
COMMUN. MATH. SCI. © 2022 International Press

Vol. 20, No. 7, pp. 1951–1978

REINFORCED OPTIMAL CONTROL∗

CHRISTIAN BAYER† , DENIS BELOMESTNY‡ , PAUL HAGER§ , PAOLO PIGATO¶,

JOHN SCHOENMAKERS∥, AND VLADIMIR SPOKOINY∗∗

Abstract. Least-squares Monte Carlo methods are a popular numerical approximation method
for solving stochastic control problems. Based on dynamic programming, their key feature is the ap-
proximation of the conditional expectation of future rewards by linear least squares regression. Hence,
the choice of basis functions is crucial for the accuracy of the method. Earlier work by some of us
[Belomestny, Schoenmakers, Spokoiny, Zharkynbay, Commun. Math. Sci., 18(1):109–121, 2020] pro-
poses to reinforce the basis functions in the case of optimal stopping problems by already computed
value functions for later times, thereby considerably improving the accuracy with limited additional
computational cost. We extend the reinforced regression method to a general class of stochastic control
problems including Markov Decision processes, while considerably improving the method’s efficiency,
as demonstrated by substantial numerical examples as well as theoretical analysis.
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1. Introduction
Stochastic control problems form an important class of stochastic optimization prob-

lems that find applications in a wide variety of fields, see [16] for an overview. The
general problem can be formulated as follows: How should a decision-maker control a
system with a stochastic component to maximize the expected reward? In the theory of
stochastic control, one distinguishes between problems with continuous and discrete sets
of possible control values. While the first class of control problems contains, for exam-
ple, energy storage problems, the second one includes stopping and multiple stopping
problems. Furthermore one differentiates between discrete-time and continuous-time
optimal control problems (neither of these distinctions is fundamental: for instance,
many numerical methods will replace optimal control problems with a continuous set of
control values in continuous time by a surrogate problem with discrete control values in
discrete time. Moreover, many discrete optimal control problems may well be analyzed
as continuous ones, if the number of possible control values or time-steps is finite but
very high).

The range of applications of stochastic control problems is very wide. Originally,
optimal stochastic continuous control problems were inspired by engineering problems
in the continuous control of a dynamic system in the presence of random noise, see [2]
and references therein. In the last decades, problems in mathematical finance (portfolio
optimization, options with variable exercise possibilities) and economics inspired many
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new developments, see [7] for some recent developments. Let us also mention a closely
connected area of reinforcement learning with plethora of applications in robotics, data
science, and engineering, see [18].

As a canonical general approach for solving a discrete-time optimal control prob-
lem one may consider all possible future evolutions of the process at each time that
a control choice is to be made, see [2]. This method is well developed and may be
effective in some special cases but for more general problems such as optimal control of
diffusion in high dimensions, this approach is impractical. In [6] a generic Monte Carlo
approach combined with linear regression was proposed and studied, see also [9] for an
overview. However, as an important disadvantage, there may be not enough flexibility
when modeling highly non-linear behavior of optimal value functions. For instance, a
regression based on higher-degree polynomials or local polynomials (splines) may con-
tain too many parameters and, therefore, may over-fit the Monte Carlo sample or even
prohibit parameter estimation because the number of parameters is too large. As an
alternative to the polynomial bases, nonlinear approximation structures (e.g., artificial
neural networks) can be used instead (see, e.g. [3, 15] and [4]).

In [11] a Monte Carlo based reinforced regression approach is developed for building
sparse regression models at each backward step of the dynamic programming algorithm
in the case of optimal stopping problems. In a nutshell, the idea is to start with a generic
set of basis functions, which is systematically enlarged with highly problem-dependent
additional functions. The additional basis functions are constructed for the optimal
stopping problem at hand without using a fixed predefined finite dictionary. The new
basis functions are learned during the backward induction via incorporating information
from the preceding backward induction step. More specifically, the (computed, hence
approximate) value function at time ti+1 is used as an additional basis function at time
ti. Thereby, basis functions highly specific to the problem at hand are constructed in
a completely automatic way. Indeed, the continuation function at time ti can often be
observed to be very close to the value function at time ti+1, especially when the time-step
ti+1− ti is small – alluding to continuity in time of the solution to some continuous time
version of the optimal stopping problem. [11] report that the reinforced basis leads to
increased precision over the starting set of basis functions, comparable to the standard
regression algorithm based on a substantially increased set of basis functions. This
improvement is obtained with a limited increase of the computational cost.

In this work, we carry over the approach of [11] to a general class of discrete-time
optimal control problems including multiple stopping problems (thus allowing pricing
of swing options) and a gas storage problem. This generalization turns out to be rather
challenging as the complexity of using the previously constructed value function in re-
gression basis at each step of the backward procedure becomes prohibitive when applying
the original approach of [11]. We overcome this computational bottleneck by introduc-
ing a novel version of the original reinforced regression algorithm where one uses a
hierarchy of fixed time-depth approximation of the optimal value function instead of
a full-depth approximation employed in [11]. As a result, we regain efficiency and are
able to improve upon the standard linear regression algorithm in terms of achievable
precision for a given computational budget.

More precisely, we construct a hierarchy v(i), i=0,. ..,I, of (approximate) value
functions with depth I >0. Here, v(0) denotes the value functions obtained from the
classical Monte Carlo regression algorithm. The higher levels v(i) are computed by
regression based on a set of basis functions reinforced by the value function v(i−1) one
level lower. This way, the added computational cost incurred from reinforcing the basis
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can be further decreased with minimal sacrifices of accuracy already for small values
of I. In fact, we propose two versions of the algorithm. In the first version, the levels
of the hierarchy of value functions are trained consecutively, allowing for an adaptive
choice of the depth I of the hierarchy. In the second version, all the levels are trained
concurrently, thereby improving the accuracy at each individual level. As a consequence,
I needs to be fixed in advance and cannot be chosen adaptively in the second variant.

Outline of the paper. In Section 2 we describe a rather general setting for discrete
stochastic control problems which we are going to use in this paper. The setting is based
on [13]. We recall the reinforced regression algorithm for optimal stopping problems
by [11] in detail in Section 3. There we also motivate the hierarchical construction of
the new reinforced regression algorithm as restricted to the optimal stopping problem.
The full algorithm – including both variants – is introduced in Section 4. A detailed
analysis of computational costs is provided in Section 5. The next Section 6 provides a
detailed convergence analysis for the standard and reinforced regression algorithms in
the current setting. Extensive numerical examples including optimal stopping problems,
multiple stopping problems and a gas storage optimization problem are provided in
Section 7.

2. Setting
First, we present a proper setting for the construction and analysis of reinforced re-

gression algorithms. The setting will be largely based on [13]. We will consider stochastic
control problems in discrete time with finite action sets. We note that extensions to
continuous action sets are certainly possible, but are left to future research.

We consider a filtration Fj , j=0,. ..,J , which is extended by F−1 :={∅,Ω}, FJ+1 :=
FJ for convenience. LetX be a Markov process with values in X adapted to (Fj)j=0,...,J .
Note that we assume that the dynamics of the underlying process X does not depend
on the control.

At time 0≤ j≤J we are given a control Yj , which is Fj−1-measurable, and an
Fj-measurable cash-flow Zj=Hj(a,Yj ,Xj) for some deterministic, measurable function
Hj , where a is an action that we may choose at time j in some finite action space K.
Note that cash-flows may be positive or negative. We assume that the control Yj takes
values in a finite set L.

Remark 2.1. The assumption that actions a and controls y take values in finite sets
K and L, respectively, is a weaker assumption than it may seem at first sight. Many
important control problems naturally fall into this class, see examples below. Even
more importantly, it is a well-known fact that many optimal control problems with
genuinely continuous action and control spaces have solutions of bang-bang type, i.e.,
all optimal controls consist of actions taken from a finite set, usually at the boundaries
of the (continuous) action sets. Hence, such control problems can effectively be reduced
to control problems with finite actions sets. Extensions of the reinforced regression
algorithm to infinite action spaces will be studied in future work.

For a given value of the control y∈L and a given value x of the underlying process
Xj , we are given a set of admissible actions

Kj(y,x)⊂K, j=0,. ..,J, (2.1)

i.e., a is admissible iff a∈Kj(x,y). Finally, if we apply a∈Kj(Yj ,Xj), then the control
is updated by

Yj+1 :=φj+1(a,Yj), φj+1 :K×L→L. (2.2)
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Suppose that the control and the underlying state process take values Yj and Xj at
time 0≤ j≤J , respectively. For a := (aj ,. ..,aJ)∈KJ−j+1 and j≤ ℓ≤J−1, we define

Yℓ+1(a;j,Yj) :=φℓ+1(aℓ,Yℓ(a;j,Yj)), Yj(a;j,Yj) :=Yj , (2.3)

noting that Yℓ(a;j,Yj) only depends on aj ,. ..,aℓ−1. Additionally, we define Fj,J(K) to
be the set of (Fℓ)Jℓ=j-adapted processes taking values in K indexed by j,...,J . Clearly,

if A := (Aℓ)
J
ℓ=j ∈Fj,J(K) and Yj ∈Fj−1, then the process Y·(A;j,Yj) is previsible. The

set of admissible strategies or admissible policies Aj is defined as follows:

Aj(Yj ,X≥j) :=
{
A=(Aℓ)

J
ℓ=j ∈Fj,J(K)

∣∣∣Aℓ∈Kℓ(Yℓ(A;j,Yj),Xℓ), ℓ= j,...,J
}
. (2.4)

Now the central issue is the optimal control problem

Vj := sup
A=(Aℓ)Jℓ=j∈Aj(Yj ,X≥j)

Ej

 J∑
ℓ=j

Hℓ(Aℓ,Yℓ(A;j,Yj),Xℓ)

, (2.5)

at a generic time 0≤ j≤J, where Ej denotes the conditional expectation w.r.t. Fj .
Taking advantage of the Markov property, we introduce the notation Aj(y,x) :=

Aj(y,X
x
≥j), where X

j,x denotes the Markov process X conditioned on Xj=x, and is
defined for j≤ ℓ≤J . We may then define the value function as

v∗j (y,x) := sup
A=(Aℓ)Jℓ=j∈Aj(y,x)

E

 J∑
ℓ=j

Hℓ

(
Aℓ,Yℓ(A;j,y),Xj,x

ℓ

), (2.6)

which satisfies the dynamic programming principle:

v∗j (y,x)= sup
a∈Kj(y,x)

(
Hj(a,y,x)+E

[
v∗j+1(φj+1(a,y),X

j,x
j+1)

])
, (2.7)

for j=0,. ..,J (with v∗J+1(y,x) :=0).
Let us now give a few examples for classical stopping and control problems which

fall into the above setup.

Example 2.1. For a single optimal stopping problem with payoff gj≥0 at time j, the
set of possible control values is L={0,1}, where a control state y denotes the number
of remaining exercise opportunities. The action a takes the value 1 if we stop at the
current time and 0 otherwise. Hence, we have

Kj(y,x)=K(y) :=

{
{0,1}, y=1,

{0}, y=0,

implying that K={0,1}. The cash-flow is defined by

Hj(a,y,x) :=agj(x),

independent of the value of the control y. Finally, the update function of the control
is defined by φj+1(a,y) :=max(y−a,0). Note that the value function v∗j (0,·)≡0, and,
hence, the optimal stopping literature usually only considers (j,x) 7→v∗j (1,x).
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Example 2.2. Let us now suppose that we have a multiple stopping problem with
L∈N exercise rights. Again, the control state y signifies the remaining exercise oppor-
tunities, leading to L={0,1,. ..,L}. The admissible action set is now defined as

Kj(y,x)=K(y) :=

{
{0,1}, y≥1,

{0}, y=0.

Again, K={0,1}. The cash-flow Hj and the update function φj+1 are defined as in
Example 2.1.

Example 2.3. Consider a simple gas storage problem: Given N ∈N and ∆=1/N , we
assume that the volume of gas in a storage can only be increased and decreased by a
fraction ∆ over a given time increment. Let the control y denote the status (fill level) of
the storage at time j. Hence, we define L :={0,∆,2∆,. ..,1}. At time j, we may either
sell ∆ (volume of gas; a=−1), buy ∆ (a=+1) – at the current market price Xj – or
do nothing (a=0). Hence, the admissible policy set is

Kj(y) :=


{0,1} , y=0,

{−1,0,1}, ∆≤y≤1−∆,

{−1,0}, y=1,

with K={−1,0,1}, while the cash-flow is given by

Hj(a,y,x) :=−a∆x.

The update function in given by φj+1(a,y) :=((y+a∆)∧1)∨0.

Remark 2.2. While we do not allow the actions to have an effect on the dynamics of
the state process X, a large class of more general control problems could be incorporated
by a simple modification of our setting. If we allow updates of the control variable y
to depend on the state x as well as on the previous control and the action, i.e., Yj+1=
φj(a,Yj ,Xj), then our theoretical analysis remains intact. However, it now becomes
possible to control the dynamics of the state process X, provided that the law of the
controlled process remains absolutely continuous w.r.t. the law of the original process
(Xj)j=0,...,J . We refer to the discussion of the optimal liquidation example in [13, Section
2] for more details. Note, however, allowing Y to depend on X in such a way might
require us to use regression in (x,y) rather than just x for most practical problems.

3. Reinforced regression for optimal stopping
In this section, we recall the standard regression algorithm as well as the reinforced

regression algorithm introduced in [11] for optimal stopping problems. We will point out
the drawbacks of the latter algorithm for more general control problems, and propose
and motivate several modifications. However, for the purpose of a clear illustration, we
will restrict ourselves in this section to the optimal stopping case.

Let us recall the optimal stopping setup from Example 2.1 and denote by v∗j (x)

the value function at j∈{0,...,J} evaluated in x∈Rd and y=1. Further recall that the
dynamic programming principle is given by

v∗j (x)=max(gj(x),c
∗
j (x)), 0≤ j≤J−1, v∗J(x)=gJ(x), x∈Rd,

where the continuation function is given by c∗j (x)=Ej [v
∗
j+1(X

j,x
j+1)]. Fix a set of basis

functions {ψ1,...,ψK} with ψk :Rd→R, k=1,. ..,K, and sample trajectories
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(X
(m)
j )0≤j≤J,1≤m≤M from the underlying Markov chain, i.e., (X

(m)
j )0≤j≤J are i.i.d. sam-

ples from the distribution of (Xj)0≤j≤J , m=1,. ..,M . Then the regression method due
to Tsitsiklis-van Roy [21], which we will refer to as the standard regression method,
inductively constructs an approximation v=(vj)j=0,...,J to the value function v∗ as fol-
lows: For j=J initialize vJ =gJ . For j∈{J−1,...,0} set

vj(x) :=max(gj(x),cj(x)), cj(x)=

K∑
k=1

γj,kψk(x), (3.1)

where the regression coefficients are given by the solution to the least squares problem

γj,1,...,γj,K :=argmin
γ1,...,γK

M∑
m=1

∣∣∣∣vj+1(X
(m)
j+1)−

K∑
k=1

γkψk(X
(m)
j )

∣∣∣∣2. (3.2)

The procedure is illustrated in Figure 3.1. Note that the costs of this algorithm are of
the order M ·J ·K2 (see, e.g., [11] or Section 5).

v
(i)
j (x) gj(x) c

(i)
j (x) ψ·(x) γ

(i)
j,·

j = J − 4 J − 3 J − 2 J − 1 J

1

Fig. 3.1. Illustration of standard regression approach due to Tsitsiklis-van Roy [21]. The solid
arrows indicate the dependencies in the (feed forward) evaluation of cj and vj in (3.1). The dashed
arrows start from the regression data vj+1 and symbolize the regression procedure (3.2).

One problem of the standard regression algorithm is that its performance strongly
depends on the choice of basis functions. Indeed, while standard classes such as poly-
nomials or splines usually form the backbone of the construction of basis functions,
practitioners usually add customized basis functions, for instance the payoff function gj
and some functionals applied to it.

As a more systematic approach, the authors of [11] proposed a reinforced regression
algorithm. In this procedure the regression basis at each step of the backward induction
is reinforced with the approximate value function from the previous step of the induction.
The approximate continuation function at j∈{0,...,J−1} is then given by

cj(x) :=

K∑
k=1

γj,kψk(x)+γj,K+1vj+1(x),

where the regression coefficients are the solutions to the least squares problem

γj,1,...,γj,K+1 := argmin
γ1,...,γK+1

M∑
m=1

∣∣∣∣vj+1(X
(m)
j+1)−

K∑
k=1

γkψk(X
(m)
j )−γK+1vj+1(X

(m)
j )

∣∣∣∣2.
Note that this procedure induces a recursion whenever an approximate value function is
evaluated: in order to evaluate vj(x) we need to evaluate cj(x), which in turn requires
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v
(i)
j (x) gj(x) c

(i)
j (x) ψ·(x) γ

(i)
j,·

j = J − 4 J − 3 J − 2 J − 1 J

1

Fig. 3.2. Illustration of the reinforced regression approach. Evaluation of vj in the reinforced
regression algorithm leads to a recursion with J−j steps.

an evaluation of vj+1(x) and so forth, until vJ(x)=gJ(x) terminates the recursion.
Figure 3.2 illustrates this procedure. The costs of the reinforced regression method are
proportional to M ·J ·K2+M ·J2 ·K (see [11]).

Despite the increased computational cost compared to the standard regression algo-
rithm with the same set of basis functions ψ1,. ..,ψK , the reinforced regression algorithm
can improve the overall computational cost for a fixed error tolerance drastically. As
a rule of thumb, [11] report that the reinforced regression algorithm with a standard
basis consisting of polynomials of a given degree leads to similar accuracy as the stan-
dard regression algorithm based on polynomials of one degree higher. In particular, the
reinforced regression algorithm already outperforms the standard regression algorithm
for small dimensions d>1, as long as the number J of time-steps is not too large.

A direct generalization of the reinforced regression algorithm to more general control
problems is certainly possible. The main difference to the optimal stopping problem is
that for fixed time j we have to choose from many potential candidates to reinforce with,
namely any vj+1(y,·), y∈L is a candidate. Additionally, the dynamic programming
principle (2.7) now entails a possibly non-trivial optimization problem in terms of the
policy a. Especially the second point makes the recursion at the heart of the reinforced
regression algorithm untenable for general control problems.

One solution immediately comes to mind: If performing the recursion all the way to
terminal time J is too costly, why not truncate at a certain recursion depth? This idea is,
in principle, sound, and is the basis of the adaptations suggested below. However, some
care is needed in the implementation of this idea. Indeed, if “truncation” simply were to
mean “replace the reinforcing basis functions by 0 after a certain truncation step”, this
would introduce a structural error in the procedure, as regression coefficients formerly
computed in the presence of these basis functions would suddenly be incorrect. Instead,
we propose to compute a hierarchy of reinforced regression solutions, corresponding
to different “cut-off depths” of the recursion. This way, we can make sure that the
coefficients are always consistent, that is, an error as mentioned above can be avoided.
We introduce two versions, which both adhere to the same general idea, but differ in an
important implementation detail.

The hierarchical reinforced regression algorithm A iteratively constructs approxima-

tions (v(i))i=0,1,... to the true value function as follows: For i=0 we construct (v
(0)
j )0≤j≤J

using the standard regression method described above. Then for any i≥1, given that
v(l) is already constructed for 0≤ l≤ i−1, define v(i) with the usual backwards induc-

tion, where the regression basis at step j∈{J−1,...,0} is reinforced with v
(i−1)
j . The
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approximate continuation function of the ith iteration is given by

c
(i)
j (x) :=

K∑
k=1

γ
(i)
j,kψk(x)+γ

(i)
j,K+1v

(i−1)
j+1 (x), (3.3)

where the regression coefficients are the solutions to the least squares problem

γ
(i)
j,1,...,γ

(i)
j,K+1 := argmin

γ1,...,γK+1

M∑
m=1

∣∣∣∣v(i)j+1(X
(m)
j+1)−

K∑
k=1

γkψk(X
(m)
j )−γK+1v

(i−1)
j+1 (X

(m)
j )

∣∣∣∣2.
The procedure may be stopped after a fixed number of iterations, or using an adaptive
criterion. An illustration of the method can be found in Figure 3.3. Note that the

recursion that is started when evaluating v
(i)
j (x) always terminates after at most i steps

in the evaluation of v
(0)
j+i(x) for i≤J−j or in v

(i−J−j)
J (x)=gJ(x) for J−j≤ i.

v
(i)
j (x) gj(x) c

(i)
j (x) ψ·(x) γ

(i)
j,·

j = J − 5 J − 4 J − 3 J − 2 J − 1 J

i = 0

i = 1

i = 2

i = 3

1

Fig. 3.3. Illustration of the hierarchical reinforced regression algorithm A, for three iterations. In

the lower right part of the diagram, the vertical lines indicate the equality v
(i)
j ≡v

(l)
j for J−j≤ i.

For a fixed number of iterations i∈{0,...,I} we can modify the structure of the
previous method so that the primary iteration is the backwards induction over j∈
{J,J−1,...,0} and the secondary iteration is over i∈{0,...,I}. In this case we can

further modify the algorithm by using v
(I)
j+1 as the regression target for the continuation

functions c
(i)
j for all i∈{0,...,I}. We name the resulting algorithm the hierarchical

reinforced regression algorithm B. The approximate continuation function at step j and
iteration i is then still given by (3.3) and the least squares problem is given by

γ
(i)
j,1,...,γ

(i)
j,K+1 := argmin

γ1,...,γK+1

M∑
m=1

∣∣∣∣v(I)j+1(X
(m)
j+1)−

K∑
k=1

γkψk(X
(m)
j )−γK+1v

(i−1)
j+1 (X

(m)
j )

∣∣∣∣2.
Also in this algorithm, the recursion that is started when evaluating v

(I)
j stops after at

most I steps. The costs of the algorithms are discussed in Section 5.
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4. Iterated reinforced regression for optimal control
Following the ideas and motivations of Section 3 we now present hierarchical rein-

forced regression algorithms for optimal control based on the Bellman equation (2.7).

The algorithms are based onM sample trajectories (X
(m)
j )j=0,...,J,m=1,...,M from the un-

derlying Markov chain X and some initial set {ψ1,...,ψK} of basis functions ψi :Rd→R.
For each y∈L we will define a subset Ly⊂L of cardinality Ry := |Ly| and reinforce the
basis {ψ1,. ..,ψK} by {vj+1(z,·)|z∈Ly}. The respective algorithms iteratively construct
sequences of approximations to the value function

v(i)=(v
(i)
j )j=0,...,J with v

(i)
j :L×Rd→R,

for i={0,1,...} until the iteration is terminated.

4.1. Hierarchical reinforced regression algorithm A. For i=0 construct
v(0) using the standard regression method inductively as follows: At the terminal time

J initialize v
(0)
J :=vJ where

vJ(y,x)= max
a∈KJ (y,x)

HJ(a,y,x), for all y∈L, x∈Rd. (4.1)

For a j∈{0,...,J−1}, assume that v
(0)
l is already constructed for all l∈{j+1,...,J}.

Then for each y∈L define the regression coefficients by solving the following least
squares problem

γ
(0),y
j,1 ,...,γ

(0),y
j,K := argmin

γ1,...,γK

M∑
m=1

∣∣∣∣∣v(0)j+1(y,X
(m)
j+1)−

K∑
k=1

γkψk(X
(m)
j )

∣∣∣∣∣
2

. (4.2)

Next define the continuation function by

c
(0)
j (y,x) :=

K∑
k=1

γ
(0),y
j,k ψk(x), for all y∈L, x∈Rd (4.3)

and the approximate value function v
(0)
j through the dynamic programming principle

v
(0)
j (y,x) := max

a∈Kj(y,x)

(
Hj(a,y,x)+c

(0)
j (φj(a,y),x)

)
for all y∈L, x∈Rd. (4.4)

Given the approximation v(i) for some i≥0 we construct a new approximation
v(i+1) using reinforced regression inductively as follows: Initialize at the terminal time

v
(i+1)
J :=vJ . For j∈{0,...,J−1} assume that v

(i+1)
l is already constructed for l∈{j+

1,...,J}. Then for each y∈L define the regression coefficients by solving the following
least squares problem

γ
(i+1),y
j,1 ,...,γ

(i+1),y
j,K+Ry := argmin

γ1,...,γK+Ry

M∑
m=1

∣∣∣∣v(i+1)
j+1 (y,X

(m)
j+1)−

K∑
k=1

γkψk(X
(m)
j )

−
Ry∑
k=1

γK+kv
(i)
j+1(yk,X

(m)
j )

∣∣∣∣2,
(4.5)

where {yk}k=1,...,Ry =Ly, and define the continuation function c
(i+1)
j by

c
(i+1)
j (y,x) :=

K∑
k=1

γ
(i+1),y
j,k ψk(x)+

Ry∑
k=1

γ
(i+1),y
j,K+k v

(i)
j+1(yk,x), (4.6)
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for all y∈L and x∈Rd. Finally define the approximation v
(i+1)
j through the dynamic

programming principle by

v
(i+1)
j (y,x) := max

a∈Kj(y,x)

(
Hj(a,y,x)+c

(i+1)
j (φj(a,y),x)

)
, (4.7)

for all y∈L and x∈Rd.
The iteration over i∈{0,1,...} can be terminated after I ∈N steps, yielding v(I)

as an approximation to the true value function. Alternatively one can introduce an
adaptive termination criterion, for example by comparing the relative change in the
error of the least squares problem (4.5), terminating after the change falls under a given
threshold.

Remark 4.1. Recall that in the initialization we have v
(i)
J =v

(0)
J for all i∈{1,...,I}.

It then follows inductively that

v
(i)
j ≡v(l)j , for all J−j≤ i≤ I, l≥ i. (4.8)

This identity can be used to reduce the costs of the algorithm, since the regression
problem only needs to be solved for all (j,i) with 0≤ j≤J−1 and 0≤ i≤ (J−j)∧I.

Remark 4.2. More general or other forms of reinforced basis functions are certainly
possible. The essential point is that they are based on the regression result from the
preceding step in the backwards induction and the preceding iteration. Our specific
choice may be seen as a natural primal choice. We left flexibility in the choice of
the sets Ly, for which, depending on the cardinality of the set L, possible choices are
the trivial Ly=L and Ly={y}, or Ly=L′ for some set L′ independent of y, or more
elaborately Lyj ={φ(a,y) |a∈Kj(y,xj)} for some xj ∈Rd. Note that the use of a step
dependent set Lyj in the above method is straightforward.

4.2. Hierarchical reinforced regression algorithm B. Note that (4.2) and

(4.5) are based on the approximate value functions v
(0)
j+1 and v

(i+1)
j+1 , respectively, even

though the more accurate approximation v
(I)
j+1 is already available at this point. Hence,

we can potentially improve the algorithm’s accuracy by always considering the most
accurate approximation of the value function vj+1 in the Bellman equation.

Fix a number of iterations I ∈N and initialize the approximate value functions at

the terminal time by v
(i)
J ≡vJ for all i∈{0,...,I}, where vJ is given by (4.1). The

approximate value functions at times previous to J are defined inductively as follows:

Let j∈{0,...,J−1} and assume that v
(i)
l is already defined for all l∈{j+1,...,J}

and i∈{0,...,I}. For i=0 and each y∈L determine the coefficients for the regression
basis by solving the least squares problem

γ
(0),y
j,1 ,...,γ

(0),y
j,K := argmin

γ1,...,γK

M∑
m=1

∣∣∣∣∣v(I)j+1(y,X
(m)
j+1)−

K∑
k=1

γkψk(X
(m)
j )

∣∣∣∣∣
2

(4.9)

and define the approximate continuation function c(0) by (4.3). For i∈{1,...,I} and
each y∈L determine the regression coefficients by solving the least squares problem

γ
(i),y
j,1 ,...,γ

(i),y
j,K+Ry := argmin

γ1,...,γK+Ry

M∑
m=1

∣∣∣∣v(I)j+1(y,X
(m)
j+1)−

K∑
k=1

γkψk(X
(m)
j )
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−
Ry∑
k=1

γK+kv
(i−1)
j+1 (yk,X

(m)
j )

∣∣∣∣2, (4.10)

where {yk}k=1,...,Ry =Ly, and define the continuation function c
(i)
j by (4.6).

Finally, define the approximation to the value function v
(i)
j for all i={0,...,I} by

(4.7). After ending the backwards induction use (v
(I)
j )j=0,...,J as an approximation to

the true value function.

Remark 4.3. Note that the identity (4.8) also holds for the above algorithm. More-

over, since we are only interested in v(I), we can discard the computation of c
(i)
j and

v
(i)
j for all 0≤ j+ i≤ I−1, since they do not contribute to the construction of v(I). The
least squares problem then only needs to be solved for (j,i)∈{0,...,J−1}×{0,...,I}
with 0≤ j+ i≤ I−1 and 0≤ i≤ (J−j)∧I.

Remark 4.4. Choosing the number of iterations I=J we then have from the previous
remark that only the value functions on the diagonal j= i need to be constructed. In

this case, denote vj=v
(j)
j , cj= c

(j)
j etc., and observe that the least squares problem

which is solved in each step j∈{J−1,...,0} of the backwards induction is given by

γyj,1,...,γ
y
j,K+Ry := argmin

γ1,...,γK+1

M∑
m=1

∣∣∣∣vj+1(y,X
(m)
j+1)−

K∑
k=1

γkψk(X
(m)
j )

−
Ry∑
k=1

γK+kvj+1(yk,X
(m)
j )

∣∣∣∣2,
where {yk}k=1,...,Ry =Ly. Hence, for I=J the above algorithm represents a direct
extension of the reinforced regression algorithm in [11] from optimal stopping to optimal
control problems.

5. Computational cost

We study the computational work of the modified reinforced regression algorithm
of Section 4.2. In what follows, the following operations are considered to be performed
at constant cost:

• Multiplications, additions and other primitive operations at cost c∗;

• Simulation from the distribution of the Markov process Xj at cost cX ;

• Evaluation of the standard basis functions ψi or of the payoff Hj at cost cf ;

We furthermore introduce the following notations:

• We set R :=maxy∈LR
y.

• The cost of evaluating other non-trivial, but known functions φ (think of the
value function when all the required regression coefficients are already known)
will be denoted by cost(φ).

If an expression involves several such operations, then only the most expensive constant
is reported (e.g., evaluating a basis function and multiplying the value by a scalar
constant is considered to incur a cost cf .) We may also use constants c which do not
depend on the specifics of the algorithm. We now go through the individual stages of
the algorithm.
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(1) Simulating trajectories at cost cost1= cXM(J+1).

(2) Computing the terminal value function as in (4.1) for a given x∈Rd and all
y∈L at cost cost2= cf |L||K|.

(3) For fixed 0≤ j≤J−1 and y∈L set up the least squares problem (4.9) at cost

M
(
cfK+cost

(
v
(I)
j+1

))
.

(4) For fixed 0≤ j≤J−1 and y∈L, we solve the least squares problem (4.9) at
cost c∗MK2. The total cost is cost4= c∗JMK2 |L|.

(5) For fixed 0≤ j≤J−1, y∈L, and 1≤ i≤ I set up the least squares prob-

lem (4.10) at cost M
(
cfK+cost

(
v
(I)
j+1

)
+Rcost

(
v
(i−1)
j+1

))
.

(6) For fixed 0≤ j≤J−1, y∈L, and 1≤ i≤ I solve the least squares problem (4.10)
at cost c∗M(K+R)2, leading to a total cost of cost6= c∗M(K+R)2J |L|.

List 5.1: Stages of the algorithm

For simplicity of the presentation, we shall only consider the following scenario:

Assumption 5.1. The total set of reinforced basis functions contains all available
value functions, i.e.,

⋃
y∈LLy=L.

For fixed 0≤ i≤ I and 0≤ j≤J let

v
(i)
j :=

(
v
(i)
j (y,·)

)
y∈L

, c
(i)
j :=

(
c
(i)
j (y,·)

)
y∈L

. (5.1)

The key step of the cost analysis is understanding the cost of evaluating the reinforced
basis functions, which are, in turn, given in terms of reinforced basis functions at later
time steps. We note that it is essential to analyze the cost of evaluating the full set of

reinforced basis functions v
(i)
j rather than individual ones v

(i)
j (y,·), as the latter method

would show us an apparent explosion of basis functions as we increase time.1 By (4.7),

evaluating v
(i)
j requires evaluating the payoff functions for all combinations of controls

y∈L and policies a∈K, then evaluating c
(i)
j , and taking the corresponding maxima. In

total, this means

cost
(
v
(i)
j

)
≤|K||L|(cf +c∗)+cost

(
c
(i)
j

)
.

On the other hand, by (4.6), evaluating c
(i)
j requires K evaluations of standard basis

functions, K |L| elementary operations for summing them, one evaluation of v
(i−1)
j+1 , and

|L|2 elementary operations for their summation. In total, this means that

cost
(
c
(i)
j

)
≤Kcf +K |L|c∗+1i>0

(
|L|2 c∗+cost

(
v
(i−1)
j+1

))
.

This implies the cost estimate

cost
(
v
(i)
j

)
≤|K||L|(cf +c∗)+Kcf +K |L|c∗+1i>0

(
|L|2 c∗+cost

(
v
(i−1)
j+1

))
. (5.2)

1Suppose that each reinforced basis function v
(i)
j (y,·) depends on two reinforced basis functions

v
(i−1)
j+1 (y′, ·) and v

(i−1)
j+1 (y′′, ·). If we follow this recursion for l≤ i steps, we arrive at a total set of 2l

basis functions. The catch is that many, if not all, of these basis functions overlap with basis functions

for other reinforced basis functions v
(i)
j (ỹ,·).
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Lemma 5.1. The cost of evaluating v
(i)
j , i=0,. ..,I, j=0,. ..,J can be bounded by

cost
(
v
(i)
j

)
≤

{
(i+1)(|K||L|(cf +c∗)+Kcf +K |L|c∗)+ i|L|2 c∗, j+ i≤J,

|L||K|(cf +c∗)+(J−j)(|K||L|(cf +c∗)+Kcf +(K+1) |L|c∗) , j+ i>J.

Proof. For a := |K||L|(cf +c∗)+Kcf +K |L|c∗, consider the cost recursion

c(k+1)≤a+ |L|c∗c(k), k≥0.

Assuming that the recursion hits i=0 before j=J , i.e., i+j≤J , the cost c(k) :=

cost
(
v
(k)
j+i−k

)
satisfies the recursion with c(0)≤a, and, hence, we obtain

c(k)≤ (k+1)a+k |L|2 c∗.

This gives the first expression in the statement of the lemma with k= i.
On the other hand, if i+j >J , we hit j=J before i=0. In this case, c(k) :=

cost
(
v
(i+j−J+k)
J−k

)
satisfies the same recursion, but with initial value c(0)≤|L||K|(cf +

c∗).

In order to shorten notation, we introduce

a := |K||L|(cf +c∗)+Kcf +K |L|c∗,
b := |L|2 c∗,
d := |L||K|(cf +c∗),
e := |K||L|(cf +c∗)+Kcf +(K+1) |L|c∗,

so that the estimate of Lemma 5.1 shortens to

cost
(
v
(i)
j

)
≤

{
(i+1)a+ ib, j+ i≤J,
d+(J−j)e, j+ i>J.

We next estimate the cost of setting up the regression problem (4.9), which is proved
similarly.

Lemma 5.2. The cost of setting up the regression problem for c
(0)
j (y,·), j=0,. ..,J−1,

y∈L, can be bounded by

cost3≤JMKcf +M(J−I)((I+1)a+Ib)+MId+
1

2
MI(I+1)e.

The cost for setting up the least squares problem (4.10) is computed in a similar
way.

Lemma 5.3. The cost of setting up the regression problem for c
(i)
j (y,·), i=1,. ..,I,

j=0,. ..,J−1, y∈L, can be bounded by

cost5≤JMKcf +
M

2
I [(I+1)a+(I−1)b](J−I+2)

+
M

6
I
[
11a+2b−9d+5e+I(I+6)a+3I(I+b)+3I2d+I(I+6)e

]
.
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Proof. A closer look at (4.10) reveals that the total cost of setting up all these
least squares problems can be bounded by

cost5≤
J−1∑
j=0

M

(
Kcf +

I∑
i=1

cost
(
v
(i−1)
j+1

))
, (5.3)

taking into account that v
(I)
j+1 was already evaluated during the set-up of the least

squares problem (4.9) and, hence, does not need to be evaluated again. Using Lemma
5.1, we obtain

cost5≤JMKcf +M

J−1∑
j=0

(J−j)∧(I−1)∑
i=0

((i+1)a+ ib)+

I−1∑
i=1+(J−j)∧(I−1)

(d+(J−j−1)e)


=JMKcf +M

J−I+1∑
j=0

[
I−1∑
i=0

((i+1)a+ ib)

]

+M

J−1∑
j=J−I

J−j∑
i=0

((i+1)a+ ib)+

I−1∑
i=J−j+1

(d+(J−j−1)e)

.
Evaluating the double sums gives the estimate from the statement of the lemma.

Abandoning the difference between cf and c∗ using the trivial bounds cost3≤
constcost5, cost4≤ constcost6, we obtain

Theorem 5.1. The computational cost of the algorithm presented in Section 4.2 can
be bounded by

cost≤ constMJ
(
cX+I2(K+ |K|+ |L|)|L|+(K+R)2 |L|

)
,

where const is a positive number independent of |K|, |L|, K, J , and I.

Remark 5.1. Recall that Remark 4.4 introduced a significantly cheaper variant of
algorithm B for the case I=J . It is easy to see that the computational cost of this
variant is bounded by

cost≤ constMJ
(
cX+J(K+ |K|+ |L|)|L|+(K+R)2 |L|

)
,

i.e., the total cost is proportional to J2 rather than J3. Indeed, the main difference in
the cost analysis as compared to the full modified algorithm is that (5.3) can be replaced
by

cost5≤
J−1∑
j=0

M
(
Kcf +cost

(
v
(J−j−1)
j+1

))
.

Note that this essentially corresponds to the algorithm of [11] directly generalized to
optimal control problems.

6. Convergence analysis
In this section we analyze the convergence properties of the standard and reinforced

regression algorithms introduced in the previous sections. For related convergence anal-
ysis in the case of optimal stopping problems we refer the interested reader to [22, 23],
and [10], see also [8]. Henceforth we assume that

max
j=0,...,J

sup
y∈L

sup
a∈K

sup
x∈X

|Hj(a,y,x)|≤CH , (6.1)
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then all the value functions

v∗j (y,x) := sup
A=(Aℓ)Jℓ=j∈Aj(y,x)

E

 J∑
ℓ=j

Hℓ

(
Aℓ,Yℓ(A;j,y),Xj,x

ℓ

)
are uniformly bounded by JCH . Fix a sequence of spaces Ψj , j=0,. ..,J, of functions
defined on X . We stress that these spaces are not necessarily linear at this point. Con-
struct the corresponding sequence of estimates (vj,M (y,x))Jj=0 via

vJ,M (y,x)= sup
a∈Kj(y,x)

HJ(a,y,x) and (6.2)

vj,M (y,x)= sup
a∈Kj(y,x)

(Hj(a,y,x)+TWPj,M [vj+1,M ](φj+1(a,y),x)), j <J,

where Pj,M [g](z,x) stands for the empirical projection of the conditional expectation

E[g(z,Xj,x
j+1)] on Ψj , based on a sample

DM,j=
{
(X

(m)
j ,X

(m)
j+1), m=1,. ..,M

}
(6.3)

from the joint distribution of (Xj ,Xj+1), that is,

Pj,M [g](z,·)∈arg inf
ψ∈Ψj

M∑
m=1

[∣∣∣g(z,X(m)
j+1)−ψ(X

(m)
j )

∣∣∣2].
In (6.2) TW is a truncation operator at level W =JCH defined by

TW f(x)=

{
f(x), |f(x)|≤W,
W sign(f(x)), otherwise.

Due to Theorem 11.5 in [14], one has for all g with ∥g∥∞≤W, j=0,. ..,J−1, and all
z∈L, that

E

[∥∥∥TWPj,M [g](z,·)−E
[
g(z,Xj,·

j+1)
]∥∥∥2
L2(µj)

]
≤ε2j,M +2 inf

w∈Ψj

∥g(z,·)−w∥2L2(µj)
with ε2j,M := cW 4 1+logM

M
VC(Ψj), (6.4)

where VC(Ψj) is the Vapnik-Chervonenkis dimension of Ψj (see Definition 9.6 in [14]),µj
is the distribution of Xj , and c is an absolute constant. In order to keep the analysis
tractable, we assume that the sets DM,j are independent for different j, see Remark 6.1
below. More specifically, we consider an algorithmic framework based on (6.2), where
for every exercise date the samples (6.3) are simulated independently, and consider the
information sets

Gj,M :=σ
{
Xj;M ,. ..,XJ;M

}
with Xj;M :=

(
X

(m)
j ,m= 1,. ..,M

)
.

Let us define for j <J, z∈L, x∈X ,

Ĉj(z,x) :=TWPj,M [vj+1,M ](z,x), (6.5)
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and for a generic (exact) dummy trajectory (Xl)l=0,...,J independent of Gj,M , let

C̃j(z,x) :=EGj+1,M

[
vj+1,M (z,Xj,x

j+1)
]
. (6.6)

Note that C̃j (·, ·) is a Gj+1,M -measurable random function while the estimate Ĉj (·,·) is
a Gj-measurable one. We further define

C∗
j (z,x)=E

[
v∗j+1(z,X

j,x
j+1)

]
, j <J. (6.7)

The following lemma holds.

Lemma 6.1. We have that,

E

[∥∥∥sup
z∈L

∣∣∣C̃j(z,·)−C∗
j (z,·)

∣∣∣∥∥∥2
L2(µj)

]
≤E

[∥∥∥sup
z∈L

∣∣∣Ĉj+1(z,·)−C∗
j+1(z,·)

∣∣∣∥∥∥2
L2(µj+1)

]
. (6.8)

Proof. Let X be a generic (exact) dummy trajectory independent of Gj+1,M . Then
from (6.6), and (6.7) we see that for j <J,∣∣∣C̃j(z,Xj)−C∗

j (z,Xj)
∣∣∣≤EGj+1,M

[ ∣∣vj+1,M (z,Xj+1)−v∗j+1(z,Xj+1)
∣∣∣∣Xj

]
. (6.9)

Next, by (2.7), (6.2), (6.5), and (6.7) we have that∣∣vj+1,M (z,x)−v∗j+1(z,x)
∣∣≤ sup

a∈Kj+1(z,x)

∣∣∣Ĉj+1(φj+2(a,z),x)−C∗
j+1(φj+2(a,z),x)

∣∣∣
≤ sup
z′∈L

∣∣∣Ĉj+1(z
′,x)−C∗

j+1(z
′,x)

∣∣∣ . (6.10)

Hence, by (6.9) one has that

sup
z∈L

∣∣∣C̃j(z,Xj)−C∗
j (z,Xj)

∣∣∣≤EGj+1,M

[
sup
z∈L

∣∣∣Ĉj+1(z,Xj+1)−C∗
j+1(z,Xj+1)

∣∣∣∣∣∣∣Xj

]
.

Finally, by taking the “all-in expectation” w.r.t. the law µj⊗PM , we observe that

E

[
sup
z∈L

∣∣∣C̃j(z,Xj)−C∗
j (z,Xj)

∣∣∣2]
≤E

{
EGj+1,M

[
sup
z∈L

∣∣∣Ĉj+1(z,Xj+1)−C∗
j+1(z,Xj+1)

∣∣∣∣∣∣∣Xj

]}2

≤E

[
sup
z∈L

∣∣∣Ĉj+1(z,Xj+1)−C∗
j+1(z,Xj+1)

∣∣∣2]
by Jensen’s inequality and the tower property.

In fact, Lemma 6.1 is the key to the next proposition.

Proposition 6.1. Set

Ej :=
∥∥∥sup
z∈L

∣∣∣Ĉj(z,·)−C∗
j (z,·)

∣∣∣∥∥∥
L2(µj⊗PM )

, j=0,. ..,J−1,

with PM being the law of the sample X
(m)
j ,m= 1,. ..,M, j=1,. ..,J. Then it holds

Ej≤|L|
(
εj,M +

√
2sup
z∈L

inf
w∈Ψj

∥∥C̃j(z,·)−w∥∥L2(µj⊗PM )

)
+ |L|Ej+1 (6.11)
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for all j=0,. ..,J−1, with EJ =0 by definition.

Proof. The case j=J−1 follows from (6.4) and the fact that C̃J−1=C
∗
J−1. Set

rj,M (z)= inf
w∈Ψj

∥C̃j(z,·)−w∥L2(µj⊗PM ). Due to (6.4) we have with probability 1,

EGj+1,M

[∥∥∥Ĉj(z,·)− C̃j(z,·)∥∥∥2
L2(µj)

]
≤ε2j,M +2r2j,M (z). (6.12)

Hence ∥∥∥Ĉj(z,·)− C̃j(z,·)∥∥∥
L2(µj⊗PM )

≤εj,M +
√
2rj,M (z). (6.13)

By applying (6.13) it follows that∥∥∥Ĉj(z,·)−C∗
j (z,·)

∥∥∥
L2(µj⊗PM )

≤εj,M +
√
2rj,M (z)+

∥∥∥C̃j(z,·)−C∗
j (z,·)

∥∥∥
L2(µj⊗PM )

.

From this and Lemma 6.1 we imply

sup
z∈L

∥∥∥Ĉj(z,·)−C∗
j (z,·)

∥∥∥
L2(µj⊗PM )

≤εj,M +
√
2sup
z∈L

rj,M (z)

+
∥∥∥sup
z∈L

∣∣∣Ĉj+1(z,·)−C∗
j+1(z,·)

∣∣∣∥∥∥
L2(µj+1⊗PM )

and then (6.11) follows.

Corollary 6.1. Suppose that

sup
z∈L

inf
w∈Ψj

∥∥C̃j(z,·)−w∥∥L2(µj⊗PM )
≤ δ, VC(Ψj)≤D, 0≤ j≤J−1,

for some δ>0 and D>0. Proposition 6.1 then yields for j=0,. ..,J−1, by using (6.10),

∥∥∥sup
z∈L

∣∣vj,M (z,·)−v∗j (z,·)
∣∣∥∥∥
L2(µj⊗PM )

≤
(
cW 4 1+logM

M
D+

√
2δ

)
|L|J−j+1−|L|

|L|−1
.

(6.14)

Corollary 6.2. By inserting the estimate

inf
w∈Ψj

∥∥∥C̃j(z,·)−w∥∥∥
L2(µj⊗PM )

≤
∥∥∥C̃j(z,·)−C∗

j (z,·)
∥∥∥
L2(µj⊗PM )

+ inf
w∈Ψj

∥∥C∗
j (z,·)−w

∥∥
L2(µj)

in Proposition 6.1, we get the alternative recursion

Ej≤|L|
(
εK,M +

√
2sup
z∈L

inf
w∈Ψj

∥∥C∗
j (z,·)−w

∥∥
L2(µj)

)
+ |L|(1+

√
2)Ej+1,

and under the alternative assumption

sup
z∈L

inf
w∈Ψj

∥∥C∗
j (z,·)−w

∥∥
L2(µj)

≤ δ, VC(Ψj)≤D, 0≤ j≤J−1,

for some δ>0 and D>0, we obtain for j=0,. ..,J, the bounds∥∥∥supz∈L
∣∣vj,M (z,·)−v∗j (z,·)

∣∣∥∥∥
L2(µj⊗PM )

≤
(
cW 4 1+logM

M D+
√
2δ
)
|L| ((1+

√
2)|L|)

J−j−1

(1+
√
2)|L|−1

.
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Remark 6.1. In [22] the convergence of an “independent sample version” of the
Longstaff-Schwartz algorithm was studied based on an assumption similar to the inde-
pendence of DM,j for different j here. However, in a later paper [23] it was shown (by
more involved analysis) that the convergence rates based on one and the same sample
are basically the same as in [22] up to certain constants. One therefore may naturally
expect that similar conclusions apply in our context. Therefore the numerical examples
in Section 7 are based on a single sample of M trajectories.

The proposed reinforced regression algorithm with I=J uses linear approximation
spaces of the form

Ψj=span{ψ1(x),. ..,ψK(x),vj+1,M (y1,x),. ..,vj+1,M (yR,x)}, j=0,. ..,J−1, (6.15)

for L={y1,. ..,yR}, where ψ1(x),. ..,ψK(x) are some fixed basis functions (e.g. polyno-
mials) on X . In this case VC(Ψj)≤K+R, 0≤ j≤J−1. In order to see the advantage
of adding additional basis functions more clearly, we prove the following proposition.

Proposition 6.2. Assume additionally that

max
j=1,...,J

sup
y∈L

sup
a∈K

sup
x∈X

|Hj(a,y,x1)−Hj(a,y,x2)|≤LH |x1−x2|, (6.16)

for all x1,x2∈X and

max
j=1,...,J

max
ℓ=j,...,J

E[|Xj,x1

ℓ −Xj,x2

ℓ |]≤LX |x1−x2|, ∀x1,x2∈X (6.17)

for some constants LH >0, LX >0. Then it holds for reinforced spaces (Ψj) from (6.15)

sup
z∈L

inf
w∈Ψj

∥∥∥C̃j(z,·)−w∥∥∥
L2(µj⊗PM )

≤JLXLH
[
E

∫
|Xj,x

j+1−x|
2µj(dx)

]1/2
.

Proof. We have

supz∈L inf
w∈Ψj

∥∥∥C̃j(z,·)−w∥∥∥
L2(µj⊗PM )

≤ supz∈L

∥∥∥EGj+1,M

[
vj+1,M (z,Xj,·

j+1)−vj+1,M (z,·)
]∥∥∥
L2(µj⊗PM )

.

Under assumptions (6.16) and (6.17), we then have

max
j=1,...,J

sup
y∈L

|v∗j (y,x1)−v∗j (y,x2)|≤JLXLH |x1−x2|, ∀x1,x2∈X .

By using an additional truncation, one can achieve that the Lipschitz constants of the
estimates vj,M (z,·), j=0,. ..,J−1, are all uniformly bounded by a constant JLXLH
with probability 1.

The above proposition implies that if JLH stays bounded for J→∞, (for example

if H scales as 1/J), then the approximation error inf
w∈Ψj

∥C̃j(z,·)−w∥L2(µj⊗PM ) becomes

small as J→∞. Note that the latter property can not be guaranteed when using fixed
(nonadaptive) linear spaces Ψj . Of course, the exponential in J factor in (6.14) will lead
to explosion of the overall error as J→∞, but the above observation still indicates that
the inclusion of the functions vj+1,M (y1,x),. ..,vj+1,M (yR,x) into Ψj can significantly
improve the quality of the estimates vj,M (z,·) especially in the case of large J . Con-
cerning the dependence of the bound (6.14) on J , we note that this estimate is likely to
be too pessimistic, see also a discussion in [22].
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7. Numerical examples
We now present various numerical examples which demonstrate the accuracy of

the reinforced regression algorithm in practice. To allow for a direct comparison with
the reinforced regression algorithm of [11], we first consider a (single) optimal stopping
problem, more particularly a Bermudan max-call option. Our second example is a mul-
tiple stopping problem, for which the hyperparameters already become crucial. Finally,
our last example is an optimal control of a gas storage.

We have tested both algorithms A and B for the HRR (hierarchical reinforced
regression) method, however, the latter version always gave slightly better results and
therefore we have only included the value obtained with the algorithm B. Intuitively
this is to be expected, as the algorithm B uses more accurate regression targets in
the backwards induction. The algorithm A may be of use in situations where one is
interested in improving the approximation until a certain accuracy threshold is reached,
however, properly done this approach should also include a calculation of upper bounds,
which we do not discuss in our paper.

Before, let us also mention how a lower biased estimate to the value of a control
problem in a Markovian setting is calculated using the result of a regression procedure.
Let c be an approximation to the function c∗ given by

c∗j (x,y)=E
[
v∗j+1(y,X

j,x
j+1)

]
, x∈Rd, y∈L, j∈{0,...,J−1},

with cJ ≡ c∗J ≡0 by convention. Using the hierarchical reinforced regression method,
such an approximation is given by c(I) defined in (4.6). Further let (X(m))1≤m≤Mtest be
sample trajectories from the underlying Markov chain, generated independently from
the samples used in the regression procedure. Then we can iteratively define a sequence

of polices (A(m))1≤m≤Mtest with A(m)=(A
(m)
0 ,...,A

(m)
J ) by

A
(m)
j := argmax

A∈Kj(Y
(m)
j ,X

(m)
j )

(
Hj(A,Y

(m)
j ,X

(m)
j )+cj(φ(A,Y

(m)
j ),X

(m)
j )

)
,

or all m=1,...,Mtest and j=0,...,J , where Y
(m)
0 :=y0∈L and Y

(m)
j+1 :=φj+1(A

m
j ,Y

(m)
j ).

It then follows from the definition, that each A(m) is an admissible sequence of policies,
i.e. A(m)∈A0(y0,X

(m)). Therefore, a lower estimate to the value E(v(y0,X0)) is given
by

1

Mtest

Mtest∑
m=1

J∑
j=0

Hj(A
(m)
j ,Y

(m)
j ,X

(m)
j ).

Lower bounds allow a direct comparison of the performance of different methods,
in the sense that the method yielding the highest lower bound (up to Monte Carlo
errors) performed best, since this value must be closest to the true value of the control
problem. This direct comparison is, however, not possible for the approximate value v0
which may lie above or below the true value. Our main premise in the following is that
the HRR algorithm is a more efficient way to improve the performance of the regression
algorithm as compared with increasing the complexity of the regression basis. Hence,
for this relative comparison it is also sufficient to study lower bounds.

7.1. Bermudan max-call option. In this section we evaluate the performance
of the hierarchical reinforced regression (HRR) method from Section 4 on the valuation
of a Bermudan max-call option. Let (Ω,F ,(Ft)0≤t≤T ,P ) be a filtered probability space
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on which a d-dimensional Brownian motion W =(W (t))0≤t≤T is defined. Further let
X=(X(t))0≤t≤T be the geometric Brownian motion defined by

dXk(t)=(r−δ)Xk(t)dt+Xk(t)σdW k(t), Xk(0)=x0, 0≤ t≤T, k∈{1,...,d},

where x0,r,δ,σ>0. Option rights can be exercised on a predefined set of possible exercise
dates {t0,t1,...,tJ}, where at most one right can be exercised on any given date. Assume
that the exercise dates are equidistant tj := j ·∆t for all j∈{0,...,J} with ∆t :=T/J and
define the underlying Markov chain (Xj)j=0,...,J by Xj=X(j∆t). Recall from Example
2.2 that in order to model a multiple stopping problem in the optimal control framework
we define the set of policies by K={0,1} and the set of controls by L={0,...,ymax},
where ymax is the number of exercise rights. Further, we define

φj(a,y) :=(y−a)+, Kj(x,y) :={0,1∧y}, Hj(a,y,x) :=a ·gj(x)e−tjr,

for all y∈L, a∈K and j∈{0,...,J}, where g is the max-call pay-off function defined by

g(x) :=(max{x1,....,xd}−C)+, x∈Rd,

where C ∈R+ is the option strike. Then the value function v∗0(ymax,x0) defined in
(2.6) yields the value of the Bermudan max-call option with underlying X and data
(d,J,T,ymax,x0,C,r,δ,σ).

7.1.1. Single exercise right. We will first consider the case of a single exercise
right ymax=1. This is a standard example in the literature, see for example [1, 5, 17]
and more recently [3]. The performance of the reinforced regression method for this
example was already analyzed in [11]. We revisit this example in order to demonstrate
that even in the optimal stopping case our novel HRR method allows for improvements
in computational costs without sacrificing the quality of the estimations.

Define the functions fi :Rd→R, x 7→ sort(x1,. ..,xd)i, the i-th largest entry of x, for
i∈{1,. ..,d} and consider the following three sets of regression basis functions:

Ψ1 :={1,f1,...,fd}, Ψ1,g :=Ψ1∪{g}, Ψ2 :=Ψ1∪{fi ·fj |1≤ i≤ j≤d}
Ψ3 :=Ψ1∪Ψ2∪{fi ·fj ·fk |1≤ i≤ j≤k≤d}.

Note that the cardinalities of these sets are given by |Ψ1|=d+1, |Ψ1,p|=d+2, |Ψ2|=
1
2d

2+ 3
2d+1, and |Ψ3|= 1

6d
3+d2+ 11

6 d+1, respectively. Regarding the HRR method,
we use the algorithm of the second type described in Section 4.2. Further note that in
the optimal stopping case there is only one choice for the set of reinforced value function
for the HRR method since L={1} and therefore we always set L1={1}.

We considered two different set-ups for the comparison of the different methods:

• First we keep the number of exercises dates J fixed and vary the number of
underlying assets d;

• Second we keep d fixed and vary J (while also keeping T fixed).

In Table 7.1 we present lower estimates to the value of a Bermudan max-call option with
a single exercise right for J =9 and d∈{2,3,5,10}. In the corresponding Figure 7.1 we
have visualized the lower bounds for the comparison between the different regression
methods. For each of the considered methods we used M =106 simulated training sam-
ples paths to determine the regression coefficients and Mtest=107 paths for calculating
the lower bounds.
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d Basis
Lower bounds

CI from [3]Regression HRR Reinf. Reg.
I=0 I=1 I=9

2

Ψ1 13.015 (0.022) 13.772 (0.015) 13.794 (0.015)

[13.880,13.910]
Ψ1,g 13.679 (0.019) - -
Ψ2 13.775 (0.016) 13.871 (0.015) 13.882 (0.014)
Ψ3 13.874 (0.016) - -

3

Ψ1 17.764 (0.029) 18.526 (0.017) 18.540 (0.018)

[18.673,18.699]
Ψ1,g 18.404 (0.022) - -
Ψ2 18.519 (0.020) 18.639 (0.017) 18.653 (0.017)
Ψ3 18.655 (0.021) - -

5
Ψ1 25.463 (0.024) 25.998 (0.021) 25.990 (0.019)

[26.138, 26.174]Ψ1,g 25.823 (0.026) - -
Ψ2 25.990 (0.023) 26.097 (0.019) 26.109 (0.020)
Ψ3 26.111 (0.022) - -

10
Ψ1 38.022 (0.025) 38.234 (0.022) 38.225 (0.024)

[38.300,38.367]Ψ1,g 38.058 (0.024) - -
Ψ2 38.299 (0.023) 38.316 (0.020) 38.331 (0.021)
Ψ3 38.349 (0.021) - -

Table 7.1. Lower bounds (± 99.7% Monte-Carlo error) for the value of the Bermudan max-call
option with data J=9, T =1, ymax=1, x0=C=100, r=0.05, δ=0.1, σ=0.2 and different numbers of
underlying assets d∈{2,3,5,10}. For all methods we used M =106 training sample paths and Mtest=
107 paths for calculating the lower bound. The last column presents the 95% confidence intervals for
the value of the Bermuda option from [3].
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Fig. 7.1. A visualization of the lower bounds from Table 7.1.

In order to give the reader an easy reference point, in Table 7.1 we have also in-
cluded the confidence intervals for the value of the Bermudan max-call option from [3].
Note however that we do not aim for an improvement of the latter values in terms of
benchmarking. In fact the method used in [3] is quite different from ours, as it uses
deep neural networks for approximating the optimal stopping policies at each time step,
and a direct comparison would require the usage of higher order polynomials for our
method.
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We first observe that across all numbers of assets d the HRR method with the set
of basis functions Ψ1 performs significantly better then the standard regression method
with the basis Ψ1 and Ψ1,g. The same holds true when comparing the methods using
the regression basis Ψ2. More importantly however, we observe that for d≤5 the HRR
method with basis Ψ1 yields lower bounds of the same quality as obtained with the
standard method and the larger basis Ψ2. The same holds true when comparing the
HRR method with basis Ψ2 against the standard method with the basis Ψ3. In the case
d=10 assets, the lower bounds obtained with the HRR method and basis Ψ1 lie just
slightly below the values of the lower bounds obtained with standard method and the
basis Ψ2, however one has to keep in mind that in this case |Ψ1|=11 and |Ψ2|=286.
Moreover, we see that the HRR method with a recursion depth I=1 performs just as
well as the (full depth) reinforced regression method (I=J =9).
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d
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Fig. 7.2. The elapsed CPU times during the backwards induction and calculation of the lower
bounds from Table 7.1, plotted with respect to the number of underlying assets d.

Furthermore, in Figure 7.2 we have visualized the corresponding elapsed CPU times
during the backwards induction and the calculation of the lower bounds. As foreshad-
owed in Section 5, we see that the computational costs of the HRR method are signifi-
cantly reduced by choosing a small recursion depth I. In particular, we are able to state
that for sufficiently large d (d≥5 respectively d≥3) the HRR method with recursions
depth I=1 and the basis Ψ1 respectively Ψ2 is more efficient then the standard method
with the basis Ψ2 respectively Ψ3.

The results of the second set-up are visualized in Figure 7.3. In this case, we
have approximated the value of Bermudan max-call options with a fixed number of
assets d=4 and different numbers of exercise dates J ∈{9,18,36,72}, while also keeping
T =1 fixed. When keeping all other parameters fixed, the value of the option clearly is
non-decreasing in the number of exercise dates J . Our first observation is that for all
considered methods there exists a threshold for J at which the performance worsens.
Indeed, Corollary 6.1 shows that the approximation error depends exponentially on J .

However, in practice, some methods are less vulnerable to the error explosion in
J than others. In this example, we see that the standard regression method with the
basis Ψ1,g and Ψ2, respectively, starts to perform worse for J ≥36. The lower bounds
calculated with the HRR method with the basis Ψ1 and I=1 stay approximately on
the same level as the lower bounds calculated with the standard method and the basis
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J = 9 J = 18 J = 36 J = 72
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Fig. 7.3. Visualization of the lower bounds (± 99.7% Monte-Carlo error) of the values of Bermuda
max-call options with J=9,18,36,72 exercise dates and d=4, T =1, ymax=1, x0=C=100, r=0.05,
δ=0.1, σ=0.2. The values are obtained with the standard regression method I=0 and the HRR method
I=1,2,9. For all methods we used M =106 training sample paths and Mtest=106 sample paths for
the calculation for the lower bounds.

Ψ2, for all numbers of exercise dates. The lower bounds calculated with the standard
method and the basis Ψ3 first increase when moving from 9 to 18 exercise dates and
decrease at last when moving from 36 to 72 exercise dates.

The main observation is that when we increase J , the HRR methods with I=2
and I=9 come closer to the lower bounds calculated with the standard method and
the basis Ψ3. This underlines the theoretical discussion for J→∞ from Section 6.
Moreover, we see that the HRR method performs at least as well with I=2 as with
I=9. Regarding CPU time, the HRR method with I=2 is more efficient than then
the standard regression method with the basis Ψ3 for J ≥9. Comparing the HRR
methods with I=2 and I=9, we see that choosing the parameter I small is necessary
in order to obtain desirable efficiency. Since on the other hand, the HRR method with
I=1 performed significantly worse than with I=2, we also see that in this case it was
necessary to choose I >1. These observations underline the relevance of the HRR in its
full complexity even in the case of optimal stopping problems.

7.1.2. Multiple exercise rights. Next we consider a Bermudan max-call
option with ymax=4 exercise rights. In this case the HRR method allows for different
possibilities of reinforced value functions depending on the choice of the sets Ly (recall
Remark 4.2). Since ymax is small, we choose Ly≡{1,2,3,4} for simplicity.

In Table 7.3 we present lower bounds to the value of a Bermuda max-call option
with ymax=4 exercises rights, obtained with the standard regression method and HRR
method for different choices of regression basis functions and the parameter I, with the
implementation of the second type described in Section 4.2. We first observe that for a
fixed set of basis functions Ψ1 or Ψ2 increasing the parameter I yields increased, and
thus improved, lower bounds. This improvement is most significant when moving from



1974 REINFORCED OPTIMAL CONTROL

Basis
Regression Hierarchical Reinforced Regression

I=0 I=1 I=2 I=3 I=5

Ψ1 90.863 (0.072) 92.038 (0.070) 92.287 (0.070) 92.311 (0.067) 92.357 (0.061)
Ψ1,g 91.837 (0.082) - - - -
Ψ2 92.140 (0.070) 92.418 (0.064) 92.548 (0.060) 92.631 (0.061) 92.625 (0.061)
Ψ3 92.571 (0.069) - - - -

Table 7.2. Lower bounds (± 99.7% Monte-Carlo error) for the value of the Bermudan max-call
option with data J=24, T =2, ymax=4, x0=C=100, d=5, r=0.05, δ=0.1, σ=0.2. For all methods
we used M =106 training sample paths and Mtest=107 paths for calculating the lower bound. An upper
bound to the value, calculated with the dual approach from [19] and [12], is given by 92.971 (0.043),
with the HRR method with I=3 and basis Ψ2 using 105 outer and 103 inner sample paths.

I=0 (standard regression) to I=1 and from I=1 to I=2 and becomes less significant
when further increasing I. Moreover, we observe that the HRR method with I=1 and
basis functions Ψ1 yields better lower bounds then the standard regression method with
the larger set of basis functions Ψ1,g and more importantly, for I≥2 the HRR with basis
functions Ψ1 method yields better lower bounds than the standard regression method
with the even larger set of basis functions Ψ2. This observation prevails when comparing
the standard regression method with the basis Ψ3 against the HRR method with the
basis Ψ2. We can therefore conclude that the HRR method yields results of better
quality than standard regression using fewer regression basis functions. Moreover, we
realize that up to changes that are insignificant with respect to the Monte Carlo error,
the HRR reaches its best performance already for I=3, thus further increasing I is not
necessary.

7.2. A gas storage problem. In this subsection we consider a gas-storage
problem of the kind introduced in Example 2.3. In contrast to the example in the
previous subsection, this optimal control problem is not of a multiple stopping type,
which is a consequence of the anti-symmetry in the policy set: injection of gas into the
facility (a=1), no action (a=0) and production of gas (a=−1).

For the gas price we use a similar but slightly more elaborate model to the one
proposed in [20] (and also used in [13]). More specifically, we use the following joint
dynamics to model the price of crude oil X1 and the price of natural gas X2

dX1(t)=α1(β−X1(t))dt+σ1X
1(t)dW 1(t)+

(
J1
N(t−)+1−X

1(t)
)
dN(t)

dX2(t)=α2(X
1(t)−X2(t))dt+σ2X

2(t)dW 2(t)+
(
J2
N(t−)+1−X

2(t)
)
dN(t),

(7.1)

for 0≤ t≤T , where β,αi,σi>0 for i=1,2, W 1 and W 2 are Brownian motions with
correlation ρW ∈ [0,1], N is a Poisson process with intensity λ>0 and (Jk)k=1,... are i.i.d.
normal distributed random vectors with J i1∼N (µi,η

2
i ), µi,ηi>0 and ρJ =Cor(J1

1 ,J
2
1 )∈

[0,1]. Moreover we assume that (W 1,W 2), N and (J1,J2) are independent. Note
that both X1 and X2 are mean reverting processes with jump contributions. The oil
price process X1 reverts to the long-term constant mean β and the gas price process
X2 reverts towards the oil price X1, which is aiming to model the well known strong
correlation between crude oil and natural gas prices. Note also that we have assumed
for simplicity that the jump signal, which has the purpose of modeling price peaks, is
the same Poisson process for both oil and gas prices, however the magnitude of the
jumps is given by different (but correlated) normal distributed random variables.
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Denote by (X̃j)j=1,...,365 the 2-dimensional Markov chain that is obtained by dis-
cretizing the above SDE (7.1) with an Euler-scheme on the time interval [0,1]. We
assume that the manager of the gas storage facility has the possibility to buy and sell
gas on a predefined set of dates in the year {tj}j=1,...,J ⊂{1,...,365} with tj= j ·δt and
some δt,J ∈N such that δt ·J ≤365. The 2-dimensional Markov chain underlying the
optimal control problem is then given by X=(Xj)j=0,...,J with Xj := X̃tj .

Recall from Example 2.3 that we assume that the volume of gas in the storage
can only be increased or decreased by a fraction ∆=1/N for some N ∈N over the
time interval of δt days. The state space of the control variable is then given by L=
{0,∆,2∆,...,1}. Also recall the definition of the space of policies K, the constraint sets
Kj and the function φj from Example 2.3. We assume that there is no trading at j=0
hence K0≡{0}. The cash-flow underlying to the optimal control problem only depends
on the second component of the Markov chain Xj and is given by

Hj(a,y,x)=−a ·∆ ·x2 ·e−rj(δt/365), a∈K, y∈L, j=1,...,J,

where r>0 is the interest rate.
We do not pay attention to the physical units of the parameters quantifying the gas

storage capacity and the quotation of the gas price, since the linearity of the pay-off with
respect to the parameter ∆ and the gas price X2

j allows to properly scale the resulting
value of the optimal control problem. The following specific choice of the price model
parameters are oriented at the values in [20]

β=45, α1=0.25, α2=0.5, σ1=σ2=0.2, ρW =0.6,
λ=2, µ1=µ2=100, η1=η2=30, ρJ =0.6.

(7.2)

Figure 7.4 shows a sample trajectory of the Markov chain X with the above parameters.

0 10 20 30 40 50

80

100

120

140
X 1

X 2

Fig. 7.4. A sample path of the Markov chain (Xj)j=0,...,J =(X̃tj )j=0,...,J where tj = j ·7 and

J=52. The approximation X̃=(X̃j)j=1,...,365 to the SDE (7.1) is simulated with the parameters

given in (7.2) and X̃0=(100,100). X1 and X2 serve as models for the prices of crude oil and natural
gas.

Further we define the following sets of polynomial regression basis functions

Pi(X
2) :=

{
(x1,x2) 7→ (x2)

p
∣∣p=0,...,i

}
Pi(X

1,X2) :=
{
(x1,x2) 7→ (x1)

p(x2)
q
∣∣p,q=0,...,i, p+q≤ i

}
.

(7.3)
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I Basis v0(Y0,X0) Lower bounds

0

P1(X
2) 78.381 70.489 (0.066)

P1(X
1,X2) 78.575 70.635 (0.068)

P2(X
2) 73.072 71.253 (0.068)

P2(X
1,X2) 73.207 71.402 (0.068)

P3(X
1,X2) 72.929 71.333 (0.081)

P4(X
1,X2) 72.595 71.498 (0.068)

1 P1(X
1,X2) 71.991 71.579 (0.070)

Table 7.3. Approximate values and lower bounds for the gas storage problem with parameters
given in (7.4) and price model parameters given in (7.2). Note that - although seemingly so - the
estimate v0 not necessarily present an upper bound to the true value and is included in the table only
for verification purposes. The quantities were obtained with the standard regression method (I=0)
and the HRR method (I=1), the different sets of basis functions (7.3), M =105 training sample paths
and Mtest=106 paths for calculating the lower bounds.

We have approximated the value of the gas storage problem with the following
parameters

δt=7, J =52, ∆=1/8, X0=(100,100), Y0=4/8, r=0.1. (7.4)

In this configuration the gas storage facility is initially loaded with half its capacity
and the gas storage manager has the possibility to trade gas every seven days, and
the amount by which the manager can inject or produce gas is one height of the total
capacity. In Table 7.3 we present the numerical results that were obtained with the
standard regression method and the HRR method.

We usedM =105 training sample paths andMtest=106 sample paths for the calcu-
lation of the lower bounds. For the set of reinforced basis functions in the HRR method
we have chosen Ly≡{Y0}, i.e. in each step of the backwards induction, the regression
basis was reinforced with only one function.

We observe at first, that the lower bounds obtained with the standard regression
method are improved when using polynomials in both variables (X1,X2) instead of just
in the second variable X2 (gas price) and are also improved when using polynomials of
increasing order (with the only exception of the third degree polynomials). Moreover,
we observe that the lower bound obtained with the HRR method, using the set of
basis functions P1(X

1,X2) and I=1, lies above all lower bounds that were obtained
with the standard regression, in particular the bound obtained with the regression basis
P4(X

1,X2) (up to Monte Carlo errors). Hence the HRR method based on polynomials
of degree one performed at least as well as the standard method with polynomials of
degree four.

7.3. Conclusions. Let us summarize the findings of the numerical experiments.
We observe that the hierarchical reinforced regression algorithm (HRR) based on poly-
nomial basis functions of a certain degree deg tend to produce results comparable to
standard regression (SR) based on polynomial basis functions of degree deg+1 or even
higher, see Figures 7.1, 7.3, Tables 7.2, and, most impressively, 7.3.

The numerical results also indicate that, indeed, HRR with low depth of the hier-
archy I already performs very well, even if I≪J , see Figures 7.1, 7.3 and Table 7.2.
Hence, HRR performs with similar accuracy to the reinforced regression algorithm (RR)
of [11], but at much improved cost. Additionally, when comparing HRR with SR at
fixed accuracy, the computational cost of HRR is usually much smaller, especially for d
large, see Figure 7.2.
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Finally, we note that the accuracy of the HRR method increases substantially when
the time discretization is refined, i.e., when J is increased for fixed time horizon T .
This theoretically very plausible observation (see Section 6) is backed up by numerical
experiments, see Figure 7.3.
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