∗=
1

2
(ΠL+ΠR)−

a

2
(uR−uL)

with

M=
g

2
(
1

τL
+

1

τR
)(zR−zL).

Observe that Π is a new variable introduced to be able to define the approximate
Riemann solver. In particular, Π can be interpreted as a linearization of the pressure
term p and its initial data are well-prepared in the sense that Π=p.

Then, it is clear that M=0 if zL=zR so that the classical form of an approximate
Riemann solver for a system of conservation laws is recovered, while X∗

L=XL and
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X∗
R=XR with X= τ,u, when the “lake at rest” stationary conditions are satisfied,

namely

uL=uR=0, hL+zL=hR+zR.

In that sense, the proposed approximate Riemann solver is said to be well-balanced.
Note that this is true whatever the definition of the constant a is. In practice, we
will choose a=max((hc)L,(hc)R) according the well-known subcharacteristic stability
condition. For more details, we refer again to [19].

3. Numerical methods
Before getting into the heart of the matter, we give a few details about the time

and space discretizations we use in the following sections. Given a constant time step
∆t, we define the intermediate times by tn=n∆t for n∈N. Then, the mesh interfaces
are xj+1/2= j∆x for j∈Z, where ∆x is the constant space step, while xj is the center
of the cell [xj−1/2,xj+1/2). Hence, given a variable φ, we denote φn

j its constant average
approximation on each cell [xj−1/2,xj+1/2) at time tn, namely

φn
j ≈

1

∆x

∫ xj+1/2

xj−1/2

φ(x,tn)dx,

with n∈N and j∈Z. At last, note that, regarding the mass variable m, we use ∆mj =
hn
j ∆x for all j.

Given the sequence {φn
j }j , we now look for its approximation at the next time level

tn+1, namely {φn+1
j }j . At this stage, we are able to present the numerical schemes,

starting with the first-order method and proceeding with the second-order one. For
each of them, we will prove the well-balanced condition as well. Let us recall that the
numerical schemes are divided into two different steps. First we have the acoustic step,
in which we numerically solve system (2.4). Then, we exploit its solution as initial
condition for solving system (2.5). We can sum up this procedure in the following way,

(1) Acoustic step: solve system (2.4) in order to update Qn to Qn+1−;

(2) Transport step: find Qn+1 from Qn+1− by the approximation of the solution of
system (2.5).

Note that in the first step, we implicitly use the change of variable U=U(Q) to first
define Un from Qn before solving (2.4), and then the change of variables Q=Q(U) to
define Qn+1− from Un+1−.

3.1. First-order scheme. Here we give the details for the first-order scheme
distinguishing between the acoustic and transport steps.

3.1.1. Acoustic step and Lagrangian reformulation. As far as the dis-
cretization of (2.4) is concerned, we suggest to use a classical Godunov-type method
based on the well-balanced approximate Riemann solver proposed in Section 2.1. As
usual, it simply consists in averaging on each cell the juxtaposition of the approximate
Riemann solutions set at each interface. Therefore, it follows after easy calculations that
the numerical discretization of the acoustic relaxation system (2.4) can be formulated
as τn+1−

j = τnj + ∆t
∆mj

(u∗
j+ 1

2

−u∗
j− 1

2

)

un+1−
j =un

j − ∆t
∆mj

(Π∗
j+ 1

2

−Π∗
j− 1

2

)−∆t{ g
τ ∂mz}nj

(3.1)
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where we have set

u∗
j+ 1

2
=u∗

j+ 1
2
(Qn

j ,Q
n
j+1)=

1

2
(un

j+1+un
j )−

1

2an
j+ 1

2

(Πn
j+1−Πn

j )−
Mn

j+1/2

2aj+1/2

Π∗
j+ 1

2
=Π∗

j+ 1
2
(Qn

j ,Q
n
j+1)=

1

2
(Πn

j+1+Πn
j )−

an
j+ 1

2

2
(un

j+1−un
j ),

(3.2)

an
j+ 1

2

=max((hc)nj ,(hc)
n
j+1), while regarding the source term, we have

{g
τ
∂mz}nj =

1

2

(∆mj+1/2

∆mj
{g
τ
∂mz}nj+1/2+

∆mj−1/2

∆mj
{g
τ
∂mz}nj−1/2

)
(3.3)

where ∆mj+1/2=(∆mj+∆mj+1)/2, ∆mj =
τn
j

∆x and

{g
τ
∂mz}nj+1/2=

Mn
j+1/2

∆mj+1/2
with Mj+1/2=

g

2
(
1

τnj
+

1

τnj+1

)(znj+1−znj ) ∀j.

Let us note that z remains constant in this step, thus zn+1−
j =znj for all j.

Lagrangian reformulation of (3.1). Let us observe that (3.1) reveals to be strictly
equivalent to Ln+1−

j hn+1−
j =Ln

j h
n
j

Ln+1−
j (hu)n+1−

j =Ln
j (hu)

n
j − ∆t

∆x (Π
∗
j+ 1

2

−Π∗
j− 1

2

)+∆tsnj
(3.4)

where we have set

Ln+1−
j =Ln

j +
∆t

∆x
(u∗

j+ 1
2
−u∗

j− 1
2
) with Ln

j =1 (3.5)

and

s=−gh∂xz, snj =
1

2

(
snj+1/2+snj−1/2

)
and snj+1/2=−

Mn
j+1/2

∆x
∀j.

Considering that the Lagrangian variable ξ is discretized using the same mesh step
as the one we used for x, namely ∆ξ=∆x, and ξj+1/2=xj+1/2, ξj =xj for all j, it
is clear that (3.4) and (3.5) respectively approximate (2.9) and (2.8). This Lagrangian
reformulation turns out to be crucial in order to derive hereafter a second-order extension
of the propose numerical scheme. Note that we still have of course zn+1−

j =znj for all j.

3.1.2. Projection step. As already mentioned, the aim of this step is to turn
into Eulerian coordinates the solution obtained at the end of the previous step, thanks
to (3.4) and given in Lagrangian coordinates. This amounts to solving the transport
system (2.5) which also contains the evolution equation for z. Recall indeed that z
stayed constant in the first step.

In order to project X=h,hu on the Eulerian grid, we use the following identity∫ ξ2

ξ1

L(ξ,t)X(ξ,t)dξ=

∫ x(ξ2,t)

x(ξ1,t)

X(x,t)dx
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where we recall that the trajectories t 7→x(ξ,t) and the volume ratio L(ξ,t) are defined by

(2.6) and (2.7). Therefore, it is natural to define ξ̂j+1/2 such that x(ξ̂j+1/2,t
n+1)=xj+1/2

and x(ξ̂j+1/2,t
n)= ξ̂j+1/2 for all j and to write

Xn+1
j =

1

∆x

∫ x
j+1

2

x
j− 1

2

X(x,tn+1)dx=
1

∆x

∫ x(ξ̂
j+1

2
,tn+1)

x(ξ̂
j− 1

2
,tn+1)

X(x,tn+1)dx

=
1

∆x

∫ ξ̂
j+1

2

ξ̂
j− 1

2

L(ξ,tn+1−)X(ξ,tn+1−)dξ. (3.6)

Splitting the last integral into three parts, namely

Xn+1
j =

1

∆x

∫ ξ
j− 1

2

ξ̂
j− 1

2

L(ξ,tn+1−)X(ξ,tn+1−)dξ+

+
1

∆x

∫ ξ
j+1

2

ξ
j− 1

2

L(ξ,tn+1−)X(ξ,tn+1−)dξ+
1

∆x

∫ ξ̂
j+1

2

ξ
j+1

2

L(ξ,tn+1−)X(ξ,tn+1−)dξ,

(3.7)

and approximating ξ̂j+1/2 by

xj+1/2=x(ξ̂j+1/2,t
n+1)≃x(ξ̂j+1/2,t

n)+∆t∂tx(ξ̂j+1/2,t
n)≃ ξ̂j+1/2+∆tu∗

j+1/2,

it is natural to set, using first-order approximations of the integrals,

Xn+1
j =

ξj− 1
2
− ξ̂j− 1

2

∆x
(LX)n+1

j−1/2+(LX)n+1−
j +

ξ̂j+ 1
2
−ξj+ 1

2

∆x
(LX)n+1

j+1/2
(3.8)

where for all j

(LX)n+1
j+1/2=

{
(LX)n+1−

j if u∗
j+1/2≥0

(LX)n+1−
j+1 if u∗

j+1/2<0.

After easy manipulations, (3.8) is equivalent to

Xn+1
j =(LX)n+1−

j − ∆t

∆x

(
u∗
j+ 1

2
(LX)n+1−

j+ 1
2

−u∗
j− 1

2
(LX)n+1−

j− 1
2

)
. (3.9)

Therefore, taking X=h and X=hu concludes the projection on the Eulerian grid.
Let us now consider the Exner equation for which we propose two different strate-

gies. On one hand, we simply update the topography as in the following

zn+1
j =znj −ζ

∆t

∆x

(
u∗
j+ 1

2

(qb
u

)n

j+ 1
2

−u∗
j− 1

2

(qb
u

)n

j− 1
2

)
, (3.10)

with

(
qb
u
)nj+1/2=


(
qb
u
)(un

j+1) if u∗
j+ 1

2

≤0

(
qb
u
)(un

j ) if u∗
j+ 1

2

>0,
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where we see that the numerical fluxes are evaluated simply using the solution at time
tn, and not the one obtained at the end of the Lagrangian step. This means in some
sense that the evolution of the topography is not coupled with the one hydrodynamic
model from a numerical point of view and this is the reason why this strategy is said
to be decoupled. At last, note that qb

u is well-defined in the sense that qb=0 if u=0, as
it is generally usual in the formulations for the solid transport discharge. On the other
hand, we propose a weakly coupled strategy in which we exploit the solution obtained
at time tn+1−, by setting

zn+1
j =znj −ζ

∆t

∆x

(
u∗
j+ 1

2

(qb
u

)n+1−

j+ 1
2

−u∗
j− 1

2

(qb
u

)n+1−

j− 1
2

)
. (3.11)

At this stage, notice that it would be tempting to define
(qb
u

)n+1−

j+ 1
2

using the velocity

un+1− simply defined by un+1−=
Lhun+1−

Lhn+1− . However, even if this option results to be

natural, dividing by Lh rises difficulties when considering the second-order extension.
For this reason, we prefer to set

(
qb
u
)n+1−
j+1/2=


(
qb
u
)
(
(Lu)n+1−

j+1

)
if u∗

j+ 1
2

≤0

(
qb
u
)
(
(Lu)n+1−

j

)
if u∗

j+ 1
2

>0,

where a possible discretization of the evolution equation (2.10) for Lu reads

(Lu)n+1−
j =(Lu)nj +

∆t

2∆x
((u∗

j+ 1
2
)2−(u∗

j− 1
2
)2)+∆t

ŝj+ 1
2
+ ŝj− 1

2

2
(3.12)

with

ŝj+ 1
2
=−g

(h+z)nj+1−(h+z)nj
∆x

.

As a last remark we observe that, since we are also interested in a 2D formulation and
(2.10) could not be extended in two dimensions as it is (see hereafter), we will propose
an alternative approximation of Lu which reads

(Lu)n+1−
j =(Lu)nj +

un
j +un

j+1

2

∆t

∆x
(u∗

j+ 1
2
−u∗

j− 1
2
)+∆t

ŝj+ 1
2
+ ŝj− 1

2

2
.

Both formulations turn out to give the same results in 1D.

3.1.3. Overall scheme and well-balanced property. Next, we give an equiv-
alent formulation of our first-order scheme which takes into account both the acoustic
and transport steps. This formulation is interesting in the sense that it clearly shows
that the scheme is indeed conservative when there is no source term. More precisely,
considering together (3.4) and (3.9) we easily get

hn+1
j =hn

j −
∆t

∆x

(
u∗
j+ 1

2
(Lh)n+1−

j+ 1
2

−u∗
j− 1

2
(Lh)n+1−

j− 1
2

)
(hu)n+1

j =(hu)nj −
∆t

∆x

(
u∗
j+ 1

2
(Lhu)n+1−

j+ 1
2

+Π∗
j+ 1

2
−u∗

j− 1
2
(Lhu)n+1−

j− 1
2

−Π∗
j− 1

2

)
+∆tsnj

(3.13)
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while the evolution Equations (3.10) and (3.11) for z are clearly conservative. Let us
now prove the well-balanced property.

Theorem 3.1. The first-order numerical scheme with updating formula (3.13) and
(3.10) or (3.11) preserves the “lake at rest” stationary solution (1.6).

Proof. Assuming to be under the “lake at rest” condition, that is to say un
j =0

and hn
j +znj =constant for all j, it is straightforward to demonstrate that this stationary

solution is preserved. Indeed, few algebraic computations show that u∗
j+ 1

2

=0 as un
j =

un
j+1=0 and

Πn
j+1−Πn

j =
g

2
((hn

j+1)
2−(hn

j )
2)=

g

2
(hn

j +hn
j+1)(h

n
j+1−hn

j )=−g

2
(hn

j +hn
j+1)(z

n
j+1−znj ).

Similarly, it can be proved that 1
∆x (Π

∗
j+ 1

2

−Π∗
j− 1

2

)=snj and thus (Lhu)n+1−
j =(Lhu)nj =

(hu)nj =0. We can also note that (Lu)n+1−
j =0 as (h+z)nj =(h+z)nj+1 for all j. Finally,

it is easily seen that under the property u∗
j+1/2=0 for all j, the transport step gives

hn+1
j =hn

j , (hu)
n+1
j =0 and zn+1

j =znj , which concludes the proof.

3.2. Second-order scheme. We now explain how to reach the second order of
accuracy in both space and time. While increasing the order of accuarcy is a standard
process, the key issue is to preserve the well-balanced property.

In order to construct a high-order approximation in space, we will make use of
classical first-order polynomial reconstructions, but applied to the so-called fluctuations,
which is non-standard and has been introduced in [39] to combine both the well-balanced
property and the higher order property.

Regarding the second-order discretization in time, we simply consider Runge-Kutta
TVD scheme at second order [27]. In particular, we apply it to the overall scheme
(Lagrangian and remap step together) in order to avoid diffusion due to the splitting.

3.2.1. Lagrangian step. In order to reach the second order of accuracy in
space, we begin by defining at time tn and for each cell j a stationary solution denoted
by x 7→Qn,e

j (x) and defined for all x by(
hn,e
j

)
(x)=hn

j +znj −zn(x), un,e
j (x)=un

j and zn,ej (x)=zn(x), (3.14)

where x 7→zn(x) is nothing but the piecewise constant approximation of z at time tn,
namely such that zn(x)=znj for all x in [xj−1/2,xj+1/2). Such a reconstructed solution
satisfies the in-cell conservation property

1

∆x

∫ x
j+1

2

x
j− 1

2

Qn,e
j (x)dx=Qn

j .

Next, we follow [39] and introduce the so-called j-fluctuations defined as

Dn
k,j =Qn

k −
1

∆x

∫ xk+1/2

xk−1/2

Qn,e
j (x)dx,

for all k. Observe that Dn
j,j =0 by construction, while Dn

k,j =0 for all k if the approxi-
mate solution at time tn satisfies the “lake at rest” condition (1.6).

At last, for each cell Ij we make use of a reconstructed polynomial vector Pn
j (x)

defined by

Pn
j (x)=Qn

j +∆n
j (x−xj),
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where ∆n
j =∆n

j (D
n
j−1,j ,D

n
j,j ,D

n
j+1,j) is the ENO [43] or the MINMOD [42] slope applied

to the fluctuations.
The numerical fluxes u∗

j+ 1
2

and Π∗
j+ 1

2

are then defined in a very classical way using

the interfaces values

Qn
j+ 1

2L
=Pn

j (xj+ 1
2
) and Qn

j+ 1
2R

=Pn
j+1(xj+ 1

2
),

and formula (3.2), namely

u∗
j+ 1

2
=u∗

j+ 1
2
(Qn

j+ 1
2L

,Qn
j+ 1

2R
) and Π∗

j+ 1
2
=Π∗

j+ 1
2
(Qn

j+ 1
2L

,Qn
j+ 1

2R
), (3.15)

with

anj+ 1
2
=max

(
hn
j+ 1

2 ,L
cnj+ 1

2 ,L
,hn

j+ 1
2 ,R

cnj+ 1
2 ,R

)
.

Regarding the source term, once again we exploit formulas (3.3). Let us note that,
thanks to formula (3.14), zj+ 1

2L
=zj and zj+ 1

2R
=zj+1 as the fluctuations related to the

topography are null. Finally, the discretization of the Lagrangian system (2.9) reads as
in the first-order step, namelyLn+1−

j hn+1−
j =Ln

j h
n
j

Ln+1−
j (hu)n+1−

j =Ln
j (hu)

n
j − ∆t

∆x (Π
∗
j+ 1

2

−Π∗
j− 1

2

)+∆tsnj .

3.2.2. Projection step. In this step, we exploit again a reconstructed poly-
nomial LP. However, in order to preserve the second-order of accuracy, it is crucial to
reconstruct the Lagrangian variables (LX), namely as

(LX)n+1−
j (ξ)=(LX)n+1−

j +∆n+1−
j (ξ−ξj) (3.16)

with the slope ∆n+1−
j =∆n+1−

j ((LX)n+1−
j−1 ,(LX)n+1−

j ,(LX)n+1−
j+1 ) and where the vari-

able X denotes h, hu and u. Then, the updating formula for X=h and X=hu are
given by a second-order approximation of the three integrals that appear in (3.7). This
is achieved by using the mid-point rule, thus we get

Xn+1−
j =(LX)n+1−

j − ∆t

∆x

(
u∗
j+ 1

2
(LX)n+1−

j+ 1
2

(ξj+ 1
2
+ ξ̂j+ 1

2

2

)
+

−u∗
j− 1

2
(LX)n+1−

j− 1
2

(ξj− 1
2
+ ξ̂j− 1

2

2

))
, (3.17)

where we use the upwind definition

(LX)n+1−
j− 1

2

(ξ)=

(LX)n+1−
j−1 (ξ) if u∗

j− 1
2

>0

(LX)n+1−
j (ξ) if u∗

j− 1
2

≤0.
(3.18)

As far as the topography is concerned, we consider the weakly coupled scheme (3.11)
where we naturally set

(
qb
u
)n+1−
j+1/2=


(
qb
u
)
(
(Lu)n+1−

j+1 (
ξj+ 1

2
+ ξ̂j+ 1

2

2
)
)

if u∗
j+ 1

2

≤0

(
qb
u
)
(
(Lu)n+1−

j (
ξj+ 1

2
+ ξ̂j+ 1

2

2
)
)

if u∗
j+ 1

2

>0,
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and u∗
j± 1

2

is given by (3.15).

Afterwards, for the decoupled scheme, we first define the reconstructed polynomial
for the water height h and the flow hu at time tn,

P (X)nj (x)=Xn
j +∆n

j (x−xj)

with X=h,hu and ∆n
j the slopes (either ENO or Minmod). Then, we use formula

(3.10) where we impose

(
qb
u
)nj+1/2=


(
qb
u
)
(P (hu)nj+1(xj+ 1

2
)

P (h)nj+1(xj+ 1
2
)

)
if u∗

j+ 1
2

≤0

(
qb
u
)
(P (hu)nj (xj+ 1

2
)

P (h)nj (xj+ 1
2
)

)
if u∗

j+ 1
2

>0.

Theorem 3.2. The second-order numerical scheme described preserves the “lake at
rest” stationary solution (1.6).

Proof. Since we already proved the well-balanced property for the first-order
scheme, it is straightforward to show it for the second-order method as well. In-
deed, it is enough to observe that the slopes ∆n

j =∆n
j (D

n
j−1,j ,D

n
j,j ,D

n
j+1,j) are null

under the hypothesis of the “lake at rest condition” thanks to definition of the fluctua-
tions. Hence, once again we obtain u∗

j+ 1
2

=0 and thus Lhun+1−
j =hun

j =0, Lhn+1−
j =hn

j ,

hun+1
j =Lhun+1−

j =hun
j =0, hn+1

j =Lhn+1−
j =hn

j and zn+1
j =znj . Finally, it is only

worth to specify that the Runge-Kutta TVD procedure automatically preserves the
stationary solutions.

4. Two-dimensional extension
In this section, we briefly describe how we extend the proposed approach in two

space dimensions using dimensional splitting. Let us first recall that if we denote (x,y)∈
R2 the space variables and u=(u,v)T the velocity vector, then the 2D shallow water
system reads {

∂th+∇·(hu)=0

∂t(hu)+∇·(hu⊗u)+∇p=−gh∇z,
(4.1)

while the Exner equation is given by

∂tz+ζ∂xqb,x+ζ∂yqb,y =0

where qb,x and qb,y are the solid transport discharges in the x and y directions respec-
tively. Exploiting once again the Grass model, their formula are the following,

qb,x=Agu(u
2+v2) and qb,y =Agv(u

2+v2).

Notice that the “lake at rest” stationary solutions now satisfy

u=0, v=0 and ∇(h+z)=0.

It is still possible to consider a Lagrangian formulation of these equations. More
precisely, let us introduce the Lagrangian coordinates (ξ1,ξ2) and consider the map
: (ξ1,ξ2)→ (x,y), with x=x(ξ1,ξ2,t), y=y(ξ1,ξ2,t) and such that

∂x

∂t
=u(x,y,t) and

∂y

∂t
=v(x,y,t),
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x(ξ1,ξ2,0)= ξ1, y(ξ1,ξ2,0)= ξ2.

We also assume that for each t>0, this map is invertible and its Jacobian (determinant
of the Jacobian matrix) is given by

L(ξ1,ξ2,t)=

∣∣∣∣∂ξ1x ∂ξ2x
∂ξ1y ∂ξ2y

∣∣∣∣
with L(ξ1,ξ2,0)=1 and, after easy calculations,

∂L(ξ1,ξ2,t)

∂t
=L∇·u=L∂xu+L∂yv. (4.2)

Then, it can be shown that the Lagrangian formulation of the system writes{
∂t(Lh)=0

∂t(Lhu)+L∇p=−ghL∇z,
(4.3)

where the gradient is still taken with respect to the Eulerian variables (x,y), while on
the other hand we also have

∂t(Lu)−uL∇·u+gL∇(h+z)=0,

which will be useful hereafter. We refer the reader to [32, 33] for more details about
Lagrangian coordinates in 2-dimensions.

We now give the basic formulas based on a dimensional splitting and introduce
some notations. First of all, the computational domain Ω⊂R is divided into Mx×
My rectangular cells with constant space steps ∆x and ∆y in the x and y directions
respectively. Then, the mesh interfaces are given by xi+1/2 for i∈{0,. ..,Mx} and yj+1/2

for j∈{0,. ..,My}. Thus, φn
i,j denotes the piecewise constant approximation of the

variable φ in the cell [xi−1/2,xi+1/2)× [yj−1/2,yj+1/2) at time tn, namely

φn
i,j ≈

1

∆x

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

φ(x,y,tn)dxdy.

Acoustic step. Following the 1D scheme, the numerical approximation of (4.3) is
taken to be 

(Lh)n+1−
i,j =(Lh)ni,j

(Lhu)n+1−
i,j =(Lhu)ni,j−

∆t

∆x
(Π∗

i+ 1
2 ,j

−Π∗
i− 1

2 ,j
)+∆ts1,ni,j

(Lhv)n+1−
i,j =(Lhv)ni,j−

∆t

∆y
(Π∗

i,j+ 1
2
−Π∗

i,j− 1
2
)+∆ts2,ni,j

(4.4)

where we have set

Ln+1−
i,j =Ln

i,j+
∆t

∆x
(u∗

i+ 1
2 ,j

−u∗
i− 1

2 ,j
)+

∆t

∆y
(v∗i,j+ 1

2
−v∗i,j− 1

2
) (4.5)
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with

u∗
i+ 1

2 ,j
=

1

2
(un

i+1,j+un
i,j)−

1

2an
i+ 1

2 ,j

(Πn
i+1,j−Πn

i,j)−
Mn

i+1/2,j

2ai+1/2,j
,

v∗i,j+ 1
2
=

1

2
(vni,j+1+vni,j)−

1

2an
i,j+ 1

2

(Πn
i,j+1−Πn

i,j)−
Mn

i,j+1/2

2ai,j+1/2
,

Π∗
i+ 1

2 ,j
=

1

2
(Πn

i+1,j+Πn
i,j)−

an
i+ 1

2 ,j

2
(un

i+1,j−un
i,j),

Π∗
i,j+ 1

2
=

1

2
(Πn

i,j+1+Πn
i,j)−

an
i,j+ 1

2

2
(vni,j+1−vni,j),

(4.6)

with ani+1/2,j =max((hc)ni,j ,(hc)
n
i+1,j), a

n
i,j+1/2=max((hc)ni,j ,(hc)

n
i,j+1), while regarding

the source term, we have for all j

s1,ni,j =
1

2

(
sni+1/2,j+sni−1/2,j

)
with sni+1/2,j =−

Mn
i+1/2,j

∆x

s2,ni,j =
1

2

(
sni,j+1/2+sni,j−1/2

)
with sni,j+1/2=−

Mn
i,j+1/2

∆y

with

Mn
i+1/2,j =

g

2
(
1

τni,j
+

1

τni+1,j

)(zni+1,j−zni,j), Mn
i,j+1/2=

g

2
(
1

τni,j
+

1

τni,j+1

)(zni,j+1−zni,j).

It is clear that the numerical scheme (4.6) is a natural extension of the one used for the
one-dimensional system.

Projection step. As before, the second step of the Lagrange-projection scheme
consists in projecting the solution obtained at the end of the acoustic step onto the
Eulerian grid, that is to say in approximating the transport system

∂tφ+u ·∇φ=0

or equivalently

∂tφ+∇·(φu)−φ∇·u=0,

where we assumed φ=h,hu,hv. Here and analogously to the 1D formulation (3.9), we
simply set

φn+1
i,j =(Lφ)n+1−

i,j − ∆t

∆x

(
u∗
i+ 1

2 ,j
(Lφ)n+1−

i+ 1
2 ,j

−u∗
i− 1

2 ,j
(Lφ)n+1−

i− 1
2 ,j

)
+

− ∆t

∆y

(
v∗i,j+ 1

2
(Lφ)n+1−

i,j+ 1
2

−v∗i,j− 1
2
(Lφ)n+1−

i,j− 1
2

)
, (4.7)

where

(Lφ)n+1−
i− 1

2 ,j
=

{
(Lφ)n+1−

i−1,j if u∗
i− 1

2 ,j
>0

(Lφ)n+1−
i,j if u∗

i− 1
2 ,j

≤0,

and

(Lφ)n+1−
i,j− 1

2

=

{
(Lφ)n+1−

i,j−1 if v∗
i,j− 1

2

>0

(Lφ)n+1−
i,j if v∗

i,j− 1
2

≤0.
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The Exner equation. As a natural extension of (3.11), we set

zn+1
i,j =zni,j−ζ

∆t

∆x

(
u∗
i+ 1

2 ,j

(qb,x
u

)n+1−

i+ 1
2 ,j

−u∗
i− 1

2 ,j

(qb,x
u

)n+1−

i− 1
2 ,j

)
+

−ζ
∆t

∆y

(
v∗i,j+ 1

2

(qb,y
v

)n+1−

i,j+ 1
2

−v∗i,j− 1
2

(qb,y
v

)n+1−

i,j− 1
2

)
with

(
qb,x
u

)n+1−
i+1/2,j =

(
qb,x
u

)
(
(Lu)n+1−

i+1,j

)
if u∗

i+1/2,j ≤0

(
qb,x
u

)
(
(Lu)n+1−

i,j

)
if u∗

i+1/2,j >0,

and

(
qb,y
v

)n+1−
i,j+1/2=

(
qb,y
v

)
(
(Lu)n+1−

i,j+1

)
if v∗i,j+1/2≤0

(
qb,y
v

)
(
(Lu)n+1−

i,j

)
if v∗i,j+1/2>0,

where a possible discretization of the evolution equations for Lu and Lv read

(Lu)n+1−
i,j =(Lu)ni,j+∆t

ui+1,j+ui,j

2

( 1

∆x
(u∗

i+ 1
2 ,j

−u∗
i− 1

2 ,j
)+

+
1

∆y
(v∗i,j+ 1

2
−v∗i,j− 1

2
)
)
−∆t

ŝi+ 1
2 ,j

+ ŝi− 1
2 ,j

2

and

(Lv)n+1−
i,j =(Lv)ni,j+∆t

vi,j+1+vi,j
2

( 1

∆x
(u∗

i+ 1
2 ,j

−u∗
i− 1

2 ,j
)+

+
1

∆y
(v∗i,j+ 1

2
−v∗i,j− 1

2
)
)
−∆t

ŝi,j+ 1
2
+ ŝi,j− 1

2

2

where ŝi+ 1
2 ,j

=g((h+z)i+1,j−(h+z)i,j)/∆x and ŝi,j+ 1
2
=g((h+z)i,j+1−(h+

z)i,j)/∆y.

2D extension of the second-order scheme. We now briefly discuss the ex-
tension of the second-order scheme, distinguishing among the Exner equation and the
Lagrangian and projection steps for the shallow water system. Once again we reach the
second order of accuracy in time exploiting the Runge-Kutta procedure, which is ap-
plied to the Lagrangian and projection step together. As expected, the overall strategy
is analogous to what we have done for the 1D case.

Regarding the Lagrangian step, we proceed as usual and compute the numerical
fluxes u∗

i+ 1
2 ,j

, v∗
i,j+ 1

2

, Π∗
i+ 1

2 ,j
and Π∗

i,j+ 1
2

, but also the speeds ai+1/2,j and ai,j+1/2 using

left and right interfaces values defined by means of reconstructed polynomials as in the
1D case, namely

Vn
i+1/2L,j =Vn

i,j+∆x,t
i,j

∆x

2
, Vn

i+1/2R,j =Vn
i+1,j−∆x,t

i+1,j

∆x

2
(4.8)

in the x direction, and

Vn
i,j+1/2L=Vn

i,j+∆y,t
i,j

∆y

2
, Vn

i,j+1/2R=Vn
i,j+1−∆y,t

i,j+1

∆y

2
(4.9)
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along the y axis, where we have set V=(h,hu,hv)T . At this stage, we only need to
define the slopes ∆x,t

i,j , ∆
y,t
i,j which are computed exactly as in the 1D case thanks to

the definition of fluctuations in the x, respectively y, direction and considering that the
y=yj , resp. x=xi, is fixed and using reconstructed stationary solutions direction by
direction. The details are left to the reader. In particular, such a strategy guarantees
the well-balanced property of the numerical scheme, since the slopes turn out to be null
under the “lake at rest” conditions.

Regarding the transport step, we consider a direct 2D extension of (3.17) namely

Xn+1
i,j =(LX)n+1−

i,j +

− ∆t

∆x

(
u∗
i+ 1

2 ,j
(LX)n+1−

i+ 1
2 ,j

(ξ1,i+ 1
2
+ ξ̂1,i+ 1

2

2

)
−u∗

i− 1
2 ,j

(LX)n+1−
i− 1

2 ,j

(ξ1,i− 1
2
+ ξ̂1,i− 1

2

2

))
− ∆t

∆y

(
v∗i,j+ 1

2
(LX)n+1−

i,j+ 1
2

(ξ2,j+ 1
2
+ ξ̂2,j+ 1

2

2

)
−v∗i,j− 1

2
(LX)n+1−

i,j− 1
2

(ξ2,j− 1
2
+ ξ̂2,j− 1

2

2

))
,

where we have used clear notations which are based on classical first-order polynomial
reconstructions of the Lagrangian unknowns (LX) in each direction as in the 1D case,
with X=h,hu,hv.

Finally, exploiting also the reconstructed values for Lu and Lv and using again
classical notations, we suggest a direct 2D extension of (3.11) namely

zn+1
i,j =zni,j−ζ

∆t

∆x

(
u∗
i+1/2,j

(qb,x
u

)n+1−

i+1/2,j
−u∗

i−1/2,j

(qb,x
u

)n+1−

i−1/2,j

)
+

−ζ
∆t

∆y

(
v∗i,j+1/2,

(qb,y
v

)n+1−

i,j+1/2
−u∗

i,j−1/2

(qb,y
v

)n+1−

i,j−1/2

)
with a natural definition for the numerical fluxes

qb,x
u

and
qb,y
v

. Again, the details are

left to the reader since there is no ambiguity.

To conclude this 2D section, let us mention that both the schemes described here
preserve the “lake at rest” stationary solutions. The proof is analogous to the one seen
in 1D.

5. Numerical results
This section is devoted to the presentation of the simulations and outputs of the

numerical schemes we described so far. Regarding the 1D time step value, at each time
tn we compute two different time steps, one for the acoustic system and the other for
the transport part, which respectively read

∆t≤CFLl
∆x

max
j

{max(τnj ,τ
n
j+1)aj+ 1

2
}
,

and

∆t≤CFLt
∆x

max
j

{u+
j− 1

2

−u−
j+ 1

2

}
,

where CFLl and CFLt are respectively the CFL numbers for the Lagrangian and the
transport systems, and

u+
j− 1

2

=max(u∗
j− 1

2
,0) and u−

j+ 1
2

=min(u∗
j+ 1

2
,0).
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Then, the final time step is taken as the minimum between the two. If working in 2D, the
acoustic time step is automatically extended, it is enough to consider both directions,
while the transport time step reads

∆t≤CFLtmin
i,j

{{u+
i− 1

2 ,j
−u−

i+ 1
2 ,j

∆x
+

v+
i,j− 1

2

−v−
i,j+ 1

2

∆y

}−1}
.

Finally, if not otherwise specified, we take ζ=1, qb=Agu
3 with Ag =0.005 for

the Exner equation, and transmissive boundary conditions. For the CFL number we
use CFLl=0.45 and CFLl=0.25 for the first and second order schemes respectively,
while CFLt=1. When the 1D reference solution is inserted, it is computed exploiting
the second-order scheme with decoupled approximation (3.10) for the Exner equation.
Then, M =2000 cells are used, where ∆x= L

M with L the length of the channel.

5.1. 1D Test of order of accuracy and computational cost. Here we test
the order of accuracy of the numerical schemes described previously. Let us consider
a channel of length L=20m, Ag =0.3, m=3. The initial condition is given by null
velocity and {

zIC =0.1−0.01e−(x−10)2

hIC =2−0.1e−(x−10)2 .

We refer to paper [12] for this test case. The reference solution is computed using
M =4096 cells and second order decoupled method. In Tables 5.1-5.2 we list the error
in norm L1 and the empirical order of accuracy (EOA) for the water height h, the
discharge q and the topography z of both the weakly coupled and decoupled approaches.
We can see that both schemes reach the second order of accuracy.

Method Mesh M Variable err L1 O(L1) Variable err L1 O(L1)
Decoupled 64 h 0.0268 − hu 0.1175 −

128 0.0083 1.6953 0.0354 1.7320
256 0.0027 1.6185 0.0115 1.6249
512 0.0007 1.8756 0.0031 1.8782
1024 0.0002 1.9781 0.0008 1.9818

Weakly coupled 64 h 0.0268 − hu 0.1175 −
128 0.0083 1.6955 0.0354 1.7320
256 0.0027 1.6182 0.0115 1.6248
512 0.0007 1.8755 0.0031 1.8781
1024 0.0002 1.9782 0.0008 1.9818

Table 5.1: Errors and empirical convergence rates for variables h and hu in norm L1. Mesh of size
M =(64,128,256,512,1024,2048), CFLl=0.25. Second-order decoupled and weakly coupled numerical
schemes.

Then, we compare the presented numerical schemes against the well-known HLL and
Lax-Wendroff (LW) methods (path-conservative version) for which we refer to [15]. In
particular, we list their errors in norm L1 and the CPU time, where we underline that the
CPU value is listed for information purposes only and without optimizing the MATLAB
code. Here the objective is to show that for close error values, the computational cost
is comparable. Thus, in Tables 5.3-5.4 we observe that this is indeed the case. Notice
that we only used the LP weakly coupled method at first and second order of accuracy.
Then, it is not surprising to see that the LW scheme converges more rapidly than our
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Method Mesh M Variable err L1 O(L1)
Decoupled 64 z 0.1792×10−3 −

128 0.0544×10−3 1.7190
256 0.0182×10−3 1.5785
512 0.0050×10−3 1.8761
1024 0.0012×10−3 1.9932

Weakly coupled 64 z 0.1824×10−3 −
128 0.0550×10−3 1.7296
256 0.0183×10−3 1.5890
512 0.0050×10−3 1.8734
1024 0.0013×10−3 1.9792

Table 5.2: Errors and empirical convergence rates for variable z in norm L1. Mesh of size
M =(64,128,256,512,1024,2048), CFLl=0.25. Second-order decoupled and weakly coupled numeri-
cal schemes.

Error L1 of h Error L1 of hu

Mesh 1st LP 2nd LP HLL LW 1st LP 2nd LP HLL LW

32 0.0526 0.0270 0.0503 0.0113 0.2165 0.1167 0.1782 0.0449
64 0.0313 0.0085 0.0281 0.0032 0.1311 0.0361 0.1004 0.0130
128 0.0171 0.0028 0.0148 0.0008 0.0721 0.0118 0.0535 0.0033
256 0.0090 0.0008 0.0076 0.0002 0.0380 0.0033 0.0273 0.0008
512 0.0046 0.0002 0.0038 0.0001 0.0195 0.0009 0.0139 0.0002

Table 5.3: Errors in norm L1 of h and hu using first-order LP, second-order LP, HLL and LW
methods. Mesh of size M =(32,64,128,256,512).

Error L1 of z ×103 CPU

Mesh 1st LP 2nd LP HLL LW 1st LP 2nd LP HLL LW

32 0.2870 0.1850 7.9 0.1370 0.0868 0.1665 0.0613 0.0606
64 0.1530 0.0560 4.9 0.0340 0.0572 0.0949 0.0694 0.0733
128 0.0850 0.0190 2.8 0.0080 0.2026 0.3013 0.2134 0.2413
256 0.0460 0.0050 1.5 0.0020 0.6906 0.9519 0.7281 0.8239
512 0.0240 0.0010 0.8 0.0010 2.5868 3.5400 3.1066 3.1523

Table 5.4: Errors in norm L1 of z and computational cost using first-order LP, second-order LP,
HLL and LW methods. Mesh of size M =(32,64,128,256,512).

second-order method as the Lagrange-projection formalism implies a splitting of the
original mathematical model, leading to the presence of more diffusion. On the other
hand, the HLL outputs are comparable with our first-order LP scheme when considering
the h and hu variables, whereas the HLL approximation of z appears to be clearly worse.

5.2. 1D Riemann problem: dam break on movable bottom. For this
Riemann problem we refer to [3]. The length of the channel is L=10m and the dam
is placed in the middle. The ending time is tend=1s. The initial condition is given
by null velocity, flat topography and water height hL=2m if x<L/2, hR=0.125m if
x>L/2. In Figure 5.1 we show the numerical results given by the first-order weakly
coupled scheme exploiting two different meshes, in particular M =200 and M =2000
cells. In the second case, we observe that the first-order solution converges towards
the reference one, while for M =200 the solution is less accurate in the plateau zone
when considering the topography z. Next, in Figure 5.2, we present the results for the
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Fig. 5.1: RP: dam break on movable bottom; free surface (up) and bed level (bottom). Reference
solution (red) and first-order weakly coupled solution (blue). M =200 cells (up) and M =2000 cells
(bottom).

decoupled and weakly coupled second order numerical methods for different mesh sizes,
M =100, M =200 and M =500 cells. These two schemes give similar results and, in
the topography outputs of both of them, we note some oscillations which decrease as
we refine the mesh. We also observe that these oscillations are more accentuated in the
decoupled scheme outputs.

5.3. 1D Riemann problems: comparing two formulations for qb. The
aim of this section is to compare two different formulations for qb by considering two
Riemann problems. In particular, we take into account the Grass formulation together
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Fig. 5.2: RP: dam break on movable bottom; free surface (up) and bed level (bottom). “Decoupled”
(bottom) and “weakly coupled” (up) solutions. Mesh of size M =100 (blue line), M =200 (magenta
line) and M =500 (green line) cells. Red line for reference solution.

with the Meyer-Peter&Müller formula, which reads

qb=8Qsgn(u)(θ−θcr)
3
2
+ with Q=d

√
gsd (5.1)

where d is the sediment diameter and s the relative density. Then, θ is the shear stress,
for which we consider a Chezy-type approach, namely

θ=
1

sgd

fcu
2

2
,
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for which refer to [10]. Observe that the main difference between the MPM formula and
the Grass one is that qb is not automatically different from zero when the velocity u is.
Indeed, the shear critical value θcr has to be exceeded. If we take θcr=0, it is clear that
there exists a direct relation between formulas (1.4) and (5.1), that is to say

Ag =
8

sg

(fc
2

) 3
2

.

In particular, here we take the following values, θcr=0.047, fc=0.02, d=0.006m and
s=1.666 and, by consequence, Ag =0.00049 s2/m. Thus, the objective of this subsection
is dual: On one hand we show that considering different formulations for qb could lead to
different results and, most important, that our numerical schemes can be applied even
when considering other formulas for the solid transport discharge qb. Indeed, nothing
in particular has to be changed in the numerical strategy.

Let us consider a channel of length L=50m and gate in the middle. Here we take
as initial conditions flat topography and zero velocity, together with hR=10−3m if
x<L/2 and either hL=1m or hL=0.2m if x≥L/2. Then, in Figure 5.3, we show the
second-order weakly coupled solution computed with M =1000 cells at times tEnd=1s,
tEnd=3s and tEnd=5s. We can see that for hL=1m there is a minimal difference
between Grass and MPM formulas as the critical value θcr is almost immediately over-
come. Conversely, we observe a greater difference in the bed elevation solution when
considering hL=0.2m. We refer again to [10] for similar analysis. Finally, we notice
that some spurious oscillations appear in the second-order results also for these two
Riemann problems.

5.4. 1D sub-critical and supercritical regions. For the following two nu-
merical tests we refer to paper [21]. As initial condition we consider the sub-critical
steady state


hu(x,t=0)=0.5

z(x,t=0)=0.1(1+e−(x−5)2)
u2

2 +g(h+z)=6.386,

while the length of the channel is L=10.0m. In Figure 5.4 we show the results of the
first and second-order numerical schemes computed with M =200. We consider both
Ag =0.005 (top) and Ag =0.07 (bottom). In both cases, the results are satisfying. In
work [21], the authors noted that a splitting numerical scheme could produce oscillations
in the solution of this numerical test, but reducing the CFL number could remedy the
problem. By splitting numerical scheme, they mean a method which solves before the
shallow water system for a fixed topography, and then updates the bed level according
to the Exner equation. For our method it is not necessary to further decrease the CFL
number due to the Lagrange-projection splitting whose numerical diffusion is sufficient
as it comes from both steps. Then, in the same paper [21], the authors presented
another test case in which the oscillations of the numerical solution of the splitting
method could not be removed, even by reducing the CFL number. In Figure 5.5 we
show that our solution does not present any oscillation. The decoupled method outputs
are not reported as they are very close to the weakly coupled ones. For this last test case,
the coefficient Ag is kept null until time t=15s is reached, then the value Ag =0.0005
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(a) hL=1m

(b) hL=0.2m

Fig. 5.3: RP: comparison between Grass (blue line) and MPM (green dashed line) formulas for qb;
free surface and bed level solution. Second-order “Weakly coupled” output at time tEnd=1s, tEnd=3s
and tEnd=5s, M =1000 cells. Initial condition hL=1m (up) and hL=0.2m (bottom).

is used. As initial condition we considered
hu(x,t=0)=0.6

z(x,t=0)=0.1(1+e−(x−5)2)

h(x,t=0)+z(x,t=0)=0.4.

Note that in this test case we have both sub-critical and supercritical regions.
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Fig. 5.4: Flow over a movable bump; bed level z and free surface z+h; Ag =0.005 (up) and Ag =
0.07 (bottom). First (blue) and second-order (magenta) weakly coupled solutions with M =200 cells.
Reference solution in red.

5.5. 1D “lake at rest” solution and perturbation. This numerical test is
useful to check the well-balanced property of the numerical scheme as we start consid-
ering a stationary solution and then we insert some perturbations. For the numerical
tests of this section, see [19]. Thus, let us consider as initial condition null velocity,
h(x,t=0)+z(x,t=0)=3m and

z(x,t=0)=

{
2+0.25(cos(10π(x−0.5))+1) if 1.4<x<1.6

2 otherwise.
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Fig. 5.5: Free surface and bed level, M =200 cells, tend=16.2s (up) and tend=30s (bottom). Refer-
ence solution (red) and first-order weakly coupled solution (blue).

The length of the channel is L=2.0m. Both first and second-order schemes maintain
the steady state up to an error of order 10−15.

As a second step, let us introduce small perturbations, namely we impose

h(x,t=0)=

{
3−z(x,t=0)+0.001 if 1.1<x<1.2

3−z(x,t=0) otherwise.

In Figure 5.6 we compare the results of first and second order numerical schemes against
the reference solution. We observe that the outputs are satisfying and in agreement with
the ones showed in work [19], no spurious oscillations appear. Clearly, the second order
results are less diffusive than the first-order one.
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Fig. 5.6: Propagation of perturbation; bed level z and free surface z+h (top), velocity (bottom). First
(blue) and second-order (magenta) weakly coupled solutions with M =200 cells. Reference solution in
red.

Fig. 5.7: 2D circular dam break on wet bed; water height (left) and its contour plot (right). 2D
extension of first-order scheme solution. M =100 cells, tEnd=0.69s and CFLl=0.45.

5.6. Circular dam break on wet bed. Let us now consider test problems in 2
dimensions. In this first test, the Exner equation is not taken into account, refer to [41].
The domain is a L×L square with L=50m. Here as initial condition we consider a flat
topography, null velocities in both the x and y directions and water height

h(x,y,t=0)=

{
10 if r≤11m

1 if r>11m,

with r=
√
(x−25)2+(y−25)2. Thus, we are considering a cylindrical dam that instan-

taneously breaks at the beginning time t=0s. The ending time tEnd=0.69s. Satisfying
results of the first order scheme are reported in Figure 5.7.
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Fig. 5.8: Water drop in a basin; water height at time t=0s (up, left), t=1s (up, right), t=2s (middle,
left), t=3s (middle, right) and t=4s (bottom). M =100 cells, CFLl=0.25 and CFLl=0.45 for the 2D
extension of second and first order schemes, respectively. 2D-extension of the 1D first-order scheme
used only in the image on the bottom-right.
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Fig. 5.9: Geometry of the dam in the squared dam break test problem.

5.7. Water drop in a basin. For this numerical test see [2]. Here we simulate
a water drop in a basin and consequently reflective boundary conditions are used. A
L-side square domain with L=20m is considered. The topography is still taken flat and
constant in time. At initial time we assume u=(0,0)t and

h(x,y,t=0)=2.4(1+e−0.25((x−10.05)2+(y−10.05)2))

The outputs are shown in Figure 5.8 at time t=1s, t=2s, t=3s and t=4s respectively.
The results agree with the ones reported in [2]. In particular, in the same Figure 5.8,
we compare the results at time t=4s obtained using the 2D extensions of the first-order
and second-order schemes. We can clearly see that the latter scheme gives less diffusive
solutions under the same mesh M =100 cells.

5.8. 2D squared dam break. Once again we assume flat topography constant
in time in a square domain of side L=200m. This time we consider a dam break problem
with the dam position represented in Figure 5.9. We note a breach of length 75m which
is instantaneously opened at time t=0. At initial time we also have null velocities and

h(x,y,t=0)=

{
10 if x≤100m

5 if x>100m.

For more details about this test case, refer to [41]. The results for the water height and
the velocity field are shown in Figure 5.10 and they appear to be in agreement with the
reference outputs given in [41].

5.9. 2D flow over a smooth bump. The following test problem is useful to
check the well-balanced property of the scheme, see [41]. The domain is a square of side
L=1m and we consider the Grass formulation for the Exner equation with Ag =1 and
ζ=1. At initial time we assume null velocities,

z(x,y,t=0)= max(0,0.25−5((x−0.5)2+(y−0.5)2)) and h(x,y,t=0)=0.5−z(x,y).

Thus, the initial solution satisfies the “lake at rest” condition. Indeed, our 2D numerical
schemes are able to preserve this kind of stationary solutions up to an error of order
10−15.
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Fig. 5.10: Squared dam break; water height (left) and contour plot and velocity field (right) at time
t=3.6s (up), t=7.2s (middle) and t=10.8s (bottom). Dam in black. 2D extension of second order
scheme with M =100 cells and CFLl=0.25.

5.10. Conical dune of sand. This test case has been vastly used to validate
numerical schemes for shallow water Exner system, here we do refer, for instance, to
[4, 29]. When considering the Grass formulation for the sediment discharge, we take
porosity ρ0=0.4, where we recall that ζ= 1

1−ρ0
. The domain is a L×L square with
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Fig. 5.11: Conical dune of sand; fast interaction Ag =1. Bed level (left) and contour plot (right) at
time t=500s. 2D extension of second order scheme with M =100 cells and CFLl=0.25.

Fig. 5.12: Conical dune of sand; medium interaction Ag =0.1. Bed level (left) and contour plot (right)
at time t=500s. 2D extension of second order scheme with M =100 cells and CFLl=0.25.

L=1000m. At time t=0, we impose

z(x,y,t=0)=

{
0.1+(sin(π(x−300)

200 ))2(sin(π(y−400)
200 ))2 if 300≤x≤500, 400≤y≤600

0.1 otherwise,

h(x,y,t=0)=10−z(x,y,t=0),

u(x,y,t=0)=
10

h(x,y,0)
and v(x,y,t=0)=0.
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Fig. 5.13: Conical dune of sand; slow interaction Ag =0.001. Bed elevation computed with 2D
extension of second order scheme with M =100 cells and CFLl=0.25.

Fig. 5.14: Conical dune of sand; slow interaction Ag =0.001. Reference angle (black line) and iso-
level at times t=0s (red), t=25h (orange), t=50h (green), t=75h (blue), t=100h (magenta). Iso-
level z=0.12 (left) and z=0.15 (right). 2D extension of second order scheme with M =100 cells and
CFLl=0.25.

Here, as boundary conditions, we assume that at the upstream we impose u(x,y,t)=
10

h(x,y,t) while the other boundaries are usual transmissive conditions.

Then, we start considering two different cases: in the first one we take Ag =1 and
ending time tEnd=500s, thus we are assuming a fast interaction between the flow and
the sediments. As second case, we diminish the value of Ag, namely we impose Ag =0.1,
thus the strength of the interaction decreases. The outputs for these two test cases can
be found in Figures 5.11 and 5.12, respectively. The results are in agreement with the
ones reported in [4] even if more diffusive due to a coarser mesh size (M =100 cells).
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Finally, we consider a slow interaction case with Ag =0.001. The aim of this sim-
ulation is to observe what is the spreading angle of the dune. Indeed, for slow water-
sediment interaction cases, namely Ag <0.01, the sediment bottom should expand ac-
cording to a star-shaped pattern and an approximation of the spreading angle α has
been proposed in the work of De Vriend [22]. In particular, considering the Grass
formulation, the angle is given by

tan(α)=
3
√
3(m−1)

9m−1

and thus, with m=3, we should obtain α=21.786789◦. Afterward, in Figure 5.13 we
show the bed elevation at final time t=100h, while in Figure 5.14 its contour plot is
shown at different times. In particular, we consider the iso-levels z=0.12 (left) and
z=0.15 (right) at times t=0s, t=25h, t=50h, t=75h, t=100h. We also insert the
analytical approximation of the spreading angle α in order to show that our second-
order method is capable to compute the solution with enough accuracy. Indeed, for the
iso-level z=0.12, our results are comparable with the ones shown, for instance, in [20,29]
as the majority of the spread of the dune is inside the cone. Then, since on the right
we use a greater value for the iso-level, namely z=0.15, it is not surprising to see that
now almost all the spread is contained in the theoretical cone. See again the following
works [4, 13,20,29] for similar considerations.

6. Concluding remarks
In this work a second-order well-balanced Lagrange-projection scheme for the shal-

low water Exner system has been presented in 1D. Its 2D extension has been proposed as
well. In addition, both Grass and Meyer-Peter&Müller formulas for the solid transport
discharge have been used. Numerical results proved the validity of the scheme. Usu-
ally, no unphysical oscillations are present in the first-order numerical outputs, while
some could be found in the second-order extension. Moreover, in this work the Exner
equation has been considered only in the transport step. Other strategies to take into
account the Exner equation in the Lagrange-projection formalism are being explored
and will be shortly submitted. Finally, it has already been observed that it could be
interesting to develop the implicit approximation for the acoustic step in order to obtain
faster numerical schemes, especially in subsonic regimes.
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Île-de-France.

REFERENCES

[1] E. Audusse, F. Bouchut, M.O. Bristeau, R. Klein, and B. Perthame, A fast and stable well-balanced
scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comput., 25:2050–
2065, 2004. 1, 1

[2] E. Audusse and M.O. Bristeau, A well-balanced positivity preserving “second-order” scheme for
shallow water flows on unstructured meshes, [Research Report] RR-5260, INRIA, 311–333, 2004.
5.7

[3] E. Audusse, C. Berthon, C. Chalons, O. Delestre, N. Goutal, M. Jodeau, J. Sainte-Marie, J. Gies-
selmann, and G. Sadaka, Sediment transport modelling: Relaxation schemes for Saint-Venant-
Exner and three layer models, ESAIM Proc., 38:78–98, 2012. 1, 5.2

[4] E. Audusse, O. Delestre, L. Minh-Hoang, M. Masson-Fauchier, P. Navaro, and R. Serra, Paral-
lelization of a relaxation scheme modelling the bedload transport of sediments in shallow water
flow, ESAIM Proc. 43:80–94, 2013. 2, 5.10

[5] E. Audusse, C. Chalons, and P. Ung, A simple three-wave approximate Riemann solver for the
Saint-Venant-Exner equations, Int. J. Numer. Meth. Fluids, 87:508–528, 2018. 1, 1, 2

https://doi.org/10.1137/S1064827503431090
https://doi.org/10.1137/S1064827503431090
https://doi.org/10.1016/j.jcp.2004.12.016
https://doi.org/10.1051/proc/201238005
https://doi.org/10.1051/proc/201343005
https://doi.org/10.1002/fld.4500


1872LAGRANGE-PROJECTION SCHEME FOR SHALLOW WATER EXNER EQUATIONS

[6] C. Berthon, S. Cordier, M. Le, and O. Delestre, An analytical solution of shallow water system
coupled to Exner equation, C. R. Math., 350(3-4):183–186, 2012. 1

[7] C. Berthon and F. Foucher, Efficient well-balanced hydrostatic upwind schemes for shallow-water
equations, J. Comput. Phys., 231:4993–5015, 2012. 1, 1

[8] M. Billaud Friess, B. Boutin, F. Caetano, G. Faccanoni, S. Kokh, F. Lagoutière, and L. Navoret,
A second order anti-diffusive Lagrange-remap scheme for two-component flows, ESAIM Proc.,
32:149–162, 2011. 1

[9] F. Bouchut, C. Chalons, and S. Guisset, An entropy satisfying two-speed relaxation system for the
barotropic Euler equations. Application to the numerical approximation of low Mach number
flows, Numer. Math., 145:35–76, 2020. 1

[10] R. Briganti, N. Dodd, D. Kelly, and D. Pokrajac, An efficient and flexible solver for the simulation
of the morphodynamics of fast evolving flows on coarse sediment beaches, Int. J. Numer. Meth.
Fluids, 69:859–877, 2012. 1, 2, 5.3

[11] R. Bürger, C. Chalons, and L. Villada, Antidiffusive and random-sampling Lagrangian-remap
schemes for the multiclass Lighthill-Whitham-Richards traffic model, SIAM J. Sci. Comput.,
35(6):1341–1368, 2013. 1

[12] M.J. Castro Dı́az, E.D. Fernández-Nieto, and A.M. Ferreiro, Sediment transport models in shallow
water equations and numerical approach by high order finite volume methods, Comput. Fluids,
37(3):299–316, 2008. 1, 1, 2, 5.1

[13] M.J. Castro Dı́az, E.D. Fernández-Nieto, A.M. Ferreiro, and C. Parés, Two-dimensional sedi-
ment transport models in shallow water equations. A second order finite volume approach on
unstructured meshes, Comput. Meth. Appl. Mech. Eng., 198:2520–2538, 2009. 2, 5.10

[14] M.J. Castro Dı́az, C. Chalons, and T. Morales De Luna, A fully well-balanced Lagrange-projection
type scheme for the shallow-water equations, SIAM J. Numer. Anal., 56(5):3071–3098, 2018. 1,
1, 1, 2, 2

[15] M.J. Castro, T. Morales de Luna, and C. Parés, Well-balanced schemes and path-conservative
numerical methods, in R. Abgrall and C.-W. Shu (eds.), Handbook of Numerical Analysis,
18:131–175, 2017. 5.1

[16] C. Chalons, S. Kokh, and M. Girardin. Large time step and asymptotic preserving numerical
schemes for the gas dynamics equations with source terms, SIAM J. Sci. Comput., 35(6):A2874–
A2902, 2013. 2

[17] C. Chalons, M. Girardin, and S. Kokh, An all-regime Lagrange-projection like scheme for the gas
dynamics equations on unstructured meshes, Commun. Comput. Phys., 20(1):188–233, 2016. 1,
2

[18] C. Chalons, M. Girardin, and S. Kokh, An all-regime Lagrange-projection like scheme for 2D
homogeneous models for two-phase flows on unstructured meshes, J. Comput. Phys., 335:885–
904, 2017. 1, 2

[19] C. Chalons, P. Kestener, S. Kokh, and M. Stauffert, A large time-step and well-balanced Lagrange-
projection type scheme for the shallow-water equations, Commun. Math. Sci., 15(3):765–788,
2017. 1, 1, 2, 2, 2.1, 2.1, 5.5

[20] A. Chertock, A. Kurganov, and T. Wu, Operator splitting based central-upwind schemes for shal-
low water equations with moving bottom topography, Commun. Math. Sci., 18:2149–2168, 2020.
2, 5.10

[21] S. Cordier, M. Le, and T. Morales de Luna, Bedload transport in shallow water models: why
splitting (may) fail, how hyperbolicity (can) help, Adv. Water Resour. 34(8):980–989, 2011. 2,
5.4

[22] H.J. De Vriend, 2DH mathematical modelling of morphological evolutions in shallow water, Coast.
Eng., 11:1–27, 1987. 5.10

[23] A. Del Grosso and C. Chalons, Second-order well balanced Lagrange-projection schemes for blood
flow equations, Calcolo, 58, 2021. 1

[24] F. Duboc, C. Enaux, S. Jaouen, H. Jourdren, and M. Wolff, High-order dimensionally split
Lagrange-remap schemes for compressible hydrodynamics, C. R. Math., 348(1-2):105–110, 2010.
1

[25] G. Gallice, Solveurs simples positifs et entropiques pour les systémes hyperboliques avec terme
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