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GLOBAL SMOOTH SOLUTIONS TO THE 3D NON-RESISTIVE MHD
EQUATIONS WITH LOW REGULARITY AXISYMMETRIC DATA∗

XIAOLIAN AI† AND ZHOUYU LI‡

Abstract. The purpose of this paper is to study the incompressible non-resistive MHD equations
in R3. We establish the global well-posedness of the system if the initial data is axially symmetric and
the swirl component of the velocity and the magnetic vorticity vanish. In particular, the special axially
symmetric initial data can be arbitrarily large and satisfy low regularity assumptions.
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1. Introduction
The magneto-hydrodynamics (MHD) equations were first introduced by Hannes

Alfvén [3], for which he won the Nobel Prize in Physics in 1970. It is a combination
of Navier-Stokes equations of fluid dynamics and Maxwell’s equations of electromag-
netic field, and describes the time evolution of electrically-conducting fluids. The three
dimensional incompressible MHD equations are described as follows:

∂tu+u ·∇u+∇P =ν∆u+B ·∇B,

∂tB+u ·∇B=η∆B+B ·∇u,

∇·u=∇·B=0.

(1.1)

Here x∈R3 are the spatial coordinates and t≥0 is time. u, B and P denote the velocity
of the fluid, the magnetic field and the pressure, respectively. The coefficients ν and
η are nonnegative constants. If ν >0 and η=0, we say MHD system is non-resistive.
Without loss of generality, we take ν=1 and then the system (1.1) becomes

∂tu+u ·∇u+∇P =∆u+B ·∇B,

∂tB+u ·∇B=B ·∇u,

∇·u=∇·B=0.

(1.2)

The MHD system is widely used in the study of astrophysics, geophysics and cosmology.
For more physical explanations, see [8, 12,17,21].

Before proceeding, we first introduce a vector field f which is axisymmrtric, this
means that it has the form

f(t,x)=fr(t,r,z)er+fθ(t,r,z)eθ+fz(t,r,z)ez.

Here (r,θ,z) is the cylindrical coordinate system, that is, for any x=(x1,x2,x3)∈R3,

r=
√
x2
1+x2

2, θ=arctan
x2

x1
, z=x3.
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(er,eθ,ez) is the cylindrical basis in R3, which is defined by

er=(
x1

r
,
x2

r
,0), eθ=(−x2

r
,
x1

r
,0), ez =(0,0,1).

We say fθ is the swirl component and f is axisymmetric without swirl if fθ=0.
Note that if B=0, the MHD system reduces to the classical incompressible Navier-

Stokes equations. It is well-known that the global well-posedness of the 3D Navier-Stokes
equations is still unsolved. Thus many works try to study the solutions with some
special structures. For example, assuming that the initial data is axisymmetric without
swirl, Ukhovskii and Yudovich [22] and Ladyzhenskaya [14] independently showed weak
solutions are regular. More precisely, the Navier-Stokes equations have a unique global
solution for u0∈Hs(R3), s> 7

2 . Moreover, Leonardi et al. in [16] weakened the initial
condition to u0∈H2(R3) and Abidi in [1] proved the global well-posedness for u0∈
H

1
2 (R3). For the case axisymmetric with non-trivial swirl, the results need to take

some smallness assumptions on initial data. The interested readers may refer to [20,23].
For the MHD system, there are also lots of important results up to date. For the

case of (1.1), Duvaut and Lions [9] proved the local well-posedness in Sobolev space
Hs(Rn), s≥n and Sermange and Temam [19] showed the global well-posedness in the
2D case. For the case of (1.2), Fefferman et al. in [10] established the local existence
and uniqueness of solutions with initial data (u0,B0)∈Hs(Rn), s> n

2 (n=2,3). In
[11], the initial data regularity was weakened to (u0,B0)∈Hs−1+ε(Rn)×Hs(Rn), s> n

2
(n=2,3) and 0<ε<1. For a class of axisymmetric initial data, Lei [15] investigated
the global well-posedness of the system (1.2) with a specific geometrical assumption.
More precisely, under the assumptions that swirl component of velocity and magnetic
vorticity are trivial, he proved that there exists a unique global solution with initial
data

(u0,B0)∈Hs(R3), s≥2, and
Bθ

0

r
∈L∞(R3). (1.3)

Later on, Liu [18] further obtained the global well-posedness of the system (1.1) in the
case where the swirl component of velocity is non-trivial.

Motivated by Lei [15], we are concerned with the global well-posedness of the ax-
isymmetric MHD system (1.2). It should be pointed out that for s≥2, B0∈Hs(R3)

can not derive
Bθ

0

r ∈L∞(R3) by Sobolev embedding Hm(R3) ↪→L∞(R3) (m> 3
2 ). Thus,

a natural and interesting problem is whether or not the assumptions (1.3) can be weak-
ened. In the present paper, we give a positive answer. The main result of this work
reads as follows.

Theorem 1.1. Suppose that u0 and B0 are both axially symmetric divergence-free vec-
tor fields such that uθ

0=Br
0 =Bz

0 =0. Let (u0,B0)∈H1(R3)×H2(R3), and ω0

r ∈L2(R3).
Then there exists a unique global solution (u,B) to the system (1.2) satisfying

u∈L∞(0,T ;H1(R3))∩L1(0,T ;W 1,∞(R3)),

B∈L∞(0,T ;H2(R3)),
ω

r
∈L∞(0,T ;L2(R3)),

for any 0<T <∞.

Remark 1.1.
(i) Taking advantage of the estimate of u in W 1,∞, which is given by Theorem 1.1,

it is not hard to propagate, by classical arguments, higher order regularity, for example
higher Hs Sobolev regularity.
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(ii) Compared to the result in [15], we emphasize two points. The first one is to re-

move the condition
Bθ

0

r ∈L∞(R3). The other is to weaken the condition u0∈H2(R3). In
fact, we know that in cylindrical coordinates the vorticity of the swirl-free axisymmetric
velocity is given by

ω=∇×u=ωθeθ

with ωθ=∂zu
r−∂ru

z, and

|∇2u|∼ |∇ωθ|+ |ω
θ

r
|.

(iii) For the fully viscid MHD system (1.1), we can also obtain a similar result as
Theorem 1.1.

The proof of Theorem 1.1 strongly relies on the structure of the MHD equations
in axially symmetric case wherein the swirl component of velocity and magnetic vor-
ticity vanish. In contrast with the proof in [15], due to the absence of the condi-

tions u0∈H2(R3) and
Bθ

0

r ∈L∞(R3), we have to estimate more carefully to obtain
u∈L1([0,T ];Lip(R3)). On the other hand, we can not derive the L1([0,T ];Lip(R3))
estimate for B, which plays the key role in the proof of [15]. Hence, in order to ob-

tain the H2 estimate of B, we show the two estimates ∥∇(B
θ

r )∥L∞([0,T ];L2(R3)) and
∥∇u∥L1([0,T ];H2−ϵ(R3)) with 0<ϵ<1, for more details see Proposition 3.7 and Proposi-
tion 3.8 below.

The paper is organized as follows. In Section 2, we introduce the system (1.2) in
cylindrical coordinates, recall the definition of Besov spaces and gather some elementary
facts. In Section 3, we give some a priori estimates and then prove Theorem 1.1.

Notations: We shall denote
∫
·dx≜

∫
R3 ·dx and use the letter C to denote a generic

constant, which may vary from line to line. For a Banach space B, sometimes we use
the notation Lp

tB for Lp([0,t];B). We always use X≲Y to denote X≤CY . Finally,
X∼Y stands for X≲Y and X≳Y .

2. Preliminaries
In this section, we will introduce the system (1.2) in cylindrical coordinates, Besov

spaces and some useful inequalities. Considering the system (1.2) in the cylindrical
coordinates, we can write

u(t,x)=ur(t,r,z)er+uθ(t,r,z)eθ+uz(t,r,z)ez,

B(t,x)=Br(t,r,z)er+Bθ(t,r,z)eθ+Bz(t,r,z)ez,

P (t,x)=P (t,r,z).

Then the system (1.2) can be equivalently reformulated as

∂tu
r+ur∂ru

r+uz∂zu
r− (uθ)2

r +∂rP =(∆− 1
r2 )u

r+Br∂rB
r+Bz∂zB

r− (Bθ)2

r ,

∂tu
θ+ur∂ru

θ+uz∂zu
θ+ uruθ

r =(∆− 1
r2 )u

θ+Br∂rB
θ+Bz∂zB

θ+ BrBθ

r ,

∂tu
z+ur∂ru

z+uz∂zu
z+∂zP =∆uz+Br∂rB

z+Bz∂zB
z,

∂tB
r+ur∂rB

r+uz∂zB
r=Br∂ru

r+Bz∂zu
r,

∂tB
θ+ur∂rB

θ+uz∂zB
θ+ Bruθ

r =Br∂ru
θ+Bz∂zu

θ+ urBθ

r ,

∂tB
z+ur∂rB

z+uz∂zB
z =Br∂ru

z+Bz∂zu
z,

∂ru
r+ ur

r +∂zu
z =0, ∂rB

r+ Br

r +∂zB
z =0,

(2.1)
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where ∆= ∂2

∂r2 +
1
r

∂
∂r +

∂2

∂z2 is the Laplacian operator.
Taking advantage of the local existence and uniqueness result for the system (1.2)

in R3, we can obtain the following lemma.

Lemma 2.1 ([11]). Let (u0,B0)∈H1(R3)×H2(R3), and ω0

r ∈L2(R3) be axially sym-
metric divergence-free vector fields. Then there exists T >0 and a unique axially sym-
metric solution (u,B) on [0,T ) for the system (2.1) such that

u∈L∞(0,T ;H1(R3)), B∈L∞(0,T ;H2(R3)),
ω

r
∈L∞(0,T ;L2(R3)).

By using the uniqueness of local solutions, it is not difficult to find that if uθ
0=Br

0 =
Bz

0 =0, then uθ=Br=Bz =0 for all later times. In this case, the system (1.2) can be
simplified as 

∂tu
r+ur∂ru

r+uz∂zu
r+∂rP =(∆− 1

r2 )u
r− (Bθ)2

r ,

∂tu
z+ur∂ru

z+uz∂zu
z+∂zP =∆uz,

∂tB
θ+ur∂rB

θ+uz∂zB
θ= urBθ

r ,

∂ru
r+ ur

r +∂zu
z =0.

(2.2)

Let us define

Π :=
Bθ

r
, Ω:=

ωθ

r
.

The system (2.2) gives {
∂tΠ+u ·∇Π=0,

∂tΩ+u ·∇Ω=(∆+ 2
r∂r)Ω−∂zΠ

2,
(2.3)

where u ·∇f =ur∂rf+uz∂zf for f =f(t,r,z).
To this end, we give the definition of Besov spaces and some useful inequalities.

Let us first recall the classical dyadic decomposition in R3, see [4]. Let φ and χ be two
smooth functions supported in the ring C :={ξ∈R3, 34 ≤|ξ|≤ 8

3} and the ball B :={ξ∈
R3,|ξ|≤ 3

4} respectively such that∑
j∈Z

φ(2−jξ)=1 for ξ ̸=0 and χ(ξ)+
∑
q≥0

φ(2−qξ)=1 ∀ξ∈R3.

For every u∈S ′(R3), we set

∀q∈Z, ∆̇qu=φ(2−qD)u, and Ṡqu=
∑

j≤q−1

∆ju.

q≥0, ∆qu=φ(2−qD)u, ∆−1u=χ(D)u and Squ=
∑

−1≤q′≤q−1

∆q′u.

Then we get the decomposition

u=
∑
q∈Z

∆̇qu, ∀u∈S ′(R3)/P[R3] and u=
∑
q≥−1

∆qu, ∀u∈S ′(R3),



X. AI AND Z. LI 1983

where P[R3] is the set of polynomials, see [4]. Let us recall the definition of nonhomo-
geneous and homogeneous Besov spaces.

Definition 2.1. Let (p,r)∈ [1,+∞]2, s∈R and u∈S ′(R3), we set

∥u∥Bs
p,r

:=
(
2qs∥∆qu∥Lp

)
ℓr

and ∥u∥Ḃs
p,r

:=
(
2qs∥∆̇qu∥Lp

)
ℓr
,

with the usual modification if r=∞.

• For s∈R, we define Bs
p,r(R

3) :=
{
u∈S ′(R3)

∣∣∥u∥Bs
p,r

<∞
}
.

• For s< 3
p (or s= 3

p if r=1), we define Ḃs
p,r(R

3) :=
{
u∈S ′(R3)

∣∣∥u∥Ḃs
p,r

<∞
}
.

• If k∈N and 3
p +k≤s< 3

p +k+1(or s= 3
p +k+1 if r=1), then Ḃs

p,r(R
3) is de-

fined as the subset of distributions u∈S ′(R3) such that ∂βu∈ Ḃs−k
p,r (R3) when-

ever |β|=k.

Remark 2.1. It should be noted that the homogeneous Besov space Ḃs
2,2(R

3) (resp.

Bs
2,2(R

3)) coincides with the homogeneous Sobolev space Ḣs(R3) (resp. Hs(R3)).

Next, we recall the Bernstein inequalities.

Lemma 2.2 ([4]). Let B be a ball and C be a ring of R3. There exists a constant C such
that for any positive number δ, any non-negative integer k, any smooth homogeneous
function σ of degree m, and any couple of real numbers (a,b) with b≥a≥1, one has

Suppû⊂ δB⇒ sup
|α|=k

∥∂αu∥Lb ≤Ck+1δk+3( 1
a− 1

b )∥u∥La ,

Suppû⊂ δC⇒C−1−kδk∥u∥La ≤ sup
|α|=k

∥∂αu∥La ≤C1+kδk∥u∥La ,

Suppû⊂ δC⇒ ∥σ(D)u∥Lb ≤Cσ,mδm+3( 1
a− 1

b )∥u∥La .

By using the Bernstein inequalities, we have the following continuous embedding:

Bs
p1,r1(R

3) ↪→B
s+3( 1

p2
− 1

p1
)

p2,r2 (R3)

with p1≤p2 and r1≤ r2.
The so-called tame estimate will be stated as follows.

Lemma 2.3 ([4]). For any s>0 and 1≤p,r≤∞, there exists a constant C>0 such
that

∥fg∥Bs
p,r(R3)≤

Cs+1

s

(
∥f∥L∞(R3)∥g∥Bs

p,r(R3)+∥g∥L∞(R3)∥f∥Bs
p,r(R3)

)
.

We also need the following commutator estimate.

Lemma 2.4 ([13]). Suppose that s>0 and 1<p<∞. Then there exists a constant
C>0 such that

∥Λs(fg)−fΛsg∥Lp(R3)≤C
(
∥∇f∥Lp1 (R3)∥Λs−1g∥Lp2 (R3)+∥Λsf∥Lp3 (R3)∥g∥Lp4 (R3)

)
,

where Λs := (−∆)
s
2 and 1<p2,p3<∞ satisfying

1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.
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In order to obtain a better description of the regularizing effect of the transport-
diffusion equation, we will use Chemin-Lerner type spaces from [5,6].

Definition 2.2. Let s∈R, (r,λ,p)∈ [1,+∞]3, T ∈]0,+∞], and u∈S ′(R3), we set

∥u∥L̃λ
T (Bs

p,r)
:=

(
2qs∥∆qu∥Lλ

T (Lp)

)
ℓr

and ∥u∥L̃λ
T (Ḃs

p,r)
:=

(
2qs∥∆̇qu∥Lλ

T (Lp)

)
ℓr
,

with the usual modification if r=∞.

• For s∈R, we define L̃λ
T (B

s
p,r) :=

{
u∈S ′(R3)

∣∣∥u∥L̃λ
T (Bs

p,r)
<∞

}
.

• For s≤ 3
p (resp. s∈R), we define L̃λ

T (Ḃ
s
p,r(R

3)) as the completion of

C([0,T ],S(R3)) by norm ∥·∥L̃λ
T (Ḃs

p,r)
.

In the particular case when p= r=2, we denote L̃λ
T (B

s
2,2) (resp. L̃

λ
T (Ḃ

s
2,2)) by L̃λ

T (H
s)

(resp. L̃λ
T (Ḣ

s).

Remark 2.2. It is easy to observe that for any ε>0, we have

∥u∥L1
T (Hs−ε)≲∥u∥L̃1

T (Hs).

Moreover, Minkowski’s inequality implies that

∥u∥L̃λ
T (Ḃs

p,r)
≤∥u∥Lλ

T (Ḃs
p,r)

if λ≤ r and ∥u∥Lλ
T (Ḃs

p,r)
≤∥u∥L̃λ

T (Ḃs
p,r)

if r≤λ.

3. Proof of Theorem 1.1
The main goal of this section is to give some a priori estimates and then complete

the proof of Theorem 1.1. Let us first give the basic L2 estimate for the system (1.2).

Proposition 3.1. Let (u,B) be a smooth solution of the system (1.2) with (u0,B0)∈
L2. Then we have

∥u(t)∥2L2 +∥B(t)∥2L2 +

∫ t

0

∥∇u(τ)∥2L2 dτ ≤∥u0∥2L2 +∥B0∥2L2 .

Proof. Multiplying the first and second equations in (1.2) by u and B, respectively,
integrating over R3 and adding up, one has

1

2

d

dt
(∥u∥2L2 +∥B∥2L2)+∥∇u∥2L2 =0,

which implies the desired result by using Gronwall’s inequality.

The next proposition describes some estimates for Π and Ω.

Proposition 3.2. Let (u,B) be a smooth solution of the system (1.2) with ω0

r ∈L2

and (u0,B0)∈H1×H2 satisfying the assumptions in Theorem 1.1. Then there holds

∥Π(t)∥Lp ≤∥Π0∥Lp , ∀2≤p≤6, (3.1)

and

∥Ω(t)∥2L2 +

∫ t

0

∥∇Ω(τ)∥2L2 dτ ≲∥Ω0∥2L2 +∥B0∥4H2t. (3.2)
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Proof. Since Π satisfies the homogeneous transport equation, the first equation
in (2.3), we can show (3.1) by standard process. Taking the L2 inner product of the
second equation in (2.3) with Ω, we have

1

2

d

dt
∥Ω∥2L2 =−

∫
Ω(u ·∇Ω)dx+

∫
Ω(∆+

2

r
∂r)Ωdx−

∫
Ω∂zΠ

2dx.

Using the incompressible condition ∇·u=0, we obtain∫
Ω(u ·∇Ω)dx=0

and ∫
Ω(∆+

2

r
∂r)Ωdx=−∥∇Ω∥2L2 −2π

∫
R
|Ω(t,0,z)|2dz.

Applying integration by parts and Young’s inequality, we get

−
∫

Ω∂zΠ
2dx=

∫
∂zΩΠ

2dx≤∥Π∥2L4∥∂zΩ∥L2 ≤ 1

2
∥Π∥4L4 +

1

2
∥∂zΩ∥2L2 .

Collecting all the above estimates and (3.1), one has

d

dt
∥Ω∥2L2 +∥∇Ω∥2L2 +4π

∫
R
|Ω(t,0,z)|2dz≤∥Π0∥4L4 . (3.3)

Note that

|∇B|2= |∇Bθ|2+ |Π|2.

Therefore, we get

∥Π0∥L2 ≤∥B0∥H1 , and ∥Π0∥L4 ≤∥∇B0∥L4 ≲∥B0∥H2 ,

where we have used Sobolev embedding H1(R3) ↪→Lp(R3) (2≤p≤6).
Consequently, integrating (3.3) with respect to time implies

∥Ω(t)∥2L2 +

∫ t

0

∥∇Ω(τ)∥2L2 dτ ≤∥Ω0∥2L2 +∥Π0∥4L4t≲∥Ω0∥2L2 +∥B0∥4H2t.

This completes the proof of Proposition 3.2.

From the Biot-Savart law

u(x)=
1

4π

∫
R3

(y−x)∧ω(y)

|y−x|3
dy,

we have the following lemma linking the velocity to the vorticity, which plays an im-
portant role.

Lemma 3.1 ( [2, 15]). Let u be a smooth axially symmetric vector field with zero
divergence and ω=ωθeθ be its curl. Then we have

∥u∥L∞ ≲∥ωθ∥
1
2

L2∥∇ωθ∥
1
2

L2 ,
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and

∥u
r

r
∥L∞ ≲∥Ω∥

1
2

L2∥∇Ω∥
1
2

L2 .

With Proposition 3.2 and Lemma 3.1 in hand, we immediately obtain the following
corollary.

Corollary 3.1. Under the assumptions of Proposition 3.2, we have∫ t

0

∥u
r

r
(τ)∥L∞ dτ ≲ t

5
4 .

Proof. By using Hölder’s inequality and Proposition 3.2, it is easy to obtain that∫ t

0

∥u
r

r
(τ)∥L∞ dτ ≤ sup

0≤τ≤t
∥Ω(τ,·)∥

1
2

L2

∫ t

0

∥∇Ω(τ)∥
1
2

L2 dτ ≲ t
5
4 .

To continue, we need the following key proposition.

Proposition 3.3. Let (u,B) be a smooth solution of the system (1.2) with ω0

r ∈L2

and (u0,B0)∈H1×H2 satisfying the assumptions in Theorem 1.1. Then we have

∥Bθ(t)∥Lp ≲∥Bθ
0∥Lp exp(Ct

5
4 ), ∀2≤p≤+∞.

Proof. For any 2≤p<∞, multiplying the third equation in (2.2) by |Bθ|p−2Bθ,
integrating by parts and using Hölder’s inequality, one has

1

p

d

dt
∥Bθ∥pLp ≲

∫
|Bθ|p|u

r

r
|dx≲∥Bθ∥pLp∥

ur

r
∥L∞ ,

which implies

d

dt
∥Bθ∥Lp ≲∥Bθ∥Lp∥u

r

r
∥L∞ .

Applying Gronwall’s inequality and using Corollary 3.1, we get

∥Bθ(t)∥Lp ≲∥Bθ
0∥Lp exp

(
C

∫ t

0

∥u
r

r
(τ)∥L∞ dτ

)
≲∥Bθ

0∥Lp exp(Ct
5
4 ). (3.4)

Let p→∞ in (3.4), we complete the proof of the proposition.

The following proposition describes the estimate of ω.

Proposition 3.4. Let (u,B) be a smooth solution of the system (1.2) with ω0

r ∈L2

and (u0,B0)∈H1×H2 satisfying the assumptions in Theorem 1.1. Then we have

∥ω(t)∥2L2 +

∫ t

0

∥∇ω(τ)∥2L2 dτ ≲ exp(Ct
5
4 ).

Proof. Recall that in cylindrical coordinates the vorticity of the swirl-free axisym-
metric velocity is given by

ω=∇×u=ωθeθ
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and satisfies

∂tω
θ+u ·∇ωθ−(∆− 1

r2
)ωθ− ur

r
ωθ=−∂z

(Bθ)2

r
.

Taking the L2 inner product of ωθ equation with ωθ and using the incompressible
condition ∇·u=0, we get

1

2

d

dt
∥ωθ∥2L2 +∥∇ωθ∥2L2 +∥ω

θ

r
∥2L2 ≤

∫
ur

r
|ωθ|2dx−

∫
∂z

(Bθ)2

r
ωθdx

:= I1+I2.

(3.5)

For I1, one has

|I1|≤∥u
r

r
∥L∞∥ωθ∥2L2 .

For I2, it follows from integration by parts that

|I2|=
∣∣∣∣∫ (Bθ)2

r
∂zω

θdx

∣∣∣∣≤∥Bθ∥L∞∥B
θ

r
∥L2∥∂zωθ∥L2 ≤ 1

2
∥Bθ∥2L∞∥Π∥2L2 +

1

2
∥∂zωθ∥2L2 .

Inserting the above estimates into (3.5) and using Proposition 3.3, it infers

d

dt
∥ωθ∥2L2 +∥∇ωθ∥2L2 +∥ω

θ

r
∥2L2 ≲∥u

r

r
∥L∞∥ωθ∥2L2 +∥Bθ∥2L∞∥Π∥2L2

≲∥u
r

r
∥L∞∥ωθ∥2L2 +∥Bθ

0∥4H2 exp(Ct
5
4 ),

where we have used the Sobolev embedding Hm(R3) ↪→L∞(R3) for m> 3
2 .

Hence, the Gronwall inequality and Corollary 3.1 ensure that

∥ωθ(t)∥2L2 +

∫ t

0

∥∇ωθ(τ)∥2L2 dτ+

∫ t

0

∥ω
θ

r
(τ)∥2L2 dτ

≲

(
∥ωθ

0∥2L2 +∥Bθ
0∥4H2

∫ t

0

exp(Cτ
5
4 )dτ

)
exp

(
C

∫ t

0

∥u
r

r
(τ)∥L∞ dτ

)
≲(1+ t)exp(Ct

5
4 )≲ exp(Ct

5
4 ).

Noting

∥ω∥L2 =∥ωθ∥L2 , and ∥∇ω∥2L2 =∥∇ωθ∥2L2 +∥ω
θ

r
∥2L2 ,

we get

∥ω(t)∥2L2 +

∫ t

0

∥∇ω(τ)∥2L2 dτ ≲ exp(Ct
5
4 ).

This completes the proof of Proposition 3.4.

Consequently, we have the following corollary.

Corollary 3.2. Under the assumptions of Proposition 3.4, we have

∥∇u(t)∥2L2 +

∫ t

0

∥∇2u(τ)∥2L2 dτ ≲ exp(Ct
5
4 ), (3.6)
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and ∫ t

0

∥u(τ)∥2L∞ dτ ≲ exp(Ct
5
4 ). (3.7)

Proof. By virtue of the vector identity ∇×∇×u=−∆u+∇∇·u and ∇·u=0, we
see

∇u=∇(−∆)−1∇×ω.

Using the Calderón-Zygmund inequality yields

∥∇u(t)∥Lp ≤C(p)∥ω(t)∥Lp , ∀1<p<+∞. (3.8)

In particular, taking p=2 in (3.8) and combining Proposition 3.4 lead to the desired
(3.6). Using Lemma 3.1 and Proposition 3.4, we have∫ t

0

∥u(τ)∥2L∞ dτ ≲
∫ t

0

∥ωθ(τ)∥L2∥∇ωθ(τ)∥L2 dτ

≲ sup
0≤τ≤t

∥ωθ(τ)∥L2

(∫ t

0

∥∇ωθ(τ)∥2L2 dτ

) 1
2

(

∫ t

0

1dτ)
1
2

≲ exp(Ct
5
4 ),

which gives the desired (3.7). This ends the proof of Corollary 3.2.

Now, let us derive the L1([0,T ];Lip(R3)) estimate for u.

Proposition 3.5. Let (u,B) be a smooth solution of the system (1.2) with ω0

r ∈L2 and
(u0,B0)∈H1×H2 satisfying the assumptions in Theorem 1.1. Then for every 3<p≤6∫ t

0

∥u(τ)∥
B

1+ 3
p

p,1

dτ+

∫ t

0

∥∇u(τ)∥L∞ dτ ≲ exp(Ct
5
4 ).

Proof. Rewriting the equation for vorticity ω=∇×u, one has

∂tω−∆ω=−∇×(u ·∇u−B ·∇B).

Using the vector identity

(∇×f)×f =−1

2
∇|f |2+f ·∇f,

we obtain

∇×(f ·∇f)=∇×((∇×f)×f) .

A routine computation gives rise to

∇×((∇×B)×B)=−∂z(ΠB
θeθ).

Thus,

∂tω−∆ω=−∇×(u ·∇u)−∂z(ΠB
θeθ). (3.9)
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Let q∈N and ωq :=∆qω. Then localizing in frequency to the vorticity Equation
(3.9) and applying Duhamel formula, we know

ωq =et∆ωq(0)−
∫ t

0

e(t−τ)∆∆q (∇×(u ·∇u))(τ)dτ−
∫ t

0

e(t−τ)∆∆q

(
∂z(ΠB

θeθ)
)
(τ)dτ.

Thanks to the estimate, see [4],

∥et∆∆qf∥Lm ≤Ce−ct22q∥∆qf∥Lm , ∀1≤m≤∞,

and using Bernstein inequality, we get

∥ωq∥Lp ≲e−ct22q∥ωq(0)∥Lp +22q
∫ t

0

e−c(t−τ)22q∥∆q(u⊗u)(τ)∥Lp dτ

+2q
∫ t

0

e−c(t−τ)22q∥∆q(ΠB
θ)(τ)∥Lp dτ.

Then integrating in time and using convolution inequalities, one has∫ t

0

∥ωq(τ)∥Lp dτ ≲2−2q∥ωq(0)∥Lp +

∫ t

0

∥∆q(u⊗u)(τ)∥Lp dτ

+2−q

∫ t

0

∥∆q(ΠB
θ)(τ)∥Lp dτ,

which implies that∫ t

0

∥ω(τ)∥
B

3
p
p,1

dτ ≲
∫ t

0

∥∆−1ω(τ)∥Lp dτ+∥ω0∥
B

3
p
−2

p,1

+

∫ t

0

∥(u⊗u)(τ)∥
B

3
p
p,1

dτ+

∫ t

0

∥(ΠBθ)(τ)∥
B

3
p
−1

p,1

dτ.

We take 3<p≤6. For the first term of the r.h.s, we get from Bernstein inequality
and Proposition 3.4 that∫ t

0

∥∆−1ω(τ)∥Lp dτ ≲ t∥ω∥L∞([0,t];L2(R3))≲ exp(Ct
5
4 ).

For the second term of the r.h.s, using Besov embedding implies

∥ω0∥
B

3
p
−2

p,1

≲∥u0∥
B

3
p
−1

p,1

≲∥u0∥
B

1
2
2,1

≲∥u0∥H1 .

Applying Besov embedding, law products and interpolation inequality, we have

∥u⊗u∥
B

3
p
p,1

≲∥u⊗u∥
B

3
2
2,1

≲∥u∥L∞∥u∥
B

3
2
2,1

≲∥u∥L∞∥u∥L2 +∥u∥L∞∥∇u∥
B

1
2
2,1

≲∥u∥L∞∥u∥L2 +∥u∥L∞∥∇u∥
1
2

L2∥∇2u∥
1
2

L2 ,
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which, together with Corollary 3.2, implies

∥u⊗u∥
L1([0,t];B

3
p
p,1(R3))

≲ t
1
2 ∥u∥L2([0,t];L∞(R3))∥u∥L∞([0,t];L2(R3))

+∥u∥
L

4
3 ([0,t];L∞(R3))

∥∇u∥
1
2

L∞([0,t];L2(R3))∥∇
2u∥

1
2

L2([0,t];L2(R3))

≲ t
1
2 ∥u∥L2([0,t];L∞(R3))∥u∥L∞([0,t];L2(R3))

+ t
1
4 ∥u∥L2([0,t];L∞(R3))∥∇u∥

1
2

L∞([0,t];L2(R3))∥∇
2u∥

1
2

L2([0,t];L2(R3))

≲ exp(Ct
5
4 ).

We use the embedding Lp ↪→B
3
p−1

p,1 for p>3,

∥ΠBθ∥
B

3
p
−1

p,1

≲∥ΠBθ∥Lp ≲∥Bθ∥L∞∥Π∥Lp ,

which gives for 3<p≤6∫ t

0

∥ΠBθ(τ)∥
B

3
p
−1

p,1

dτ ≲∥Π0∥Lp

∫ t

0

∥Bθ(τ)∥L∞ dτ ≲ texp(Ct
5
4 ).

Hence, we have ∫ t

0

∥ω(τ)∥
B

3
p
p,1

dτ ≲ exp(Ct
5
4 ).

And then using the Besov embedding B
3
p+1

p,1 ↪→W 1,∞ implies∫ t

0

∥∇u(τ)∥L∞ dτ ≲
∫ t

0

∥u(τ)∥
B

3
p
+1

p,1

dτ ≲
∫ t

0

∥ω(τ)∥
B

3
p
p,1

dτ ≲ exp(Ct
5
4 ).

This concludes the proof.

We give the following crucial proposition for ∇B.

Proposition 3.6. Let (u,B) be a smooth solution of the system (1.2) with ω0

r ∈L2

and (u0,B0)∈H1×H2 satisfying the assumptions in Theorem 1.1. Then there holds

∥∇B(t)∥Lp ≲ exp
(
C exp(Ct

5
4 )
)
, ∀2≤p≤6.

Proof. We first write the second equation in (1.2) as

∂tB+u ·∇B=
ur

r
B. (3.10)

Applying the operator ∇ to (3.10), it infers

∂t∇B+∇u ·∇B+u ·∇∇B− ur

r
∇B−∇urB

r
eθ−(∇1

r
)urB=0.

A direct computation gives

(∇1

r
)urB=− 1

r2
eru

rB=−Bθ

r2
urer⊗eθ.
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This yields to

∂t∇B+∇u ·∇B+u ·∇∇B− ur

r
∇B−∇urB

r
eθ+

ur

r
Πer⊗eθ=0. (3.11)

For 2≤p≤6, multiplying the Equation (3.11) by |∇B|p−2∇B and integrating by
parts, we deduce

1

p

d

dt
∥∇B∥pLp ≤

(
∥∇u∥L∞ +∥u

r

r
∥L∞

)
∥∇B∥pLp

+

(
∥∇ur∥L∞ +∥u

r

r
∥L∞

)
∥Π∥Lp∥∇B∥p−1

Lp .

Thus,

d

dt
∥∇B∥Lp ≤

(
∥∇u∥L∞ +∥u

r

r
∥L∞

)
∥∇B∥Lp +

(
∥∇u∥L∞ +∥u

r

r
∥L∞

)
∥Π∥Lp .

Applying Gronwall’s inequality implies

∥∇B(t)∥Lp ≤
(
∥∇B0∥Lp +∥Π0∥Lp

∫ t

0

(∥∇u(τ)∥L∞ +∥u
r

r
(τ)∥L∞)dτ

)
×exp

∫ t

0

(
∥∇u(τ)∥L∞ +∥u

r

r
(τ)∥L∞

)
dτ

≲ exp
(
C exp(Ct

5
4 )
)
,

where we have used Proposition 3.2, Corollary 3.1, Proposition 3.5 and the Sobolev
embedding H1(R3) ↪→L6(R3). This achieves the proof of Proposition 3.6.

Next, performing the prior H2 estimate for B, we first show the following two
propositions.

Proposition 3.7. Let (u,B) be a smooth solution of the system (1.2) with ω0

r ∈L2

and (u0,B0)∈H1×H2 satisfying the assumptions in Theorem 1.1. Then there holds

∥∇Π(t)∥L2 ≲ exp
(
C exp(Ct

5
4 )
)
.

Proof. Applying the operator ∇ to the equation of Π in (2.3), one has

∂t∇Π+∇u ·∇Π+u ·∇∇Π=0.

Taking the L2 inner product with ∇Π, we obtain from Hölder’s inequality that

1

2

d

dt
∥∇Π∥2L2 =−

∫
∇u ·∇Π ·∇Πdx≤∥∇u∥L∞∥∇Π∥2L2 .

Thus, using Gronwall’s inequality implies

∥∇Π(t)∥L2 ≤∥∇Π0∥L2 exp

∫ t

0

∥∇u(τ)∥L∞ dτ ≲∥B0∥H2 exp
(
C exp(Ct

5
4 )
)
,

and then the proof of Proposition 3.7 is completed.
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Before proving the next proposition, we recall the following estimate for the heat
equation {

∂tf−∆f =F, (t,x)∈R+×R3,

f |t=0=f0.
(3.12)

Lemma 3.2 ([7]). Let t>0, s∈R and 1≤ρ,p,r≤∞. Assume that f0∈ Ḃs
p,r and F ∈

L̃ρ([0,t];Ḃ
s−2+ 2

ρ
p,r ). Then the Equation (3.12) has a unique solution f ∈ L̃ρ([0,t];Ḃ

s+ 2
ρ

p,r )∩
L̃∞([0,t];Ḃs

p,r) and the following estimate holds for all ρ1∈ [ρ,+∞],

∥f∥
L̃ρ1 ([0,t];Ḃ

s+ 2
ρ1

p,r )
≤C

(
∥f0∥Ḃs

p,r
+∥F∥

L̃ρ([0,t];Ḃ
s−2+ 2

ρ
p,r )

)
.

Proposition 3.8. Let ϵ∈ (0,1), (u,B) be a smooth solution of the system (1.2) with
ω0

r ∈L2 and (u0,B0)∈H1×H2 satisfying the assumptions in Theorem 1.1. Then one
has ∫ t

0

∥∇u(τ)∥H2−ϵ dτ ≲ exp
(
C exp(Ct

5
4 )
)
.

Proof. Note that the equation of vorticity

∂tω−∆ω=−∇×(u ·∇u)−∂z(ΠB
θeθ),

we obtain from Lemma 3.2 and Remark 2.2 that

∥ω∥L̃1([0,t];Ḣ2(R3))≲∥ω0∥L2 +∥∇×(u ·∇u)∥L1([0,t];L2(R3))+∥∂z(ΠBθ)∥L1([0,t];L2(R3)).

Using Lemma 2.3, one has

∥∇×(u ·∇u)∥L2(R3)≤∥u ·∇u∥H1 ≲∥u∥L∞∥∇u∥H1 +∥u∥H1∥∇u∥L∞

and

∥∂z(ΠBθ)∥L2(R3)≤∥Bθ∂zΠ∥L2(R3)+∥Π∂zB
θ∥L2(R3)

≤∥Bθ∥L∞(R3)∥∇Π∥L2(R3)+∥Π∥L4(R3)∥∇Bθ∥L4(R3).

Thus, we get

∥ω∥L̃1([0,t];Ḣ2(R3))≲∥ω0∥L2 +∥u∥L2([0,t];L∞(R3))∥∇u∥L2([0,t];H1(R3))

+∥u∥L∞([0,t];H1(R3))∥∇u∥L1([0,t];L∞(R3))+ t∥Bθ∥L∞([0,t];L∞(R3))∥∇Π∥L∞([0,t];L2(R3))

+ t∥Π0∥L4∥∇Bθ∥L∞([0,t];L4(R3))≲ exp
(
C exp(Ct

5
4 )
)
.

Thanks to Remark 2.2 and Proposition 3.4, one can see that

∥ω∥L1([0,t];H2−ϵ(R3))≲∥ω∥L̃1([0,t];H2(R3))≲
∫ t

0

∥ω(τ)∥L2 dτ+∥ω∥L̃1([0,t];Ḣ2(R3))

≲exp(Ct
5
4 )+exp

(
C exp(Ct

5
4 )
)
≲ exp

(
C exp(Ct

5
4 )
)
,
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which gives ∫ t

0

∥∇u(τ)∥H2−ϵ dτ ≲
∫ t

0

∥ω(τ)∥H2−ϵ dτ ≲ exp
(
C exp(Ct

5
4 )
)
.

This ends the proof of the proposition.

To this end, we give the H2 estimate of B.

Proposition 3.9. Let (u,B) be a smooth solution of the system (1.2) with ω0

r ∈L2

and (u0,B0)∈H1×H2 satisfying the assumptions in Theorem 1.1. Then one has, for
any t>0,

∥∇2B(t)∥2L2 ≲ exp
{
C exp

(
C exp(Ct

5
4 )
)}

.

Proof. Applying the operator ∇2 to the equation of Bθ in (2.2) leads to

∂t∇2Bθ+ur∂r∇2Bθ+uz∂z∇2Bθ=(
ur

r
∇2Bθ+2∇ur

r
∇Bθ+Πr∇2u

r

r
)

−(∇2ur∂rB
θ+∇2uz∂zB

θ+2∇ur∂r∇Bθ+2∇uz∂z∇Bθ).

Taking the L2 inner product with ∇2Bθ, we obtain from the incompressible condi-
tion ∇·u=0 that

1

2

d

dt
∥∇2Bθ∥2L2 =

∫
(
ur

r
∇2Bθ+2∇ur

r
∇Bθ+Πr∇2u

r

r
) ·∇2Bθdx

−
∫
(∇2ur∂rB

θ+∇2uz∂zB
θ+2∇ur∂r∇Bθ+2∇uz∂z∇Bθ) ·∇2Bθdx

:=J1+J2.

In the following, we estimate Ji term by term. For J1, thanks to Hölder’s inequality
and the Sobolev inequality, we get

|J1|≲∥u
r

r
∥L∞∥∇2Bθ∥2L2 +∥∇ur

r
∥L3∥∇Bθ∥L6∥∇2Bθ∥L2 +∥Π∥L6∥r∇2u

r

r
∥L3∥∇2Bθ∥L2

≲ (∥∇u∥L∞ +∥∇2u∥
Ḣ

1
2
)∥∇2Bθ∥2L2 +∥∇2u∥

Ḣ
1
2
∥Π∥2L6 .

Thanks to Hölder’s inequality and the Sobolev inequality ∥f∥L6 ≲∥∇f∥L2 , we obtain

|J2|≲∥∇2u∥L3∥∇Bθ∥L6∥∇2Bθ∥L2 +∥∇u∥L∞∥∇2Bθ∥2L2

≲ (∥∇u∥L∞ +∥∇2u∥
Ḣ

1
2
)∥∇2Bθ∥2L2 .

Putting together the above estimates, we get

d

dt
∥∇2Bθ∥2L2 ≲ (∥∇u∥L∞ +∥∇u∥

H
3
2
)∥∇2Bθ∥2L2 +∥∇u∥

H
3
2
∥Π∥2L6 ,

and combining Proposition 3.5, Proposition 3.8 and Gronwall’s inequality, we deduce

∥∇2Bθ(t)∥2L2 ≲

(
∥∇2Bθ

0∥2L2 +∥Π0∥2L6

∫ t

0

∥∇u(τ)∥
H

3
2
dτ

)
×exp

(
C

∫ t

0

(∥∇u(τ)∥L∞ +∥∇u(τ)∥
H

3
2
)dτ

)
≲ exp

{
C exp

(
C exp(Ct

5
4 )
)}

.
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This completes the proof of Proposition 3.9.

Proof. (Proof of Theorem 1.1.) With the Corollary 3.2, Proposition 3.5, Propo-
sition 3.8 and Proposition 3.9, by taking advantage of the local existence and uniqueness
result, that is, Lemma 2.1, we complete the proof of Theorem 1.1.
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Math. Phys., 18:639–649, 1999. 1

[17] Z. Li, P. Liu, and P. Niu, Remarks on Liouville type theorems for the 3D stationary MHD equa-
tions, Bull. Korean Math. Soc., 57:1151–1164, 2020. 1

[18] Y. Liu, Global well-posedness of 3D axisymmetric MHD system with pure swirl magnetic field,
Acta. Appl. Math., 155:21–39, 2018. 1

[19] M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Com-
mun. Pure Appl. Math., 36:635–666, 1983. 1

[20] Y. Liu and P. Zhang, On the global well-posedness of 3-D axi-symmetric Navier-Stokes system
with small swirl component, Calc. Var. Partial Differ. Equ., 57:17, 2018. 1

[21] E. Priest and T. Forbes, Magnetic Reconnection, Cambridge University Press, Cambridge, 2000.
1

[22] M.R. Ukhovskii and V.I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the
whole space, J. Appl. Math. Mech., 32:52–62, 1968. 1

[23] P. Zhang and T. Zhang, Global axi-symmetric solutions to 3-D Navier-Stokes system, Int. Math.
Res. Not., 3:610–642, 2014. 1

https://doi.org/10.1016/j.bulsci.2007.10.001
https://doi.org/10.48550/arXiv.0908.0894
https://doi.org/10.1038/150405d0
https://link.springer.com/book/10.1007/978-3-642-16830-7
https://link.springer.com/article/10.1007/BF02791256
https://mathscinet.ams.org/mathscinet-getitem?mr=1354312
https://perso.math.u-pem.fr/danchin.raphael/cours/courschine.pdf
https://doi.org/10.1119/1.1482065
https://link.springer.com/article/10.1007/BF00250512
https://doi.org/10.1016/j.jfa.2014.03.021
https://link.springer.com/article/10.1007/s00205-016-1042-7
https://link.springer.com/article/10.1007/s00205-016-1042-7
https://doi.org/10.1016/j.jfa.2014.06.002
https://www.jstor.org/stable/2939277
https://mathscinet.ams.org/mathscinet-getitem?mr=241833
https://doi.org/10.1016/j.jde.2015.04.017
http://dx.doi.org/10.4171/ZAA/903
https://doi.org/10.4134/BKMS.b190828
https://link.springer.com/article/10.1007/s10440-017-0143-0
https://doi.org/10.1016/0167-7136(83)90286-X
https://link.springer.com/article/10.1007/s00526-017-1288-4
https://doi.org/10.1017/CBO9780511525087
https://doi.org/10.1016/0021-8928(68)90147-0
https://academic.oup.com/imrn/article-abstract/2014/3/610/670516?redirectedFrom=fulltext&login=false

