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BLOW-UP TIME OF STRONG SOLUTIONS TO A BIOLOGICAL
NETWORK FORMATION MODEL IN HIGH SPACE DIMENSIONS*

XIANGSHENG XUt

Abstract. We investigate the possible blow-up of strong solutions to a biological network formation
model originally introduced by [D. Cai and D. Hu, Phys. Rev. Lett., 111:138701, 2013]. The model
is represented by an initial and boundary value problem for an elliptic-parabolic system with cubic
nonlinearity. We obtain an algebraic equation for the possible blow-up time of strong solutions. The
equation yields information on how various given data may contribute to the blow-up of solutions. As
a by-product of our development, we establish a W14 estimate for solutions to an elliptic equation
which shows the explicit dependence of the upper bound on the elliptic coefficients.
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1. Introduction
Let Q be a bounded domain in RY with C''*! boundary 9Q and T a positive number.
Set Qr =0 x(0,T). We study the possible blow-up of strong solutions to the system

—div[(/+mem)Vp|=S(z) in Qr, (1.1)
dym—D?Am+ |m|*0"Ym=FE?*(m-Vp)Vp in Qp, (1.2)
coupled with the initial and boundary conditions

p(z,t)=0, m(z,t)=0, (z,t)eXr=00x(0,T), (1.3)
m(z,0)=mg(z), z€ (1.4)

for given functions S(z),mo(z) and physical parameters D, E,~ with properties:
N q
(H1) my(z) € (WOIOO(Q)) , N>3, S(z) c v (Q) for some ¢ > 1—1—%; and
(H2) D,E€(0,00),7€ (3,00).

This system was originally derived in ([13,14]) as the formal gradient flow of the con-
tinuous version of a cost functional describing formation of biological transportation
networks on discrete graphs. In this context, the scalar function p=p(x,t) is the pres-
sure due to Darcy’s law, while the vector-valued function m =m(z,t) is the conductance
vector. The function S(x) is the time-independent source term. More detailed informa-
tion on the biological relevance of the problem can be found in [1,2,9,11].

We are interested in the mathematical analysis of the problem.

A pair (m,p) is said to be a weak solution to (1.1)-(1.4) if the following conditions
(D1)-(D3) hold.

(D1) We have

me L™ <O,T; (W0172(Q)QL2’Y(Q))N) , oyme (L2(QT))N’

pe L=(0,T;W,*()), and (m-Vp)eL®(0,T;L%(Q));
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(D2) m(z,0)=mq in C (0,77 (£2(@)");

(D3) Equations (1.1) and (1.2) are satisfied in the sense of distributions.
The existence of a weak solution was first established in [10]. It was based upon the
following a priori estimates

-

1
7/ |m(x,T)|2dx—|—D2/ |Vm|2dxdt—|—E2/ (m-Vp)?dadt
2Ja Q Q,
+/ |m|27da:dt+2E2/ \Vp|2dzdr
Q. Q.

1
_§/Q|m0|2dﬂc—&-2E2/Q S(z)pdxdt, (1.5)

/ |Oym| dacdt—&——/ |[Vm(z T)|2dx+—/ -Vp)?d

+7/ |Vp|2d:n+—/ |m|*Yda

E? 1
_U 2 £ ] 2 B 2
5 /Q\Vm0| dr+ 5 /Q(mo Vo) dx+27/ﬂ|mo| dx

E? 9
+— [ |Vpol|“dz, (1.6)
2 Ja
where 7€ (0,7],Q2, =Qx (0,7), and pq is the solution of the boundary value problem
—div[({ +mo®mg)Vpo]=S(x), in £, (1.7)
po=0 on 9N. (1.8)

The preceding equations are due to the fact that our system can be viewed as a (formal)
L?(Q) constrained gradient flow and the energy associated with it is nonincreasing
[10,11].

Partial regularity of weak solutions was addressed in [17,21] for N <3. If the space
dimension is 2, a classical solution was obtained in [23] for the stationary case and
in [20] for the time-dependent case. Finite time extinction or break-down of solutions
in the spatially one-dimensional setting for certain ranges of the relaxation exponent
~ was carefully studied in [11]. Further modeling analysis and numerical results can
be found in [1,9]. We also mention that the question of existence in the case where
y=13 is addressed in [11]. In this case, the term |m[*~Ym is not continuous at
m=0. Nevertheless, the general regularity theory remains fundamentally incomplete.
In particular, it is not known whether or not weak solutions develop singularities in
high space dimensions N >3 even though a blow-up criterion was obtained in [16] when
QO=R3.

A strong solution is a weak solution with the additional property

(D4) m is Holder continuous in Qr.
Obviously, Equation (1.1) becomes uniformly elliptic under (D4). More importantly,
under (D4) and the assumption

(H3) 0Q is O,

the result in ([19], p.82) becomes applicable. That is, for each s> 1 there is a positive
number ¢ determined by N,s,§2, and the Holder continuity of m such that

IVpllso <cllS| sx o (1.9)
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This, in turn, will further improve the regularity of (m,p). In fact, one can easily infer
from the results in [4,15] that the system (1.1)-(1.2) is satisfied a.e on Qp. See [21] for
details.

Our main result is:

THEOREM 1.1. Let (H1)-(H3) be satisfied. Then there is a positive number Tyax such
that problem (1.1)-(1.4) has a strong solution in Qp for each T <Typax. The number
Tinax 18 the unique solution of Equation (4.10) below.

By carefully examining its proof, we can reformulate (4.10) in the form

7 519
E i b; i E i b; P
( Tltll’xax”S qN QvaO Zo,Q) Tr(‘(llaxHS ]311‘\1’ QHVI’I’IOHEO,Q_d07 (110)
7’

4
X N+4q> -
=1 Haa =8

where all the exponents s >0,a; >0,b; >0,¢; >0, i=1,---,19, are determined by N,q,~
only, while dy > 0 also depends on () and the physical parameters D, E in the problem in
addition to N,q,7y. The left-hand side of (1.10) as a function of Ti,ax strictly increases
from 0 to oo as Tiax goes from 0 to co. Thus, (1.10) has a unique solution.

The local existence of a strong solution was already obtained in Theorem 1.7 of [21].
The novelty here is the explicit dependence of Ty,.x on the given data. Obviously, the
smaller ||S||§QTJZQQ and ||Vmy||e o are, the longer the life span of our strong solution
is. We must point out that the theorem does not say if the blow-up does occur at Ty ax.
Thus, Timax only serves as a lower bound for the blow-up time if it exists.

To describe the mathematical difficulty involved in our problem, first notice the
term (m-Vp)Vp in (1.2) represents a cubic nonlinearity. This type of nonlinearity is
still not well-studied in the literature. Second, the elliptic coefficients in (1.1) satisfy

KPP <(T+mem)é-<(1+m?) ¢ for all E€RY. (1.11)

Hence, Equation (1.1) is singular unless m is bounded, which is not known a priori.
However, existing regularity results for degenerate and/or singular elliptic equations
[12] often require that the largest eigenvalue ); and the smallest eigenvalue A of the
coefficient matrix satisfy

1
A <chg and / )\de/ de—dx <er*V for each ball B, (y) Q.
B, (y) B, () s

Here and in what follows the letter ¢ denotes a generic positive number. Thus our
problem does not fit into the classical framework.
To gain some insights into our problem, we take a look at the one-dimensional case

~[(1+m?)p,]o=S(z) in (0,1)x (0,00), (1.12)

My — D*mgy + |m |20 Vm=E2mp? in (0,1) x (0,00), (1.13)
p(0,t)=p(1,t)=0 on (0,00), (1.14)

m(0,t)=m(1,t)=0 on (0,00), (1.15)

m(x,0)=mg(z) on (0,1). (1.16)

According to Rolle’s theorem, for each ¢ € (0,00) there is an 2*(¢) € (0,1) such that

pz (2 (¢),t)=0.
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For z € (0,1) we integrate (1.12) over (z*(t),x) to derive

1 xT
pam—— / Sy (1.17)
x*(t

14+m?2
Subsequently,

pr”oo < ”SHl

Substitute (1.17) into (1.13) to obtain

2
E?*m r
m —Dzmm+|m|2(7_1)m:7 S(y)dy | .
' (1+m?)2 \ S

We multiply through the above equation by m; and integrate to obtain
1d [!
2 2
d midr+—— d
/"mf$+2 ai )y " +2mﬁé7” v

1 x 2
:EQ/ _mme S(y)dy | dx
o (L+m?)2\ Jo- ) )

1 2
<E252/m—lﬁ——d.
= || ||1 o (1+m2)2 €L

This implies that blow-up in m does not occur. The key here is (1.17), which is not
available in high space dimensions. To seek a substitute, we have developed the following
theorem which seems to be of interest in its own right.

THEOREM 1.2.  Assume that (H3) holds,
1,0 N L N
we (WH(Q))" for some £> N, and S(z) € LN%(Q) for some ¢> 5 . (1.18)
Let p be the solution of the boundary value problem

—div[(I+w(z)@w(z))Vp|=5(x) in Q, (1.19)
p=0 on 0. (1.20)

Then there is a positive number c=(N,$,q,¢) such that

s1
19pllaa <e(1+Iwlayne@y ) (I9Pa+ 181 2 o). (1.21)

5N (26—N+N¢)(Ng—N)

where s1 = A=)

The advantage of this theorem over the classical result (1.9) is that it gives the
explicit dependence of the upper bound on the coefficient matrix. This is very crucial
to our applications.

Condition on ¢ in (1.18) is to ensure that =L >1 When N =2, a version of
(1.21) was obtained in [20] by deriving an equatlon for the term (I+w®w)Vp-Vp.
Unfortunately, this technique only works for N =2. Our approach here is largely inspired
by the papers [3,4,6].
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The rest of the paper is organized as follows. A refinement of a classical uniform
bound for solutions to a linear parabolic equation is given in Section 2. The proof of
Theorem 1.2 is presented in Section 3. Our main theorem is established in Section 4.

Finally, we remark that unless stated otherwise, our generic constant ¢ depends
only on N,q,Q and the three physical parameters D, F v in the problem. In particular,
it does not depend on T ,mg(x), or S(z). The following two inequalities are frequently
used without acknowledgment:

(a+0)*<a®+b* for a>0,b>0,a€(0,1),
(a+b)><207! (a®+bY) for a>0,b>0,a>1.

2. Preliminary results
In this section, we collect a few relevant known results. The first lemma contains
some elementary inequalities whose proof can be found in ([18], p. 146-148).

LEMMA 2.1. Let x,y be any two vectors in RN . Then:
(i) Fory>1,

_ _ 1
(I 22—y 2y) (2= y) = o lo—yI*;
(ii) For 3 <~<1,
([ +y)* 27 (2 22— |y 2y) - (z—y)) = (27— D]z —y|*.

The next lemma plays a central role in our main result.

LEMMA 2.2.  Let h(T) be a continuous non-negative function defined on [0,To] for
some Ty >0. Suppose that there exist three positive numbers €,6,b such that

h(T) <eh'*o(T)+b for each T€0,Ty).

Then
1
h(r) < m =hg for each T €[0,To)
whenever
66
e< BP0 and h(0) <hg.

We will use the proof of this lemma given in [22].
The following lemma can be found in ([5], p.12).

LEMMA 2.3.  Let {yn},n=0,1,2,---, be a sequence of positive numbers satisfying the
recursive inequalities

Yni1 <"yt T for some b>1,c,a € (0,00).

If

then lim,, oy, =0.
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LEMMA 2.4. Let ug € L*=(Q) and g, f,|g|?> € LY(Qr) for some

N

Assume that u is a sub-solution of the problem

dyu—D?*Au=gu+ f+divg in Qr, (2.2)
u=0 on X, .
u=ugy on (2.4)

Then there exists a positive number c=c(D,N,Q,q) such that

q—1)sg
supu<2supuo+c(||g||qg; +1) 0t 25 g+ 1Flo2e 775 + g (25)

Qr

where

q(N+2)

0T N—2

(2.6)

This lemma is essentially known. The interest here lies in the fact that it gives the
precise dependence of the uniform upper bound on T and the given functions. This is
very important to our late development.

Proof. The proof is based upon the De Giorgi iteration scheme. Let

k> 2supug (2.7)
Q

be selected as below. Define

lep =k — n=0,1,2,-.

2n+1’

Use (u—kp11)" as a test function in (2.2) and use the fact that (u—ky41)"|,_q=0 to
get

1
— sup /[(u—kn+1)+]2d:ﬂ+D2/ |V(u—kn+1)+’2dxdt
20<t<T /0 Qr

§2/ gu(u—kpy1) T dodt+2 f(u—kn+1)+dxdt—2/ g V(u—kyy1)tdzdt.(2.8)
Qr

Qr Qr
Set
Qn={(x,t) €Qr:u(z,t) > ky}.

Then we easily see from Young’s inequality ([8], p.145) that

/g.v(u—kn+1)+daﬁdt’§€/ ‘V(u—kn+1)+‘2dxdt—|—§||g\|§)Qn+l, £>0.(2.9)
QT QT

By Holder’s inequality,

[ - kn+1>+dxdt) < fllageem g, M@= bnst) lzim o (210)
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Note that
[(u=Fn) ] = (= kin)* (= kns2)*
K,
>0 (1= ) (=)
n+1
1
> 2n+2u(u kn—i—l)
Consequently,
/ gu(u—kn+1>+dxdt‘ <27 [ Jgl[(u=ko) "] dadt
Qr Qr
) g1
<t lgllg.0ryn’ (2.11)
where

ynz/ [(u—kn)ﬂ%dxdt.
Qr

Substitute (2.9), (2.10), and (2.11) into (2.8) and choose ¢ suitably small in the resulting
inequality to derive

sup /[(u—kn+1)ﬂ2dx+/ |V(u—kn+1)+|2dmdt
Q

0<t<T Qr

+ || 2N42) o +C||gH§,Qn+1 '

a—1
<2 glgrvn® +elflagn o I—hns)* 2y

It follows from Poincaré’s inequality that

/ (=) ]2 dadt
Qr
N-—2

§/0T</Q[(u—k:n+1)+]2dx)§</Q[(u—k:n+1)+]l\$N2dx) T

2
Sc( sup /[(ukn+1)+]2d$>N/ |V(ufkn+1)+|2d:rdt
Q Qr

0<t<T
N2
g=1 n 9 N
<c(P ol +1lgen o, N0~ ki) laigen o, + I8l ...
o Mg g e 2 o
<2 W ||9||q,QTyn +C||f||2(]1Vv++42>7Qn+1||(U_kn+1) H?“\]'\,“),QT+0Hg”2’Q"+1
124 d ¢ 2(N+2) 2(N+2)
<e [ [0k R dears S, Selllln,
n(N+2) N2 (a=D(N+2)
+e27 7 gl Sy Y, e>0.
Consequently,
4 Nt2 (@=1)(N+2)
|l T w252 gl o
Q
" 2(N+2) 2(N+2)
N N 2.12
+C||fH Q(I\Iyrf) Qg1 +C||g| 2,Qn+1 ( )
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The last two terms in the above inequality can be estimated as follows:

N+4
2(N+2) 2(N+2) N
||fH 2(NN+2> Q = (/ ‘f| N+4 dl’dt)
NFa el Qn+1
+4 2(N+2)
= ||f||q,QT ‘Q?H*l‘ )
2(N+2) 2(N+2) _N+42
Igllz,qn,, < ||g||2q,§va N

Use this in (2.12) to obtain

/| =)’

By (2.1),

(a=1)(N+2)

+2 N+2

+0||g\|zq or  |Qu |

1

<N+2
g—1 N

This, together with (2.13), implies

2q
yn+1:/ [(U_kn+1)+] =T dxdt
Qr

gN
4 (g—1)(N+2) N
< </ [(w k)] dwdt) |Qna| T
Qr

o T=T 1o aN
<82q71 ||9H;791Tyn|Qn+1| (a—1)(N+2)
N+4)q—2(N+2)
+C||f|qQT|Qn+1| a—L(NF2)  T1—
(N42)g—N—2 4 aN
+C||g”2q QT|QTL+1| e N e N CE Ve o)

142
|q,QT |Qn+1| “

qN
(g—=1)(N+2)

an_ f
=259l 5 Un [Quia|* +cllf

2q
-1 1
+ellgllg o [Queal T,

where
—N-=-2 q
o= = >0.
(@—1)(N+2) (¢—1)so

We easily see that

_2q_ k%
ynZ/ (kp+1—ky) T dodt = — 5 [Qnga -
Qn+1 2 a1

Therefore,
2¢(n+2)a
a a-1
|Qnt1]|” < Wym
ka1
2q(n+2)(1+a)

14 ot 1
|Qn+1| “ < k2q(1+a) ynJra’

2g(n+2)
|Q |1+2a<|Q |1+oc|Q |a< ! (1+a)| ‘ocyl-i-a
n+1 >~ n+1 T > %‘11(1+a) n .

Niz d—timER) Ny
a8z Yn +c||f||qQT ' |Qu |

4

_2(N+2)

Ngq

(2.13)

(2.14)

(2.15)
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Collecting the preceding three estimates in (2.14) to get

( a+1)qn ” |
Q
yn+1 — 2qa e y}L+a
q—1

2(at1)gn
2™ (f||;,Q;Ta+||g||2qQT)

k%(l-m)

+a

+ Y

We choose k so large that

HflljngT“ﬂL ||g||2q or 1.
e

Use this in (2.16) to get

(a+1)q
(i) .

yn-‘rl S 2qa yn
fatT

According to Lemma 2.3, if we further require & to satisfy

o
2qa

q—1

Yo<c| ————
¢(llgllZer, +1)

then

supu < k.
Qr

In view of (2.17) and (2.7), it is enough for us to take
1 g1 1
k:2s1§12pu0 +c <Hg| ;,?ZT + 1) y02q + ||f||q,QTT2SO -+ ||gH2q,QT'

Note that

q—1

5 T
o < ([ @) T e,
Qr a

This, combined with (2.18) and (2.15), gives (2.5). The proof is complete.

If

supu = [|ulloo0r,
Qr

we can apply the interpolation inequality ([8],p.146) to obtain

1
[l 20 o, <llull 20 g, <ellulloc.or +—x lull0r, £>0.
ga-t

2037

(2.16)

(2.17)

(2.18)
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Plug this into (2.5) to get

N 1
e <l o, 1) (el + sz Ll )
ga—1
_1
42500+ /10, 775 +lglagor

Take € so that the coefficient of the term ||ul|co,0, on the right-hand side of the above
inequality

A 1
¢(llglZn, +1)e=75

to drive

1
%QTTQSO +2Hg”2q7QT' (2'19)

Il 2z < dsupuote lglln, +1) lul o +21 1

Here we have used (2.15).
LEMMA 2.5.  Assume that (H3) holds. Let u be the solution of the problem
du—D?*Au=f inQp,
u=0 on X,
u=ug on €,
where
u €Wy ™(Q), feL?(Qr) for some ¢>1+ ¥
Then there is a positive number c=c(Q,N,q) such that

IVulloo,0r < €[ Vuolloo,o+¢ll fll2g.00- (2.20)

This lemma is known. In fact, it is not difficult for us to see (2.20). Indeed, uy,
satisfies (2.2) with f being replaced by f,, and g, g being 0. A full proof can be inferred
from Proposition 2.3 in [22].

3. W4 estimates for elliptic equations
Before we prove Theorem 1.2, we recall some results from [3].

DEFINITION 3.1. A function k(x) on RV \{0} is called a Calderén-Zygmund kernel
(in short, C-Z kernel) if:

(i) ke C=(RY\{0});
(ii) k(x) is homogeneous of degree —N, i.e., k(tx)=t"Nk(z);
(iti) [op, o) k(x)dHN 1 =0.
The most fundamental result concerning C-Z kernels [3] is the following:

LEMMA 3.1.  Given a C-Z kernel k(x), we define
Kgf(x):/ k(z—y)f(y)dy for e>0 and f€LI(RN) with g€ (1,00).
RN\ B (z)

Then:
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(CZ1) For each f € LI(RYN) there exists a function K f € LI(RYN) such that
lim ||K5f7Kf||q7]RN =0.
e—0
In this case we use the notation

Kf(x)=P.V.kxf(x)=P.V. x k(x—vy)f(y)dy.

(CZ2) K is a bounded operator on LY(RN). More precisely, we have

K fllgry <c (/ k2($)dHN1> 1 fllgrn
9B1(0)

where the positive number ¢ depends only on N,q.
We are ready to prove Theorem 1.2.

Proof. (Proof of Theorem 1.2.) As in [3,6], the proof comprises a local interior
estimate and a boundary estimate. To establish the former, we fix o €Q. Let 0<d<r
with B,(zo) C Q. Pick a smooth cutoff function £ € C§°(RY) such that

¢€=1 on Bs(zo),
£=0 outside B,(x),
0<¢<1 on B,(x),

Vel < C(S on B, (xp).

r_
Set
u=p€.

We can easily verify that u satisfies the equation

—div[(I+w(z) @w(z))Vu] = —div[p(I + w(z)@w(z))VE]|+ F in RY,
where

F=¢S(x)-VE(I+w(z)@w(x))Vp.

Set

A(zg)=1+ w(z)dr® w(z)dx.
(o) BTJ(Cxo) (z) BTJ(C%) (2)

Then we can write the above equation in the form
—div[A(xo)Vu(z)]
=div {((w(x) - f w(:c)dx)~Vu(x))w(x)]

BT(IO)

+div{( f w(z)dz -Vu(z))(w(z)— F w(x)da:)]

By (o) By-(0)
—div[p(z)(I+w(z) @w(x))VE(@)] + F ().
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Recall that the fundamental solution of the equation —div[A(zo)Vv(x)] =0 is given by

2—N
2

N
1
Aii(xo)ziT; ,
(N—Q)wN\/detA(wo) i;l ]( 0) ’

D (zp,z)=

where A;;(zo) is the co-factor of the entry that lies in the ith row and the jth column
in the matrix A(zg) and wy is the surface area of the unit sphere. Then we have the
frequently used representation formula

u(y):—/B( )I‘(xo,x—y)div[A(xo)Vu(x)]dx (3.1

whenever u is compactly supported in B, (xg). We can easily verify that

82
6xi8xj

F(Iﬂax)a 273:17 7N7

are C-Z kernels [3,6]. Our key observation is the following:

LEMMA 3.2.  There is a positive number c=c(N) such that

§c<1+

Proof. Obviously,

5N—2

2 2
) <c(14+][Wlleo.0)®M ™2 for 2€0B(0).

0T (zo,x)
8:@8:@

£ w(z)dz

BT(.’Eo)

oPs (1, f wiodse f wlde)y

(o) By-(z0)
§<1+ f w(z)dx

By-(z0)

2
> ly|? for all ycRN.
This implies

w(x)dx
shn (2)

the smallest eigenvalue of A(zp)>1 (3.3)

the largest eigenvalue of A(zg) <1+

Hence,

detA(zo) =the product of the eigenvalues, counted with multiplicity

9 N
€ 1,<1+ ) . (3.4)

£ w(z)dz

By (o)
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We calculate

N
1 (A Api i
arkl—w(x()’x):_ Zz:l( k(x0)+ k (IO)):C = (35)
QOJN\/ detA(xo) (Zé\szl Aij (l’o)iﬂﬁb’j)
aa%kmz]‘—‘(xoﬂx):_ AZk(wO)—i_Akf(xO) N
QWN\/ detA($0) <Z£\,[j:1 Aij (II}())IZZi’I,’j) ’
VS (Air(wo) + Ai(r))ai % (Ajelwo) + A (o) e
Ntz :
40.}]\]\/ detA(l‘o) (Z?fj:lAij (.’,C()).’L‘ixj)
Note that
) Ay - A
1 . .
A (@0) = GetATzo)
v AN
It is easy to see that
N
Z Ajj(wo)wim; =detA(wg) A (o) -
1,j=1

Recall that A is an eigenvalue of an invertible matrix A if and only % is an eigenvalue
of A=1. With this in mind, we derive from (3.2), (3.3), and (3.4) that

N N N

Z Aij(wo)wim; < detA(wo)|z|* < (1+ f w(z)dz > |z|?,

.. ,,.(ivo)
i,j=1

N

detA 1

S Agj(ao)aizy > — ATy S (3.6)
=1 L+ f 5, (2o W(a)da|” L+ £, (wo) W(2)da|”

Remember that the determinant of an n X n matrix A is the signed sum over all possible
products of n entries of A with exactly one entry being selected from each row and from
each column of A. Thus,

o\ N-1

) . (3.7)

Here we have used the fact that each entry in A(zg) is bounded by 1+ bﬁBT(%) W(m)dmf.
We are ready to estimate for x € 9B1(0) that
2) N-1+%
Ntz

2) 2(N—1)+ 5

S5N—2

2) o (3.8)

[ Aij (o) < (N =1)! <1+

‘Ikﬂw 3;‘0, | c<1+B

+c (H-

w(x)dx
BT»J(‘;O) ( )
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The proof is complete. ad

Return to the proof of Lemma 1.2. Since v is compactly supported in B,.(xq), we
have from (3.1) that

w)= [ ()= i) Vula)wle) Vb (an,y—a)de

+/Br(wo)(3:)c W(x)dl'vu(l'))(w(x)_ Jc W(x)dx)'vmr(l'O»y_x)dm

~(20) By-(z0)

+/ p(x)I+w(z)@w(x))VE(x) V. I'(xo,y—z)dx
B, (zo)
—|—/BT(:DO)F(1‘)F(1‘0,y—.I)dI.

Differentiate the above equation with respect to y; to obtain
82
w(0)== [ (o) = ), ) ()5 ()
Br(x()) mi xj

2

_ /Br(zo) (mp(20)Uz), (x))(my(z) —mj(20)) e, T(z0,y—z)dz

- /B P W) W) VEW): Vol oy )
—/ F(x)Ty, (xo,y —x)dx. (3.9)
Br(z0)

According to Morrey’s inequality ([7], p.143), for £> N there is a positive number
c¢=¢(N,{) such that

‘W(m)— f w(z)dz gcrl_%HVng,BT(mO) on B, (zo).

BT(IO)

With this in mind, we apply (CZ2) to (3.9) to deduce

Vullg, B, (z0)
N

§c7’17% Z

ij=1
N

e DY
r—0§ &
3,j=1

/ F(@)Ts, (y,y— )da
BT(mo)

82
—F——7Fr
6.’1%‘8.’17]‘ (

0, ) 1Wlloo, B, (20) IV Wlloo, B, (20) [V

2,0B1(0)

q,Br(z0)

0, ) (LW 5, (wo) 1Pl B, (o)

2,0B1(0)

82
Tr
Bxiaxj (

+c

q,Br (o)

_xN -
et (1 [Wlloo, 5, 00) ™ T HIVW 00,5, w0) |V

q,Br (o)

)5N+

C
+—51Pla.5, o) L+ 1Wlloo,5, (20) / F(x)Ty, (z0,y —x)da
r By (z0)

‘LB')"(a:O)
(3.10)
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The last step is due to (3.8). To estimate the last term in the above inequality, we
derive from (3.5), (3.6), and (3.7) that

2\ P
c (1—1— |f B, (20) W(z)dz| )
z—yN-1 '

|Fw, (xo,y—x)\ <

Consequently,

/ F(z)Ty, (xo,y —x)dx
By(z0)

<c(1+]wlloo,B, (0

N / €8 @)1 +19€] (1+ W12, 3, () ) 197
B,«({L’o)

[z =y

By the remark following Lemma 7.12 in [8], we obtain

3N—2
/ (@), (x0,y — z)dz Se(rIwloos @n) ™ 151lx 5, w0
B,-(w0) q,Br(z0)
3N
c (1 + ||WH0<>,BT(900))
+ r—o HVPHNNﬁq’BT(IO).

Plug this into (3.10) and then use the definition of £ to obtain

N
1-7

—~

||VPHq,B(s(zo) <cr 1+ ||W||00,Br(mo))5N_1 ||Vm||q,Br(xo) ”Vqu,Br(zo)

erl—

+ r—s (1+||W||00,Br(zo))5N_1||vaq,Br(:L’o)||p||q,Br(xo)

~|z

C 5N
+’I“—(5 (1+||w||00,3r(930)) ”pl%Br(ﬂBo)
3N-2
+C(1+ HWHOOva-(«TO)) ”SHNNifq,Br(wo)
C 3N
+m (1+||W||oo,BT(mo)) [Vl B (x0)" (3.11)
Set
_N _
K =770 (14 [ Wlloo, B, (20)) ™ IV, B, (o) (3.12)

_N —
Ky =10 (14 [[Wlloo,5,20))™ 1 V00llg, . (20) [P0, B, (o)

5N 3N
+ (14 1Wlloo.B,w0)) " [1Pllg.5, (2o + (1 1 Wlloo, B, o)™ IVPI e 5, ()

3N—-2
) 151 e

N+4q 7B7‘(IO)'

Kz = (14[Wlloo,5, (o)

We can write (3.11) as

c
IVl Bs(z0) < cK1lVDllg,B, (20) + mf@ +cKs. (3.13)
Define

Tp=T n=0,1,2,.--.

r
B 2n+1’
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Take (8,7) = (rp,rn+1) in (3.13) and keep in mind the fact that K7, Ko, and K3 are all
increasing with r to get

C
190l (o0) <KL IVPll 5. o)+ Ka -k

Tn+1 —Tn
¢ n+2
<cKi|[Vpllg,s,, ., @)+ " Ky +cKs.
By iteration,
c n—1 n—1
HvPquBg(IO)S(CKl)nHVqu’Brn(mO)+;K2¥(2CK1)1+CKSZO(CK1)I~ (3.14)
In view of (3.12), we can take r so that
1
2K <. (3.15)

Then let n— oo in (3.14) to get

Vp

C
|q75’g(900) < ;K2+CK3

_N _
=cr £(1+||W||00,Br(xo))5N 1||Vm||Q7Br(z0)||p

|q,BT(ZL’0)

c 5N
+- (14 Wlloo,B,0) ™ Pllg, . o)

c 3N
+- (14 1Wlloo,5,60) " IVPI 8 5, (2
e (L [wloo,z.a) ™ IS (3.16)

00, By (o) i Br(zo) :
By virtue of (3.12), for (3.15) to hold, it is enough for us to take
1
e (14 wllwre) ™ == (3.17)

4
This, combined with (3.16), yields

5N(20—N)
o8y (o) S (LW o) pllge

Vp

N(8¢—3N)
te(I+wllwie) 7 IVl xe g

N+q?

3N—-2
eI+ [1Wllooo)™ IS

Ngq
N+WQ

5N (2¢6—N)
<c(UtIwlwioe) 7 (IVP) g o+ 1S 5o o)

N+q’

Here we have applied Poincaré’s inequality to p and the Sobolev embedding theorem to
w.

If 29 € 012, the same estimate still holds with B,.(z) (resp. Bz (zo)) being replaced
by By(x0)NQ (resp. Br(zo)NS2). This can be achieved by the classical technique of
flattening B, (z9)NIN and then turning zo into an interior point ([8], p.300). Also
see [22] for a rather detailed implementation of the technique. We shall omit it here.

Finally, let r be determined by (3.17). There is an integer j with the property

1< diam(Q2) <

; (3.18)
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We can find at most (25)" balls {Br(:c(()i))} with

Qcu®)” By (2()).
Consequently,
@)™
19pll4.0 < Z VPl 5, o)

N (2¢

SN (20— N)
<ei¥ (Ut wlhwro@) =T (190l 2 0+ IS 20 o). (319
Observe from (3.18) and (3.17) that

C
-N
TSy te
5N2¢
7

SC(1+ ||VWHW1,£(Q))77N +c.

Substitute this into (3.19) to obtain
5N (20— N+N#)

IVPllg.0 < e+ 1wlwie@) ™ =~ (IVell g o0+ ISl ge o). (3:20)

On account of the condition on ¢ in (1.18) and the interpolation inequality ([8], p.146),
we have

1
QT —mhw HVP Lo, €>0.

£ q

VPl ya o =<elVp

Plug this into (3.20) and choose e appropriately in the resulting inequality to get

5N(26—N+N¢)(Ng—N

)
IVploe <c(0+IVWlwiee) 0 (IVplha+IS] x o)-

The proof is complete. O

Note that if we wish to further weaken w to a VMO function as in [3,4,6] we will run
into a technical problem, which is that we do not know how the constant ¢ in inequality
(2.3) of [3] depends on ||k|[2,58, (0)-

4. Blow-up time

In this section we offer the proof of the main theorem.

Assume that (m,p) is a strong solution to (1.1)-(1.4). The existence of such an
“approximate” solution will be made clear later.

By virtue of the boundary condition (1.3), we have

lm|lye) <l Vml|oo -

Use p as a test function in (1.19) to get

/Q Vpl2de < /Q S(@)pdz <||S|2allpllza < cISl2lVol20:

from whence follows

Vp

2.0 <c||S|2,0-
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Thus we can write (1.21) as
IVPllage <c(l+]Vmlloo)™ [IS]_axg o
N+4q°

Here we have replaced ¢ by 4q. Take the (4¢)-th power, integrate over (0,T), and then
take the (4¢)-th root to derive

1Vpllag.07 < T (14 [ Vi oo0)™ S]] sy o (4.1)

N+4q
The rest of the proof of Theorem 1.1 is divided into several lemmas.

LEMMA 4.1. We have

sup ] <% (T4 [mollz + TS 2.0) 1981 0,
+e(lmollaca+ T mo 20+ TS 20 ) (4.2)
where sg is given as (2.6).
Proof. Take the dot product of (1.2) with m to derive
%3t|m|2 — %2A\m|2 +D?|Vm|* +|m|*’ = E*(m-Vp)? < E*|Vp[*lm|* in Qp.
Drop the two non-negative terms on the left-hand side and then apply (2.19) to derive
sup mf? < csup o ¢ (9913570, +1) Il o, (4.3)
We can deduce from (1.5) that

sup |m(x,t)|2dx§c/ |m0(x)|2dm—|—CT||S(m)H;Q.
0<t<T.Ja Q

Use this in (4.3) to get (4.2). d
LEMMA 4.2, We have
Voo 0p <cG(T) +cF(T)|IVPig 0, (4.4)

where s4 18 a positive number determined by N,q,~,
F(T)=T% (T4 |mo|l20+ TS (2)]2)
1
o+ (Jhmg e, + 7 ||mo||2,Q+T||s<x>||z,a)

sg(2y=1)+2 (

4T Da TP S@)3G" ) and

G(T):||Vm0||oo,ﬂ+F(T)+T7‘?(||mo||27 T fmoll TS @) 13 )

Proof. We can write (1.2) in the form

8tmi—D2Ami:E2(m~Vp)pwi—|m|2(7_1)mi in Qp, i=1,...,N.
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This puts us in a position to apply Lemma 2.5. Upon doing so, we arrive at
19l sosr < €l Vgl + €| E2(m- Vo)p, — [m20 Dm0 (45)

q,5eT

We estimate from (4.2) that

|E2(m-Tp)p,, — 20~V

2¢,Qr

2y—-1
OO,QT

@)ll2.0) V915555,
(@)l20) 1VP I35

_ sp(2v—1
%1+vaﬂnﬁ*wwmﬁé’

2 1
<clmllos. 07 IVPllig,0p + T2 [m]

<cTH (T%|

+c(||mo||oo Q+T%

sg(2v—=1)+2
+ Ti(

2y—-1

+eT% (Jlmo 22 2o+ T IS@IRG ). (4.6)

Set
sy =max{so+2,s0(2y—1)}.
Then Young’s inequality asserts

2
Vel o, <clVplli o, +c

VPl <cllVolli.o, +e
so(2y—1
IVplan " <elVplia, +e
Combining this with (4.6) and (4.5) yields (4.4). |
Use (4.4) in (4.1) to obtain
IVPllag.or <cGi(T) +cFL (TPl o, (4.7)
where
1 s1 A st _
GUT) =T (G (D) + V) [S] axa o, FA(T)=T5 F*(T)|S] ang g, 55=5154.
Note that we can represent G1(7') as the sum of 12 terms, each of which is of the form

TS 4y ol VmollS o
N+4dq’

with a>0,b>0,¢>0 being determined by N,q,~v only. The same can be done for Fi(T)
except that there are only seven terms in Fy(T'). It follows from (4.7) that

1VDllag,0. <cF1(T)||IVpl3, o, +cG1(T) for each 7€(0,T7. (4.8)

By letting h(7) =||VD||44,0., We can put ourselves in the situation of Lemma 2.2. As in
the proof of the lemma in [22], we consider the function g(h)=cFy(T)h®* —h+cG1(T)
on [0,00). It follows from (4.8) that

g(h(1))>0 for each 7€[0,T7. (4.9)
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We compute

g (h)=css Fy (T)h*> ™ —1.

Thus, g(h) is decreasing on <0,11> and increasing on <11,oo>.
(cs5Fy(T)) %51 (cs5 F1(T)) 51
The minimum value of g is given by

ngg< ! 1>=— 5ol ey,
(cssFy(T)) =1 s5(css Py (T)) %1

It is easy to see that there is a unique solution Ty, to the equation
S5 — 1

# ~1. (4.10)
S5 (CSSFI (Tmax)) s5=t CGl (Tmax)

We have
my <0 for each T'<Tijax.
Fix T <Tnax. Observe that ||Vp|laq.o, is a continuous function of 7 and
li =0.
lim [[Vpll4q,0.

We can infer from (4.9) that

1
Vg0, < ————— for each 7<T.

(cssF1(T)) =

In particular,

1
IVPllagor <————— (4.11)
(es5Fy(T)) =T

Then (D4) follows from the classical regularity result for linear parabolic equations in
([15], p.204). We can easily transform (4.10) into (1.10).

The existence of a solution in the preceding calculations can be established via the
Leray-Schauder fixed point theorem ([8], p.280). To this end, let ¢ be given as in (H1)
and set

B=L'(0,T;W(2)).

Then define an operator 7 from B into itself as follows: Let p€B. We say w="T(p) if
w is the unique solution of the problem

—div((/+n®n)Vw)=S(z) in Qr,

w=0 on X,
where n solves the problem

om—D?*An+|n*""YUn=E3*(n-Vp)Vp in Qp, (4.12)
n=0 on X, (4.13)
n(x,0)=mgy(z) on Q. (4.14)
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We have:

LEMMA 4.3.  Let (H1)-(H3) hold. Then there is a unique weak solution n to (4.12)-
N

(4.14) in the space C ([O,T}; (LQ(Q))N> NL? ((O,T); (WO12(Q)> ) Furthermore,

n is Holder continuous in Qr with ne L™ (0,T;W,>°(2)). (4.15)

We postpone the proof of this lemma to the end of the section. Equipped with this
lemma, we can claim that T is well-defined. Under (4.15) and (H3), we can appeal to
(1.9), thereby yielding

IVwlgo <clS@) vy o
from whence follows

1
[V llag0, < TS| vy o

4q°

According to the Leray-Schauder fixed point theorem, for 7 to have a fixed point, we
must verify

(C1) T is continuous;
(C2) T maps bounded sets into precompact ones;
(C3) There is a constant ¢ such that

Iplls<c
for all pe B and o €[0,1] satisfying
p=0T(p). (4.16)
To see (C2), suppose
pn—p weakly in L9 (O,T;W(}Aq(Q)).

Denote by n,, the solution to (4.12)-(4.14) with p being replaced by p,. In view of
(4.15), we can extract a sub-sequence of {n,}, not relabeled, such that

n, »n uniformly in (C (WT))N
Note that we have
—div[( +n, ®n,)Vp,]=5(z) in Q. (4.17)
Thus, we can pass to the limit in the above equation to get
—div[(I+n®n)Vp]=S(z) in Q.
Subtract this equation from (4.17) to derive
—div[({ + 1, ®n,)V(p, —p)| =div[(n, ®n, —n®n)Vp| in Q.
Once again, we can use (1.9) to get

V(P _p)||4Q7QT <cl[(n,®n, _H®H)Vp||4q,QT <c[n,®n, _n®nHoo,QT —0.
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That is, (C2) holds. Each problem in the definition of 7 has a unique solution. This
together with (C2) implies (C1).
We easily see that (4.16) is equivalent to the problem

—div({+mem)Vp)=0cS(z) in Qr,
dm—D*Am+ |m|>*0"Ym=E?(m-Vp)Vp in Qr,
p=0 on X,
m=0 on X,
m(z,0)=mp(xz) on Q.
Invoking the proof of (4.11), we obtain (C3) for each T' < Tipax-
We are ready to prove Lemma 4.3.

Proof. (Proof of Lemma 4.3.) We first establish the uniqueness assertion. Sup-
pose that (4.12)-(4.14) has two solutions, say, ni,ny. Then n=n; —ny satisfies

dm—D*An+|n; 20 Yy —|ny[20 Yy = E?(n-Vp)Vp in Qr, (4.18)
n=0 on X, (4.19)
n(z,0)=0 on Q. (4.20)

Recall from Lemma 2.1 that
(|n1|2(7*1)n1 - |n2\2(7’1)n2) ‘n2>0.

With this in mind, we take the dot product of (4.18) with n to derive

5 Sup /|n|2d33+D2/ |Vn| dgcdt<2E2/ (n-Vp)?dadt.
20<t<T Qr or

By Poincaré’s inequality,
N—-2

4 T oN N by
/ |1’1|2+Ndxdt§/ (/ |n|N?d$> (/ |n|2dx> dt
Qr 0 Q Q
%
<c sup (/ |n|2d33> / |Vn|?dxdt
0<t<T \Ja Qr
N+2

<c (/QT(n-Vp)dedt) ’

N
Sc/ n|2+14Vd:cht(/ |Vp|N+2dxdt> . (4.21)
QT QT

Here ¢ depends only on N,D,FE. Obviously, we can pick a positive number 7 <7 such

that
c(/ VpNdedt) <1.
Q.

n=0 in Qx[0,7].

Then (4.21) implies
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If 7<T, then we apply the preceding proof to the problem on Qx (7,7). In a finite
number of steps, we can achieve

n=0 in Qp.
To obtain (4.15), it is enough for us to show that
ne (L2 Q). (4.22)
To see this, we write (4.12) as
om—D*An=FE?(n-Vp)Vp—|n|?*"Yne L1(Qr).

Since q>1+%, we can invoke the classical result in ([15], p.204) and Lemma 2.5 to
conclude (4.15). As for (4.22), we take the dot product of (4.12) with n to deduce

Oin|? — D*An|? <2E%|Vp|*|n|? in Qr.

We can infer (4.22) from Lemma 2.4.

The existence of a weak solution to (4.12)-(4.14) can also be established via the
Leray-Schauder fixed point theorem. In this case, we define an operator B from
(L‘X’(QT))N into itself as follows: For each m e (L‘X’(QT))N we let w=DB(m) be the
unique solution of the problem

dyw —D*Aw=FE%*(m-Vp)Vp—|m|>*0"Ym in Qr, (4.23)
w=0 on X,

w=mgp(xz) on .

The term on the right-hand side of (4.23) lies in L?¢(Q7). Thus w is Hélder continuous
on Qp. With this in mind, we can easily verify that (C1)-(C3) are all satisfied by B.
This completes the proof. ]
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