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HETEROGENEOUS MULTISCALE METHODS FOR ROUGH-WALL
LAMINAR VISCOUS FLOW∗

SEAN P. CARNEY† AND BJÖRN ENGQUIST‡

Abstract. We develop numerical multiscale methods for viscous fluid flow over a rough boundary.
The goal is to derive effective boundary conditions, or wall laws, through high resolution simulations
localized to the boundary coupled to a coarser simulation in the domain interior following the framework
of the heterogeneous multiscale method. Rigorous convergence of the coupled system is shown in a
simplified setting. Numerical experiments illustrate the utility of the method for more general roughness
patterns and far field flow conditions.
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1. Introduction

Standard partial differential equations for viscous flow such as the Stokes and
Navier-Stokes equations naturally have no-slip boundary conditions. The velocity vector
u=0 at the boundary.

The no-slip condition however can generate a large separation of scales in a problem.
The analysis and simulation of fluid flows over rough surfaces, for example, is challenging
because the no-slip condition generates boundary layers in the vicinity of the roughness
whose resolution can be computationally expensive.

Surface roughness plays an important role in a variety of physical applications. In
geophysical fluid dynamics, meteorological flows are known to be affected by mountain
ranges, city landscapes, and wavy seas, while ocean currents are impacted by variations
in the ocean floor as well as the coastline [45]. Rough surfaces can also effect a reduction
in skin friction drag; the morphology of a swordfish’s sword, shark dermal denticles,
and riblets on the Stars and Stripes yacht in the 1987 America’s Cup finals are all
examples [14, 42]. In hypersonic flows, surface roughness is relevant because space
shuttles typically contain periodic gaps between covering tiles designed for heat control
[16]. Outside of fluid mechanics, electromagnetic wave scattering by an obstacle is
known to depend on small-scale rugosity, or imperfections, along its surface [3].

In such cases where the no-slip condition either (i) is inaccurate or (ii) generates
sharp boundary layers, it may be better in a computation to replace it with an effec-
tive boundary condition, or wall-law. Ideally, the wall-law captures the effect of the
asymptotic small scales on the large scales. Computing in a domain without the small
scale structure then results in a large reduction in the degrees of freedom necessary in
a simulation.

Sometimes effective boundary conditions can be rigorously justified from first prin-
ciples. Relevant to the present work is the Navier-slip law for viscous laminar flow.
Other examples include the the Leontovitch boundary conditions for electromagnetic
wave scattering, and the Beavers-Joseph-Saffman law for viscous, laminar flow over a
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porous bed. There are other well-known wall-laws for which a theoretical justifica-
tion is lacking, however. The logarithmic law-of-the-wall for wall-bounded turbulent
flows [44, 46] and the electro-osmotic slip velocity (and associated zeta potential) for
electrokinetic flows [50,52] are two examples.

The focus here will be on viscous laminar flow over a rough boundary that varies
with characteristic amplitude and period 0<ϵ≪1. The problem is well understood
mathematically and has been extensively analyzed with the tools of asymptotic homog-
enization theory. Rigorous estimates have been obtained for the linear, Stokes case [7],
and for Poiseuille [33] and Couette [34] flows governed by the stationary Navier-Stokes
equations in channel geometries with periodic roughness, as well as random, ergodic
roughness [11, 17]. In Ref. [43] the authors obtain rigorous convergence results for
more general, three-dimensional flows under the assumption that the solution to the
corresponding problem with the no-slip boundary condition imposed along a smooth
boundary possesses a smooth solution. Related mathematical studies also include [32]
for channel flow over a porous bed, [13, 26] for meteorological flows, and [3, 4, 10] for
Maxwell’s equations.

There additionally exist several numerical studies of rough-wall viscous flow. Com-
putational techniques based on domain decomposition [6] and asymptotic expansions [5]
have been previously proposed for modeling the effect of surface roughness on the flow
in the domain interior. Similar strategies have also been explored for compressible flows
over rough surfaces [19] and for shape optimization with the purpose of minimizing drag
for both laminar and turbulent incompressible flows, assuming the roughness is within
the viscous sublayer [24,25]. More recently, Bottaro and Naqvi [12] and Lācis, Bagheri,
and coauthors [35, 54] used asymptotic expansions to develop high-order wall-laws for
flows over rough surfaces and porous media, respectively. In the latter groups’ work,
wall-laws for rough surfaces are included as a limiting case.

The goal in this work is to derive the wall-law that describes the average effect of
surface roughness on the large scale flow by local, high-resolution ‘microscale’ simula-
tions. These are in turn coupled to a coarse-scale simulation in the interior following the
framework of the heterogeneous multiscale method (HMM) [2, 22]. This ‘macroscale’
simulation will use the effective boundary condition along a smooth boundary.

The proposed method shares some features of classical domain decomposition and
adaptive mesh refinement, however it is fundamentally different in that the classical
methods try to resolve the ϵ-scale in the neighborhood of the rough boundary throughout
the entire computational domain, while here local refinement is only used selectively to
derive effective boundary conditions. The domain size of the local simulations scales
with ϵ, and hence the overall numerical degrees of freedom are independent of ϵ. The
overall computational cost is thus drastically reduced compared to a full discretization
of the problem.

The existing mathematical homogenization theory for viscous, rough-wall flow jus-
tifies an effective boundary condition of Robin-type for the case of periodic or ran-
dom, stationary ergodic roughness. Guided by the theory, the wall-law in the proposed
method is also a Robin condition; however the method is designed to be applicable
to general roughness profiles, so long as there is a separation of scales between the
roughness characteristics and the size of the full domain.

For the case of Stokes flow in a channel with periodic roughness, we exploit linearity
to prove several properties of the proposed method. We first show that a back-and-forth
iteration used to solve the coupled macro/microscale system converges to a fixed point,
and that the resulting wall-law leads to a coercive macroscale problem. Moreover, we
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show the convergence happens rapidly; the coefficients in the wall-law produced by
the first and second iterations differ by less than O

(
ϵ2
)
. Finally, we show that the

macroscale approximation produced by the HMM and the true rough-wall flow both
limit to the same quantity as ϵ vanishes. We do not show, however, any rigorous
estimates relating the HMM approximation to the true rough-wall flow, as the creation
of new results in homogenization theory is outside of the scope of the present work.

The structure of the paper is as follows. Section 2 provides background first for the
problem of laminar, viscous flow over a rough boundary and then for the heterogeneous
multiscale method. Included is a brief asymptotic analysis of the problem that slightly
modifies that of Achdou et al. [5]. The asymptotics motivate the form of the effective
boundary condition used in Section 3, where the heterogeneous multiscale method is
proposed and analyzed. Numerical results in Section 4 illustrate the method accurately
and efficiently captures the average effect of surface roughness both where the homog-
enization theory is applicable and in more general settings. Finally, Section 5 contains
some concluding remarks.

2. Background
There exists a large amount of mathematical results available in the literature con-

cerning the asymptotic behavior of laminar incompressible flow in the presence of a
rough boundary of characteristic height and wavelength ϵ; see [4–7, 11, 17, 33, 34, 54],
mentioned in the introduction, as well as references therein. Although there are differ-
ing physical assumptions and levels of mathematical rigour associated to each work, all
justify the use of a Robin-type condition on a smooth boundary near the original rough
boundary. If uτ denotes the fluid velocity vector tangential to the smooth boundary,
and n denotes the unit vector normal to the boundary, the wall-law is of the form

uτ =α∇uτ ·n. (2.1)

This is typically coupled with the no-penetration condition u ·n=0. In the available
homogenization theory, either periodic roughness or random, stationary ergodic rough-
ness is assumed. Furthermore, the smooth boundary is assumed to be flat; it aligns
with a coordinate axis and exhibits no curvature. In these settings, the slip amount α
is a constant given by the average of a local corrector that decays exponentially fast in
the wall-normal variable. In more general situations, however, it should be noted that
α could exhibit tangential variations.

Regardless of whether or not α is constant or varies tangentially, in two dimensions
it is a scalar value. In three dimensions, however, it could more generally be a tensor.
We focus in this work on the two-dimensional case for ease of exposition and so that
numerical examples of the full, rough-wall problem are feasible on a workstation. All
that follows, however, can be readily generalized to three dimensions, and Remark 3.3
in Section 3 briefly describes how our scheme generalizes to this case.

To see how a wall-law of the form (2.1) can arise, we now briefly conduct formal
asymptotic analysis of two-dimensional, viscous laminar flow in rough domain. The
analysis is nearly identical to that of Achdou et al. [5], and below we quote two of
their theorems relevant to current work. In particular the asymptotics lead to the
same linear cell problem whose solution is the first order corrector in the asymptotic
expansion. After scaling by the small-scale parameter ϵ, the coefficient α in (2.1) then
is simply the average of this solution.

There are two differences. The first is that we consider a rough boundary parame-
terized by the product of a rapidly oscillating periodic function φϵ and a slowly varying
function β. This simply results in the modulation of the slip-amount by β. The second
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difference is that the authors in [5] consider high Reynolds number (Re) stationary flow,
where Re is proportional to 1/ϵ. Since such flows are expected to be sensitive to turbu-
lent instabilities in the presence of rough boundaries on physical grounds, we consider
the asymptotic regime of low Reynolds number flow. The low Re case is additionally
in line with the more rigorous analysis in [11,33,34].

We preface the asymptotics with some definitions to be used throughout the paper.

2.1. Preliminary definitions. First, let e1 and e2 be the standard unit vectors
in R2, and let x1 and x2 parameterize the horizontal and vertical directions as in Figure
2.2.

y2=H

y2=0
∂Y

Fig. 2.1. Semi-infinite domain Y with lower boundary ∂Y ={(y1,y2)∈ [0,1)×R | y2=φ(y1)} for
some periodic function φ.

Γϵ

Ωϵ

x2

x1
Γ0

Ω0

Fig. 2.2. Domain Ωϵ with periodic, sinusoidal roughness and corresponding Ω0 with flat boundary.

Let φ :R→R be a bounded, Lipschitz continuous, periodic function with maxi-
mum value H :=∥φ∥∞ that satisfies φ(N)=H for every N ∈Z, and φ(t+1)=φ(t)≥0
∀t∈R. Let ϵ be some fixed small parameter, 0<ϵ≪1, and define φϵ(x1) := ϵφ(x1/ϵ).
For smooth, bounded function β :R→R that is independent of ϵ, define ζϵ(x1) :=
β(x1)φ

ϵ(x1) to be the function that parameterizes the rough boundary. Without loss of
generality, assume that ∥β∥∞=1 for ease of exposition below. Further assume that β is
bounded below by a positive constant, so that β≥β∗>0 and hence ζϵ(x1)≥0 ∀x1∈R.

Let Y ={(y1,y2)∈ [0,1)×R| y2≥φ(y1)} be a domain containing a periodic “cell” of
φ, semi-infinite in the vertical direction with lower boundary ∂Y ={y∈ [0,1)×R|y2=
φ(y1)}; for example, see Figure 2.1. Let L2

per(Y ) be the space of square integrable
functions in Y that are 1-periodic in the y1 variable, and let H1

per(Y )⊂L2
per(Y ) be the

subspace whose first derivatives also belong to L2
per(Y ). Also, let Sper(Y )⊂L2

per(Y )
be the subspace of functions that decay exponentially fast in y2, as well as all of their
derivatives.

Let Θϵ=
{
(x1,x2)∈R2|x2≥ ζϵ(x1)

}
be the semi-infinite domain contained in the

upper half plane x2≥0 in R2, and let Ω be a bounded domain in R2 made of one piece
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that intersects the line {x2=0}. Take Ω0=Ω∩{x2≥0}, and let Γ0=∂Ω0∩{x2=0}.
Finally, take Ωϵ :=Θϵ∩Ω0, so that Ωϵ has a rough boundary Γϵ with characteristic
amplitude and wavelength ϵ; for example, see Figure 2.2. Note that Ωϵ→Ω0 as ϵ→0.

2.2. Asymptotic analysis. Given Ωϵ, consider the following stationary Navier-
Stokes problem

L(uϵ,pϵ) :=−ν∆uϵ+uϵ∇uϵ+∇pϵ=f in Ωϵ

∇·uϵ=0 in Ωϵ

uϵ=0 on ∂Ωϵ (2.2)

where ν=O(1). Other combinations of well-posed boundary conditions are possible, so
long as the no-slip condition uϵ=0 is imposed on the rough wall Γϵ.

First consider the approximation (u0,p0) that satisfies

L(u0,p0)=f in Ω0

∇·u0=0 in Ω0

u0=0 on ∂Ω0.

A simple Taylor expansion shows that the error along the rough boundary Γϵ is O(ϵ);
indeed let x0∈Γ0, x0+ζϵ(x01)e2∈Γϵ. Then

u0
(
x0+ζϵ(x01)e2

)
=u0(x0)+ζϵ(x01)

∂u0

∂x2
(x0)+

1

2

(
ζϵ(x01)

)2 ∂2u0
∂x22

(ξ(x0))

= ϵβ(x01)φ(x
0
1/ϵ)

∂u0

∂x2
(x0)+O(ϵ2). (2.3)

The error can be improved by considering a higher order approximation that accounts
for the geometry of the rough boundary.

Consider next the approximations

uϵ(x)≈u1(x)+ϵu1BL(x,x/ϵ)=u
1(x)+ϵβ(x1)

∂u11
∂x2

(x1,0)(χ(x/ϵ)−χe1)

pϵ(x)≈p1(x)+p1BL(x,x/ϵ)=p
1(x)+β(x1)

∂u11
∂x2

(x1,0)π(x/ϵ), (2.4)

where (u1,p1) satisfy

L(u1,p1)=f in Ω0

∇·u1=0 in Ω0

u1(x)−ϵβ(x1)χ1
∂u11
∂x2

(x)e1=0 x∈Γ0

u1=0 on ∂Ω0 \Γ0. (2.5)

The constant χ1 in the slip boundary condition posed along Γ0 is defined to be the
horizontal average of the horizontal component of the vector χ at y=H, that is, just
above the roughness φ:

χ1=

∫ 1

0

χ1(y1,H)dy1.
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The pair (χ,π) satisfy

−µ∆yχ+∇yπ=0 in Y

∇y ·χ=0 in Y

χ(y)=−φ(y1) y∈∂Y
χ−χ∈H1

per(Y )

π∈L2
per(Y ) (2.6)

and hence only depend on the roughness geometry.
Another Taylor expansion shows that indeed u1+ϵu1BL is O

(
ϵ2
)
along Γϵ, i.e. one

order higher than u0 as desired. Using the formal differentiation rule

∇Φ(x,x/ϵ)=∇xΦ(x,y)+
1

ϵ
∇yΦ(x,y),

inserting the approximations (2.4) into L, and using (2.5) and (2.6) give that the ap-
proximations (2.4) are O(ϵ) pointwise in Ω0.

The first theorem we quote from [5] asserts that the so-called cell-problem (2.6)
has a unique solution that decays exponentially in y2, and that χ2=0. This means
the influence of the correctors u1BL and pBL in (2.4) are only asymptotically felt in a
O(ϵlog(1/ϵ)) neighborhood of the rough boundary Γϵ.

Theorem 2.1 (Achdou et al. [5]). There exists a unique pair of functions (χ,π) and

a unique vector χ∈R2 such that χ−χ∈
(
H1

per(Y )
)2∩(Sper(Y ))

2
,π∈L2

per(Y )∩Sper(Y )
and (2.6) is satisfied in a weak sense. Furthermore, χ is horizontal,

χ=χ1e1.

The second quoted theorem provides a bound on the size of the constant −χ1 and is
crucial for the well posedness of the effective problem (2.5) and hence for its numerical
approximation as well.

Theorem 2.2 (Achdou et al. [5]). Let H :=maxy∈∂Y y=∥φ∥∞. Then the constant
−χ1 satisfies the bound

0≤−χ1≤H.

As a result, the problem (2.5) is generally ill-posed; its variational form contains the
term

µ

χ

∫
Γ0

u11v1/βds

where v is some test function, which is not coercive when χ<0. For this reason, the
effective boundary condition is posed just above the roughness, as oppposed to at y=0.
This is consistent with location of the effective boundary condition in the more rigorous
studies [11,33,34]. For any δ>ϵH, the problem (2.5) becomes

L(u1,p1)=f in Ω0
δ

∇·u1=0 in Ω0
δ

u1(x)−β(x1)(ϵχ+δ)
∂u11
∂x2

(x)=0 x∈Γ0
δ
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u1=0 on ∂Ω0
δ \Γ0

δ ,

where

Ω0
δ =Ω0∩{x2≥ δ}, Γ0

δ ={x+(0,δ),x∈Γ0}. (2.7)

For this reason, the wall-law determined by the multiscale method described in Section
3 is likewise imposed just above the surface roughness.

2.3. Heterogeneous multiscale method. The heterogeneous multiscale
method (HMM) is a general framework for designing multiscale algorithms that aims to
capture the macroscopic behavior of a system without resolving the microscopic details
in their entirety. Under the assumption of scale separation in the underlying physical
system, HMM couples macroscopic simulations to local, microscopic simulations so that
the simulation has an overall computational complexity independent of the fine scale.
Comprehensive introductions to and reviews of HMM can be found in [2, 21, 22]; be-
low we briefly describe the main idea of the method and its applicability to designing
effective boundary conditions for fluid simulations.

Suppose there is a general model for the macroscopic state of a physical system that
can be expressed as M(Ψ,D)=0, where D represents the macroscopic data necessary
for the model to be complete. Then the main goal of HMM is to approximate D
by solving microscale problems locally in space and/or time that are constrained by
the macroscopic solution. If the microscale problem is denoted by m(ψ,d)=0, where
the data d represents the input from the macroscopic system, then the HMM can be
succinctly expressed as

M(Ψ,D)=0, D=D(ψ)

m(ψ,d)=0, d=d(Ψ). (2.8)

With a macroscopic solver in hand, the procedure is to first constrain the micro sim-
ulation to be consistent with local macro data: d=d(Ψ). After solving for ψ in the
micro domain, the missing macro data is estimated using the results from the micro
simulation: D=D(ψ).

The HMM framework has been utilized to compute effective boundary conditions
for fluid simulation problems before. For instance, in [47, 48], the authors model fluid-
fluid and fluid-solid interactions in which the standard no-slip boundary conditions for a
continuum fluid are no longer accurate and must be inferred from microscopic models,
such as molecular dynamics (MD). Using such a microscopic model throughout the
entire computational domain is prohibitively expensive, due to the disparate spatial
and temporal scales between the continuum and molecular dynamics involved. Instead,
local molecular dynamic simulations are computed only along the interfaces for which
a boundary condition is needed. In the language of (2.8) above, the macro-scale model
M is Navier-Stokes equations, but the usual stress tensor is the missing data D to be
replaced by a more accurate model coming from MD simulation where it is needed.
The MD simulation is initialized to be consistent with the local values of the continuum
velocity.

While not initially proposed as an example of HMM, the method of Superparame-
terization proposed by Grabowski [29] and developed by Majda and others [30, 39–41]
is a multiscale method for the simulation of atmospheric flows that fits into the frame-
work of HMM. The original idea of the method is to couple local computations for the
turbulent transport quantities to a global macroscopic model for the atmosphere. The
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local computations impose artificial scale separation in both space and time between
the large scale energetic motions and the small scale fluctuations and hence allow for a
reduced computational cost.

In the present setting of viscous laminar flow over a rough boundary, the macro-
scopic model M consists of the Navier-Stokes equations posed in domain with a smooth
boundary. The missing data D necessary for the model to be complete is the coefficient
in the wall-law (2.1) coming from the homogenization theory. The microscopic model m
consists again of the Navier-Stokes equations, this time posed on a single “element” of
roughness whose size is finite in the wall-normal direction. The constraint d is that the
values of the microscopic solution variables ψ at the computational boundaries (those
that are not the rough wall, where the no-slip condition is prescribed) must be consis-
tent with the local values of the macroscopic flow variables Ψ at those locations. Once
the microscopic problem is solved, the solution ψ is suitably averaged to estimate the
slip amount D; in this way the models are formally coupled. This coupling is more fully
detailed and analyzed below in Section 3.

3. HMM for viscous laminar flow over a rough boundary
After some preliminary definitions, we now describe a heterogeneous multiscale

method (HMM) for the efficient computation of the effective boundary condition, or
wall-law, for the case of laminar flow over a rough surface. We then discuss the details
of its practical implementation and analyze some of its properties.

3.1. Preliminary definitions. Consider a translation of the domains Ωϵ and
Ω0

ϵH defined in Section 2.1 and (2.7) by ϵH units in the negative x2 direction, where
H=∥φ∥∞ as before, so that

(x1,x2) 7→ (x1,x2−ϵH);

note that Ω0
ϵH ⊂Ωϵ still of course holds after the translation. Define Ωmac to be the

resulting translation of Ω0
ϵH , and for simplicity continue to refer to the translation of

Ωϵ as Ωϵ (and similarly for the rough boundary Γϵ). In addition, rename Γ0
ϵH–the flat

part of the boundary of Ωmac defined by (2.7)–to be simply Γ.
Consider also a collection of points {s1,s2,. ..,sJ}, each sj ∈R, and assume |sj−

sj+1|≥ ϵ for each j. Let {Lmic
1 ,Lmic

2 ,. ..,Lmic
J } be a collection of positive real values.

Define the micro-domains Ωmic
j to be the domains bounded by the curves x1=sj on the

left, x1=sj+L
mic
j on the right, x2=γ>0 above, and {(x1,x2)|x2= ζϵ(x1)−ϵH} below.

The lower curve is simply the portion of Γϵ from x1=sj to sj+L
mic
j . Note that of course

ζϵ need not agree at the locations sj and sj+L
mic
j . Denote this portion of the micro-

domains ∂Ωmic
j,noslip, as this is where the physical wall is located. Denote the remaining

portion of the boundary ∂Ωmic
j,D =∂Ωmic

j \∂Ωmic
j,noslip, since the flow will generally satisfy

some Dirichlet condition there. Lastly, assume γ and each Lmic
j are O(ϵ). See Figure

3.1 for an example of such a configuration.

Remark 3.1. In general, the HMM algorithm described below is not limited to rough
domains with boundaries parameterized by oscillatory functions of the form ζϵ(x1)=
β(x1)φ

ϵ(x1), i.e. rapidly oscillating periodic functions modulated by a slowly varying
smooth function, as assumed in Section 2.1. In particular we note that the algorithm
naturally adapts to different scalings for φϵ than the one assumed in asymptotic analysis
of Section 2.2, e.g. φϵ= ϵφ(x1) or φ

ϵ=φ(x1/ϵ).

Remark 3.2. For the micro-domain problems defined below to be well-posed, the
corners of the Ωmic

j domains should be mollified; such technical details are not considered
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here.

s1 s2

(a)

(sj ,γ)

(sj+L
mic
j ,0)

∂Ωmic
j,noslip

∂Ωmic
j,D

(b)

Fig. 3.1. (a) Example domain Ωϵ ( ) containing several Ωmic
j ( ). (b) One instance of a micro

domain Ωmic
j whose boundary consists of two pieces, ∂Ωmic

j,D and ∂Ωmic
j,noslip.

3.2. Multiscale method. Let uϵ be a solution to the stationary Navier-Stokes
equations in a domain Ωϵ with a rough-boundary. The purpose of the multiscale method
is to efficiently produce an approximation U to the true, oscillatory flow uϵ by enforcing
that U satisfy a wall-law of the form from the homogenization theory

U =α
∂U1

∂x2
e1 (3.1)

on Γ, the boundary of the smooth domain Ωmac. The coefficient α in the wall-law
parameterizes the approximation and, in the language of HMM from Section 2.3, is the
missing data D needed to complete the macro-scale model of uϵ.

The strategy utilized in [5] to determine α in the case of periodic roughness results
from the asymptotic analysis from Section 2. One simply precomputes the solution
χ to the (truncated) cell problem (2.6) and then takes the average of the horizontal
component χ1. After scaling by ϵ, this constant (plus some amount δ>ϵH, in light of
Theorem 2.2) is then taken to be the missing data α. The precomputing step is possible
because the cell problem depends only on the geometry of the roughness.

In contrast, the multiscale method defined below to estimate α generally involves
coupling a Navier-Stokes system posed in the macroscale domain Ωmac to J separate
Navier-Stokes systems posed in microscale domains Ωmic

j , 1≤ j≤J . Similar to the
cell problem from the homogenization theory, the microscale systems account for the
geometry of the rough surface, however, the current method is not restricted to domains
with periodic roughness. The micro-systems are additionally constrained to match
the averaged local flow values of the macroscale system, which could allow for a more
accurate representation of the effect of surface roughness on the local macroscopic flow.
In each Ωmic

j , the ratio of the average flow and the average flow gradient (the shear)
is computed. These values are interpolated along Γ, and the resulting function is then
used for the slip amount α in (3.1).

We define first the macro and microscale systems, as well as a projection, smoothing,
and interpolation operator before fully formulating the coupled multiscale model.

Definition 3.1 (Macroscale system). LetM (U,P,α) define the following PDE system
posed in Ωmac and parameterized by the slip amount α:

−ν∆U+U∇U+∇P −f =0, in Ωmac
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∇·U =0, in Ωmac

U−α ∂U1

∂x2
e1=0, on Γ

U =0, on ∂Ωmac \Γ

Note that in general α can vary along Γ so that α=α(x1).

Definition 3.2 (Microscale system). Let mj

(
uj ,pj ,Υj

)
define the PDE system posed

in Ωmic
j and parameterized by the Dirichlet boundary condition Υj :∂Ω

mic
j,D →R2:

−ν∆uj+uj∇uj+∇pj−f =0, in Ωmic
j

∇·uj =0, in Ωmic
j

uj =Υj , on ∂Ωmic
j,D

uj =0 on ∂Ωmic
j,noslip.

For well-posedness, i.e. conservation of mass, Υj should satisfy∫
∂Ωmic

j,D

Υj ·nds=0. (3.2)

Furthermore, let {σn}∞n=1∈∂Ωmic
j,D be some convergent sequence with limiting point σ=

(sj ,0) or σ=(sj+L
mic
j ,0). Then Υj should also satisfy

lim
n→∞

Υj(σn)=0 (3.3)

for consistency with the no-slip condition posed along ∂Ωmic
j,noslip.

Definition 3.3 (Projection operator). Let Pj be the collection of continuous maps

from C(Ωmac,R2) to C
(
∂Ωmic

j,D ,R2
)
, where C(X,Y ) denotes the set of continuous func-

tions from X to Y . Then we say πj is a projection operator if πj ∈Pj and πj(f) satisfies
the properties (3.2) and (3.3) for any f ∈C(Ωmac,R2).

This projection operator is the mechanism by which the micro-problems mj are
constrained to match the macroscopic solution U . Suppose that U is a continuous
solution to M(U,P,α) for α ̸=0. Note then that simply taking the trace of U along
∂Ωmic

j,D is not sufficient to be a projection operator in the above sense; even though the
conservation of mass property (3.2) holds, the constraint (3.3) will not because of the
slip condition on Γ. A specific example of a projection map is mentioned in Remark 3.4
and more fully detailed in Appendix A.

Definition 3.4 (Smoothing operator). For continuous and integrable ψ :R2→R and
y∈R, define the operator

⟨ψ⟩L (x,y) :=
∫ x+L

x

ψ(s,y)ds

which integrates ψ in the horizontal direction along a L-sized strip [x,x+L] at fixed
height y.

Definition 3.5 (Interpolation operator). For {(sj ,αj)}Jj=1∈R2×J , let

I((s1,α1),. ..,(sJ ,αJ)) :R2×J →C (Γ)
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denote a piecewise continuous polynomial interpolant based on the given points.

Using the above definitions, the HMM is formally defined as follows; given a rough-
ness profile ζϵ, macroscale domain Ωmac, and a collection of points {sj ,Lmic

j }Jj=1 with

associated micro-domains Ωmic
j , find

(
(U,P ),(u1,p1),. ..,(uJ ,pJ)

)
satisfying the coupled

system of equations:

M (U,P,α)=0

mj

(
uj ,pj ,Υj

)
=0 1≤ j≤J (3.4)

where

Υj = πj(U) 1≤ j≤J,
α=I((s1,α1),. ..,(sJ ,αJ)),

and

αj =
⟨uj1⟩Lmic

j
(sj ,0)

⟨∂uj1/∂x2⟩Lmic
j

(sj ,0)
, 1≤ j≤J. (3.5)

The HMM thus consists of a stationary Navier-Stokes equation in Ωmac with slip amount
α and J stationary Navier-Stokes equations posed in the domains Ωmic

j , each of which

depend on the projection of U onto the boundaries Ωmic
j,D. Given a boundary condition

Υj and corresponding micro-solution uj , the slip amounts αj are defined to be the ratio
of the average horizontal flow velocity to the average flow derivative in the vertical
direction. The average is taken across the length Lj of the micro-domain at x2=0,
i.e. just above the roughness.1 The values {αj}Jj=1 are patched together with some
interpolation scheme I and in turn utilized by the macro-solver.

The formula (3.5) is directly inspired by the existing mathematical homogenization
results, all of which say that there exists some α such that the Navier-slip condition
relating u1 and ∂u1/∂x2 gives the correct asymptotic effect of surface roughness on the
macroscale flow. Hence, we simply took the ratio (3.5) to be this α.

A natural question to ask given the form of the slip amount (3.5) is what happens in
the case of vanishing flow gradient. For the case of a smooth, laminar flow, a near-wall
Taylor expansion similar to (2.3) gives that u1(x2)∼x2∂u1/∂x2, meaning that, if the
flow gradient is small, so too must the flow velocity be small, effectively ruling out cases
with slip amount α that blows up. Nevertheless, in general a situation with vanishing
flow gradient could indeed lead to a possible breakdown of (3.5) for estimating α. For
such cases, if the average flow gradient inside a micro domain is calculated to be smaller
than some tolerance (whose numerical value perhaps may require some insight into the
problem at hand), one could switch to using the Dirichlet condition u=0 as the local
effective boundary condition in the macro-solver.

Remark 3.3 (Three-dimensional case). As mentioned in Section 2, the slip amount
α in the wall-law (2.1) can generally be a tensor in the case of three-dimensional flow.
Suppose (x1,x3) and x2 denote the horizontal and vertical directions, respectively. Then

1In our numerical tests, we also considered computing the αj values at some x2∈ (0,γ) and extrap-
olating the result back to x2=0 for use in the macro-solver; see the discussion in Section 4.6 for the
details.
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the wall-law (2.1) for the macro-solver would be

Ui=
∑

k∈{1,3}

αik
∂Uk

∂x2
, i=1,3.

Each individual slip amount then is

(αj)ik=
⟨uji ⟩Lmic

j
(sj ,0)

⟨∂ujk/∂x2⟩Lmic
j

(sj ,0)
, i,k∈{1,3},

where the index j runs over each micro-domain. Each entry is interpolated across the
two-dimensional surface Γ to produce a slip amount α for the macro-solver.

Remark 3.4 (Boundary conditions for the micro-systems). Given some macroscopic
flow U , each of the microscopic problems depends on the boundary condition from the
projection operator:

uj =Υj =πj(U) on ∂Ωmic
j,D .

In the case when U is horizontal, i. e. the vertical component of the velocity vector is
zero, or at least negligible compared with the horizontal component, then the boundary
conditions for the micro-systems can be simplied to a “free stream” condition along the
upper computational boundary x2=γ:

uj =
1

Lmic
j

⟨U1⟩Lmic
j

(sj ,γ) e1 (3.6)

and periodic boundary conditions at x1=sj and x1=sj+L
mic
j . In this case the pro-

jection operator πj simply maps from C(Ωmac,R2) to R. Note that this approach is
only practically feasible if the roughness function ζϵ satisfies ζϵ(sj)≈ ζϵ(sj+Lmic

j ) so

that a periodic mesh for the micro domain Ωmic
j can be constructed without much error.

In situations for which this is not true or when the macroscopic flow has a nontrivial
vertical component, a more general approach is needed. We propose quadratic polyno-
mial Dirichlet conditions for both the horizontal and vertical components of the velocity
along each of the three faces ∂Ωmic

j,D. Enforcing the no-slip condition, some interpolation
constraints, and that the quadratic profiles preserve the macro-scale mass fluxes guar-
antees a unique, well-defined projection operator. The details can be found in Appendix
A.

One key feature of the method clearly is the specification of the locations {sj}Jj=1

of the micro-domains Ωmic
j and the domain lengths {Lmic

j }Jj=1. For Poiseuille type
channel flow with periodic roughness, for instance, only one micro-domain covering a
single periodic roughness element is necessary. In more realistic settings for which the
surface roughness is nonperiodic and additionally varies over macroscopic length scales,
the micro-domain lengths Lmic

j should be chosen large enough to cover a few of the
estimated correlation lengths, or approximate periods. The sj locations should also be
placed frequently enough along Γϵ to capture its large-scale, macroscopic variations.
The numerical examples in Section 4 are chosen to approximate such situations.

3.3. Simulation algorithm. In Section 3.4, we use the contraction mapping
principle to prove that the coupled, stationary system (3.4) has a unique solution for
the simplified case of linear, Stokes flow in a channel with periodic roughness. In
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practice, the coupled system is also solved iteratively starting from some initial guess
for α. A simple choice is to use the no-slip condition along Γ, i.e. use α=0. One then
solves the macroscale problem, estimates the boundary conditions for the microscale
problems, computes their solution, and estimates an updated slip amount. This process
is repeated until the difference between subsequent slip amounts is smaller than some
prescribed tolerance.

More precisely, let τ >0 be some fixed tolerance, and let the macro/microscale
domains Ωmac and {Ωmic

j }Jj=1 be given. Then:

(1) Let α=0 and solve the macroscale problem

M(U,P,α)=0 for (U,P ).

(2) For each j=1,. ..,J determine boundary conditions for the micro-domain Υj =
πj(U) and then solve the microscale problems

m(uj ,pj ,Υj)=0 for (uj ,pj).

(3) For each j=1,. ..,J , estimate the local slip amounts

αj =
⟨uj1⟩Lmic

j
(sj ,0)

⟨∂uj1/∂x2⟩Lmic
j

(sj ,0)

and then interpolate the values to define the a new slip amount

α(0)=I((s1,α1),. ..,(sJ ,αJ)).

(4) If
∥∥α(0)−α

∥∥
∞<τ , compute a final macroscale solution (U,P ) by solving

M(U,P,α(0))=0. (3.7)

Otherwise, use (U,P ) from (3.7), repeat steps (2) and (3) to produce a new
α(1), and compare α(1) and α(0). Repeat until successive slip amounts differ by
less than the tolerance τ .

If the tolerance is set to O
(
ϵ2
)
, we show in Theorem 3.2 that for the case of linear, Stokes

flow in a channel with periodic roughness, the back-and-forth procedure just outlined
will terminate in a single iteration. More precisely, we show (α(1)−α(0))/ϵ

2 vanishes
as ϵ↘0. For this case, the HMM hence requires only one solution of the microscale
systems in practice; computing an updated slip amount α(2) is not necessary. Although
we have no proof for more general situations, we observe the same behavior in all the
numerical experiments presented in Section 4. Despite the rapid convergence, the need
to have some initial macro-flow U in hand from which to estimate boundary conditions
Υ=π(U) for the micro-solvers is a disadvantage of the proposed HMM. In practice, the
overhead cost to produce some initial Υ could for example be reduced by first computing
U on a mesh that is relatively coarse.

For time-dependent problems, there is no need to find a fixed point between the
macro and microscale systems; the back-and-forth procedure simply becomes a commu-
nication between two time-marching schemes. First, the macroscale system with slip
amount α is integrated forward one macro-step ∆T in time. The updated U then fixes
micro-domain boundary conditions Υj =πj(U) for each j. The microscale system is
integrated in time several micro-steps Nmic δt≈∆T , after which a new slip amount α is
estimated, and then the process repeats.

Finally, we note that since the microscopic systems mj(u
j ,pj ,Υj) are all indepen-

dent of one another, they are trivially parallelizable.
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3.4. Analysis of the the coupled system. We now prove some convergence
results for our HMM in a simplified setting. Let 0<γ1<γ2<1 and consider a macroscale
channel configuration, so that Ωmac=[0,l]× [γ1,1], where 0<γ1<1 and l>0. We as-
sume the full channel with rough boundary that contains Ωmac has periodic roughness
with a maximum at x2=0 as before. For technical reasons however we instead measure
the slip amount in the micro-domain at x2=γ1>0, and hence impose the wall-law at
this location in the macro-domain as well. This is consistent with Theorem 2.2 from
Achdou et al. [5]. The micro-domain has height γ2.

Let the fluid viscosity ν=1 and assume both the macro and micro problems are
driven by a constant forcing f =−2e1 representing the macroscale pressure gradient
forcing the flow.

For some fixed slip amount α>0, a modified Poiseuille flow solves the stationary
Navier-Stokes equations posed in Ωmac with the no-slip condition U =0 at y=1 and the
slip-condition U =α∂U1/∂x2e1 at y=γ1:

U(x2)=

(
−x22+

(
γ21 −1−2γ1α

γ1−1−α

)
(x2−1)+1

)
e1.

Since the macro-flow is horizontal and the roughness is assumed to be periodic, the
boundary condition for the micro-domain can be simplified to a free-stream condition
at x2=γ2. We can thus define the map from the macro to microscale flow.

Definition 3.6 (Macro −→ micro map). Let α≥0 and define

T2(α) :=−γ22 +
(
γ21 −1−2γ1α

γ1−1−α

)
(γ2−1)+1. (3.8)

The derivative is

∂T2
∂α

=(1−γ2)
(

(γ1−1)2

(γ1−1−α)2

)
, (3.9)

which is positive ∀α≥0 and is guaranteed to be finite whenever α>0.
Instead of the full nonlinear problem, we now consider a Stokes problem in the

micro-domain Ωmic

−∆u+∇p=2e1

∇·u=0 (3.10)

with the boundary condtions u=0 along Γϵ and u=Ue1 at x2=γ2 for some U ∈R. At
the side-walls {x1=0}× [0,γ2] and {x1= ϵ}× [0,γ2], (u,p) is periodic. Since all of the
problem data is smooth, it is known [55] that u and p are smooth fields.

The linearity of the Stokes problem (3.10) allows us to decompose the micro solution
into three pieces

u=u1
∣∣
Ωmic

+u2+u3, (3.11)

which lets us systematically quantify the HMM slip amount α. The boundary conditions
and domains for each piece are illustrated in Figure 3.2. We now describe each solution
ui, i=1,2,3 in more detail.

The first piece accounts for the constant forcing −2e1 and is posed in the larger do-
main [0,ϵ]× [−M,γ2]⊃Ωmic, where M =∥φϵ∥∞= ϵH is the amplitude of the roughness.
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x2=γ2

x2=−M

x2=γ1

u1=0

u1=0

u2=0

B2(x)

u2=−u1
∣∣∣
Γϵ

x2=0

u3=Ue1

B3(x)

u3=0

x2=0

Fig. 3.2. Boundary conditions for each of the three pieces making up the micro solution u. Each
piece is additionally periodic at x1=0 and x1= ϵ. The interior traces of the second and third piece at
the line x2=0 are marked as B2(x) and B3(x).

With no-slip at x2=−M and x2=γ2, it has analytic solution u1(x2)=(x2+M)(γ2−
y)e1 and p1=0.

The second piece u2 corrects for the fact that the restriction of u1 to Ωmic does not
satisfy the no-slip condition along Γϵ. It satisfies the homogeneous Stokes equations
(i.e. without forcing), the no-slip condition at x2=γ2 and

u2=−(u1 ·e1)
∣∣
Γϵ
e1

along Γϵ. At this point and in the rest of the subsection, we abuse notation and refer
to the horizontal component of the flow vector ui ·e1 simply as ui for each i=1,2,3.

Let ⟨·⟩(x2) be shorthand for the integral operator ⟨·⟩ϵ (0,x2) from Definition 3.4,
and let B2 denote ⟨u2⟩(0). Since ⟨u2⟩(x2) is independent of x1, it satisfies a simple
boundary value problem in [0,γ2] with solution

⟨u2⟩(x2)=−(B2/γ2)x2+B2.

In Appendix B we show that in particular |B2|/ϵ→0 as ϵ↘0.
The third piece u3 will account for how the macro-solution U influences the micro-

solution. It satisfies the no-slip condition along Γϵ and the free stream condition u3=U
at x2=γ2. Like u2 it is not externally forced, in contast to u1. By linearity of the
Stokes equation, ⟨u3⟩(x2) can be written as U ⟨ũ3⟩(x2), where ũ3 solves the same Stokes
problem as u3 but satisfies ũ3=1 at x2=γ2. Similar to ⟨u2⟩(x2), ⟨u3⟩(x2) can be
written as

⟨u3⟩(x2)=U

(
(1−B̃3)

γ2
x2+B̃3

)

where B̃3= ⟨ũ3⟩(0). In Appendix B we show that B̃3=O(ϵ).
Using the decomposition (3.11), we are now able to define the slip amount α given

by (3.5) in the present setting. The slip amount is a map from the micro to macroscale
flow.
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Definition 3.7 (Micro −→ macro map). Let U ∈R and define

T1(U) :=
C1+C2U

C3+(1−B̃3)U
(3.12)

where

C1= ϵγ2(γ1+M)(γ2−γ1)+B2(γ2−γ1)
C2= B̃3(γ2−γ1)+γ1
C3= ϵγ2(γ2−2γ1−M)−B2, (3.13)

which is the ratio of the average of the horizontal component of the micro-flow u to the
average of its derivative in the x2 direction.

The derivative is

∂T1
∂U

=
B̃3C1+C2C3−C1(
(1−B̃3)U+C3

)2 .
The idea now is to prove the convergence of our multiscale method in the current

simplified setting by first showing that the back-and-forth map T2 composed with T1 is
a contraction for ϵ sufficiently small. Starting then from U0=T2(α)|α=0, we’ll show not
only that sequence (Un)n generated by the back-and-forth iteration converges, but also
that the slip-amount resulting from the limiting point is positive.

Definition 3.8. Let T :R→R be the nonlinear map given by the composition of the
two maps defined by (3.8) and (3.12):

T (U)=T2(T1(U)).

From the chain rule

∂T

∂U
(U)= ∂T2

∂α
(α(U))∂T1

∂U
(U),

and after some calculation one can show

∂T

∂U
(U)= K1(γ1−1)2(1−γ2)

K2+(1+K3)U
(3.14)

where K1= B̃3C1+C2C3−C1, K2=C1+(1−γ1)C3, and K3=C2−γ1+B̃3(γ1−1).
We now prove T is a contraction map for all ϵ sufficiently small by showing ∂T/∂U

vanishes in the limit ϵ↘0 for all U larger than T2(α)|α=0. The result relies on an
assumption that γ2 is asymptotically larger than both ϵ and γ1.

Lemma 3.1. Let U0=T2(0), and assume that γ1 and γ2 monotonically tend to zero
as ϵ↘0 as well as the quantities γ1/γ2 and ϵ/γ2. Then ∀U ∈ [U0,∞),

lim
ϵ↓0

∣∣∣∂T
∂U

∣∣∣=0.

Proof. Equation (3.14) can be bounded as∣∣∣∣∂T∂U
∣∣∣∣≤ |K1|

|K2+(1+K3)U|
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=
|K1/U|

|K2/U+K3+1|
.

Since K3= B̃3(γ2−1)→0 as ϵ↘0 by (B.3), then the result will follow if

lim
ϵ↓0

Ki/U =0 ∀U ∈ [U0,∞)

for i=1,2. Inserting the values of C1, C2, and C3 into the expressions for each Ki, we
see:

K1/U0=−
[
B̃3ϵγ

2
1 −2B̃3ϵγ1γ2+B̃3ϵγ

2
2 −ϵγ21 −Mϵγ2+B2

]
γ2/U0

and

K2/U0=
[
−ϵγ22 −

(
ϵγ22 −ϵγ2

)
M+B2(γ2−1)−

(
ϵγ21 −2ϵγ1

)
γ2
]
/U0.

Note that U0=γ2(1+γ1−γ2−γ1/γ2), M = ϵH, and from the estimates in Appendix B
we know both B2/γ2 and B̃3 vanish as ϵ tends to zero. Hence both K1 and K2 limit to
0 as ϵ↘0 based on the stated assumptions. Ergo, ∂T/∂U also vanishes as ϵ tends to
zero ∀U ∈ [U0,∞).

Definition 3.9. Let

(U0,U1,. ..,Un,. ..)

be a sequence defined by U0 :=T2(0) and Un+1 :=T (Un) for n≥0. Additionally define
the sequence

(α0,α1,. ..,αn,. ..),

where αn :=T1(Un).

We can now prove the convergence of the HMM. We need an additional assumption,
however, which places a limit on how close to x2=0 one can theoretically take γ1.

Theorem 3.1. Keeping the assumptions of Lemma 3.1, additionally assume

lim
ϵ↓0

ϵγ2/γ1=0. (3.15)

Then ∃ϵ0 such that ∀ϵ satisfying 0<ϵ<ϵ0, ∃U∗ to which (Un)n converges as n→∞.
Moreover, α∗ :=T1(U∗)>0.

The positivity of α∗ is important to ensure the macroscopic problem with slip
boundary condition remains coercive and can be compared to Theorem 2.2 from Achdou
et al.

Proof. (Proof of Theorem 3.1.) By Lemma 3.1, T is a contraction map on
X := [U0,∞). So, the fixed point iteration will converge so long as Un∈X for each n.
By the mean value theorem,

Un+1=T (Un)=T2(αn)=U0+αn
∂T2
∂α

(ξn), ∀n≥0 (3.16)

for some ξn∈ (0,αn). Since ∂T2/∂α (given by (3.9)) is strictly positive and finite for
α>0, the desired result will follow if it can be shown that αn>0 for all n.



2086 MULTISCALE METHODS FOR VISCOUS LAMINAR FLOW

We first show α0>0, which implies U1>U0 by (3.16). We then inductively assume
Un>U0 for n≥1 and show that αn>0 follows. Computing α0=T1(U0)=T1

(
γ2(1+γ1−

γ2−γ1/γ2)
)
:

α0=
C1+C2U0

C3+(1−B̃3)U0

=

(
Mϵγ2−B̃3γ1γ2+ϵγ1γ2+B̃3γ

2
2 +B̃3γ1−B̃3γ2+γ1γ2−B2−γ1

)
(γ1−γ2)

Mϵγ2−B̃3γ1γ2+2ϵγ1γ2+B̃3γ22 −ϵγ22 +B̃3γ1−B̃3γ2+γ1γ2−γ22 −B2−γ1+γ2
.

(3.17)

Since γ1<γ2, the numerator will be positive if

Mϵγ2/γ1−B̃3γ2+ϵγ2+B̃3γ
2
2/γ1+B̃3−B̃3γ2/γ1+γ2−B2/γ1<1.

Since B̃=O(ϵ), the LHS of the inequality vanishes in the limit ϵ↘0 by the assumption
(3.15). Thus the numerator is positive for ϵ sufficiently small. The denominator is
positive if

1>−Mϵ+B̃3γ1−2ϵγ1−B̃3γ2+ϵγ2−B̃3γ1/γ2+B̃3−γ1+γ2+B2/γ2+γ1/γ2.

Again by (3.15), the RHS vanishes as ϵ vanishes. Hence

α0>0

for ϵ sufficiently small.

Next, assume that Un>U0 for n≥1. We just showed that both the numerator
C1+C2U0 and denominator C3+(1−B̃3)U0 in (3.17) are positive for ϵ sufficiently small.
From the estimate (B.3) we know that both 1−B̃3>0 and

C2>0 ⇐⇒ B̃3γ2/γ1−B̃3+1>0,

are true for vanishing ϵ, from which we conclude

C1+C2Un>C1+C2U0>0

and

C3+(1−B̃3)Un>C3+(1−B̃3)U0>0.

This implies αn>0.
By the method of induction, we conclude that for all ϵ sufficiently small, Un∈X

and αn>0 ∀n≥0. Lemma 3.1 then guarantees the existence of a fixed point U∗ such
that Un→U∗ and U∗=T (U∗). Furthermore, since T1(U) is continuous for U ∈X, we
define the slip amount

α∗=T1(U∗)= lim
n→∞

T1(Un).

Since (Un)n is a convergent sequence, it must also be bounded. The inductive
argument additionally showed the sequence is strictly increasing, meaning Un<U∗ and
hence 0<C3+(1−B̃3)Un<C3+(1−B̃3)U∗ for all n. As just argued, we also have
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C1+C2Un>C1+C2U0>0. Combining these inequalities shows that (αn)n is uniformly
bounded below:

αn=
C1+C2Un

C3+(1−B̃3)Un

>
C1+C2U0

C3+(1−B̃3)U∗
>0.

Ergo α∗>0 as desired.

Next we show that the slip-amount resulting from the fixed point iteration vanishes
as ϵ limits to zero, ensuring the macroscale flow U will limit to a simple Poiseuille
flow satisfying the no-slip condition along x2=0. This is consistent with the limiting
behavior of the true, rough-wall flow uϵ satisfying no-slip along Γϵ.

Corollary 3.1. Under the same assumptions as Theorem 3.1, we have

lim
ϵ↓0

α∗=0.

Proof. From the proof of Theorem 3.1 we know U0<U∗, so that

α∗=T1(U∗)=
C1+C2U∗

C3+(1−B̃3)U∗
<

C1+C2U∗

C3+(1−B̃3)U0

.

Using U0=γ2(1+γ1−γ2−γ1/γ2) the RHS of the inequality can be written

C1/γ2+C2/γ2U∗

C3/γ2+(1−B̃3)(1+γ1−γ2−γ1/γ2)
; (3.18)

from the definitions (3.13) and bounds (B.2) and (B.3), it is clear (3.18) will vanish as
ϵ→0 so long as U∗ is finite in the limit.

From (3.16) we have

U∗= lim
n→∞

T (Un)=U0+ lim
n→∞

(
αn

∂T2
∂α

(ξn)

)
for some ξn∈ (0,αn). Since ξn is positive, we can bound ∂T2/∂α independently of n:

∂T2
∂α

(ξn)<1−γ2,

which implies

U∗<U0+(1−γ2) lim
n→∞

αn=U0+(1−γ2)α∗<∞

as desired.

Corollary 3.2. Suppose γ2= ϵ
t for 0<t<1 and γ1= ϵ

s for t<s<1+ t. Then the
assumptions of Theorem 3.1 are met, and hence the conclusions follow.

Under an additional technical assumption on the locations γ1 and γ2, we next show
the algorithm from Section 3.3 will converge rapidly in the present simplified setting.
So long as the tolerance τ =O

(
ϵ2
)
, we show the algorithm will converge after just one

iteration.

Theorem 3.2. Let α0 and α1 be the first two entries of the sequence from Definition
3.9. As in Corollary 3.2, assume γ2= ϵ

t for 1/2<t<1 and γ1= ϵ
s for t<s<1+ t, and

additionally assume that s> (t+1)/3. Then

lim
ϵ↓0

α1−α0

ϵ2
=0.
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Proof. By definition α1−α0=T1(U1)−T0(U0); from the mean value theorem

α1−α0=(U1−U0)
∂T1
∂U

(ξ)

for some ξ∈ (U0,U1). Let

b(z) :=
γ21 −1−2γ1z

γ1−1−z

(compare to (3.8)). Then

α1−α0=[b(α0)−b(0)](γ2−1)
∂T1
∂U

(ξ).

Since (γ2−1)→1 as ϵ→0, we analyze only (b(α0)−b(0))∂T1/∂U(ξ); with the aid of the
computer algebra system Sage [53], we first write its denominator as:(

ϵγ21γ2+Mϵγ22 +B̃3γ1γ
2
2 −B̃3γ

3
2 −Mϵγ2−2B̃3γ1γ2−2ϵγ1γ2+2B̃3γ

2
2

+ϵγ22 +B̃3γ1+B2γ2−B̃3γ2+γ1γ2−γ22 −B2−γ1+γ2
)

×
(
Mϵγ2+2ϵγ1γ2−ϵγ22 +B3ξ+B2−ξ

)2
.

Of the quantities in the first set of parentheses, γ2 is asymptotically the largest for van-
ishing ϵ. Since ξ∈ (U0,U1) and U0=γ2(1+γ1−γ2−γ1/γ2), ξ is at least asymptotically
similar to γ2. Thus we can say that in total the denominator is at least asymptotically
similar to γ32 .

The numerator of (b(α0)−b(0))∂T1/∂U(ξ) equals(
−B̃3ϵγ

2
1 +2B̃3ϵγ1γ2−B̃3ϵγ

2
2 +ϵγ

2
1 +Mϵγ2+B2

)
×
(
Mϵγ2+B̃3γ1γ2+ϵγ1γ2−B̃3γ

2
2 −B̃3γ1+B̃3γ2

−γ1γ2+B2+γ1
)
(γ1−γ2)(γ1−1)γ2. (3.19)

To prove the desired result, it suffices to show that (3.19) divided by γ32ϵ
2 limits to zero

for vanishing ϵ, meaning

lim
ϵ↓0

qϵ1q
ϵ
2 (1−γ2)(γ1/γ2−1)

γ2ϵ2
=0

where

qϵ1=−B̃3ϵγ
2
1 +2B̃3ϵγ1γ2−B̃3ϵγ

2
2 +Mϵγ2+ϵγ

2
1 +B2

qϵ2=
(
Mϵγ2+B̃3γ1γ2+ϵγ1γ2−B̃3γ

2
2 −B̃3γ1+B̃3γ2−γ1γ2+B2+γ1

)
.

Since γ1 is the asymptotically largest term in qϵ2, the result will follow if qϵ1γ1/(γ2ϵ
2)→0

as ϵ↘0. Since M =Hϵ and the bound B.3 shows that B̃3 is asymptotically similar
to ϵ, the first four terms in qϵ1 vanish faster than ϵ2. The assumption in the theorem
statement that s> (t+1)/3 ensures the fifth term in qϵ1 additionally vanishes. Finally,
observe that σϵ in (B.1) is asymptotically similar to ϵ1/2+3t/2, so that by (B.2) B2 must
vanish faster than ϵ1+2t. Since t>1/2, the result follows.
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4. Numerical results
We now present two-dimensional numerical tests of the HMM scheme in situations

both where the periodic homogenization theory is applicable and where it is not. All
computations are performed using the open source finite element (FEM) package FEn-
iCS [37, 38], and all meshes are generated using Gmsh [27]. In the first four cases
considered, ϵ=0.025 and |Ωmac|=O(1), and ν=1. Different values are prescribed for
the final example of a backwards facing step and are detailed below. In all cases, the
parameter defining the upper boundary of the microscopic domain γ=4ϵ.

All discretizations are performed with the Taylor-Hood elements, i.e. P2 and P1 basis
functions for the velocity and pressure fields, respectively [31, 36], and the resulting
discrete nonlinear system is solved with Newton’s method, using the solution to the
corresponding Stokes problem as the initial guess.

As in any multiscale method, the accurary of the HMM scheme depends not only on
the fine-scale parameter ϵ but also the mesh size of the macro and microscale solvers. In
particular, the microscale mesh spacing hmust tend to zero faster than ϵ for convergence;
see, for example, the fully discrete analysis of a finite-element based HMM scheme for
multiscale elliptic equations in [1]. Although a fully discrete analysis is out of the scope
of the present work, consider briefly an approximation of the microscale velocity u by
Pk elements. Standard FEM estimates give that the approximation error in the H1

norm is proportional to hk ∥u∥Hk+1 . If one assumes the asymptotic scaling (2.4) for u,
then ∥u∥Hk+1 scales as 1/ϵk. Thus, one must have h/ϵ→0 for vanishing ϵ. All of the
microscale simulations described below respect this requirement.

The direct numerical simulation (DNS) of the full problem (2.2) is computed with
a large number of elements and is compared with (i) the 1st order approximation sat-
isfying the no-slip condition along Γ (so-called because of (2.3)) and (ii) the HMM
approximation satisfying the coupled system (3.4); the 1st order approximation and
macroscale HMM function are both computed on the same mesh. The coupled HMM
system is solved iteratively, using the algorithm from Section 3.3. The tolerance τ for
the error between successive slip amounts α is set to be τ = ϵ2.

4.1. Flow in a channel with periodic roughness. First consider a chan-
nel domain with periodic roughness, as in Figure 4.1a. The macroscopic domain is
simply Ωmac=[0,1]2, and the roughness is parameterized by the function φϵ(x1)=
ϵ/2(cos(2πx1/ϵ)−1). The no-slip condition is applied at the upper boundary x2=1,
and periodic boundary conditions are applied on the left/right boundaries. A constant
pressure gradient −∇p=(1 0)T drives the flow from left to right.

In the setting just described, the macroscopic solution U is one dimensional. Only
the horizontal component of the flow is nonzero, and it depends only on the wall-normal
variable x2. In this case, only one micro-domain is needed, and periodic boundary
conditions can be prescribed along the left/right computational boundaries of the micro-
domain (x1=0 and x1= ϵ) for simplicity, as discussed in Remark 3.4. The free stream
condition (3.6) is then applied along the upper computational boundary x2=γ=4ϵ.

In this setting of a domain with periodic side walls, there is a small difficulty using
the FEniCS software package whose workaround we briefly describe. As mentioned, the
mixed P2–P1 finite elements are used to numerically solve the stationary Navier-Stokes
system in Ωmic.

The discrete equations posed with Dirichlet condtions for the velocity vector u along
∂Ωmic

noslip and x2=γ and periodic conditions at the side-walls have a unique solution
from the standard finite element theory. The pressure field exists to (weakly) enforce
incompressibility and does not formally satisfy any boundary conditions. For mixed
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(0,0) Γ

(1,1)

(a) Periodic, sinusoidal roughness

(0,0) Γ

(1,0.5)

(b) Periodic, “sawtooth” roughness

(0,0) Γ

(1,1)

(c) Periodic roughness modulated by a smooth
function

(0,0) Γ

(1,1)

(d) Quasi-periodic roughness

(0,2)

(0,1)

(5,0) (23,0)(16,0)

(e) Backwards facing step with roughness in the recirculation region. The two dots mark the
locations of the micro-domains discussed in Section 4.5.

Fig. 4.1. Sketches of the rough domains used to test the numerical method.

finite element methods however FEniCS requires that either both function spaces or
neither have periodic boundaries. Since we want the velocity u to be periodic for
x2∈ [0,γ], we consequently assume the microscale pressure can be written as p=pper+ p̃,
where pper is periodic and −∇p̃=(1 0)T is a body force that is consistent with the
macroscopic forcing driving the flow throughout the channel. We then compute the
solution pair (u,pper). Whenever periodic boundary conditions are imposed at x1=s
and x1=s+L

mic in the descriptions below, this decomposition is used.

Figures 4.2 and 4.3 plot u1 and ∂u1/∂x2, respectively, as functions of x1 for several
values of x2 near the wall. Also computed was an HMM solution using the more general
strategy for the projection operator π defined by the constraints detailed in Appendix A
(not pictured). The resulting slip amount differed from the one computed with periodic
boundary conditions in the micro domain only by 0.9%.

4.2. Nonsquare domain with periodic roughness. Next, consider a non-
square macroscopic domain with periodic, “sawtooth” roughness as shown in Figure
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Fig. 4.2. Horizontal component of the flow u1 versus x1 plotted at various heights x2 for the
domain shown in Figure 4.1a.
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Fig. 4.3. Shear ∂u1/∂x2 versus x1 plotted at various heights x2 for the domain shown in Figure
4.1a.
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4.1b. Let h(x1) :=0.5−0.125sin(2πx1). Then

Ωmac={(x1,x2)|0≤x1≤1, 0≤x2≤h(x1)}.

The roughness is parameterized by the periodic function φϵ(x1)=−3ϵ/4(x1/ϵ−⌊x1/ϵ⌋),
where ⌊·⌋ denotes the floor function. The no-slip condition is applied on the domain’s
upper, curved boundary, and periodic boundary conditions are applied on the left/right
boundaries. A constant body force f =(1 0)T drives the flow from left to right.

To compute the HMM approximations, we use the algorithm from Section 3.3 and
set

{s1,s2,s3,s4,s5}={0,0.25,0.5,0.75,1}

chosen to capture influence of the macroscopic curvature of Ωmac. However, the percent
difference between the largest and smallest resulting values of slip amounts is a negligible
0.3%, indicating that simply performing one micro-solve at a single sj is sufficient in
this case.

In contrast to the previous example, the macroscopic flow U is not one dimensional,
i. e. both U2 and ∂U1/∂x1 are nonzero, as can be seen from the DNS curve in Figures
4.4 and 4.5. However, since at x2=4ϵ the horizontal component of the flow is approxi-
mately one order of magnitude larger than the vertical component for a given x1, it is
reasonable to attempt to approximate the vertical component as being zero and com-
pute with periodic boundary conditions and the free-stream condition (3.6). Similar
to the previous numerical example in Section 4.1, a difference of about one percent is
observed between the slip amount computed this way and the slip amount using the
more general projection πj(U) from Appendix A. The results in Figures 4.4 and 4.6
again show u1 and ∂u1/∂x2 versus x1 for various values of x2.

4.3. Flow in a channel with non-periodic roughness. Consider again
Ωmac=[0,1]2, but now let the roughness be parameterized by

ζϵ(x1)=β(x1)φ
ϵ(x1)

β(x1)=sin2
(√

22πx1

)
+0.5

φϵ(x)= ϵ/2(cos(2πx1/ϵ)−1),

so that the periodic roughness is modulated by a smooth function as shown in Figure
4.1c. The no-slip condition is applied at x2=1, periodic boundary conditions are en-
forced at x1=0 and x1=1, and a uniform pressure gradient −∇p=(1 0)T again drives
the flow from left to right.

The algorithm from Section 3.3 is used with

{s1,s2,s3,s4,s5,s6,s7}={0,0.15,0.35,0.525,0.675,0.875,0.975}

chosen to capture the large scale curvature of β. The asymptotic analysis presented in
Section 2.2 suggests it is sufficient to simply compute in a single microscopic domain
with roughness parameterized only by φϵ and then multiply the resulting slip amount by
β(x1) in the effective boundary condition (3.1). However, we chose to apply the general
HMM algorithm to mimic the situation for which an analytic formula for β is not known.
The total slip amount used in the macroscale domain is a linear interpolation of the αj ,
1≤ j≤7.

In this case, the percent difference between the largest and smallest slip amounts
is a non-negligible 23.4%. Figures 4.7 and 4.8 illustrate HMM’s successful capturing of
the slip amount’s horizontal dependence.
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Fig. 4.4. Horizontal component of the flow u1 versus x1 plotted at various heights x2 for the
domain shown in Figure 4.1b.
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Fig. 4.5. Vertical component of the flow u2 versus x1 plotted at various heights x2 for the domain
shown in Figure 4.1b; compared to u1 in Figure 4.4, u2 is roughly one order of magnitude smaller.
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Fig. 4.6. Shear ∂u1/∂x2 versus x1 plotted at various heights x2 for the domain shown in Figure
4.1b.
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Fig. 4.7. Horizontal component of the flow u1 versus x1 plotted at various heights x2 for the
domain shown in Figure 4.1c.
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Fig. 4.8. Shear ∂u1/∂x2 versus x1 plotted at various heights x2 for the domain shown in Figure
4.1c.

4.4. Flow in a channel with quasi-periodic roughness. Consider now a
rough boundary parameterized by the quasi-periodic function

φϵ(x1)= ϵ/3
(
sin(

√
2 ·2πx1/ϵ)+sin(2πx1/ϵ)−2.25

)
,

like the one displayed in Figure 4.1d. As in Sections 4.1 and 4.3, Ωmac=[0,1]2, and
no-slip is applied at x2=0. For both Ωϵ and Ωmac, periodic boundary conditions are
applied at x1=0 and x1=1. For uϵ this is only an approximation, since φϵ is not truly
periodic, which explains the spurious boundary layers in the DNS solution near x1=0
and x1=1, as seen in Figures 4.9 and 4.10.

The same problem is encountered in the micro-domain if periodic boundary con-
ditions are prescribed. Instead, we use the Dirichlet boundary conditions described in
Appendix A for the projection operator πj . In this case the no-slip condition is applied
at the locations (sj ,φ

ϵ(sj)) and (sj+L
mic
j ,φϵ(sj+L

mic
j )). In more general situations

such as this where the microscale roughness is no longer periodic, it is best to take
each Lmic

j >ϵ in order to capture a few “correlation lengths” of φϵ. The results shown
in Figures 4.9 and 4.10 are performed with a single micro domain at s=0.481561 and
length Lmic=5ϵ.

We note also that if one still wants to use periodic boundary conditions for the
microscale computation another option is to further increase the horizontal domain
length L and then replace the smoothing operator from Definition 3.4 with

⟨u⟩L (x,y)=
∫ x+L

x

K(s)u(s,y)ds
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where K is smooth function that has compact support, integrates to unity, and satis-
fies some vanishing moment conditions. Such kernels are well known in the numerical
homogenization community [9,23,28] and likely would be useful in more realistic appli-
cations beyond the academic test cases presented here.
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Fig. 4.9. Horizontal component of the flow u1 versus x1 plotted at various heights x2 for the
domain shown in Figure 4.1d.

4.5. Flow over a backwards facing step. Consider now flow over a backwards
facing step with periodic roughness after the step, as in Figure 4.1e. The roughness is
parameterized by the function

φϵ(x)= ϵ/2(cos(2πx1/λ)−1),

similar to Section 4.1 but with a larger wavelength λ=2.5ϵ. We are primarily interested
in the effect of the roughness on the flow after the step. Hence for simplicity there is
no roughness in the inflow region prior to the step, and the roughness does not cover
the full horizontal extent of the domain. In this case, both viscosity ν=0.1 and ϵ=0.1,
and the horizontal length of the domain is L=23. A Poiseuille inflow profile drives
the flow, and the Reynolds number based on the profile is Re=150. At this value,
some recirculation after the step is expected. A zero-stress condition is applied at the
outflow x1=23: ν∇u−pI=0, and for both the full DNS solution and the 1st order
approximation, the no-slip condition is applied on all other domain boundaries. The
HMM solution, of course however satisfies the slip condition (3.1).

The algorithm from Section 3.3 is used with two points {s1,s2}={7.5,13.5} (marked
with black dots in Figure 4.1e) chosen to lie (i) closer to the step, and hence within
the recirculation bubble, and (ii) farther away from the step, after the bubble. Given
{α1,α2} at these micro domain locations, the slip amount is given as a piecewise linear
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Fig. 4.10. Shear ∂u1/∂x2 versus x1 plotted at various heights x2 for the domain shown in Figure
4.1d.

interpolant

α(x1)=1[6,16](x1)Ilinear ((6,0),(7.5,α1),(13.5,α2),(16,0))(x1) (4.1)

where 1 is the indicator function, and x1=6 and x1=16 are the points at which the
roughness begins and ends, and hence before and after which there should be no-slip.
In retrospect a piecewise constant interpolant Iconstant in the region 6≤x1≤16 would
be more appropriate, since (4.1) does not capture the slip amount as far out in x1 as it
should. Another option would be to simply perform micro simulations at more points
sj ∈ [6,16] along the roughness.

In this case the more general projection operator πj(U) from Appendix A is applied
in both micro-domains. Because of the fluid recirculation, there is a nontrivial mass flux
along the upper computational boundary x2=γ=4ϵ of the micro-domain at s1=7.5.
This results in a 10.2% difference in the slip amounts computed at s1=7.5 and s2=13.5,
even though the roughness pattern is the same. As a result, the HMM solution correctly
captures the effect of roughness on the size of the recirculation bubble, something the
1st-order approximation fails to do. Figures 4.11 and 4.12 thus illustrate the utility of
constraining the micro-domains to match the local macroscropic solution.

4.6. Discussion. In all cases, the HMM solution computed with the algorithm
from Section 3.3 is a clear improvement over the 1st-order, no-slip approximation; it
captures the average effect of roughness on the flow. Although not displayed in the
examples above, separate HMM solutions were also computed by calculating a slip
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Fig. 4.11. Horizontal component of the flow u1 versus x1 plotted at the values x2=
ϵ/4, ϵ/2, ϵ, 2ϵ, 4ϵ, 0.55 for the domain shown in Figure 4.1e.
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Fig. 4.12. Shear ∂u1/∂x2 versus x1 plotted at the values x2= ϵ/2, ϵ, 2ϵ, 4ϵ, 0.55 for the domain
shown in Figure 4.1e.
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length at height x2=h>0

αj,h=
⟨uj1⟩Lmic

j
(sj ,h)

⟨∂uj1/∂x2⟩Lmic
j

(sj ,h)
.

The slip amount fed back to the macro-solver was then defined to be

αj =αj,h−h, (4.2)

based on a simple linear extrapolation of ⟨uj1⟩ from x2=h to x2=0. We experimented
with both h= ϵ and h=2ϵ and found that (4.2) differed from αj computed with (3.5)
by at most a few percent.

As mentioned at the beginning of Section 4, the 1st-order approximation satisfying
the no-slip condition along Γ and the HMM solution are both computed on the same
discretization of Ωmac. For the first four numerical examples presented in Sections 4.1–
4.4, this amounts to approximately 4%–6% of the mesh cells used to discretize Ωϵ. After
accounting for the mesh cells used to discretize each Ωmic

j , the HMM solution is com-
puted on about 8%–19% of the mesh cells used to compute the full, oscillatory solution
uϵ for the parameters described at the beginning of Section 4. Generally speaking, the
cost of the micro-solvers depends on the macroscopic variations of the rough boundary
Γϵ as well as the correlation length of the oscillations. The former affects the number
of micro-domain solutions J while the latter affects the size of each Ωmic

j .
In principle, the computational cost of computing each micro-domain solution is

indepedent of ϵ, since the domain size scales with ϵ. The computational savings afforded
by solving for the HMM solution instead of the full, rough-wall solution uϵ of course
increase as ϵ decreases relative to the measure of Ωmac. For the backwards facing
step problem described in Section 4.5, the system parameters were chosen to highlight
the effect of the roughness on the size of the recirculation bubble. For the selected
parameters, the total mesh cells for the HMM solution was actually about 20% more
than the mesh cells for uϵ. For decreasing ϵ, this situation would reverse, but the
rough-wall’s influence on the macroscopic flow patterns would be less prominent.

Finally, note that in each of the numerical examples presented, the slope of the
roughness profiles ζϵ was O(1). We additionally conducted simulations of flow over
roughness with slopes O(ϵ) and O(1/ϵ), as analyzed rigorously in [11] and [7], respec-
tively; however, we found that the no-slip condition and viscous effects made the effective
slip amount negligible in these cases. We found a similarly negligible effect from adding
higher frequencies to the roughness profiles; for example, for periodic φ, the slip amount
observed from roughness of the form ζϵ(x1)= ϵφ(x1/ϵ)+ϵ

2φ(x/ϵ2) was essentially the
same as for ζϵ(x1)= ϵφ(x1/ϵ).

5. Conclusions and future directions
We develop computational techniques for computing effective boundary conditions

for laminar, viscous flow over a rough surface. The technique is based on coupling a
‘macroscale’ solver M in a large domain with smooth boundary to one or more ‘mi-
croscale’ solvers m localized to the the rough surface. The microscale solvers estimate
the slip amount in the wall-law utilized by the macrosolver. The coupling strategy is
described in the framework of the heterogeneous multiscale method (HMM). So long
as the surface roughness is asymptotically small relative to the size of the full domain,
the method is designed to efficiently capture the average effect of surface roughness on
the flow for arbitrary roughness patterns. Numerical examples illustrate the method’s
utility for a variety of cases.
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We prove the coupled system is consistent for linear Stokes flow in a channel with
periodic roughness; starting from a no-slip Poiseuille flow, a back-and-forth iteration
will converge to a fixed point. Moreover, we show the convergence happens rapidly–
the difference between the slip amounts after the first and second iteration is smaller
than O

(
ϵ2
)
, where ϵ is the small-scale parameter characterizing the surface rough-

ness. Finally, we show the HMM slip amount vanishes as ϵ vanishes, so that the
macroscale HMM flow and the true, rough-wall flow uϵ both converge to the same
quantity, namely, Poiseuille flow with no-slip condition posed on a smooth boundary.
A future challenge remains, however, to rigorously estimate the difference between the
HMM approximation and uϵ, either by adapting the currently available homogenization
techniques [33,34,43] or by inventing new ones.

Laminar incompressible flow over a bed of porous media is a setting analogous to
the current one; future work could build off the studies of [35] and [54] and analyze a
HMM that couples local micro-solvers based on Darcy’s law to Navier-Stokes macro-
solvers for the large-scale flow. In that case, mathematically rigorous results also exist
that suggest the form of the wall-law at the interface of the fluid and porous media [32].

For numerous other boundary layer problems in fluid mechanics however there does
not exist any rigorous theory describing an effective boundary condition that captures
the system’s asymptotic dynamics. The present work offers some indication that a
computational approach based on coupling macro and microscale simulations could be
successfully used to numerically derive wall-laws in such cases.

One example is wall-bounded electrokinetic flows. In the presence of charged sur-
faces, an asymptotically thin charge layer forms [50, 52]. This layer is the primary
source of both momentum and charge transport for such flows; for flows relevant to mi-
crofluidics, however, its physics is poorly represented by continuum models. An HMM
approach would couple a relatively efficient continuum solver M for the bulk flow to a
molecular model m for the near-wall charge layer [18, 47]. One challenge is represent-
ing the effect of thermal fluctuations in both macro and microscale simulations in a
consistent way [20].

Another example is wall-bounded turbulent flow; when the friction Reynolds num-
ber is large enough, there is a clear separation of scales between the near-wall eddies
and those in the bulk flow [51]. Based on this observation, Sandham et al. coupled a
large eddy simulation (LES) to a sequence of micro-solvers localized to the wall in which
direct numerical simulation (DNS) was performed [49]. In the language of HMM, the
coupling was done concurrently, or ‘on-the-fly’. In [15] we built on this approach and
further developed the local DNS solvers for use in a sequential multiscale framework, i.e.
so that precomputed information could be utilized by a macroscale LES. More work is
needed to design a wall-law for an LES that can use such information [46]. Intermittency
remains a formidable obstacle.
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proof of the technique’s convergence to a fixed point, and the anonymous referees for
their helpful suggestions and comments. The authors acknowledge support from the
Oden Institute for Computational Engineering and Sciences and National Science Foun-
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Appendix A. Boundary conditions for micro-scale systems. In more gen-
eral situations in which the macroscopic flow has nontrivial dependence on x1 and/or a
nontrivial vertical component, a more general approach is needed than the “free-stream”
condition mentioned in Remark 3.4. We propose to prescribe quadratic Dirichlet condi-
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tions for both the horizontal and vertical components of the velocity along each of the
three faces of ∂Ωmic

j,D (those that intersect x1=sj , x1=sj+ϵ and x2=γ). Let

Γmic
1 ={(x1,x2)|0≤x2≤γ, x1=sj}

Γmic
2 ={(x1,x2)|sj ≤x1≤sj+Lmic

j , x2=γ}
Γmic
3 ={(x1,x2)|0≤x2≤γ, x1=sj+Lmic

j }

be the left, upper, and right computational boundaries of the micro-domain (the de-
pendence of each Γmic on j is implied). Then there are two quadratic profiles for each
boundary, each with three coefficients to be determined, and hence 18 total constraints
are needed. Let uk and vk be the quadratic profile for the horizontal and vertical compo-
nent of the flow at Γmic

k , k=1,2,3. The no-slip requirement (3.3) gives four constraints

0=u1(sj ,0)=v1(sj ,0)=u3(sj+L
mic
j ,0)=v3(sj+L

mic
j ,0).

Additionally, enforce that the mass flux across each Γmic
k is the same as the macroscopic

mass flux ∫
Γmic
1

u1ds=

∫
Γmic
1

U ·nds∫
Γmic
2

v2ds=

∫
Γmic
2

U ·nds∫
Γmic
3

u3ds=

∫
Γmic
3

U ·nds. (A.1)

Since U is divergence-free, these imply conservation of mass along the micro-domain
boundaries ∫

Γmic
1

u1ds+

∫
Γmic
2

v2ds+

∫
Γmic
3

u3ds=0,

hence satisfying requirement (3.2). Equations (A.1) hence give three more conditions.
To completely specify the quadratic profiles, one more condition each is needed for u1
and u3, two more conditions are needed for v1, v2, and v3, and three conditions are
needed for u2. For continuity, enforce the interpolation constraints

u1(sj ,γ)=u2(sj ,γ)=U(sj ,γ) ·e1
v1(sj ,γ)=v2(sj ,γ)=U(sj ,γ) ·e2

u2(sj+L
mic
j ,γ)=u3(sj+L

mic
j ,γ)=U(sj+L

mic
j ,γ) ·e1

v2(sj+L
mic
j ,γ)=v3(sj+L

mic
j ,γ)=U(sj+L

mic
j ,γ) ·e2,

which leaves one more condition each for v1, u2, and v3. Adding one more interpolation
point for each

v1(sj ,γ/2)=U(sj ,γ/2) ·e2
u2(sj+L

mic
j /2,γ)=U(sj+L

mic
j /2,γ) ·e1

v3(sj+L
mic
j ,γ/2)=U(sj+L

mic
j ,γ/2) ·e2.

ensures the Dirichlet conditions are thus uniquely determined along each Γmic
k , which

then completely defines a projection operator πj .
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Appendix B. Estimates for Stokes flow. By definition

B2=

∫ ϵ

0

u2(x1,0)dx

meaning

|B2|≤
∫ ϵ

0

|u2(x1,0)|dx≤∥u2∥L1 ≤|Ωmic|1/2∥u2∥L2 ≤ [(M+γ2)ϵ]
1/2∥u2∥H1 .

By the Lax-Milgram theorem [8], we know

∥u2∥H1 ≤ (2+C2
p)∥g2∥H1 ,

where Cp is the Poincaré constant (which is estimated in Appendix C) and g2 is the
(nonunique) pre-image of the trace-map Tr of the boundary values for u2:

Tr(u2)=

{
0, x2=γ2

−u1
∣∣
Γϵ
, (x1,x2)∈Γϵ.

Let

g2(x1,x2)=m(x1)(x2−γ2)=

(
u1
(
−φϵ(x1)

)
γ2+φϵ(x1)

)
(x2−γ2)

=

(
−(M−φϵ(x1))(φ

ϵ(x1)+γ2)

γ2+φϵ(x1)

)
(x2−γ2),

then g2(x1,γ2)=0 and g2(x1,−φϵ(x1))=−u1(−φϵ(x1)), i.e. Tr(g2)=Tr(u2). The gra-
dient is

∂g2
∂x1

=
∂m

∂x1
(x2−γ2)=φ′(x1/ϵ)(x2−γ2)

and

∂g2
∂x2

=m(x1)=
u1
(
−φϵ(x1)

)
γ2+φϵ(x1)

.

Measuring each term in the H1 norm:

∥g2∥2L2 =

∫ ϵ

0

∫ γ2

−φϵ(x1)

(
m(x1)

)2
(x2−γ2)2dx2dx1

=
1

3

∫ ϵ

0

(
m(x1)

)2
(φϵ(x1)+γ2)

3dx1

=
1

3

∫ ϵ

0

[
u1
(
−φϵ(x1)

)]2
(φϵ(x1)+γ2)dx1

≤ 1

3
ϵ(Mγ2)

2(M+γ2)

since u1(φ
ϵ) is largest at y=0 and φϵ(x)≤M .

∥∂g2/∂x1∥2L2 =

∫ ϵ

0

∫ γ2

−φϵ(x1)

(φ′(x1/ϵ))
2
(x2−γ2)2dx2dx1
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=
1

3

∫ ϵ

0

(φ′(x1/ϵ))
2
(φϵ(x1)+γ2)

3dx1

≤ 1

3
ϵ(M+γ2)

3∥φ′∥2∞ .

Finally,

∥∂g2/∂x2∥2L2 =

∫ ϵ

0

∫ γ2

−φϵ(x1)

(m(x1))
2
dx2dx1

=

∫ ϵ

0

(
u1
(
−φϵ(x1)

))2
γ2+φϵ(x1)

dx2dx1

≤ 1

γ2

∫ ϵ

0

(
u1
(
−φϵ(x1)

))2
dx1

≤ ϵ

γ2
(Mγ2)

2= ϵγ2M
2.

Putting it all together:

∥g2∥H1 ≤
[
1

3
ϵ(Mγ2)

2(M+γ2)+
1

3
ϵ(M+γ2)

3∥φ′∥2∞+ϵγ2M
2

]1/2
=:σϵ, (B.1)

so that in total

|B2|≤ (2+C2
p)[(M+γ2)ϵ]

1/2σϵ. (B.2)

Next we bound B̃3. By definition

B̃3=

∫ ϵ

0

ũ3(x1,0)dx1

meaning

|B̃3|≤
∫ ϵ

0

|ũ3(x1,0)|dx1≤∥ũ3∥L1 ≤|Ωmic|1/2∥ũ3∥L2 ≤ [(M+γ2)ϵ]
1/2∥ũ3∥H1 .

Again we know by the Lax-Milgram theorem [8] that

∥ũ3∥H1 ≤ (2+C2
p)∥g3∥H1 ,

where g3 is the pre-image of the trace-map Tr of the boundary values for ũ3:

Tr(ũ3)=

{
1, x2=γ2

0, (x1,x2)∈Γϵ.

Let

g3(x1,x2)=

{
x2/γ2, (x1,x2)∈ [0,ϵ]× [0,γ2]

0, (x1,x2)∈Ωmic \ [0,ϵ]× [0,γ2].

Then

∥g3∥2H1 =

∫ ϵ

0

∫ γ2

0

(
x22+1

)
/γ22 dx2dx1= ϵ

(
γ2
3
+

1

γ2

)
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meaning

|B̃3|≤ (2+C2
p)[(M+γ2)ϵ]

1/2∥g3∥H1 = ϵ[(M+γ2)]
1/2(2+C2

p)

(
γ2
3
+

1

γ2

)1/2

. (B.3)

Appendix C. Estimate for Poincaré constant. The bounds (B.2) and (B.3)
both depend on the Poincaré constant Cp, i.e. the constant such that

∥u∥2L2(Ωmic)≤C
2
p ∥∇u∥

2
L2(Ωmic) ∀u∈H

where

H={ψ∈H1(Ωmic) : ψ|Γϵ
=ψ|x2=γ2

=0, ψ is periodic at x1=0 and x1= ϵ}.

We now show Cp→0 as ϵ↘0, which is necessary to determine the asymptotic character

of B2 and B̃3.
Let u∈H. For x1∈ [0,ϵ), we know from direct computation of the spectrum of

the operator −∂2/∂x22 acting on the interval [−φϵ(x1),γ2] with homogeneous Dirichlet
boundary conditions that∫ γ2

−φϵ(x1)

|u(x1,x2)|2dx2≤
(
Ly(x1)

π

)2∫ γ2

−φϵ(x1)

∣∣∣∣ ∂u∂x2 (x1,x2)
∣∣∣∣2 dx2

where Ly(x1)=γ2+φ
ϵ(x1)≤γ2+M . Integrating both sides of the inequality from x1=

0 to x1= ϵ then gives

∥u∥2L2(Ωmic)≤
(
γ2+M

π

)2∥∥∥∥ ∂u∂x2
∥∥∥∥2
L2(Ωmic)

≤
(
γ2+M

π

)2

∥∇u∥2L2(Ωmic) (C.1)

so that indeed Cp→0 as ϵ↘0 as desired.
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