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A FULLY WELL-BALANCED SCHEME FOR SHALLOW WATER
EQUATIONS WITH CORIOLIS FORCE*
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Abstract. The present work is devoted to the derivation of a fully well-balanced and positivity-
preserving numerical scheme for the shallow water equations with Coriolis force. The first main issue
consists in preserving all the steady states. Our strategy relies on a Godunov-type scheme with suitable
source term and steady state discretisations. The preservation of moving steady states may lead to
ill-defined intermediate states in the Riemann solver. Therefore, a proper correction is introduced in
order to obtain a fully well-balanced scheme. The second challenge lies in improving the order of the
scheme while preserving the fully well-balanced property. A modification of the classical methods is
required since no conservative reconstruction can preserve all the steady states in the case of rotating
shallow water equations. A steady state detector is used to overcome this matter. Some numerical
experiments are presented to show the relevance and accuracy of both first-order and second-order
schemes.
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1. Introduction

In the present work we consider the one-dimensional shallow water system with
transverse velocity and Coriolis force. This system is also known as 1D rotating shallow-
water equations (RSW) and is given by

2

Ot (hv) 4+ 0, (huv) = — fhu,

where h(z,t) denotes the fluid height, u(z,t) and v(x,t) are the two components of the
horizontal velocity, z(x) designates the topography and is a given function, g is the
constant gravitational acceleration and f the Coriolis parameter. This system can be
written under the more compact form dyw+ 0, F(w) = S(w, z) with

h hu
w=|hu], Fw)= hu2+% ,
hv huv

and S(w,z) = Seor (W) + Stopo(w) Oz z Where we set

0 0
Scor(w) = th and Stopo(w) = _gh
—fhu 0
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The first source term is related to the Coriolis force and the second one to the topogra-
phy. The vector w must belong to the convex set of admissible states

Q={w=(h,hu,hv)T €R* 1> 0}.
This 1D system can be obtained from the 2D RSW equations,

Oyh+ 0, (hu) + 8, (hv) =0,

2
O (hu)+ 0, <hu2—|—gh) +0y(huv) = fhv — ghd, 2,

2 (1.2)

2
0¢(hv) + 05 (huv) + 0, (hv2 + g;L> =—fhu—ghdyz,

in which the variations in the y direction are neglected.

The RSW system takes into account the force due to the Earth’s rotation through
the Coriolis term and can therefore model large-scale oceanic or atmospheric fluid flows.
One remarkable behaviour of geophysical flows is the geostrophic equilibrium, that
received a great attention in the literature these last years, see [3,4,9,11, 18,22, 26,
31] for instance. Most oceanic and atmospheric circulations are perturbations of the
geostrophic equilibrium, which express the balance between the Coriolis force and the
horizontal pressure force, as follows in 2D

gV(h+z)=f<” )

u

In 1D, the geostrophic equilibrium writes

u=0,
{gax(hﬂ):fv, 43

which is a steady solution of (1.1) with no tangential velocity. Let us notice that in
1D, all the steady solutions of (1.1) with no tangential velocity are described by the
geostrophic equilibrium (1.3). With a zero velocity v, we recover the lake at rest solution
of the classical shallow-water model.

From a numerical point of view, it is well-known since the early works [5,19,21],
that numerical schemes should capture accurately the steady solutions in order to avoid
spurious oscillations, especially on coarse grids. In the few last decades, a large lit-
erature was devoted to design such well-balanced schemes that are able to preserve
steady solution at rest in different contexts. For the classical shallow-water equations,
we can mention the hydrostatic reconstruction method proposed in [1] and numerous
other works using various methods, including [13,14,24]. Concerning the RSW system,
some authors have developed numerical schemes which preserve exactly the geostrophic
equilibrium (1.3), for instance in [9,11,25,26].

More recently, some numerical schemes were derived to preserve all the steady
states, including the moving ones. Let us emphasize that it is in general a very chal-
lenging task to derive such fully well-balanced schemes. The first attempt was in [16]
where the author obtains a scheme that preserves all the sonic steady states. In [10], the
authors derive a scheme that captures all the steady states of the shallow-water equa-
tions with topography. However, this scheme was not able to preserve the positivity
of the water height. The first fully well-balanced and positivity-preserving scheme was
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derived by Berthon-Chalons [6]. Later, fully well-balanced schemes were also derived
for the shallow-water equations with both topography and friction in [28] and for the
blood flow equations in [15].

For the 1D RSW equations, the steady solutions are described by

0. (hu) =0,

2
Oz (huQ—l—g;L) = fhv—gh0;z, (1.4)

(hu)Oyv=—fhu.

To the best of our knowledge, no fully well-balanced scheme was proposed for the 1D
RSW equations. In this system, there is an additional difficulty due to the complex
structure of the steady states. Indeed, let us notice that the steady solutions with
nonzero tangential velocity satisfy

0. (hu) =0,

0s (“22+g(h+z)> = fu, (1.5)

O,v=—Ff.

Thus the steady solutions with no tangential velocity described by (1.3) cannot be
obtained by setting u=0 in (1.5). It leads to two different families of steady states.
This is a discrepancy with the standard shallow-water model, where the lake at rest can
be obtained by setting ©=0 in the moving steady states equations. The first aim of
this paper is therefore to derive a fully well-balanced and positivity-preserving scheme
for the one-dimensional RSW equations.

Another issue arises with the 1D RSW equations when we try to increase the order
of precision, while preserving the well-balanced property. For other systems with source
terms, well-balanced second-order extensions exist. The reader is referred, for instance,
to [8,27] for the shallow-water system with topography, [28] for the shallow-water sys-
tem with both topography and friction and [15] for the blood flow equations. In all
these extensions, the main ingredient lies in a reconstruction procedure that preserves
the discrete steady states. In order to get the well-balanced and positivity-preserving
properties, a standard method is to consider the second-order scheme as a convex combi-
nation of first-order schemes on half cells. It requires to use a conservative reconstruction
of the unknown variables. Unfortunately, a conservative reconstruction which is fully
well-balanced and positivity-preserving is not possible in the case of the 1D RSW, as it
will be explained in Section 4.1.

In [28] and [15], a discrete steady state detection procedure is performed. The
purpose is to modify the limitation procedure in order to recover the well-balanced
first-order scheme near steady states and keep the high-order scheme far from steady
state. We propose to adapt this technique for the 1D RSW equations. However, since
the numerical flux depends on the space step, we have to complement this technique by
adjusting the space step to recover the fully well-balanced first-order scheme at steady
states and the second-order scheme far from steady states.

The paper is organized as follows. In Section 2, we start by recalling some general
notions about Godunov-type schemes and we choose the discretisation of the continuous
steady solutions the scheme will have to preserve. Next, Section 3 is devoted to the
derivation of an approximate Riemann solver that leads to a fully well-balanced and
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positivity-preserving scheme. In Section 4, we recall the principle of the classical second-
order MUSCL extension and we explain why it cannot give a fully well-balanced scheme
for the RSW system. Therefore, we present a new strategy based on a discrete steady
state detection to recover this property. We also check that this modification does not
create non-positive fluid height values. In Section 5, we show some numerical examples
that illustrate the fully well-balanced property and the accuracy of both first-order and
second-order schemes. Finally, we give some concluding remarks in Section 6.

2. Godunov-type scheme with source terms

The numerical scheme we will derive to approximate system (1.1) is a Godunov-type
scheme. In this section, we recall the framework of this family of finite volume schemes
and we set the notations.

2.1. Principle. We consider a space discretisation made of cells K;=
(xi,l/g,xiﬂ/g), with constant length Axz. The center of the cell K; is denoted by
x;. The topography is discretized by

1
5= /Kl z(x)dx.

At time t", we assume that an approximation of the solution of (1.1) is known, which
is constant on each cell, and we denote it by

wag(z, t")=w], if x € K.
In order to simplify the notations, we set the augmented vector w = (w, z), which belongs
to the set

Q=QxR={w=(h,hu,hv,2)T €R*;h>0}.

Since z does not depend on time, we have W = (wf,2;). We aim to update this approx-
imation at time t"*! =¢" + At, with a step At chosen according to a CFL condition.

Godunov-type schemes are mainly based on Riemann problems, which are Cauchy
problems for system (1.1) with an initial data of the form

wy, if <0,
w(z,0)=9 " (2.1)
wg if £>0,
and a topography given by
if x <0,
da)={ " (2.2)
zgp if x> 0.

We denote the exact solution of (1.1)-(2.1)-(2.2) by Wr(§,wr,wg). Let us point
out that this solver depends on (@, wr) € Q2 but belongs to the set Q CR3 since the
variables h,hu and hv evolve through time but the topography z does not.

This exact solution is usually very difficult to compute. Therefore, we prefer to
use an approximate Riemann solver WR(%,U}DER) instead. According to [20], the
approximate Riemann solver has to satisfy the following consistency property:

Az Ax
1 (2~ /2 _ _ 1 e T
A:v/_A;WR(At’wL’wR)dx_M/_A;WR (E,wL,wR)dx.
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The average of the exact Riemann solution can be computed and the previous condition
is equivalent to

Az

1 2~ T
L iy, ) d
A;WR<At;U}LawR) x

Ax
wr+wgr At 1 At poE xr
:T*M(F(WR)*F(WL))JrE ; MS(WR (;,’LUL,U)R),Z(@) dxdt.

(2.3)

In the absence of source terms, we can enforce this equality to ensure the consistency
of the approximate Riemann solver. However, it is not always possible to compute
exactly the average of the source term. Therefore, it is standard to use a suitable
approximation (see for instance [6,8,12])

S(@L’@R)z%t OAt/_iS(WR (%7{5L,@R),z(x))d$dt.

This numerical source term should be consistent with the continuous source term S in
the following sense.

DEFINITION 2.1. The numerical source term S is consistent with the continuous
source term S(W) = Seor (W) + Stopo (W) gz if it satisfies
S((w,z1), (w,2R)) = Seor (W) Az + Stopo(w)[2]. (2.4)

Provided a consistent numerical source term, the approximate Riemann solver can
only satisfy a weaker version of (2.3). It leads to the definition of a weakly consistent
approximate Riemann solver.

DEFINITION 2.2.  The approximate Riemann solver WR is weakly consistent if there
exists a consistent numerical source term S such that

Az
1 2~ sx _wrptwg At At
A(E/A;:WR (EﬂvL,wR) da?—T—E(F(UJR)—F(UJL))‘*‘ES(U}L,U)R)

(2.5)
The following section will be devoted to derive a weakly consistent approximate
Riemann solver. For now, we show how we can obtain a numerical scheme from an

approximate Riemann solver. A Godunov-type scheme is built in two steps:
e firstly, we consider the juxtaposition of approximate Riemann solvers at each
interface ;1 12,
o5 (T Tir1/2 oy ~ .
wag (2, t" +1)=Wpg (W,wf,wﬂ_l) ,if € (z4,2i41);
o secondly, the update at time t"*! is obtained by averaging the previous function
on each cell

gl 1 i+1/2 N
wiT = —— WAz (2, t" + At)dx
Az Ti—1/2

or equivalently

Az
nt+l _ 1 2 W\ T d TR d
wl A:c R At wz 1 , W €z + Az wz ) 'Hrl Z.

2
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In order to prevent the approximate Riemann solvers to interact between each other,
we must enforce the CFL restriction

At o
— max | \F (@], wpy )| <

Az icz

= 2.7
2 ? ( )
where )\i(@b@R) denotes both the maximum and minimum speed of the waves that

appear in WR( ,Wr,,Wg). Under this condition, we can write the Godunov-type scheme
as a finite volume scheme (see for instance [6])

. At At
wit =w} - M( 12— Fitije)t+ K(sﬁrl/Q +8i1/2)s (2.8)

Z)Vlth Fitap=F(wi,wiy ) and Sl =S(wj,w} 1), where the numerical flux is given
Yy

F(wp)+ F(wg) _ﬂ(
2 4A¢L

—|—m (/AQWR(At wL,wR)dx—/_O WR(At wwa)dl’), (2.9)

and the numerical source term S(Wr,,Wg) is the same as introduced in Definition 2.2.

At this point, the only property the scheme has to satisfy is the weak consistency of
the approximate Riemann solver. We now list some other properties the scheme should
satisfy.

F(wr,wgr)= WR—Wr,)

2.2. Numerical scheme properties. = We present two important features of nu-
merical schemes in this context: robustness and well-balancing. Godunov-type schemes
have the advantage of inheriting these properties from the approximate Riemann solver
Wg. First, we study the preservation of fluid height positivity.

LEMMA 2.1. If the approzimate Riemann solver W\R satisfies the robustness condition
V(W Wr) € 9%, VE€R, Wy (&, WL, WR) €L, (2.10)

then under the CFL condition (2.7), the Godunov-type scheme (2.8) preserves the pos-
itiwity of the fluid height:
Vi€ Z,h? >0=VYi € Z,h > 0.
The reader can refer, for instance, to [8] to find a proof of this result.
Similarly, the Godunov-type scheme is well-balanced as soon as the approximate
Riemann solver is. To be more specific, we have to introduce the notion of local steady

states. In the following, for any quantity X which has a left value X and a right value
Xgr, we will use the following notations

(X]=Xp—X;,, X=_LTAE
DEFINITION 2.3. A couple of states (wy,,Wg) defines a local steady state for the system
(1.1) if it satisfies
hrupr=hrur =g,
u2
[2+g(h+z)} =Ax f7, (2.11)
qlv]=—-Axfq,
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or equivalently if the local steady state indicator

2

E(wr,Wr,Az)= ’[hu]‘2+ [U;—&—g(h—l—z)}—Ava +‘M([v]+fo) 2, (2.12)

is equal to zero.

All along this paper, we write £ rather than £(wy,wr,Az) if no ambiguity is
possible. Let us notice that (2.11) is actually a discretization of the Equations (1.4) that
define the continuous steady states. Other choices of discretization could be possible,
especially in the choice of the mean value v.

The definition of a well-balanced Riemann solver follows.

DEFINITION 2.4. An approximate Riemann solver is called well-balanced if

—~ /x wy, if £ <0,
Wr (*,wL,wR): ‘
t wpg if >0,

as soon as (Wr,Wg) s a local steady state.
Similarly, we define a discrete steady state and a well-balanced scheme.

DEFINITION 2.5.

n

(1) A sequence (W})iez defines a discrete steady state if the couples (W;,W;41) are local

steady states for all i € Z.

(2) A numerical scheme is called well-balanced if for each discrete steady state

N

(W) iez, we have

witt =wl, Vi€ Z.
Equipped with these definitions, we have the following statement.

LEMMA 2.2.  If the approzimate Riemann solver WR is well-balanced, then the asso-
ciated Godunov-type scheme (2.8) is well-balanced.

Proof.  Let a sequence (w!);cz be a discrete steady state. Then, according to
K3
(2.6), the updated approximation satisfies w?“ =w} for all i €Z. O

To summarize, the approximate Riemann solver that we will derive in the next
section has to satisfy the weak consistency condition (2.5), the robustness condition
(2.10) and the fully well-balanced property given by Definition 2.4.

3. A fully well-balanced Godunov-type scheme

Here, we propose an approximate Riemann solver for the system (1.1) that satis-
fies the three required properties. We adapt to the RSW system the strategy mostly
proposed in [15,27,28] for different systems.

3.1. Source term discretisation. The aim of this section is to propose a
numerical source term

S(wr,wg)=(0,8"(wg,wr),S" (wr,wr))"

which is consistent with the continuous source term S in the sense of Definition 2.1.
Moreover this choice of a numerical source term has to be coherent with the required
well-balanced property.
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To this end, we start by considering a Riemann data (wy,,wg) which is a local steady
state according to Definition 2.3. Since we want the approximate Riemann solver to be
both weakly consistent and well-balanced, the condition (2.5) enforces

S(wp,wr)=F(wgr)—F(wy), (3.1)
or equivalently
SO h2 h?
Sh“(wL,wR) ZhRU2R—|— gTR — hLu% — QTL,

Shv(@L,@R) thuRvR—hLuLvL.

Based on the chosen Definition 2.3 of the local steady states, these relations can be
written by

S (@, W) = <gh - th;> (], (3.2)

SM (W, wr)=—Axfq. (3.3)

The expression (3.2) cannot be used to define the numerical source term in the
general case since it would not be consistent in the sense of Definition 2.1. Hence, we
continue to develop this expression for a local steady state. First, from the second
equality of (2.11), we get

2 2
q q o
Z +9(hr+2R) 75 g(hr +2zr)=Axf, (3.4)
which leads to
-
q°h ) _
h1——=5 |=Axfv/9g—(zr—2L). 3.5
1) (1= g o (zn—22) (35)
It follows
Az fv/g—|[2]
p= 280912 .
=2l (3.
where Fr= % is a discrete Froude number. Injecting this relation into (3.2), we
get

gR{h? (Axfu/g—[])

hu(s~ o~ \_ T T
S"(wy,wr)=Axfhv—gh[z]+ I (1=

(3.7)

We inject one more time (3.6) in the above equality to obtain a more convenient
expression

gBr[h] (A fo/g (=)

h (@, W) = Az fhv — gh =
S" (W, wr) x fhv — ghlz]+ A% (1—Fr)2

(3.8)

This expression is a priori not well-defined if Fr=1. However, the combination of
(3.6) and (3.7) leads to a paraphrase of S™*(wr,wx) in the form

S (@, @r) = ghlh](1—Fr)+ %Fr[h]?’.
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Therefore S" (W, wr) admits the following limit when Fr goes to 1

lim S"(i,Wr) = %[h]f’. (3.9)

At this point, (3.8) and (3.3) are suitable definitions for the numerical source terms
S" and 8" when a local steady state is considered. However, let us point out that
the limit (3.9) is only valid for a local steady state. Therefore, the right-hand side of
(3.8) is not well-defined when er#0 and Fr=1. To deal with this issue, we add a
nonnegative term £rr to the denominator as follows

gFr[h] (Azfv/g9—|2])*
4h  (1-Fr)2+Eg "’

S @y, Wr) = Az fhT — ghlz] + (3.10)
Indeed, the denominator in (3.10) can only vanish when e;r =0, which means the
Riemann data (wr,wg) is a local steady state. But then the source term can be defined
by the limit (3.9) as mentioned before.

To generalise (3.3) away from local steady states, we need to define a general dis-
charge ¢ which coincides with ¢ as soon as a local steady state is considered or as soon
as wr, =wgr =w. There are several possible definitions, §=hu for instance.

We finally obtain the following definitions for the numerical source terms

gFr[h] (Azfv/g—[2])*
ah (1-Fr)?+&g

Az fhv — gh[z]+ if Fr#1 or ELgr #0,
S (W, wr) =
[n]? if Fr=1 and £,r=0.

(3.11)

S" (W, wR) = —Axfq. (3.12)
To conclude, we prove that these numerical source terms are consistent.
LEMMA 3.1.  The numerical source term
S(@r,wr)=(0,8"(wy, wr),S" (W, wr))T

defined by (3.11) and (3.12) is consistent in the sense of Definition 2.1.

Proof.  The consistency is immediate for S"*, as for S in the case Fr#1 or
Err#0. In the case Fr=1 and £ =0, let us notice that according to (3.6), we have
Az fv/g=[z]. Therefore the source term S"* can be written under the form

N S A L)

S (wL,wR)—Axfhv—gh[z]+ 4E y
and the consistency follows. 0
3.2. Approximate Riemann solver.  The numerical source term being well-

defined, we now turn to build a weakly consistent approximate Riemann solver which
is fully well-balanced and preserves the positivity of the fluid height.

Let us notice that the well-balanced property of the approximate Riemann solver
strongly depends on the choice that was made in Definition 2.3 to discretise the steady
states. However, the following procedure stands for any discretisation of the steady
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states. This is not the case for the source term discretisation which was done in the
previous section and should be adapted to the steady state discretisation.

We consider a Riemann data (wg,,wg) € Q% We choose to build an approximate
Riemann solver WR with four constant states separated by three discontinuities with
respective speeds A\p, <0, \g =0 and Ag >0, as described in Figure 3.1. This approximate
Riemann solver writes

wr, if%<)\L,

. wZifAL<%<O,
Wr (;'@L,@R> = " (3.13)

T
wg if ; > AR.
This leads to two intermediate states w} and wy and thus six unknowns. In order

0

)\L /\R

Fi1c. 3.1. Approzimate Riemann solver 17\)\3

to simplify the subsequent notations, we introduce the intermediate state of the HLL
approximate Riemann solver (see [20])

wHLL:)\RwR*/\LwL7F(UJR)*F(U)L) (3.14)
Ar— AL ArR—AL
Let us notice that its first component can be written as
pHELSESE g SR,
As a consequence, as soon as the speeds Ay, and A\g satisfy
AL <ur, and AR > UR, (3.15)

we have hHLL > (.

We are searching for six relations to define the unknowns wj and wj. The first
three relations come from the weak consistency condition. Noticing that the average of
the approximate Riemann solver Wg is given by

Ax

1 P o5 (. .\ _wrtwr At At . .
Al’/_%mWR (?;’LUL/LUR) _T - E()\RIUR—>\L’U}L)—i—E()\waz_)\LwL)7
the weak consistency condition (2.5) writes

Mgl —Aphh = (Mg — A )W EE (3.16)
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Arbhjul — Aphiuf = (Ar — Ap) (hu)""F + 8™ (W, wg), (3.17)
ArhRvs = ALhivs = (Ar — ) (ho) XL 1 8™ (@, WR). (3.18)

The three missing relations will come from the fully well-balanced constraint given
by Definition 2.4. In other words, we have to choose three additional relations such that
the solution of the system formed by these relations and Equations (3.16), (3.17) and
(3.18) satisfies

wp=wr and w]=wp,

as soon as (wr,,Wr) is a local steady state. We will deal with each variable separately.

First, we are going to determine the intermediate discharges h} u} and hug. Since
hu is the Riemann invariant associated with the characteristic field of speed g, it is
natural to enforce the relation

Lup=hpup=4q", (3.19)

The system (3.17)—(3.19) can be solved immediately to obtain the intermediate discharge

Sh(wy,wr)

* _ (hu)HLL
g = (hu)" ™"+ y—

(3.20)

Now we are going to determine the intermediate fluid heights h} and h%. Let us
notice that when (wr,wg) is a local steady state, we have according to (3.2)

aLR(hthL):Sh“({DL,{DR), (321)

where arr = gh—|urug|. Therefore, a simple choice for the additional equation would
be a linearisation of (3.21) as

OéLR(h’;%—hz) :Shu(ﬁ;LﬂﬂR).

Together with Equation (3.16), this leads to a simple linear system. However this
system does not admit a unique solution when a r vanishes. We suggest the following
modification

(a3 g +ELr) (W —h}) =aLrS" (W, WR). (3.22)

The coefficient a2L r+ELr can still vanish if both apr and £,r vanish. However, it
is quite natural in that case to enforce h} —h} =hpr—hy because of the fully well-
balanced constraint. Moreover, we can notice that for all arr#0 and according to
relations (3.22) and (3.21) we have

lim h%—h} =hr—hr.
eLr—0 R L R L

Thus we introduce the following quantity

aprS" (Wi, WR) .
if €10 40,

Alp={ oip+Err w7
hr—hr, if &rr =0,
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and we choose the following additional equation
r—hp=Ag (3.23)
Solving the system (3.16)—(3.23), we obtain

AR
x _ pHLL _ Al
L AR _ )\L LR>

A
h* :hHLL_ L h .
R )\R*)\L LR

Nothing ensures these intermediate fluid heights to be positive. To address this
issue, we adapt the cut-off procedure suggested in [2,15,27]. Let us introduce the
threshold

§=min(e,hy,hp, W), (3.24)

where € >0 is a small parameter. We recall that AL is positive as soon as condition
(3.15) is satisfied, and therefore we have §>0. If h} <J, we set h} =4, and h} is
modified according to (3.16). In this case, we have

AL AL
w (1AL pHLL | AL ps
e (12 ) 2

so both intermediate water heights h} and h}j are positive. We proceed similarly if
h} < 4. Taking this procedure into account, the intermediate fluid heights write

A A A
o HLL _ __ AR ah _ AR\, HLL AR
7 =min <max <h Y ALR,6> , (1 )\L> h + s 5> , (3.25)
W% =min | max | AAEL — A_L A s ) (1 A e Mg (3.26)
AR—AL AR AR

Finally, we proceed similarly in order to determine the intermediate transverse
speeds v} and vj. We introduce the quantity

qS"* (W, wr)

if £ 0,
Algp= P+ELr LR
VR — VL ifgLRZO,
and we enforce the following additional equation
v —v; =Alg. (3.27)
The system (3.18)—(3.27) then leads to
* (hU)HLL 1 hv/(~ -~ * AV
v, = hHLL ()\R_)\L)hHLL (S (wLwa)_ARhRALR)7 (328)
ho)HLL 1 o
oy = 10) (8" (. @r)~ALhEAY ). (3.29)

RHLL (Ar — AL)hHLL
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The approximate Riemann solver is then completely defined by relations (3.19),
(3.20), (3.25), (3.26), (3.28) and (3.29). Let us notice that it is automatically weakly
consistent by the choice of the three first Equations (3.16), (3.17) and (3.18). The cut-
off procedure does not alter the weak consistency, since Equation (3.16) is still enforced
when it is applied.

Moreover, thanks to the cut-off procedure, we can prove that the approximate
Riemann solver is robust.

LEMMA 3.2.  If the initial fluid heights hy, and hr are positive and if the speeds A,
and Ag satisfy (3.15), then both intermediate fluid heights b} and h}, defined by (3.25)
and (3.26) are positive.

Proof.  Under these asumptions, the intermediate fluid heights h} and h} are
greater or equal to 0, which is positive. 0

We now prove that the approximate Riemann solver is also well-balanced.
LEMMA 3.3.  The approzimate Riemann solver WR is well-balanced.

Proof.  Let us consider a local steady state (wr,wg). First, we state that the
cut-off procedure cannot apply in this case. Indeed, thanks to the Definition (3.24),
the intermediate fluid heights computed before the cut-off procedure satisfy hy =hy >0
and hp=hr>0.

Therefore, we only need to show that w; =wr and wj=wg to prove the result.
Since (w},w%,) is defined as the unique solution of the system of Equations (3.16), (3.17),
(3.18), (3.19), (3.23), (3.27), it is sufficient to prove that (wy,wg) is a solution of this
system.

Since we have £, r =0, it is immediate that (wr,wg) is a solution of (3.19), (3.23),
(3.27). The approximate solver being weakly consistent and (w,wg) being a local
steady state, Equation (2.5) enforces

S(wr,wr) = f(wr) = f(ww),
so the intermediate state of the HLL solver defined by (3.14) satisfies
(Ar —Ap)wH = \gwr — Apwr, — S(wy, WR).

As a consequence, Equations (3.16), (3.17) and (3.18) rewrite

ArNR —ALhL =Arhr —ALhL,

ArhRur —ALhiul =Aghgur —Aphrur,

ArhRUE —ALhivl =Aghrvr —ALhrvr.
We deduce (wr,,wg) is a solution of these equations and thus wj =wr, and wh=wg. O

The approximate Riemann solver W\R thus satisfies all the required properties.

3.3. The final scheme. We summarize in this section the full scheme and its
properties.

THEOREM 3.1.  The approzimate Riemann solver (3.13) where the intermediate states
are given by (3.19), (3.20), (3.25), (3.26), (3.28) and (3.29) leads to a Godunov-type
scheme that can be written under the form (2.8). The numerical flux

o o o . \T
F(wr, @)= (F" (@, wg),F" (@r, W), F" (WL, Wr)) " ,
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s given by
b~ o~ N7 AR« AL,
F (wwa)—hu—i—?( R—hR)'F?(hL_hL);

. hZ A A
F (g @r) = b + T + S (Wi — ) + 5 (hjuf, —hrup),

- — A A
Fr (@, wg) = huv+ 73( vk —hpog)+ ?L (hW5vs —hpor),
and the numerical source term
S(wp,wr)=(0,8""(wr,,wg),S" (W, Wr))

is defined by (3.11) and (3.12).

Under the CFL restriction (2.7) and if the speeds A\, and Ag are chosen according
to (3.15), this scheme is fully well-balanced and preserves the positivity of h.

T

Proof.  The expression of the numerical flux is obtained from a straightforward
computation in (2.9).

Assume (wp,wg) are in Q. Since h'EE >0, the cut-off procedure ensures h} >0
and h} >0. Thus the variable h remains positive in the approximate Riemann solver.
According to Lemma 2.1, the scheme preserves the positivity of h.

The well-balanced property of the scheme is a direct consequence of Lemmas 2.2
and 3.3. O

4. Second-order scheme

In this section, we propose to improve the scheme precision using the MUSCL
method. Our goal is to build a second-order scheme in space that preserves the good
properties of the first-order one, namely the positivity of A and the well-balanced prop-
erty. The second-order in time is obtained with the usual Runge-Kutta method. We do
not describe it here, but the reader can refer to [7,17,29].

We start by a description of the standard MUSCL method, and we explain why it
is not adapted to get the fully well-balanced property for the RSW system. Indeed, no
conservative reconstruction can preserve the structure of all the steady states defined
by (2.11) as it will be explained in Subsection 4.1. We explain in Subsection 4.2 how to
recover the fully well-balanced property by adapting the ideas proposed in [28] and [15]
to our generalised MUSCL scheme.

Up to this point, for the sake of conciseness, we neither mentioned explicitly the
dependence on Az in the numerical fluxes and the source terms, nor in the definition
of local steady states. However in the following, we will consider half-cells, which will
impose to make these dependencies appear, in particular to determine if the scheme
is fully well-balanced. It will also be useful to consider the Az that appears in the
approximate Riemann solver Wg and the Az that appears in the numerical scheme
Definition (2.8) as two separated parameters. For the sake of clarity, the first one will
be denoted by d> 0, and therefore the approximate Riemann solver writes

wr, if§<x\L,
wh(d) if A< % <0,

—~ [T .
WR(;awLawRad): x
wk(d) if0<;<)\R,

X
WR if;>/\R.
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According to Subsection 2.1, the resulting Godunov-type scheme writes

’(L-‘rl — wn _ At

w; i Ax

(f(@?,zﬂgﬂrl,d)—.7:(@?_1,@?761))

At o n o n - noon
+ As (S (wifl,u)i ,d) +S(wi Jwhq.d)),  (4.1)
provided the CFL condition (2.7) is satisfied. Notice that for d= Az, we recover the
fully well-balanced scheme derived in Section 3. Moreover, we establish the following
lemma, that will be useful for the forthcoming proof.

LEMMA 4.1.  Under the CFL condition (2.7) and if the approzimate Riemann solver
wavespeeds Mg, and Ag satisfy (3.15), then the Godunov-type scheme (4.1) preserves the
positiwity of h, for all d>0.

Proof. Independently of the parameter d, the cut-off procedure leads to positive in-
termediate states h} and h¥, according to Definition (3.25)-(3.26), since the wavespeeds
Ar and Ag satisfy the condition (3.15). Then, we apply the Lemma 2.1 to conclude the
scheme (4.1) preserves the positivity of h for all d > 0. d

4.1. Standard MUSCL method. The main idea of the MUSCL method is to
reach second-order by considering a linear reconstruction of the solution on each cell,
instead of a constant one. We recall here the standard reconstruction procedure.

Starting from a piecewise constant approximation at time ¢,

Wag(z,t™)=w] if z€ K,
we reconstruct states at the interfaces of each cells as
o =0t £ == o (w 4.2
w; =Wy B) o' (w), (4.2)

where ol'(w) is a slope vector to determine. Let us emphasize that this procedure
includes the topography.

To avoid spurious oscillations, it is well-known that a limitation procedure must be
applied to the slopes. In this paper, we consider the minmod limiter function defined
by

min(oy,0r) if o >0 and o >0,
minmod(or,0r) = ¢ max(or,0r) if o <0 and og <0,

0 otherwise.

Then the slope vector is defined by ol (w)=minmod (Gi Zj"*l , wi*&;ﬁi ) Other lim-

iters can be considered, see [23,30] for instance. We enforce an additional limitation
procedure on the first component ¢! (@) in order to ensure that the fluid heights h"=
remain positive. An immediate computation shows that the condition
2h7
n,h/~ 2
o, (w)] < —,
o7 (@) < X
is sufficient.
The standard MUSCL extension is obtained as follows. For a first-order scheme
under the form (2.8), the second-order scheme is defined by
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At
witt = — S (F@ @ )~ F @ @) d)

1 2 [ H—l’
At ~n,+ ~n,— ~n7— n +
+m(8(wi—1’wi >d)+86(wi d)+8( 7,+17d))7 (4'3)

where S.(wr,Wg,d) is a centered source term, added to take into account the source
term when its jumps at interfaces are small (see [8]). Several possibilities exist to define
it.

In the present work, it will be determined naturally by considering the MUSCL
scheme (4.3) as a convex combination between two first-order schemes applied on the
reconstructed states and on half-cells, as described in Figure 4.1. More precisely, we
define

2At » » Ax U Az
w?+1,+:wlﬁv+ A (]-'(wfﬂr ;11, 5 )_}—<w?’ ’w?,+72>>

At ~n,— ~n,+ Ax ~n,+ ~n— Az
+Aw<5<wi w, ", > >+S<wi Wi, 5 )),

2Nt e ot A 4 n— A
w?+1’__wf’_m(f<wi’ Y W; 7+72I>]:(wi—7_‘1—7wi, 7;)>

At ~n,+ ~n,— Az T, — ~n,+ Az
L )]

Taking the arithmetic mean of these two states, we obtain

n,— n,+
S M L NN Y (e B L
w; = 5 Ax Flwg " wiiy, - Flw oy ,w ™, 5
At ~n,+ ~n,— A o (Ao ) + A ~n 4+ ~n,— Al‘
+72Aac <S(wi17wi 5 )—|—28< ,w;” > >—|—S< WL 5 . (4.4)

. . . . wﬁ’f-‘,-w?"Jr .
Assuming the reconstruction is conservative, namely w}' = ———5——, we notice that

the scheme (4.4) can be written under the form (4.3) with d= % and by defining the
centered source term as

S @t d)= 23( = wf*,ix).

An advantage of this procedure is that the MUSCL scheme (4.4) automatically
preserves the positivity of h as soon as the associated first-order scheme does, up to a
half CFL restriction.

However, the well-balanced property is not reached as easily. Indeed, in order for
the MUSCL scheme (4.4) to be well-balanced, the reconstruction would have to satisfy
for any discrete steady state (W!');cz,

@t wyy, Ax/2) =E(w; T, W ", Az /2) =0, for all i € Z.
Unfortunately, we cannot provide such a reconstruction in our case. Indeed, we have
to reconstruct four variables, including the conservative ones h,hu, hv which leaves only
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tn+1 w

W wiJrl

Ti-1/2 Tit1/2

Fic. 4.1. MUSCL second-order scheme

one free variable to reconstruct. Moreover, according to Definition (2.11), the moving
steady states involve three expressions among which two are not conservative quantities.
Therefore, we would need to reconstruct two free variables in order to preserve steady
states.

We propose in the next section, to modify the MUSCL method and the recon-
struction to get around that problem and recover a fully well-balanced second-order
scheme.

2. Fully well-balanced recovering. We suggest a modification based on an
idea introduced in [28] and [15]. The main principle is to consider the second-order
scheme (4.3) far from steady states and recover the first-order scheme (2.8) near a
steady state, which guarantees the scheme to be well-balanced.

The difficulty lies in the definition of being far from/close to a steady state.
For this purpose, we consider a smooth increasing function 6, valued in [0,1] and
such that #(0) =0 and 6(z)~1 far from 0. We choose the following function

2

24+ Ax?’

0(x)=

We set 0] =0(&}"), where &' =&E(w}_|,wi,Ax) +E(wi, wi\ |, Ax) detects if both couples
(wp_,,w}) and (wj',w}, ;) are local steady states simultaneously.

The reconstructed states are now defined as a convex combination between the
linear reconstructed states and the first-order states

FE=(1—0m)a@! +9"<@HA;J;(@)> ~":t0"&a (@) (4.5)

This reconstruction amounts to considering an additional limitation that involves the
steady state detector 67" For a discrete steady state, we have 0 =0 and we recover the
first-order states w." AL Far from steady states and for smooth solutions, a mere
computation shows that w" +_gr 4 8247 (W) +O0(Az?) when Az tends to 0, which
means the perturbation added to the usual second-order reconstruction is small enough
to recover the seeking order.

Next, we define the scheme as

n n __ At
At
+oaz (S (@@ Ay +28 (@7, @), Awa) +8 (0,571, A1), (4.6)

F (@]t ay Avy) = F (@)7,@, Azy))

? K3
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where the coefficients Az, and Axy have to be adapted, depending if we apply the first
or second-order scheme. Far from steady states we need

A
Axl ZAl‘g:Tx, (47)

in (4.6) to recover the second-order scheme (4.3). For a discrete steady state, the scheme
reads as

n+1 At

wp T =wl - Ay (.7-"(@" @ZrhAxl) —_7-"(@17’717@?,A331))
At
+ As (S (@f 1,W; ,Azl) +28 (wy wf,Amg)—&—S(ﬁ?,@ﬁ_l,Am)).

We notice that S(w,w,0) =0 according to the source term consistency (2.4). Therefore,
we have to set

Az =Azx and Az, =0, (4.8)

to recover the first-order scheme (2.8) at steady states.
In order to satisfy (4.7) far form steady states and (4.8) at steady states, coefficients
Az, and Axs are set as convex combinations as follows

Axlex<1—02i> and Amg—Q”A$ (4.9)

We prove in the following theorem that the resulting second-order scheme is fully
well-balanced, and that it preserves the positivity of h under the classical second-order
CFL restriction.

THEOREM 4.1. Under the CFL condition

~ 1
A max (@ @)L Y@ ) < 5
and if the speeds A, and Ar of the approximate Riemann solver satisfy the condition
(3.15), then the second-order scheme (4.5)-(4.6)-(4.9) is fully well-balanced and preserves

the positivity of h.

Proof.  First, we consider a discrete steady state (w]');cz. By definition, we have
0 =0 for all i € Z. Hence, the scheme (4.5)-(4.6)-(4.9) gives

W = — itc (F (@p,@7,,, Ax) — F (@, @7, Az))
At
+E(S(wi717’w Aac)—i—S(w werlvAx)) (4'10)

which is nothing but the fully well-balanced first-order scheme (2.8).
Now we prove the positivity-preserving property. We assume that A}’ is positive for
all 7€ Z. The update of variable h with the scheme (4.5)-(4.6)-(4.9) writes

At ~n ~n,+ ~m,—
hith=hi — Ax(fh( , z+1vA931) fh(wii?wi’ ’Axl))

1 n,— At ~n,— ~n, ~n T, —
5 (10— g (P @A) - @A) )
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1 At 4 ~m.— ~n,— ~n
—|—(h?’+—Ax/2 (.Fh(wi ’+,wiJ’rl,Ax1)—]:h (wi’ W, ’+7Am1))>.

2

Then h?“ is a convex combination between first-order schemes applied on half-cells
with parameter d=Ax;. As proved in Lemma 4.1, the first-order scheme preserves the
positivity of h independently of the value of the parameter d. Therefore, we conclude
R >0 for all i € Z. u|

5. Numerical results
This section is devoted to numerical experiments. For the sake of simplicity, the
initial discretisation will be defined as

w? =wog(x;).

Considering a continuous steady solution, the initial discretisation can satisfy ex-
actly the Definition 2.5 of the discrete steady states. In this case, both our first-order
and second-order schemes were proved to preserve the initial condition. This will be
illustrated in Subsection 5.1.

However, it is also possible that the initial discretisation of a continuous steady
state does not lead to a discrete steady state according to Definition 2.5. The behaviour
of our numerical schemes in such a case will be investigated in Subsection 5.2. In order
to measure how close a given discretisation (w});cz at time t" is to a discrete steady
state, we will use the steady state distance

g;:,j = 11253\[5(1‘)?»1”&1)7
where j=1 for the first-order scheme and j =2 for the second-order scheme.

In Subsection 5.3, we test the long-time convergence towards a steady state on a
topography with a bump, using the same distance £ ;.

Finally, in Subsection 5.4, we consider a particular solution constant in space, but
not in time, and for which we compute the errors in space and time.

5.1. Moving steady state. We consider here a simple moving steady state.
As initial data, we take (see Figure 5.1)

ho(z) =exp®®, up(z) =exp 2% and vy(x) = —fz,

and the topography is given by

1 1
z(z)= —§f2x2 —exp?® —§exp_4‘"” .
We compute this test on the domain [0,1] with N =200 cells and the parameters f=

g=1.
The initial discretisation is a discrete steady state in the sense of Definition 2.5.
Indeed the steady state distance at time ty =0 is
EQ 1 =62, ,=8.87x107"%.

At final time Tiax =0.5, the steady state is still preserved by both first-order and
second-order schemes, even if small computationnal errors have spread. Indeed, the
computation of the steady state distance at the end of the simulations gives

Elmx=519x107"" and £1m5=8.86x10""".
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h+z

0 0.2 0.4 0.6 0.8 1
b

Fic. 5.1. Initial variable h+z for the moving steady state.

5.2. Geostrophic steady state. Next, we test the numerical schemes on
another geostrophic steady state introduced in [11]. The computational domain is [—5,5]
with a flat topography (2=0). We set f=10, g=1, and we consider

—x2 2g _ .2
ho(x)==——e"", wo(x)=0, vo(z)=—2e"",
g f
as initial condition, which is a continuous steady state according to (1.4), see Figure 5.2.
However, the initial data discretisation is not exactly a discrete steady state because
the second relation in Definition 2.3 is not satisfied at each interface. This is confirmed
numerically since we have for N =200 discretisation points

EQ 1 =E2 5 =4.06x10"".

Therefore, Theorems 3.1 and 4.1 do not guarantee the behaviour of the numerical
schemes on this test case. We present in Table 5.1 the steady state distance at dif-
ferent times. We can observe it slowly decreases through time for both schemes, which
means that the schemes slowly converge to a steady solution.

0.15

0.1

-0.05 -

S0k

Fi1c. 5.2. Initial data for the geostrophic steady state.
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tn n n
00,1 00,2

200 [ 1.67x107* ] 1.67x10°*%
1000 | 1.15x10~* | 1.14x10~%
2000 | 2.70x107° | 2.68x 107
5000 | 3.14x107° | 3.31x10°°
10000 | 3.17x107° | 3.26x10°°
50000 | 9.62x10% [ 9.38x10~°

TABLE 5.1. Steady state distance computed for the gesotrophic steady state at different times.

(a) first-order scheme

N h hv

200 | 6.15x10° 1 1.89 x 1071

400 | 4.01x1071 0618 | 1.35x10~1 0.485
800 | 2.43x10°T 0.720 | 8.81x 1072 0.615
1600 | 1.38x 1071 0.820 | 5.31x10°2 0.730
3200 | 7.50x 1072 0.877 | 3.09x 102 0.780
6400 | 3.99x1072 0.910 | 1.79x 102 0.786
12800 | 2.09x10~2 0.937 | 1.00x10~2 0.838

(b) second-order scheme

N h hv

200 | 6.16x 107! 1.89 x 1071

400 | 4.02x107T 0.614 | 1.35x10~T 0.483
800 | 2.45x10~' 0.713 | 8.88x10~2 0.608
1600 | 1.40x10~1 0.813 | 5.39x10"2 0.722
3200 | 7.63x10~2 0.873 | 3.16 x10~%2 0.768
6400 | 4.06x10~2 0.908 | 1.85x 102 0.775
12800 | 2.11x 1072 0.944 | 1.03x 102 0.843

TABLE 5.2. L error in space for the geostrophic steady state at time Tmax =200 for first and
second-order schemes.

Let us now check the convergence of both schemes when Ax tends to 0. We define
the L discrete error in space at time ¢ between the exact solution wg and the numerical
approximation by

N
E™ :sz |wo (x;) —w}.
i=1

We present in Table 5.2 the discrete errors for variables A and hv at final time
Trax =200 for the first-order and second-order schemes. We observe that order two is
not reached by the second-order scheme. This can be explained by the fact that the
initial discretisation is close to a discrete steady state. Therefore, the parameter 6}
in (4.5) is close to zero and the reconstructed states are close to the first-order state.
Let us emphasize that far away from steady states, the second-order scheme actually
reaches second-order precision, as will be illustrated in Section 5.4.
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h+z

X
0.6 T T T T

o0

L
0 50 100 150 200
m

F1a. 5.4. Steady flow over a bump, steady state distance EZ in logarithmic scale.

5.3. Convergence towards a steady flow over a bump. This test case aims
to study the convergence towards a steady flow over a bump. It is a classical test for the

shallow water equations adapted with the Coriolis source term in [31]. The topography
is given by

0.2—0.05(z—10)? if8<x<12,
z(z)= .
0 otherwise.
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1.45 T T T T 1

Exact solution
14+ 4 *__ Numerical solution
0.8 -

0.6 -

1251 — 04r

hu
hv

0.2

ok

-0.2

1.05 - Exact solution ]
X Numerical solution
I I I | 0.4 I I I I
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t t

Fic. 5.5. Stationary state in space at time Tmax =1

(a) first-order scheme

N hu hv

200 | 7.57x107% 1.64x 1072

400 | 3.77x10~%* 1.00 | 8.21x10°° 1.00
800 | 1.88x10~* 1.00 [ 4.10x10~° 1.00
1600 | 9.42x10~° 1.00 | 2.05x10~° 1.00
3200 | 4.71x10~° 1.00 | 1.03x 10> 1.00
6400 | 2.35x 10~ 1.00 | 5.13x10~% 1.00

(b) second-order scheme

N hu hv

200 | 1.50x 1078 6.89 x 1078

400 | 3.74x107Y 2.00 | 1.72x1078  2.00
800 [ 9.35x10°10 2.00 [ 429x107Y  2.00
1600 | 2.34x 10~ 2.00 | 1.07x107° 2.00
3200 | 5.84x10~TT 1.99 [ 2.68x10~1° 2.00
6400 | 1.46x10~11  1.99 | 6.70x 10~ 2.00

TABLE 5.3. Ly error in space for the stationary in space test case computed at time Tmax =1.

We consider the following initial data
ho(z)=0.33, wug(x)=0.18/0.33, wvo(z)=0.

We compute the solution on the domain [0,25] with N =200 cells and we set f= %—g
and g=9.81. The boundary conditions are set as

(hu)(x=0)=0.18, h(x=25)=0.33, v(z=0)=0.

The numerical solution at time Ti,,x =200 is represented in Figure 5.3. The time
evolution of the steady state distance £Z, ; is shown for both schemes in Figure 5.4. We
can see these distances diminishing through time, which means both schemes actually
converge towards a steady state.
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(a) first-order scheme

N hu hv

200 | 3.82x1074 8.06x 1075

400 | 1.91x10~% 0.99 [ 4.03x10°° 0.99
800 | 9.56x107° 0.99 | 2.01x10~° 0.99
1600 | 4.78 x107° 0.99 | 1.01x10~° 0.99
3200 | 2.39x107° 0.99 | 5.04x10~% 0.99
6400 | 1.20x10~° 0.99 | 2.52x10~% 0.99

(b) second-order scheme

N hu hv

200 | 7.71x1079 3.58x 1078

400 | 1.92x1079 1.99 [ 895x1077  1.99
800 | 4.82x10710 1.99 [ 2.24x1079 1.99
1600 | 1.20x 10~ 2.00 | 5.60x10~10 1.99
3200 | 3.01x10~' 2.00 | 1.40x10710 1.99
6400 | 7.52x10"2 2.00 | 3.50x 10~ T 1.99

TABLE 5.4. L1 error in time for the stationary in space test case computed from time to =0 until
time Tmax=1.

5.4. Stationary state in space. This test case is based on a particular exact
solution of the RSW equations without topography. For a constant initial condition
(ho,up,vp) fixed, the exact solution of RSW equations writes

h(@,t) =ho,
u(t) =wugcos(ft)+wvosin(ft),
v(t) =vocos(ft) —upsin(ft).

For any fixed time ¢ > 0, the solution remains constant in space. We compute the scheme
on domain [0,1] until time Ty . =1. We choose

h():l, U0:17 ’UOZ].

as initial data, with the parameters f =¢g=1 and we use periodic boundary conditions.

The solution is well-captured by the scheme as one can see in Figure 5.5, where
we represent hu and hv with respect to time. According to Table 5.3 that shows the
discrete L; error in space ETmax, both schemes reach the expected accuracy in space.
Since the exact solution is known and constant in space, we can also check the scheme’s
accuracy in time. We introduce the discrete L' error in time between the exact solution

Wez and the numerical approximation at point x;

E;= Z (" — ™) wer (24, ™) —w?|.

Let us notice that the choice of the point x; is irrelevant since the solution is constant in
space. We recover the expected order of accuracy in time as one can see in error Table
=/

5.4.
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6. Conclusions

In this work, we have built a second-order fully well-balanced scheme for the RSW
system. In the first part, we have developed a fully well-balanced approximate Riemann
solver by selecting carefully the numerical source term definitions and the relations
used to define the intermediate states w} and wy. The positivity of the variable i has
been recovered thanks to a cut-off procedure. We have proved in Theorem 3.1 that
the resulting Godunov-type scheme satisfies all of the required features: consistency,
positivity-preserving and fully well-balanced property.

In the second part, we have proposed a way to extend the Godunov-type scheme
to second-order. We have explained the limitations of the classical MUSCL method
in view of the fully well-balanced property in the case of the RSW equations. Then
we have adapted an idea proposed by [15,27], which consists in getting the standard
MUSCL second-order scheme far from steady states and recovering the first-order fully
well-balanced scheme near steady states. That procedure preserves the positivity of h
as proved in Theorem 4.1.

Finally, we have presented some numerical experiments that illustrate the robust-
ness and the efficiency of both first-order and second-order schemes.

This work can be easily extended to the two-dimensional RSW equations by in-
volving a standard convex combination of 1D schemes by interface. Additionally, the
Coriolis parameter has been assumed constant all along this paper. It would be an
interesting development of this work to consider a space-dependent Coriolis force, since
it would be more realistic for large-scale simulations.

Acknowledgments. The authors would like to thank C. Berthon and V. Michel-
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