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FAST COMMUNICATION

FAST SINKHORN I:
AN O(N) ALGORITHM FOR THE WASSERSTEIN-1 METRIC*

QICHEN LIAO't, JING CHEN?, ZIHAO WANGS, BO BAIY, SHI JINII, AND HAO WU**

Abstract. The Wasserstein metric is broadly used in optimal transport for comparing two prob-
abilistic distributions, with successful applications in various fields such as machine learning, signal
processing, seismic inversion, etc. Nevertheless, the high computational complexity is an obstacle for
its practical applications. The Sinkhorn algorithm, one of the main methods in computing the Wasser-
stein metric, solves an entropy regularized minimizing problem, which allows arbitrary approximations
to the Wasserstein metric with O(N?2) computational cost. However, higher accuracy of its numerical
approximation requires more Sinkhorn iterations with repeated matrix-vector multiplications, which is
still unaffordable. In this work, we propose an efficient implementation of the Sinkhorn algorithm to
calculate the Wasserstein-1 metric with O(N) computational cost, which achieves the optimal theo-
retical complexity. By utilizing the special structure of Sinkhorn’s kernel, the repeated matrix-vector
multiplications can be implemented with O(N) times multiplications and additions, using the Qin
Jiushao or Horner’s method for efficient polynomial evaluation, leading to an efficient algorithm with-
out losing accuracy. In addition, the log-domain stabilization technique, used to stabilize the iterative
procedure, can also be applied in this algorithm. Our numerical experiments show that the newly
developed algorithm is one to three orders of magnitude faster than the original Sinkhorn algorithm.

Keywords. Optimal transport; Wasserstein-1 metric; Sinkhorn algorithm; FS-1 algorithm; fast
algorithm.
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1. Introduction

The Wasserstein metric has been widely used in optimal transport for the global
comparison between probabilistic distributions. It has been successfully used in various
fields such as machine learning [17,28], image processing [38], inverse problems [8, 14,
19, 33, 51], and density functional theory [7,12,21]. Many numerical methods have
been developed, including the linear programming methods [26, 36, 50], combinatorial
methods [42], solving Monge-Ampheére equations [4, 5, 15, 16] and proximal splitting
methods [11,34]. In recent years, several approximation techniques in optimal transport
for high-dimensional distributions have also been proposed approximately [31,32].

One of the popular numerical techniques to compute the Wasserstein metric, is the
the Sinkhorn algorithm [13,45], which minimizes the entropy regularized problem. It
provides the solution roughly in O(N?) operations with guaranteed convergence [29].
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With the help of GPU acceleration, the efficiency of using the Sinkhorn algorithm to
solve the optimal transport problem can be more significantly improved [40,41]. For
the Wasserstein-2 metric, the computation can be accelerated using the Gaussian con-
volution by approximating the geodesic distance-based kernel with the heat kernel [46].
Moreover, through statistical sampling, dimensional reduction, and other approximation
methods, the complexity of the Sinkhorn algorithm can be reduced to O(NlogN) [2,23]
or even O(N) [43]. An alternative way is to define the Wasserstein metric on the finite
tree space, and the computational complexity could be O(NlogN) [24,47]. Because
of these progresses, the Sinkhorn algorithm has been widely used in practical prob-
lems. However, those techniques provide just approximations of the transportation
cost, rather than the precise computation of the original optimization problem. There-
fore, it is still of great interest to develop fast and accurate Sinkhorn-type algorithms
for solving large-scale optimal transport problems.

In recent years, some fast algorithms for accurately solving the optimal transport
problem have been developed. For example, through multi-level grids, the compu-
tation complexity can be reduced to O(N'5logN) [30]. For the Wasserstein-1 dis-
tance, the equivalent Benamou-Brenier form has a very special structure, which is very
common in compressive sensing, and thus can be efficiently solved with O(N) algo-
rithm complexity [25]. Another well-known conclusion is that for the one-dimensional
quadratic Wasserstein metric, the complexity of the sorting-based algorithm is only
O(NlogN) [37].

In this work, by observing the special structure of the kernel matrix in the Sinkhorn
algorithm to solve the Wasserstein-1 metric on uniform mesh, we propose a novel matrix-
vector multiplication based on dynamic programming [22]. During each iteration step,
it involves only a forward and backward recursive sweeping process, as in Qin Jiushao’s
(or Horners’, although it appeared several centuries later) method for polynomial evalu-
ations [20,35], which reduces the computational cost from O(N?) to O(N) in each step,
thus achieving the optimal theoretical complexity. In addition, the log-stabilization [9],
an important technique to improve the numerical stability of the Sinkhorn algorithm,
can be implemented in this strategy with the same stability property. In this paper we
abbreviate this method as FS-1.

The rest of the paper is organized as follows. In Section 2, the basics of the
Wasserstein-1 metric and the Sinkhorn algorithm are briefly introduced. After showing
the elaborate structure of the obtained kernel matrix, we use it to develop the FS-1 algo-
rithm in Section 3. We will also analyze the stability and integrate the log-stabilization
technique into our FS-1 to improve the numerical stability. In Section 4, the FS-1 is
generalized to higher dimension. We will provide numerical experiments to illustrate
the huge efficiency advantage of our FS-1 algorithm in Section 5. Finally, we conclude
the paper in Section 6.

2. The Wasserstein-1 metric and the Sinkhorn algorithm
Consider two probabilistic density functions u(z) and v(z) on a domain Q CR, the
Kantorovich’s formulation of Wasserstein-1 metric is defined as [48]:

W(uo)= inf / d(z,y)y(z,y)dedy,
v(z,9)ET Jaxn (2 1)

r= {2 [ 2@nay=ua). [ swpde=o).

where d(z,y)=|z—y|. The Sinkhorn algorithm proposed in [13,45] introduces an en-
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tropy term and solves the regularized problem:

W.(uv)= inf / e —yly(ey) Ler(@y)n(y(zy)dedy.  (22)
Y(x,9)ET Jaxn

As for numerical realization, we consider two discretized probabilistic distributions
U:(Ul,’LLQ,"'UN), ’U:('Ul,’l)g,”’,’UN),

on a uniform mesh grid with a grid spacing of h. Then the entropy regularized mini-
mizing problem (2.2) can be discretized as

N N
Wg(u,v):iﬁ/n_fZZ(%j|i—j\h+5'yijln (7)) » (2.3)
ij

Ti=14=1

and vy;; satisfies

N N
Z%‘jzui» Z’Yij:")ja Yij = 0.
j=1 i=1

The Lagrangian of the above equations writes
N

N N N N N
L(v,a,8) =Y (vijli—jlh+evin(yi)+ Y aid vy —wi)+ > B> vij—v))-
i=1  j=1 j=1 =1

i=1j=1

Taking the derivative of the Lagrangian with respect of v;; directly leads to

11, _1_1g. —limj
yij=e 2 %K jem27 <P where K;j=e I’ iln/e,

To avoid ¢ in the denominator, setting ¢; =e~27 =% and 9, :e_%_éﬁf, we obtain
N N
¢ Y Kighj=wi, ;Y Kijéi=v;, Vi,j=1,2,-,N.
j=1 i=1

Since the entries in K =(K;;) are strictly positive, Sinkhorn’s iteration [45] can be
applied to iteratively update vectors ¢ =(¢;) and 1 = (¢;) by pointwise computation:

1/)(Z+1)=’U®(KT¢(Z)>7 ¢(Z+1) :u®(K,¢(Z+1))’ (2.4)

in which the notion @ represents pointwise division and ¢ denotes the iterative steps.

REMARK 2.1. In [9], a log-domain stabilization technique is proposed to reduce the
numerical instability caused by the small parameter . The idea is that when the infinite
norms of ¢ or ¢ exceed a given threshold 7, these two vectors will be normalized with
the excessive part ‘absorbed’ in v and 3:

a—a+eln(@?), BepB+en(?), ¢P 1y, 1y

Correspondingly, the matrix K needs to be rescaled as K < diag(e®/¢) x K x diag(eP/*).
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3. The FS-1 Algorithm

The key to the Sinkhorn algorithm is to iteratively update ¢ and 1 through Equa-
tion (2.4). By introducing the notation A=e""/¢ the matrix multiplication vector
operation is written as

wgé) + /\wy) + )\2w§5) .“Jr)\Nfl,L/)](é)

S Y U, (S
K@= A+ a1 e TRP )

/\N—l,(/)ge) + )‘N_wa) + )\N—3w§£) + 1/)1(5)
We separate the summation of row k to the lower triangular part p; and the strictly
upper triangular part g;. Then updating qb(“'l) is formulated as

¢ =/ ok ar), ZMA’“ Lam 30 0N koL

i=k+1

Instead of directly calculating p, and ¢, we use the recursive computation given by
‘
p1:w§)a Pk+1= Apk+wk+17 k:1727"'7N_17
QN:Oa Qk:)‘(Qk+l+wk+1)7 k:N_laN_2771

Thus we develop the FS-1 algorithm with linear computational complexity, which only
takes 2(IN —1) times additions and multiplications for the matrix multiplication opera-
tion. The pseudo-code is presented in Algorithm 1.

(3.2)

Algorithm 1 FS-1 Algorithm

Input: u, v €RY; itr maxeNT; h,e,tol€R
Output: W, (u,v)

L A—e M p 1y por,q, s O0n; (40

2: while (¢ < itr_max) and (va:l wi(zyzlgf)j)\“’ﬂ)—vi‘ > tol) do

3 T < ¢1, sy<0

4 fori=1: N—-1do

5 Tip1 & AT+ iq1

6: SN—i ¢ A(SN—it1 +PN—i+1)
7 Y—vQ(r+s)

8 P11, gy <0

9: fori=1: N—1do

10: Dit1 < Api +Yit1

11: qN—i = ANgN—it1 +UN—it1)
12: ¢+—u0(p+q)

13: (041

return Zgj:l Gith A3l i —j| b

REMARK 3.1. The recursion (3.2) is actually the Qin Jiushao [35] or Horner method
[20] for efficient polynomial evaluation:

flz)= iqﬁ“AN’“ O A (02 (08 A (0 4207 ).

k=1
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Thus, we can recursively obtain
pL= ( ) :w(é) +>\w(€)7 Py = (Z) +>\¢(€) +)\2,¢)(5) .
DN :qu(\l;) +)\¢(5) 4. +>\N l,l/)(é)

with an overall computational cost of O(N).

It is well-known that the Sinkhorn algorithm has stability issues [9] due to the
division and the multiplication of the small parameter A*. Next, we need to discuss the
stability of the FS-1 algorithm to ensure that its stability is not worse than the Sinkhorn
algorithm.

Consider the matrix multiplication in (3.1),

Sa:Kwa, Sa:(S?,SS’---7S%)T7 ’lpa:(w?ﬂ??a'“ﬂ/}%)Ta 04:1’2.
Assume that
b= 02| <6, k=12 ,N,
thus
|Sli *Si| = |)\k71 (d’i *7/}%)+)\k*2 (w% ,w%)JrJr(q/); ,Z/)%)Jr...Jr)\N*k (11111\/ 711112\7) ’,

9 _ (\F L \N—k+1
§|/\k1+A’“2+---+A+1+A+~~~+ANk]5=< (42 )—1>5-

1-X
On the other hand, consider the successive computation in (3.2), an easy induction gives

1— )k
1—)\

Pk =Dk SA|Phoy =D [+ R — VR < S (T A+ AT 6= 9,

and

_)\N k
|qli_qi%|gA’qiﬂ_Q%+1’+|¢i+1_1/’1%+1|S'”ﬁ()“k”“”‘Nikil)ég <1—)\_1)5.

Thus, we have

9_ )\k + /\kaJrl
|(pi+qi)—(p%+q%)|<< ( Y ) d,
that is, the FS-1 algorithm and the Sinkhorn algorithm have the same stability.

REMARK 3.2. Similarly, the log-domain stabilization [9] technique can also be aggre-
gated into the FS-1 algorithm. First, we need to ‘absorb’ the excessive part of vectors
¢ and 1 into a and 3:

a—a+en(@?), BepB+em(@?), ¢V 1y, PP 1y
Next, we have to replace lines 5-6 and 10-11 in the Algorithm 1 as
5. (Z) f>\€(51+1 —Bi )/Er@)+6(ai+1+ﬁi+1)/6¢(f)

H—l
6: S% l_)\e(ﬁN i—BN_ 1+1)/s( () D i1 +e(0N i+1+BN—it+1 /6¢(Z_l+1)
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10: pz(f_)l = )\e(o‘i“*ai)/spy) +e(a"“+5i“)/€¢£ﬁl)a

11: q%)—i _ /\e(OéN—f,—OéN—i-H)/S (q%)—i+1 +e(aN—i+1+BN—i+1)/51/J](§t13_1) )
This leads to the stabilized FS-1 algorithm with O(N) complexity.

REMARK 3.3. In practice, the direct calculation of A™ =e~"™"/¢ and the multiplication

of A™ may be troublesome since A could be very small. However, the FS-1 algorithm
gets around this problem by stepwise multiplication of A.

4. Extension to high dimension

In this section, we illustrate how the FS-1 algorithm generalizes to higher dimen-
sions using the two-dimensional case as an example. First, consider two discretized
probabilistic distributions

u= (U117U217‘” YUNT, U125 Ujy gy 5" ,UNM),

'U:(UH»'UQM"' yUN1,V125° " 3 Viggo,tt " 7UNM)7

on a uniform 2D mesh of size N x M with a vertical spacing of h; and a horizontal
spacing of hg, the entropy regularized 2D Wasserstein-1 metric can be discretized as the
optimal value of the following minimizing problem:

N M
Wg(’u,,’l}): inf Z Z (Fi1j1i2j2 (|Zl 7i2‘h1+|j1 *j2|h2)+5ri1j1i2j21n (Filjlléjz))v

Tirining
1414242, -
i1,12=1j1,j2=1

(4.1)
where I';, j 4,5, satisfies

N M N M
E E Filjﬂzh = Uiy gy § E Fi1j1i2j2 = Viyjas Fi1j1i2j2 >0.

i2=172=1 i1=1j1=1

Same as in the 1D case, the problem (4.1) can be solved by the Sinkhorn iteration. If
u and v are flattened into 1D vectors in column-major order, the corresponding kernel
matrix is written as

Ko MoKy | MK |- MK,

A2 K Ko MKy |- [MNY2K,

MUK N 2K (M PRy || Ko

where the sub-matrix

1 Ao AN
A1 1 - A2

AVTEAN=2
and

Mo=eM/e Ny=eh2/e,
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Obviously, the cost of direct matrix-vector multiplication in Sinkhorn is O(N?M?).
By using the FS-1’s trick twice, we expect the computational cost can be significantly
reduced, the key idea is as follows. Let

‘ 0 (¢ [ .
¢§):<w§l)a éi)f"a ](\/'2)7 Z:1,2,"',M7
the matrix-vector multiplication K w(f) is written as

Ko’l/ﬁge) + )\QKOT/Jge) + )\%Ko’l,b;(f) "-+)\§471K0¢5\?
L A R AL
Kp® = | MEwp? + A2K0¢§> + Kong’ ---+A2M—3Kow§2 . (4.2)

Aé\/[—lKO,d)(e) )\M 2K0,¢(€) )\M SK 17[)(@) e K()’l,b(é)

We separate the summation of row k to the lower triangular part p, and the strictly
upper triangular part g,. Then updating qS(Hl) is formulated as

VY =0 (py+ qy), pk—ZKm/J“ ML g = Z Ko X", k=1, M.
1=k+1

Instead of directly calculating p; and g, a successive computation is used

Py ZKO@D%K), Prt1 :)‘2pk+KO¢](f_A,)_17 k=1,2,--- M -1,

(4.3)
I

qM:ONa qk:)‘Q(qk+1+K0¢](cJ,)-1)v k:M_17M_27a1
The computation of Kol,b,(f) can be carried out by using recursion (3.2) in O(N) com-
plexity. Thus, the total cost of matrix-vector multiplication of our FS-1 algorithm for 2D
Wasserstein-1 metric is reduced to O(INM). The pseudo-code is presented in Algorithm
2.

This idea can be easily extended to high-dimensional cases, and we will not repeat
it here. An argument similar to the one used in Section 3 shows that the FS-1 algorithm
and the Sinkhorn algorithm in the 2D case still have the same stability. Thus, we shall
omit the discussions.

5. Numerical experiments

In this section, we carry out four numerical experiments to evaluate the FS-1 al-
gorithm. The first two examples show the performance of the FS-1 algorithm in 1D
cases. Specifically, we consider the comparison of two 1D random distributions and the
comparison of two Ricker wavelets arising from seismology [8]. The last two examples
show the performance of the FS-1 algorithm in 2D cases. Specifically, we consider the
comparison of two 2D random distributions and the comparison of two images arising
from the image matching problem [39]. The marginal error ||diag(vy) x KT x ¢ — ||y
is chosen as the termination condition [3,44]. All the experiments are conducted on a
platform with 128G RAM, and one Intel(R) Xeon(R) Gold 5117 CPU @2.00GHz with
14 cores.

5.1. 1D random distributions. = We consider the Wasserstein-1 metric between
two 1D random distributions on the interval [—3,3]. There are uniform grid points

6
r,=0—-1)Ax—-3, Ar=——, i=1,2,---

N.
N-1

)
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Algorithm 2 2D FS-1 Algorithm

Input: u, v eRVM: itr max e N*t; hq,he,e,tol€R

Output: W.(u,v)

LA e M/E N e /5 g p e Aol P, g, s O €40

2: while (¢ < itr_max) and (Zi\il e, o (M )\lgifleoqu)—viHl > tol) do

7=1

3: 71 %Kod)l

4: sy 0pn

5: fori=1:M—1do

6: Tit1 <—>\27'Z'+K0(]5i+1

7: Sp—iA2(Sp—iv1 FKobpr_iy1)
8: P—vo(r+s)

9: p1 < Koy
10: qy 0N

11: fori=1:M—-1do
12: Diy1 < dep; + Ko 4
13: Gr—i < 22—+ Ko¥ar—_it1)

14: ¢o+u2(p+q)
15: £<—€+1N

M . . . .
return > Y ¢n WA 2N (i i by 4 [y — 2| o)

i1,i2=1j1,j2=1

Correspondingly, we consider the two random vectors on the grid points
u:(u17u27"'au1\7)7 UZ(U17U27"'7UN)5

where u; and v; are both uniformly distributed on [0,1]. We would like to com-
pare the performance and computational cost on computing the Wasserstein-1 metric

WE( w L) using the Sinkhorn algorithm and the FS-1 algorithm. We tested 100

lull> Joll

random experiments, and each experiment was performed for 1000 iterations.

In Table 5.1, we output the averaged computational time of two different algorithms.
We can see that the FS-1 algorithm has an overwhelming advantage in computational
speed. Moreover, the transport plans obtained by the two algorithms are almost iden-
tical. To further study the efficiency advantage of our FS-1 algorithm, we present the
computational time of the two algorithms in different cases. By data fitting, we can see
the empirical complexity of the FS-1 algorithm is O(N':%?), while that of the Sinkhorn
algorithm is O(N?2?), see Figure 5.1 (Left) for illustration. In Figure 5.1 (Right), we
discuss the computational time required to reach the corresponding marginal error un-
der different regularization parameters ¢ for the random distribution with dimension
N =10000. Obviously, the FS-1 algorithm is about two orders of magnitude faster than
the Sinkhorn algorithm.

5.2. Ricker wavelet.  Next, we consider the computation of the Wasserstein-1
metric between the Ricker wavelet

R(t)=A(1 - 22 f212)e ™ 1o1*

and its translation R(t—s). The Ricker wavelet is commonly used to model source time
function in seismology [8]. Here fy is the dominant frequency, and A denotes the wave
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Computational time (s)
FS-1 Sinkhorn

500 8.70x1073 7.68x 1072 8.83 x 10° 6.54x 10715
2000 4.25x1072 2.81x10° 6.61 x 10! 4.98x 10718
8000 1.53x10~1 4.80x 10! 3.14 x 102 3.92x 1018

N Speed-up ratio  ||Pps—P| g

TABLE 5.1. The 1D random distribution problem. The comparison between the Sinkhorn algorithm
and the FS-1 algorithm with the different number of grid points N. The regularization parameter
£=0.001. Columns 2-4 are the averaged computational time of the two algorithms and the speed-up
ratio of the FS-1 algorithm. Column 5 is the Frobenius norm of the difference between the transport
plan computed by the two algorithms.

102- VFS-1 FFS-1
O Sinkhorn -©-Sinkhorn
10°
@
Q
E
=
102
107 ‘ - ' ) ) )
10° 102 10
N Marginal Error

Fic. 5.1. The 1D random distribution problem. Left: The comparison of computational time
between the FS-1 algorithm and the Sinkhorn algorithm with different numbers of grid points N.
Right: The computational time required to reach the corresponding marginal error under different
regularization parameters e =0.1(Green), ¢ =0.01(Purple), and € =0.001(Red).

amplitude. For simplicity, we set
fo=1, A=1

Since the Ricker wavelet is not always positive over the entire time duration, we will
square and normalize it for the comparisons of the Wasserstein-1. In [27], a new nor-
malization method with better convexity is given as follows:
12 g’
P10 1o to
1+L5 7 1+L6 |’

D(f.9)=Wi. (5.1)

where ¢ is a sufficiently small parameter to improve numerical stability, and L is a given
parameter to guarantee that the two functions being compared are normalized.

Below, we randomly select the translation parameter s=—1.2032. This parameter
can ensure that the two Ricker wavelets R(t) and R(t—s) are sufficiently far apart.
And the small parameter § =10"3. We repeated the experiment 100 times, and each
experiment was performed for 500 iterations. In Table 5.2, we output the averaged
computational time of two different algorithms. We also present the computational
time required to reach the corresponding marginal error under different regularization
parameters ¢ for the distribution with dimension N =10000, see Figure 5.2 (Left) for
illustration, from which, we can draw the same conclusions as those in Subsection 5.1.
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P e © e - e -V-FS-1
S ege L o= -©-Sinkhorn
o7 &7 FFs
10° Pt 2 10°
[} b o [}
£ 7 5 £ )
o, =
10 10'2
-4
10 10
10° 102 10
Marginal Error Marginal Error

Fic. 5.2. The Ricker wavelet problem. Left: The computational time required to reach the cor-
responding marginal error under different regularization parameters e =0.1(Green), € =0.05(Purple),
and e =0.01(Red). Right: The comparison between the Sinkhorn-type algorithms with (Red) and with-
out (Blue) the log-domain stabilization for e =0.001.

In Figure 5.2 (Right), we also discuss the impact of the log-domain stabilization
technique for e =0.001. Without the technique, the Sinkhorn algorithm terminates ab-
normally at the 97th iteration and the FS-1 algorithm terminates abnormally at the
104th iteration. By introducing the log-domain stabilization technique, neither algo-
rithm is terminated abnormally. Moreover, the stabilized FS-1 algorithm still maintains
a significant efficiency advantage over the stabilized Sinkhorn algorithm.

Computational time (s)

N TSI Snkhorn Speed-up ratio ||Pps—P||r
500 4.90x107% 2.30x1072 4.69 x 109 5.67x 10716
2000 1.52x1072 1.36x10° 8.93x 10! 1.81x 10~17
8000 5.96x1072 2.81x10! 4.72 x 102 1.22x 10716

TABLE 5.2. The Ricker wavelet problem. The comparison between the Sinkhorn algorithm and
the FS-1 algorithm with the different number of grid points N. The regularization parameter € =0.01.
Columns 2-4 are the averaged computational time of the two algorithms and the speed-up ratio of the
FS-1 algorithm. Column 5 is the Frobenius norm of the difference between the transport plan computed
by the two algorithms.

5.3. 2D Random distributions.  Next, we discuss the performance of the FS-1
algorithm in two dimensions. This subsection generalizes the 1D random distributions in
Subsection 5.1 to 2D random distributions. The basic settings are almost the same as in
Subsection 5.1. And we need to compute the Wasserstein-1 metric between two N x N
dimensional random vectors, where N is the number of grid points in each dimension.
Without loss of generality, we set hy =ho =1. We also tested 100 random experiments,
and each experiment was performed for 1000 iterations. The averaged computational
time for different numbers of nodes N x IV of the two algorithms are output in Table
5.3 and Figure 5.3 (Left). By data fitting, we can see the empirical complexity of the
FS-1 algorithm is O(N1¢) | while that of the Sinkhorn algorithm is O(N*4). These
results are even better than the expected O(N?) complexity for the FS-1 algorithm. This
again shows the big efficiency advantage of the FS-1 algorithm compared to the Sinkhorn
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10° 'V FS-1 —FS
O Sinkhorn 102 _
0 -©-Sinkhorn
0 z
o [}
£ £
[ =

10 102 107" 102
N Marginal Error

Fic. 5.3. The 2D random distribution problem. Left: The comparison of computational time be-
tween the FS-1 algorithm and the Sinkhorn algorithm with different numbers of grid nodes N. Right:
The computational time required to reach the corresponding marginal error under different requlariza-
tion parameters e =0.1(Green), e =0.05(Purple), and ¢ =0.01(Red).

algorithm. In Figure 5.3 (Right), we also present the computational time required to
reach the corresponding marginal error under different regularization parameters e for
the random distribution with dimension 100 x 100. Obviously, the FS-1 algorithm still
maintains the efficiency advantage for more than two orders of magnitude.

Computational time (s)
FS-1 Sinkhorn

10x10  1.27x1072 8.02x102 6.34 x 109 1.20 x 10~17
2020 2.01x1072 6.73x10°! 3.34 x 10! 5.96 x 10~ 18
40%x40  7.38x1072  1.38x 10! 1.87 x 102 3.00x 10718
80x80  2.64x107!  4.78 x 102 1.81 x 103 1.55x 1018
160x160 1.08x10°  1.38x10* 1.28 x 10* 7.68 x 10719

N xN

Speed-up ratio ||Pps—P||r

TABLE 5.3. The 2D random distribution problem. The comparison between the Sinkhorn algorithm
and the FS-1 algorithm with the different number of grid points N x N. The regularization parameter
e=0.01. Columns 2-4 are the averaged computational time of the two algorithms and the speed-up
ratio of the FS-1 algorithm. Column 5 is the Frobenius norm of the difference between the transport
plan computed by the two algorithms.

5.4. Image matching problem. An important application of the optimal
transport in 2D is to match images. OT plays a fundamental role in related tasks
including density regularization [6], image registration [18], and optical flow [10]. The
complexity advantage of the FS-1 algorithm compared to the Sinkhorn algorithm can
further enable practical applications of optimal transport in high-resolution images.

Here we consider the image matching experiment. We randomly select two images,
see Figure 5.4 for illustration, from the DIV2K dataset [1], where the images have
2K pixels for at least one of the axes (vertical or horizontal). Considering that the
resolutions of the images are different, we first sample them to the same scale N x V.
Without loss of generality, we set hy =hs=1. In addition, to facilitate the optimal
transport comparison, we convert them to grayscale images and normalize them using
formula (5.1) with §=10"7. Again, we repeated the experiment 100 times and each
experiment was performed for 1000 iterations.
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i

Fi1c. 5.4. The image matching problem. Illustration of images.

In Table 5.4, we output the averaged computational time of two different algorithms.
It should be emphasized that the computational time of the Sinkhorn algorithm is too
long for large-scale images, so there is no result. However, the FS-1 algorithm can
still handle this simply. We also present the computational time required to reach the
corresponding marginal error under different regularization parameters €. Here, the
image size is 100 x 100, see Figure 5.5 (Left) for illustration, from which we can draw
the same conclusions as those in Subsection 5.3.

In Figure 5.5 (Right), we also discuss the impact of the log-domain stabilization
technique for e=0.01. Without the technique, the Sinkhorn algorithm and the FS-1
algorithm both terminate abnormally at the 138th iteration. By introducing the log-
domain stabilization technique, neither algorithm is terminated abnormally. Moreover,
the stabilized F'S-1 algorithm still maintains a significant efficiency advantage over the
stabilized Sinkhorn algorithm.

Computational time (s)
FS-1 Sinkhorn

100x100 4.10x1071 1.32x 103 3.23%x 103 2.28 x10~17
200200 1.72x10°  3.08 x 10* 1.79 x 10% 9.52x 10718
400x400  7.23 x 10° — — -
800x800  3.20x 10* — — —

N xN

Speed-up ratio  |Pps—P| g

TABLE 5.4. The image matching problem. The comparison between the Sinkhorn algorithm and
the FS-1 algorithm with the different total number of grid nodes N X N. The regularization parameter
e=1. Columns 2-/ are the averaged computational time of the two algorithms and the speed-up ratio
of the F'S-1 algorithm. Column 5 is the Frobenius norm of the difference between the transport plan
computed by the two algorithms.

) & s ,,e»-‘_'_:‘_e;—""'_‘—. FS-1 P e FFS-1
10 [ el -©-Sinkhom | -©-Sinkhom

10° 102 10 06 055 05 0.45
Marginal Error Marginal Error

Fic. 5.5. The image matching problem. Left: The computational time required to reach the
corresponding marginal error under different regularization parameters e =1(Green), € =0.5(Purple),
and e =0.1(Red). Right: The comparison between the Sinkhorn-type algorithms with (Red) and without
(Blue) the log-domain stabilization for e =0.01.
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6. Conclusion

In this paper, we propose an efficient (abbreviated as FS-1) algorithm to compute
the Wasserstein-1 metric with linear computational cost per iteration. This method
is developed by discovering the natural structure of Sinkhorn’s kernel, which allows a
matrix-vector multiplication to be carried out exactly with O(N) cost for each iteration
by using Qin Jiushao’s or Horner’s method for efficient polynomial evaluation. Moreover,
the FS-1 algorithm can also be adapted to the widely used log-domain stabilization
technique. As shown by numerous experiments, the FS-1 algorithm achieves a huge
speed advantage without losing accuracy.

Finally, this paper mainly considers the acceleration of the Sinkhorn algorithm in
the matrix-vector multiplication. It is well known that the number of iterations of the
Sinkhorn algorithm will significantly increase with the increase of numerical accuracy,
which leads to slow convergence. In [49], the Inexact Proximal point method for the
Optimal Transport problem (IPOT) was proposed for this problem. We believe that
FS-1 and IPOT can be effectively combined to develop a new algorithm for solving
the Optimal Transport problem with fast convergence and low complexity. We are
currently investigating this important extension and hope to report the progress in a
future paper. Besides these, another interesting question is whether we can develop the
FS-1 algorithm on the non-uniform mesh. There seems to be no direct answer, but it
deserves further investigation.
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