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HOMOGENIZATION OF
PARABOLIC SYSTEMS WITH SINGULAR PERTURBATIONS*

QING MENGT AND WEISHENG NIU#

Abstract. We investigate convergence rates in periodic homogenization of second-order parabolic
systems with fourth-order singular perturbations. Different rates depending on k and e, which represent
respectively the strength of the singular perturbation and the scale of the heterogeneities, are obtained
for the problem with Dirichlet and Navier boundary conditions.
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1. Introduction
Let ©Q be a bounded domain in R?, d> 2. We consider the quantitative homogeniza-
tion of second-order parabolic systems with fourth-order perturbations,

Ous+Leu.=F in Qx(0,7), (1.1)
where
L.=r>A?—div(A(z/e,t/e*)V), 0<k,e<l.

We assume that A(y,s) = (A%ﬁ (y,9)),1<4,5<d,1 <a,8<n,isreal, bounded measurable
and satisfies the ellipticity condition,

1
ple? < AP (y,s)€0¢€) < ;\82 (1.2)

for any €= (£2)€R™ 4 and a.e. (y,s) €RT! where u>0. Furthermore, we assume
that A is 1-periodic in (y,s), i.e.,

A(y+z,5+7)=A(y,s) for any (z,7) €Z**! and a.e. (y,s) e R (1.3)

Investigations on homogenization of partial differential equations with singular per-
turbations goes back to 1970s. In [2], Bensoussan, Lions, and Papanicolaou established
the qualitative homogenization theory of (1.1) and the associated elliptic problems

K2A%0, —div(A(z/e)Vu)=F(z) inQ, 0<e<l, (1.4)

with k=¢. Later on, in [5] Francfort and Miiller conducted systematic studies on
qualitative homogenization of (1.4) and the related nonlinear functionals for the case
k=e",0< A< oo. The results in [2,5] show that singular perturbations play an essential
role in determining the coefficients of the effective problems. With the aim to quantify
the combined effect of singular perturbations and homogenization, we investigated the
quantitative homogenization theory of elliptic systems in the form of (1.4) in [14,17].
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2108 HOMOGENIZATION OF PERTURBED PARABOLIC SYSTEMS

Particularly, the convergence rates, which depend on the scale x that represents the
strength of the singular perturbation and on the length scale ¢ of the heterogeneities,
were established in [14]. More recently, the convergence rate for (1.4) with x=e¢ in R?
was studied in [18]. The aim of this paper is to extend our previous results in [14] to
the parabolic settings.

Let Qr=Qx(0,T), and T'7 =00 x (0,T). For F € L?(Qr), h€ L*(Q), let u. be the
weak solution of the problem

O +Leu.=F in Qr, ue=h on Qx{t=0} (1.5)

with Dirichlet boundary conditions

Ou,
ov

(where v is the outward unit normal to 9€2), which means that u. € L?(0,T; H3(Q))N
L>(0,T;L%(9)),

us =0, =Vu.-v=0 onIrp (1.6)

- / uOppdadt+k% | Au.Apdrdt+ [ A(x/et/e*)VuVodadt
Qr Qp Qr

T
:/ (Fa¢>H—2(Q)ng(Q)dt+/Qh¢(0)d$
0

for any ¢ € C2°(Q % [0,T)). Suppose that k= k() satisfies the assumption

k—0 as e—0, and limE:p. (1.7)
e—=0¢

Under conditions (1.2), (1.3) and (1.7), we prove that as e — 0 the weak solution u. of
(1.5) and (1.6) converges weakly in L?(0,7;H'(Q)) and strongly in L?(0,T;L?*(2)) to
the solution ug of the following problem

Opug — diV(EVuo) =F in Qrp,

(1.8)
up=h on Qx{t=0}, and up=0 on I'r,

where the effective coefficient A depends on p in three cases: p=00,0<p<oo and p=0
(see Section 3 for the details).
Our first result can be stated as follows.

THEOREM 1.1.  Let Q be a bounded C*1 domain in R%,d>2 and A satisfy (1.2)-(1.3).
Suppose (1.7) holds, and if p=0 we also assume that A(y,s) is Lipschitz continuous in

Y, i.e.,
|A(y1,8) — A(y2,8)| < Llys — 2|, for any y1,y2 €R? and s> 0. (1.9)
Let ue be the solution to (1.5) and (1.6), and ug the solution to (1.8). Then
[ue —uollz297) < {IF L2007 + IRl 3 () }
Ch (5+E+(E/I€)2) if p=o00,
x4 Oy (/1—|—€+p_2|p2—(fi/8)2|) if 0< p< oo, (1.10)

CS(H+E+(I€/€)2) if p=0,
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where C1,Cs depend only on d,n,u,2 and T, while Cs depends only on d,n,u,Q,T and
L.

Note that the error estimate in (1.10) involves three terms. The first term x is
due to the singular perturbation, and the second term e by homogenization, while the
third term is generated by the error between A and A* (see (3.5) for the definition of
A*). There are one-dimensional examples in the elliptic case [6], which show that the
perturbation error O(k) is optimal. It is well known that homogenization error O(g)
is also optimal. Moreover, our estimate on |E—A>‘| should also be sharp as A—0 or
A — 00. Therefore, the convergence rate in (1.10) should be optimal.

Our next theorem provides the error estimate for the problem with the Navier
boundary condition

ue=Au.=0 onI'r. (1.11)

THEOREM 1.2.  Let ) be a bounded C** domain in R%,d>2 and A satisfy (1.2)-(1.3).
Suppose (1.7) holds, and if p=0 we also assume that A(y,s) satisfies (1.9). Let uc be
the solution to (1.5) and (1.11), and ug the solution to (1.8). Then

Jue —uoll L2 (2r) < {I1F 2220y + 12l 202y }

Cl(m2+5+(5/m)2> if p=o0,
X Cg<n2+s+p*2\p2f(n/€)2\) if 0< p< oo, (1.12)
Cg(lﬂ:Q-i-E—l-(Fc/E)Q) if p=0,

where C1,Cy depend only on d,n,u,) and T, while Cs5 depends only on d,n,u,Q,T, and
L in (1.9).

The difference of the convergence rates in (1.10) and (1.12) is due to the variance
of optimal convergence rates for the singular perturbation problem

O + K2 A%, — div(A(z,t)Vu,)=F in Qp, wu.,=h on Qx{t=0} (1.13)

supplemented with different (Dirichlet and Navier) boundary conditions. We note that
convergence rates in singular perturbations (without homogenization) of elliptic and
parabolic equations have been studied deeply [3,6,11-13,19]. For problem (1.13) with
Dirichlet boundary conditions, the O(x'/2?) convergence rate was obtained in [12], while
the interior O(k) convergence rate was obtained in [6]. Later on, Schuss established
the O(k) rate in [19] for the case d=2 and A=1. Tt is also worth remarking that the
example in [6] shows that the O(k) rate is optimal for the initial-Dirichlet problems.
Yet, in Theorem 2.2 we shall prove that the optimal convergence rate should be O(x?)
for problem (1.13) with the Navier boundary condition (1.11). Moreover, our proof of
Theorem 2.2 is quite different from the one in [19].

We recall that the convergence rate in homogenization of parabolic equations (sys-
tems) has been studied intensively. For the case k=0, the O(g)-order convergence rate
in homogenization of Equation (1.5) has recently been derived in [8]. The result was
then extended to higher order parabolic systems in [15], and to second order parabolic
systems in non-smooth cylinders in [16,24]. See also [1,7,9,10,23,25] for more related
results. Compared with the previous works for parabolic systems, the main difficulty
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we encounter here is that the original equation and its limit have different orders, and
therefore have different number of boundary conditions. Moreover, the scaling of the
singular perturbation is different from the other parts of the operators.

To prove Theorem 1.1, we first introduce a family of A-dependent operators

Op+ L2 =0, + N2 A% — div(A(z /e, t /2 V), (1.14)

for which the e-scaling is the same in each part of the operator. Let 5‘t7div(//l3‘V)

be the homogenized operator of 9;+ L2, where A* is given by (3.5). Let u. ) be the
solution to

(atJrE;‘)us,)\:F in Qp, wu.x(z,00=h inQx{t=0}

with homogeneous Dirichlet boundary conditions, and ug,\ the solution to the homog-
enized problem. We first investigate the convergence rate in the singular perturbation
of the parabolic systems with periodic boundary conditions (see Section 2), by which

we establish the error estimate between A and A (see Section 3 for the details), and
moreover, the bound of ||ug,x —uol|£2(0;). Then we introduce proper auxiliary function
(see (4.6) in Section 4 for the meaning of each term)

0 8um
K il
( al’j >7

We A (2,) =ue  — o a1,6 — (X ) K= (Vg ») +€2(%2(d+1)j)587xk e
which helps us overcome the difficulty caused by the difference of the orders of the
original equations and its limit (see Section 4 for more explanations). Finally, by per-
forming the two-scale expansion and adapting the duality argument originated in [22]
(see also [8,20,21]), we derive the estimate of ||uc x —uo x| L2(q,), Which, together with
the bound of ||ug x —uo||£2(0r) and the observation u. y =u. if A=r/e, gives the esti-
mate 1.1.

The proof of Theorem 1.2 is slightly different. The key point is to deal with con-
vergence rates of singular perturbation and homogenization separately. To this aim,
besides (1.14) we also introduce an intermediate problem

(8t+£8)1]57)\+/\282A21]57)\ =F in QT, (1 15)
ver=h on Qx{t=0} and v.x=Av, =0 on 'y, '

where £ is given by (3.4) and (3.5). Let vg ) be the unique solution to the limit problem
(as e —0) of (1.15), i.e.,

(Or+LYvor=F inQp

with vgx=h on Qx {t=0} and vy, =0 on I'r. We first establish the error estimate in
singular perturbation, i.e., the error estimate between v, » and vg » (see Theorem 2.2).
Then we consider the convergence rate in pure homogenization, i.e., the error estimate
between u. x and v, . This step is quite similar to the proof of Theorem 1.1, except the
auxiliary functions. Note that the error estimate between uo and vy ) follows from the

estimate on |121\ — A*| and standard energy estimates. We can finally complete the proof
of Theorem 1.2 by using the triangle inequality and setting A=x/e as in Theorem 1.1.
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2. Singular perturbations

2.1. Periodic boundary conditions. Let C’go(Rd) be the space of C*°, 1-
periodic vector valued functions in R%. For k>0 and T¢=[0,1]¢, let H}(T*) denote the
closure of C5°(R?) in H*(T%), and HZ’f('H‘d) the subspace of H(T%) with zero spatial
mean, i.e., [;,vdzr=0. In particular, HS(’]I‘d) :Lf,('ﬂ‘d).

Consider the operator

Op+ L =0+ N2 A% —div(A(z,1) V), (2.1)

where A is l-periodic in x and satisfies the ellipticity condition (1.2). For F'e€
L2(0,T;L2(T%)),h € L2(T%), let uy € L*(0,T;H2(T?)) be the unique solution to

dux+L uy=F in T¢x(0,T) and uy(z,0)=h, (2.2)
and ug ELQ(O,T;H; (T9)) the unique solution to
dpug — div(A(z,t)Vug)=F in T¢x (0,7) and ug(x,0)=h. (2.3)

LEMMA 2.1. Assume that A satisfies (1.2) and is 1-periodic in x. Let uy,ug be,
respectively, the weak solutions to (2.2) and (2.3), and uo € L?(0,T;H*(T?)). Then

[Vux = Vuo| L2(rax(o,r)) < CAlluoll L2 0,712 (Tay), (2.4)
where C' depends only on d,n,u and T.
Proof. Let w=wuy—wug. Then
(Op 4 LY)w = — N2 A%,
Thus for any 1/J€L2(0,T;H§(Td))7

(0 + L) w, )| < N[ Auoll L2 (0,712 (vay) 1A% || 12 0,712 (Ta)) - (2.5)

By taking ) =w in (2.5) and using the Cauchy inequality, we obtain

MAw]| g2 (e x 0,1y) T IVWl 2 (1ax (0,7)) < CAM|woll 20,7312 (14Y) 5 (2.6)
which gives (2.4). d

THEOREM 2.1.  Suppose A is 1-periodic in x and satisfies the assumptions (1.2) and
(1.9). Let uy and ug be, respectively, the weak solutions to (2.2) and (2.3). Then

llux—uoll 20, 7;22(ray) < CXN*{UIF || 20,7 22(1e)) + 1Pl £2(Ty } (2.7)
where C depends on d,n,u, T, and L in (1.9).

Proof. For H € L*(0,T;L(T?)), let vy € L2(0,T; H2(T?)) be the weak solution to
the problem

—Ourn+LMuy=H inT4x(0,7) and wvy=0 on T¢x {t=T},

where L2 =)\2A2 —div(A*V) with A* = ((AZB)*) = (Aff‘),l <i,j<d,1<a,B<n. Let
vo € L2(0,T; H}(T?)) be the unique solution to the limit problem

—0wo—div(A*Vug)=H in T¢x (0,7) and vy=0 on T?x {t=T}.
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Then vy (T —t) and vo(T —t) are the solutions to (2.2) and (2.3) with h=0,F = H (z,T —
t) and A(x,t) replaced by A*(x,(T' —t)). Define w(x,t) =vy(x,T —1t) —vo(z,T —1t). We
derive from (2.6) that
AMAW| 2 (e 0,7)) + IV L2 (e x (0,1)) < CAllvoll 20,7512 (74)) - (2.8)
Note that

! w- Hdxdt| = T((Bt—&—ﬁ)‘)w,v,\(t»dt

0 Td 0
< ’/T«a + L) N(Tt)}dt’+‘/T<(3 + L) (t))dt|. (2.9)
=1/, t w,w . t w, Vo . .

By (2.5), (2.6), and (2.8),

T
‘/ <(at+[’)\)wai5(T_t)>dt‘S)‘QHAuO”L?(QT;L?(Td))||A1EHL2(O,T;L2(’J1"’))
0
SC>\2||U0||L2(0,T;H2(1rd))||U0HL2(0,T;H2(W)), (2.10)

and
T
‘/ <(8t +£’\)w,v0>’ S)\2||AUOHL2(O,T;L2(’H‘d))||AUO||L2(O7T;L2(’]I‘(1)). (211)
0

Since A satisfies (1.9), we have the following H? estimates

lluoll 20,712 (ray) < C{IF | 20,7502 (Tay) + 1Bl L2(7a)

lvoll 20,712 (rey) < CllH || L2 0,722 (14))>

where C' depends on d,n,u, and L in (1.9). From (2.9)—(2.11), it follows that

T
‘/ /dw~Hd:L'dt‘ SCAz{”F”L?(O,T;L%’]N)) + ||hHL2(Td)}||H||L2(07T;L2(Td)),
0 T

which, by duality, gives (2.7). |

REMARK 2.1. Let F(z,t) be 1-periodic in (z,t), and A satisfy (1.2), (1.3) and (1.9).
Let uy be the solution to

Bpur+LANuy)=F in Q1 =T*x(0,1),
ux(z,t) is 1-periodic in (z,t), fol Jpaux(z,t)dzdt =0,

and let ug be the unique solution to the limit (as A —0) problem, i.e,

Opug —div(A(z,t)Vug)=F in Qq,
uo(x,t) is 1-periodic in (z,t), fol Jpauo(z,t)dedt=0.

With slight modifications on the proofs of Lemma 2.1 and Theorem 2.1, we can prove
that

||’LL)\ - 'LLO”LZ(T(H»I) S C)\2 HUOHLZ(OJ;HZ(Td)). (212)
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2.2. Navier boundary conditions. For he L?(Q),F € L*(Q7), let uy be a
weak solution to

8tu,\+£>‘u,\ =F in QT,

(2.13)
uy=h on Qx{t=0} and wuy=Auy=0 onTI'r,
where £ is defined in (2.1), and ug the solution to
Opug —div(A(z,t)Vug)=F in Qr,
up=h on Ox{t=0} and wuy=0 on I'p. (2.14)

We investigate the convergence rate of uy to ug as A tends to zero.
LEMMA 2.2.  Assume that A satisfies conditions (1.2). Let uy,ug be, respectively, the
weak solutions to (2.13) and (2.14), and ug € L?(0,T; H?(SY)). Then
[Vur —Vuollrz(or) < CAlluoll z20,7;52(22)). (2.15)
where C' depends only on d,n,u and T.
Proof. Note that

O (ux —up) — div(AV (uy —up)) + A A%uy =0.

Since uy =Auy =0 on I'z. For any ¢ € L2(0,T; H}(Q)NH?(Q)), we have

T
/ (O (ux —ug) — div(AV (uy —ug)),p)dt + \? AuyApdrdt=0.
0 Qr

By setting ¥ =wuy —ug, we get
IV (ux = w0) 1220y + X2 AurllZ2 0,y < CAZ (| AU 220y (2.16)

from which (2.15) follows. |

REMARK 2.2. The proof above doesn’t seem to work directly for the problem with
Dirichlet boundary conditions. Note that in this case uy =Vu) -v=0 on the boundary,
but Vug does not necessarily equal to 0 on the boundary. To derive the convergence
rate, one may first consider the error estimate between u) and ug(. for proper smooth
cut-off functions (., see e.g., (4.6). Then by some boundary layer estimate and the
triangle inequality to derive the error estimate between uy and wug. It is also worth
remarking that due to the deviations of Vuy and Vuy on the boundary, one can not
expect the first order error [[ux —uol|p2(0,7;m1 () With the sharp order O(A) [6].

THEOREM 2.2.  Assume that A satisfies conditions (1.2) and (1.9). Let uy,uq be,
respectively, the weak solutions to (2.13) and (2.14), and ug € L?(0,T; H*(Q2)). Then

lux —uollr2(0r) < % [woll2(0,7512(02)) (2.17)

where C' depends only on d,n,u,Q,T, and L in (1.9).

Proof.  For HeC§(Qr), let vy e L?(0,T;H?(QQ)) be the weak solution to the
problem

—8tv>\+£)‘*v)\:H in Qp,
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vA=0 on Ox{t=T}, v=Av=0 on Iy,

where £ =)2A2 —div(A*V) with A*=((A})")=(A)"),1<i,j<d,1<a,B<n. Let
vp € L?(0,T; H}(Q)) be the unique solution to the limit problem

—Owo—div(A*Vug)=H in Qpr and vy=0 on Qx{t=T1}.

Then vy (T —t) and vo(T —t) are the solutions to (2.13) and (2.14) with h=0 and A(z,t)
replaced by A*(x,(T' —t)). In view of (2.16), we have

IV (0x = v0)l1 2000y + A2 1A 7200y SON? | Avo 17200y (2.18)

Let w=wuy—up and w(z,t)=vy(x,T —t) —vo(x,T —t). Note that
T T

’/ (w,H>dt‘§‘/ (atw—div(AVw),vo)dt’
0 0

T T

g’ / (3twfdiv(AVw),{E(Tft)>dt’+‘ / (Byw—div(AVw), v (1)) dt
0 0

<CN|Aus 2@ {IVOll L2 (r) + 1AM L2 (02 }- (2.19)

This, together with (2.16), (2.18) and the H? estimates for vy (see [4] for the H?
estimates of parabolic systems in nondivergence form in Ri xRT. One can derive the
estimate for vy by using standard extension and covering argument)

IV2v0ll 22 (r) S CIlH | 2021,
gives (2.17) by duality. 0
3. Qualitative homogenization

3.1. Correctors and the effective problem. The aim of this part is to
investigate qualitative homogenization of (1.1), for which the effective problem has
been recognized in [2] for Kk =¢. Denote ke~! as A=\(¢). Then 0< A < oo and the first
equation in (1.1) can be rewritten as

atuE,A—&—Eg‘uE,)\:F, (3.1)
with
L2 =N22A% —div(A(z/e,t/e*)V).
For fixed 0<A<oocand 1<f8<n, 1<j<d, let X;"B = (X?’m, ...,X?’"ﬂ) be the unique

weak solution to the following cell problem
0 + N2 A2 M —div[A(y,s) V(P +x}7)] =0 in R,
X;"B(y,s) is 1-periodic in (y,s), (3.2)
Jrasi X3 (y, ) dyds =0,

where Pjﬁ =;(0...1...0) with 1 in the Sth position. Note that [, x*(y,s)dy=0 for s € R.

By standard energy estimates and Poincaré’s inequality, we have for 0 < A < oo,
XM 2 rasry + VXM e rasry < C(1+A) 72,

3.3
HV2X)\||L2(T¢1+1)SC)\_I(1+/\)_17 ||V3X/\||L2('JI“H1)§C)‘_2 ( )
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for some constant C' depending only on d,n,u. On the other hand, for A=0 one has
||VXO||L2(Td+1) <C.

Thanks to [2], for each fixed A >0 the homogenized operator of d; + £2 is given by
B+ L =0, — div(A V), (3.4)

_ ——af
where the effective coefficient matrix A* = (A/\ij Ywith 1< a,8<n,1<4,j<d, is defined
as

/\aﬁ [e% «
Akij = ]{rdﬂ [Aijﬂ (y,5) "‘Aik’y (y,5)0y, X?ﬁﬂ (y,s)]dyds. (3.5)

Here and henceforth we use fEu to denote the L' average of u over the set E, i.e.,

JCE“:ﬁIE“

LEmMA 3.1. The matriz A> is bounded and satisfies the condition (1.2) with i
replaced by some constant pg depending only on d,n, and p.

Proof. By the estimates of x* in (3.3), we know that |//13‘| < po with pg depending
only on d,n, and p. On the other hand, observe that for any matrix £ = (ff) eR™x4,

(Ae,6)= ﬁ AR )0y, (6 P 60X dyds
1
+A? f & X €8 A dyds + / (057 X0 ds (3.6)

Td+1 0

Note that
! A A
| 07 e eyds—o.
0
We therefore obtain from (3.6) that
W)= ] AQ0, (] +6)77)0,, (€ PE -+ €00 dyds.
']1‘ L
>uf VP +E7) Pdyds
Td+1

— g, IV Pdyds
> pléf?, (3.7)

where we have used the fact fwﬂ Vx*dyds=0 for the third step. 0
Define

I A= fra Aly,s)dyds if p= o0,
AP if 0<p< o0,

where A7 is defined as in (3.5).
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LEMMA 3.2.  Suppose A satisfy (1.2) and (1.3). Then AN A as A— p. More precisely,
we have

CA\ 2 for 1< A< o0,p=00,
|AN=A|<SClL=(\/p)?|  for 0<p,A<oo, (3.9)
C'\? for 0<X<1,p=0,if in addition |V A| <L,

where C depends only on p,n and d, while C' depends on u,n,d and L.
Proof. The estimate for p=o00 in (3.9) is a direct consequence of (3.3) and Holder’s
inequality. We pass to the case 0 < p <oco. Note that
A5 (X" —x*) —div(A(y,5) V(x* —x) +A2A% (" —x) = (A2 = p*) A%x".
By standard energy estimates,

IV O =X M3 2 oy + AP NAE =X )72 pasy
<CIN = IV3X° L2 asny IV (X = x| 2 rasey.-

This, combined with (3.3), gives

[VX? = Vx| 2 qrasy < Cp 2N = p?),

which, together with the definitions of AN and E, implies the desired estimate. Finally,
the estimate in (3.9) for p=0 follows from (2.12) and the observation

|AA*A°\:|]{Td+1A(Z/75)V(XA*XO)dde|S||VyA||oo||XA*XOHLz(TdH)- (3.10)

The convergence of A* to A (as A— p) for the case 0 < p<oo follows directly from
the first two estimates in (3.9). By approximating A with a sequence of smooth matrices,

we can obtain the convergence of A* for p=0 from the third estimate in (3.9). Let us
omit the details for concision. |

THEOREM 3.1. Suppose A satisfies (1.2)-(1.3) and k satisfies (1.7). Let Q2 be a bounded
Lipschitz domain in RY. For F € L?(0,T;H~1(Q)),h€ L?(Y), let u. be the solution to
(1.5) subjected to the boundary condition (1.6) or (1.11), and ug the unique solution to
(1.8), with A being defined as (3.8). Then u. converges to uy weakly in L2(0,T;H'())
and AVu. converges to ANy weakly in L2(Qr) as € — 0.

Proof. By standard energy estimate,

Rl Aue | p2q) + el L2 0,51 0)) S CUNE Nl 220,781 (9)) + 1Bl 220 } - (3.11)

Thus kAu. and A°Vu, are uniformly bounded in L?(Qr), where A% (z,t) = A(z/e,t/e?),
while u,dyu. are uniformly (in &) bounded in L?(0,T;H*(Q)) and L?(0,7;H~2(Q2)),
respectively. And there exists a function ug such that, up to subsequences,

u. — ug weakly in L*(0,T; H'(2)),

Orue — Oyug weakly in L2(0,T; H2(Q)),

A*Vu, — M(z,t) weakly in L?(Qr),

ue — ug strongly in L?(Qr).

(3.12)
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Moreover, it is not difficult to see that uo(0) =h, and
Orug —divM =F  in L2(0,T; H()).

Next, we show that M = AV, which implies that ug is the weak solution to (1.8), and
the whole sequence u. converges to ug weakly in L?(0,T;H'(£2)).
Let X;’\’ﬁ(y,s) be the corrector of the dual operator of d; + L2 with A=k/e. Let

05:Pjﬁ+5x;)"ﬂ(x/6,t/52), 1<j<d, 1<pB<n.

We have for any ¢ € C°(Q2r),

T
_ / (00 ue0)dt+ 222 | AOA(uco)dadt+ / (A% V.V (u.)dadt=0. (3.13)
0

QT QT

On the other hand, by (1.1),

T T
/ (Opuc, 0. )dt+X°e* [ AucA(Pf:)dwdt + / A*Vu V(90 )dadt = / (F,¢0:)dt,
0 0

Qr Qr

from which, we subtract (3.13) to obtain that

2222 / Au VO NV odrdt —2X%2 | A0 Vu.Vodzdt
QT QT

+2%22 [ Aucb.Addzdt — N2 | Abu.Addzdt
QT QT

—|—/ AEVuEHEVQSdmdt—/ (A%)*VO.u:Vodrdt
QT QT

T T
- / (uc,0-0,0)dt + / (F,0.)dt. (3.14)
0 0

Denote the right-hand side of (3.14) as (3.14),, and the terms in the left-hand side of
(3.14) by (3.14),,...,(3.14) 4 sequentially. By (3.3) and (3.11), we know that

(3.14), + ...+ (3.14), — 0 as e—0. (3.15)
Note that by (3.3)
95]- — Pjﬂ strongly in L*(Qr) and weakly in L?(0,T; H*(Q)),

which implies that

(3.14), — i M PP0, ¢dxdt,

T T
(3.14)70%/0 <u0,Pfat¢>dt+/o (F,P/¢)dt= i MV (P} §)dadL.

(3.16)

Furthermore, since

AT AV (P2 4+ XM VP dyds,

ij T+ %
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the weak convergence result for periodic functions implies that for each fixed A >0,

— B«
(A5)*V0, — A,

weakly in L*(Qr).

Noticing that u. —ug strongly in L?(Q7) and A* 5 A as e tends to zero (see Lemma
3.2), we get

(3.14) 5 — — / AP g0y, ¢dudt = / AD2 0, uf pdudt. (3.17)
Qr

Qr

By taking (3.15)-(3.17) into (3.14), we get

M%dxdt_/ AP, uf ¢ dudt

for any ¢ € C°(Qr). It follows that M :A\Vuo. The proof is complete. 0

3.2. Flux correctors and an ¢ smoothing operator. Let x* be the correctors
given by (3.2). For 1<7<d+1, 1<i<d, we define

2 8 A af af ozfanJ /}\aﬁ p =
Bj}aﬁz{x LA LA AT PG DT i r—, (318

X}’ o if F=d-+1.

The following lemma provides the existence of flux correctors for the operator 9; +
L.

€

LEMMA 3.3. Let 1<a,f<n, 1<4,k,j<d and 1<, 7<d+1. There exist 1-periodic
functions B2 (y,s) in R such that

CTJ
S )
STj 7<)
3.19)
A, A« p e (
Bij B( ) ayk%kzjﬁ( )+a B d+€ )ij (yas)

Furthermore, there exists a constant C, depending only on d, n,u, such that

H%cm lL2(0,0;m1 (1ay) <C,  if 1<5,7<d,
||V%?£ﬁ||mm+||v2%?$5||ww>s0<1+A>-2, ifSorT=d+1,  (3.20)
V38227 o pasny SCATH A+ N) 7Y, if S orT=d+1.

CTJ

Proof. The construction of %g’;‘ﬁ is completely the same as in [8]. The estimates

in (3.20) are direct consequences of the estimates for x* in (3.3). Let us omit the details.
0

Let ¢1(s)€C(—1/2,1/2), p2(y) € CX(B(0,3)) be fixed nonnegative functions
such that

/gpl(s)zl and pa(y)=1.
R

Rd

Set ¢1,:(s) = Zp1(s/e?), p2.(y )Zs%@g(y/@, and define

SN = [ o1 o) w—pt=s)dyds. (3.21)
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LEMMA 3.4. Let S; be defined as above. Then

HSE(Vf) 7vf||L2(]Rd+1) §C€{||V2fHL2(Rd+1) + Hatf||L2(Rd+1)}, (3.22)

where C depends only on d. Moreover, let g(y,s) be 1-periodic in (y,s). Then

lg(z/e,t/e?)Se(V* F)(2,6) |l 12 marty < O™ gl pcrarny |l 2 as), for k=0,1,2...,

(3.23)
where C' depends only on d.
Proof.  See Lemmas 3.2 and 3.3 in [§], or Lemma 3.2 in [15] for the proof. d
For Q CR? and 0< § < cpdiam(2), let
Q7,5 =(Qsx(0,7)) U (2% (0,6%)), (3.24)
where Qs = {x € Q:dist(x,00) < J}.
The following lemma is a direct consequence of Lemma 2.8 in [14].
LEMMA 3.5. Let Q be a bounded Lipschitz domain in R®. Then,
[[ull 22 (025 x (0.7)) < C[IVul L2 (45 ¢ (0,1)) for ue L*(0,T; Hy(Q)),
el 2 (02 0.7 < CO2ull ot 1l 1550 gy for we L2(0, T3 HY()), (3:29)
and for we L*(0,T; H*(Q) N H (L)),
lull s x0:17) < C8 2 lull o, oars e 1l oo 722 (3.26)

where C depends on d and Q.

4. Convergence rate for the initial-Dirichlet problem
For F € L*(Qr),h € L*(Q), let uc ,up x be respectively the weak solutions to

(O +LD)ucr=F in Qp,

du,. (4.1)
usa=h on Qx{t=0}, wu.r= YsX _p on I'r,
’ ’ ov
and
(&54—[’8)1@7}\ =F in Qrp,
upa=h on Qx{t=0}, upr=0 onIp, (4.2)

where £2,£)(0< X< oo) are defined as in (3.1) and (3.4).

We now investigate the error estimate between u. ) and wup x by the classical two-
scale expansion method [8,12]. The key step is to find the proper first-order approxi-
mation of u. x, say ¢. x, and derive the \/e-order error estimate between u.  and ¢. x
in L2(0,T; H*(2)). By formal expansions, one might expect the function

2
c 8 U, A
3xj83ck

den =tor+e(x) Vo —*(BRary,)

to be the right approximation of u. ) in L2(0,7;H(2)). Unfortunately, it can not be
the candidate as it does not necessarily belong to L?(0,7;H(Q2)). Actually, since the
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Equation (4.1) is fourth order, to proceed the two-scale expansion strictly and effectively,
the right approximation should belong to L?(0,T;H?(f2)). Moreover, ¢. \ given above
does not satisfy the Dirichlet boundary condition, and therefore cannot approximate
well the function wu. ) near the boundary. To overcome these difficulties, we need to
introduce the smoothing operators and cut-off functions to make proper modifications

on ¢)57>\.
For 0 <4 <1 to be determined, define the operator K. =K, ;5 as following

Ks(f)(xat):Ss(f)(xvt)n(;(xvt)a (43)

where S; is the smoothing operator defined in (3.21), and 15 =1 s(x)n2,5(t) is the cut-off
function with 1 5 € C2°(R%),m2 5 € C°(R), and
0<ms<1l, ms=01in Qs5, ms=11n Q\Qys,
0< 2,6 < 1, 72,6 = 0 in (07352)a N2, = lin (4623T)7 (44)
|0m2.5| <C672 and  |VFn 5| <Co % k=1,2.

By (4.4), it is not difficult to find that
ns=11in Qr\Qr4s5, 75=0 in Qr 35,
[Vns| <Co~1, |8ims|+|VPns| < C62,

where Q7 s is given by (3.24).
We now introduce the right approximation of u. » in L?(0,7;H'(2)),

0 8u07>\

Ger=Uo AT +€(XA)EKE(VUO,A)—52(%2(#1”)687;6}{6( oz, -

Note that the smoothing operator S. contained in K. ensures that 55, )\ E
L?(0,T;H?(S2)), which allows us to perform the two-scale expansion strictly in the weak
sense in Lemma 4.1. See also [26] for similar techniques involving the Steklov smooth-
ing. On the other hand, thanks to the cut-off functions 75 and in particular 7 s in (4.6),
We ) =1Ue ) —557,\ belongs to the space L?(0,T; HZ(2)). We can therefore take w. ) as a
test function in (4.11) to derive the desirable error estimate (4.13).

LEMMA 4.1. Let Q be a bounded Lipschitz domain in R? and 0 <T < oo. Suppose A
satisfies conditions (1.2) and (1.3). Define

9y Do,
Oxy, = Oy

wEVA(x,t) =Ug X —UOANTL,5 — E(X)\)EKE(VU(]V,\) +€2 (%g(dJrl)j)a (46)

Then we have
((% +E§‘)w57>\
=(0 +£;\){u07)\(1 777175)} - )\252A2u0,A

— div{ (A — A%) (Vg n — K (Vg »)) } —ediv{ (B VE(Vug ) }
8 a . € 1>
—€287%{(‘B(Ad+1)ij)€atf(e ( go; ) } +ediv{A*(x*)*VEK.(Vug,») }

= Mediv{ (A VE.(Vug )} =22 22 A{(VX) VK (Vuo,») }
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—NEA{ () AKL(Vug, /\)}_Edw{ “(VBiarn;) 5 : K. (au“)}

Oxy, Ox;
] AV Ko (22))

e 0 Oug c 0 ou A
+/\252A{(A%k(d+1)]) " Ko (S502) +22(VBY ) V87K5< o )
J

O0x;
o ()} o

in the weak sense.

Proof.  Since w; x(x,t) € L*(0,T; H3(Q)), by direct calculations we have
(01 + L2)we x = (0 +L2) o (1=11,5)] + (Lo — L2 o,
— (0, +L2){e0M) Ko (Vo) }

0 {2 BYny) 5 (G2 )

=(0; Jrﬁg‘){u(m(l —n1,6) } — A2 Aug

—div{(fTA — A%)(Vug n — K- (Vug,)) } +div{(B*) K. (Vug) }
+div{ (A (VAX?)T — A5(Vx)?) K. (Vo) }
— (O + L) {e(XM) K (Vuon) }

+(0, _1_52\){52(%2((“_1)],)5%[(5 (8;2?) }

in the weak sense, where B* = B)‘ ,1<4,5<d, is defined as (3.18). Since

(O +L2){e(x) K-(Vuo,x) }
=20, { (x*)F K- (Vuo,») } —div{ A°(VX*) K. (Vo) }
—ediv{A*(x*) VK (Vuox) } + NXdiv{(VAY) K- (Vuo ») }
+ Xediv{(AxM) VK (Vug ) } +2X2* A{ (VX ) VK (Vug ) }
+A2EA{(X)FAK(Vug ) }-
We obtain that
(B + LD wen = (0 + L) {uon(1—11,5) = N2e2A%uq 5
— div{(A* — A7) (Vg » — K (Vg ) }
+div{(B*)*K.(Vuo,n) } —e0: { (x) K. (Vo) }
+ediv{A*(x)*VEK.(Vug,») } — Nediv{(Ax*) VK. (Vug ) }
=2\ A{(VXY) VE. (Vugn) — N3 A{ (X)) AK.(Vuo ) }
+(at+£§){52(%,§(d+m)€ifg(8“07*)}. (4.8)

oxy, Oz,
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In view of Lemma 3.3,
e (e} -eod oo (i)}
s ()
+528t{8ik(%2<d+1)j)5&<%)}

et D e () ik ()

+5265m3t{(§3?d+w)6&(3§$)} Qai {(%(de) 8tK€(aga?f)}

axj

By the skew-symmetry of B8+, we derive that

div{(B*)*K.(Vugx) } =0 { (x) K- (Vuo \) }

. c 0 c QUQ’)\
:—Ele{(%A) VKE(VUO7>\)}_62%{(%?¢i+1)ij) 8tKE<TxJ)}
2 A € 0 8’&07)\
—c 8t{(%k(d+1)j) Ozx Ka( Bz )} (4.9)

Finally, note that

Ot {2 ny) 5o 1 (F22)}

252@{(%2@“)]‘)681{6(6;3)}_“1”{ (VB )EaakKE(ag;:)j)}

al’k
0 ou 0 ou
2 7: A € 0,A 2_2 e 0,\
—€ dlv{ “(Biarny) V@ka ( oz ; >}+)\ € A{(A%k(dﬂ ) aka ( z; )
0 ou 0 ou
A € 0,A A € 0,\
+26(VB g4 1) Va—kaE( o )+ 22 (B A MKE( 5o )} )

By taking (4.9) and (4.10) into (4.8), we get (4.7) immediately. |

LEMMA 4.2.  Let Q be a bounded Lipschitz domain in R? and 0 <T < oco. Suppose that
A satisfies conditions (1.2)-(1.3). Let u. x,uox be, respectively, the solutions to (4.1)
and (4.2). Let we » be defined as (4.6) with K. given by (4.3) and 0 =(1+N)e<1. Then

for any 4 € L*(0,T; H3 (),

T
’/0 <(8t+E?)ws,)\a@wH*?(Q)ng(SZ)dt‘

<Ce{[|[V2uo Al 2\ 0r05) F 100 A | L2 (@A) IV 22 (001
+C||0¢uo Al L2 () 191 L2 (5 x (0.7)
+CN225712 | Aug Al L2 |1 AV L2 (05 % (0,7))
+ON* %6~ 555 (0,7)) [|AY[| L2 (55 % (0,7))
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+CNe||[Vuo Al L2 (@ \ 0 00) | AV L2 (02)
+C[Vuoallzz@r ) VY 221 55) (4.11)

where C' >0 depends only on d,n,u,T and Q.
Proof. By (4.7), we can take 1 € L?(0,T; H3(£2)) as a test function to deduce that

T
’/ <(at+E?)ws,kaw>H*2(SZ)><H2(Q)dt‘

1Oyti07 (1= 715 )] +C / V (uon(1—70.5) IVl
Qp

+C’)\252/ |A(u0,k(1—n175))||Aw|+C>\252/ |[Aug x| | A
QT QT

e / Vaton — K. (Vo ) [V + Ce / 6 VKL (Vuo) [V
Qr Q

T

ou
A\e 2 A 0,\
+CE/QT(% VK (Vg »)|| V| +Ce /QT‘(%“ ) 0K ( T )H

o0x;
+C\%e / [(AXM)EV K (Vug )| | Vip| 4+ CA2e? / [(VXM)EV K (Vug )| |AY|
Qr Q

0 ou
A € 0,A 2.3 A\e
+Ce [ (08 0) g (G2 9wl 00 [ 100 AR(Tu ) 1801
9] au
2 A € 0,A
02 [ |8 5 VK- (o) 19l

)
2 2 A A \e K
L ON2e /QT (AB411),)" K (

8 3’LLO 2\
+C>\253/Q (VBRas1);)° Va—kag< )‘IMJ\

3u0 by

=) llav

0 ou

2 4 A 5 0,A

+ON% /QT (B ;) Aa—kaE( )]lAwl

—I 4.+ g, (4.12)

where C' depends only on d,n and p.
It is easy to see that

I, < CHatuO,)\”LQ(QT) ||¢HL2(Q45X(0,T))7
I <CNE?||Vuo | 2 (o) 1AV | L2 (o) -

By Lemma 3.5, we deduce that

I < C{||VuoallL2(0us x 0,19 6~ oAl L2 x 0.7 HIVYI 12 (0245 x (0,7
< C||Vuoall L2955 x (0,7 | VO L2 (045 x (0,7)) -

Likewise

I3 <ON?|| Aug Al 2 (00 | AV L2045 x (0,7))
+ C)\2€25_1/2HA’LLO’,\HLz(QT) ||Aw||L2(Q45 x(0,T))-



2124 HOMOGENIZATION OF PERTURBED PARABOLIC SYSTEMS

Note that
Vo — K (Vuoa)=Vugrx(1—n5)+ns (Vuo)\ — SE(VUO))\)).
By Lemma 3.4, we can bound I5 as following

I SC&‘{”VQUQ,A
“rCHVUO,)\

|22 \2r05) F 10t A | L2 @\ 2 05) HIVE I 2020

|L2(QT,5§) vaHLZ(QT‘&S)'
Observe that

VK. (Vug,y)=Se(Vug,x) Vs + S (Vuo 2 )15,
5’tKa(VUO,/\) = Sa(vuo,,\)at% + Sa(vatuo,/\)n5~

We can use Lemma 3.4 and the estimates on xy* and B* to deduce that
I+t Tg+ Ty < Ce{ [ VPuoll 20 \0r 25) + [10ru0a | L2 02\ 0r00) HIVE | 22(0r)
+C||vu0,>\||L2(QT,55)”v’l/)”LQ(QT,E)é)’

Lo+ Ty SONE2(|V2ug x|l L2 (0 \ 2 0s) 1A L2021
+CN257 | Vuo,a [l 22 (055 x (0.7 1AV 12 (0255 % (0,7)) -

Also since
V2K (Vo) = S (V3uo )5 + 25 (V10,0 ) Vs + Se (Vo 2) Vs
and 6! <1, we can perform similar analysis to derive that

Lo+ Iis+ 116 <CN* | Vuo all L2 (0\200) 1A | L2 (021
+CNe*67 | Vuoall 225 x (0,7 | AU L2 (0255 x (0,7))+

and

I3 < Cel|VPuo Al L2 (@0 \roo) I VO L2 (021
—&-CHVuQ,)\

| 22(9255 % (0,7) V¥ £2(055 % (0,7)) -
The desired estimate (4.11) follows directly from (4.12) and the estimates on I1—I16. O
LEMMA 4.3. In addition to the assumptions of Lemma /4.2, we assume that h€ H ().
Then

Ael|Awepl 2 @) + Vw2 (r) S CAHN22{|[Fllp2iry + 1Pl i)} (4:13)

where C' depends only on d,n,u,T and €.

Proof.  Note that = (A+1)e and w. € L?(0,T; HZ(2)) with we x(z,0)=h(1—
71,5). By taking ¢ =w, » in (4.11) and using Cauchy’s inequality as well as Lemma 3.5,
we obtain that

)\252\|Aws,x\||%2(szT) + ||sz/\”%2(szT)
<COA+De{IV2uo 72z + 1010117200 }
+C|VuoallZz @ s +CllRL=m5)lZ2 (), (4.14)
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Note that

2542
IVuo ANz (a5 < IIVUO,Allsz(QW(o,T»Jr/O Va0, (8)][72(q ds- (4.15)
By Lemma 3.5,

11— n1.6)l L2) < C82 || Al 1(a), (4.16)
1/2 1/2
1Vt Al| 22 (55 x(0.79) < COM2[V2uo Al 70 I V0 A ot (4.17)

On the other hand, for F'€ L?(27) and h € L?(12), standard energy estimates imply that

t
sup / IVt 12 s
2562<t<TJt—2552

< C5{||8yuo,

L2(00) + HF||L2(QT)}OiltlgTHUO,)\('vt)”LQ(Q)
<C8{|10uol 7200 + I FNZ2(00) + 1R1172(0) }
<O8{||V2uo L2 + 1 F L2 (@ + 1711220y} (4.18)
where for the last step we have used the estimate
HatUO,/\HZm(QT) < C{HVQUO,AH%Z(QT) + ||F||2L2(QT)}- (4.19)
Taking (4.17) and (4.18) into (4.15), we derive that
||VU0,/\||2L2(QT,55) < O6{||u0,>\”%2(0,T;H2(Q)) + ||F||2L2(QT) + ||h\|%2(9)}a (4.20)
which, together with (4.14), (4.16) and the H? estimate for ug »

luoAllZ2 0,712 S CLIFI 200 +11P131 ) ) (4.21)
gives (4.13). d

To prove Theorem 1.1, we shall use the following sharp convergence rate for the
operator d; + L2 with fixed .

THEOREM 4.1.  Suppose Q is a bounded C*' domain in R? and 0 <T < co. Assume A
satisfies conditions (1.2)-(1.3). Let ue x,uo,x be, respectively, the solutions to (4.1) and
(4.2) with F € L*(Qr) and he H}(Y). Then for any fized 0 <\ < 0o,

[[2e, x — w0, HL2(QT) <C(1+ )\)5{ ||F||L2(QT) + ||hHH5(Q) }7 (4.22)

where C' depends only on d,n, i, and T.

We now give the proof of Theorem 1.1 by using Theorem 4.1, the proof of which is
left as the end of this section.

Proof. (Proof of Theorem 1.1.) Let u. be the solution of (1.5) and (1.6), and
uo the solution of (1.8). Note that u. is the solution to (4.1) with A=x/e. Therefore,
by (4.22),

e —uollL2(r) < lter —uo x|l L2(@r) + 1wox —uoll22(r)
<CA+Ne{lF(l2r) + 1Pl ape } + lwor —uollL2@ry.  (4.23)
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Since up,x —uo =0 on I and

O (uo,x —uo) —div(;ﬁ‘V(uo’)\ — uo)) :diV((;l\A —E)Vuo) in Qp.
We have

[[1o,x —uoll 20,713 () < C1A* — All[uoll 20,151 (02))

<A = A{||F || 20y + 12 220 }- (4.24)

By taking (4.24) into (4.23), and using (3.9), we derive (1.10) and complete the proof.
0

Finally, let us prove Theorem 4.1 following the idea of [8,22].

Proof. (Proof of Theorem 4.1.) Let £2*=\2c2A%—div(A*(x/e,t/e?)V) be
the adjoint operator of £, where A*:((AZB)*):(AJ@;)‘)Jgi,jgd,lga,ﬁgn. For

H e L?(Q7), let ve x € L2(0,T;H3()), be the weak solution to the problem
— O 2 +£2‘*v5,,\ =H inQr and v.2=0 on Qx{t=T},

and vg,» the homogenized solution. Then v x(T'—t) and vo (T —t) are the solutions
to (1.5) and (1.8) with h=0,F = H(x,T —t) and A(x/e,t/e?) replaced by A*(x/e,(T —
t)/e2). Let x72* and B}* be respectively the matrix of correctors and flux correctors for
the family of parabolic operators 9; + \2e2A% —div{A*(x/e,(T —t)/e?)V}.

Similar to (4.6), we define

We () =ve A (T — 1) —vo A (T — 1)1 + (X3 ) Ko (Voo (T — 1))

* € 9 = (9’1)’
+52(%%’,k(d+1)j) aT%Ks( 6;; (T -1)),

where K.(f)=5.(f)(z,t)7i5, and 7s =1 (x)72(t) is the smooth cut-off function, such
that Ogﬁl,ﬁg S 1 and

ns=1in Qpr\Qr105, 7s=0 in Qrgs,

N 1 ~ 9 L (4.25)
|Vis| <C§ and |05+ V70| <C6=,
where 6 = (14 A)e. Thanks to (4.13), we have
Ael| AW Al 22 () + IVTe | L2(00) SCA+ N2V H 1200y, (4.26)

where C' depends only on d,u,n,T and €.
Note that

T
|/ wEVA.Hdz|:|/ <(8t+£g\)w5,)\, Usw)\>dt|+/ |h(1—11,5)ve,2(0)]
Qr 0 Q
T
§|/ (D4 L2 Ywe T (T — )}
0
T
+ / (@ + L2)wen, voa (D)0l
0

T
4] / (B + LN wen, Ve (£) — vor (£)7T1 — e p (T — 1))t
0
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+ /Q (1= m1.5)ven(O)]- (4.27)

Denote the terms in the right-hand side of (4.27) as Ji,Ja,J3 and Jy sequentially.
Thanks to (4.11) and Lemma 3.5, we deduce that
J1 S Ce{[IVPuo Al 207\ 07 25) T 100,51 22 (07 \ 01 20) HIV DA (T =) | 22021
+C6%2)|0puo x| L2 () VB A (T =) | L2 ()
+CON? 62 (VP uo Al L2 () + Vo all 2 (0) HIAD AT =) L2 (0205 x (0.17)
+ON?(|V2uo Al L2 (@ \@25) | AT A (T = 1) L2021
+CIVuoallL2(@rso) VO AT =) 22(021,55)
<CA+Nef{lIFll 2o + 10l 51 ) HIH L2 (020)
where we have used (4.19)-(4.21), and (4.26) for the last step.
On the other hand, since 71 =0 in g5, we derive from (4.11) that

Jo < Ce{[IV?u0 x|l L2 (r\2r 25) T 18510, L2 (2r\ 21 05) IV (00 A ()] L2 021
+ON?(|V2uo Al 2@\ Q25) |1 A (W0 A () 771) || L2021
+Cl[Vuol L2(0755) IV (0 A ()11 2 (027 55)
= Jo1 + Jag + Jo3, (4.28)

where 6 = (14 A)e. By Lemma 3.5, (4.19) and (4.21), we deduce that
Jo1 < Ce{|luoall 20,1520 + 10cuo x| 2201 }

< {IIVvollzz )+ voall L2 (s x 0,1 }
<Ce{|FllL2r) + 10l 1 ) HIH | 22 (020 (4.29)

Likewise, Jos can be bounded as following

Ja2 S C(A+1)eluo L2052 | V200 M | L2(000)
<CA+De{||F Iz + 1Al @) HIH N 2200 (4.30)

For Js3, we note that by Lemma 3.5 and the definition of 7,

IV (vox ()71 22 (21.55) < ClIVvo Al L2 (2 (0, (105)2)) -
In view of (4.20) and (4.21), we get

J2s SCA+Ne{l|Fll2or) + 1Pl @) HIH | 2200
which, together with (4.29) and (4.30), implies that

T2 <CL+Ne{IFllr2(r) + IRl @) HIH |2 r) -

To estimate J3, we take 1) =v. x(t) —vo,A(¢)71 —We, (T —1t), which is zero in Qp g5,
in (4.11). In view of the estimates on x7* and B7*, we can perform similar analysis as

we did for Jy to derive that

J3 <CA+Ne{llF |l L2r) + 1Bl @) I H | 2(00) -
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Finally, by Lemma 3.5,

Ja < C|h]|22(9105) 1022 (0) [ L2(0) < C[IAl mry () 1 || L2021
which, combined with the estimates on J;-J3 and (4.27), gives
[well 220y < CA+Ne{lIFl L2 (@) + 1Pl m3 (e }- (4.31)
Note that
[uo (L =m1,6)lz2(27) < Clluoallz2(0s55x(0,1)) < COl[Vuoal L2 (7))

el K= (Vuo )22 0r) < Cel[ Vo,

0 8u0,,\
62”(‘32(“1);‘)587% e(Wj)HLz(QT) < C¢l|Vuoal L2 (0,

|20

where (3.23) has been used for the last two estimates. We obtain (4.22) from (4.31) and
complete the proof immediately. 0

5. Convergence rate for the initial-Navier problem

This part is devoted to the convergence rate of problem (1.5) with the Navier
boundary condition (1.11). For fixed 0 <A <oo, let £2 and L£{ be defined as in (3.1)
and (3.4) respectively. Let ue  be the weak solution of

(8t+£?)’u,5,)\ :F iIl QT7

5.1
uea=h on Qx{t=0} and wucx=Au, =0 on I'r. (5.1)

To prove Theorem 1.2, we introduce the following intermediate problem
(Bt L3)ven +Ne2A%. \=F  in Qr, (5.2)

ver=h on Qx{t=0} and v.r=Av, =0 onI'p.

Let x* and B be the correctors and flux correctors introduced in (3.2) and Lemma
3.3. Similar to (4.6), we define

c c 0 (9’05’)\
w;’)\(x,t)Zu&)\—vg’)\—s(xk) KE(VUE’A)'FEQ(&Bg(dJrl)j) 8:5ng( Oz ), (5.3)
J

where K (f)(x,t) =S (f)(z,t)n:(x,t), with ne (z,t) =m1 (2)n2,£(t) being the smooth cut-
off function, such that 0 <7 c,n2, <1 and

Ne = 1 in QT\QT,4E, Te =0 in QT,387

|Vne| <Ce™t,  |0me| +|Vn.| < Ce™2.
We remark that since v, ) satisfies the same boundary condition as u. x, we do not need
to multiply it with the cut-off function 7 5 as we did for ug » in (4.6).

LEMMA 5.1.  Let Q be a bounded Lipschitz domain in R and 0<T < oco. Suppose A
satisfies conditions (1.2)-(1.3). Let ue x,ve x be, respectively, the solutions to (5.1) and
(5.2). Let w} , be defined as in (5.3). Then we have

(04 +£;\)w;,\
= — div{ (A — A7) (Vv — K (V. 2)) } —edivf (B VK (Vo ,)}
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e 2 a A 8'[}5))\
+edivf A (X)) VK (Voo )} — 6‘961-{(%(‘”1 G o o )}
—Mediv{ (AxM) VK (Vo )} =202 A (VYY) VE (Vo)) }

2 3A{ FAK (Ve A)}—ediv{A (V%k(d+1)]) 9 Ka(avg,)\>}

87961C Oz
—52dw{A (B sy, viKe(‘%f**)}

8x;€ 8xj
0 Ov 0 Ove 2
2.2 25 ex7_—~ g,
+X% A{(A%k(dH)J) 8xk < Oz, )+2€(V%k(d+1)7) v@ka€< Ox; )
0 (91)57)\
(SBk(d+1)]) AT%KE(T% )} (5.4)

Proof. Similar to (4.8), we can prove that

(O + L) w} = —div{( A — A (Voo — Ko (Vo y)))}
+div{( (B*)*K.(Vv., A —eo{(x MK (V.. N
+ediv{A°(x*) VK. (Vo) } — Aediv{( AX )*VEK(Vuen)}
—2X%2A{( vx VK. (Voe\) =N A{ (X)) AK (Vv ) }

FOF L) (B )EaakKs(a;;}A>}'

The remaining proof is the same as Lemma 4.1. We therefore omit the details. O

LEMMA 5.2.  Under the assumption of Lemma 5.1, for any 1 € L?(0,T; H3 () N H?(2))
we have

| (@£l )i
<Ce{[[V*vellr2(@r\0r.20) T 00 a2 \@r20) IV L2 (21
+CON(1+X) e[ Ve all L2 (050 x (0.0 1AV ]| 22 (5. x (0.1))
+ON 1+ 0) 72V all 200\ 0r0) |8 220r)
+OIVvenllLz@r s IVl L2 (01 5.) (5.5)
where Qr 5 is given by (3.24), and C depends only on d,n,u,T and Q.
Proof. By (5.4), we have

| (@ Lol )

<C [ |Voer—Eo(Vo.2)|[Vy| +Ce / (BN VK. (V)| [V
QT QT

81;5 A

+CE/Q () VK (Voo )| [ V4] + CE / (B UE (G0

Qr
+CO\%e / [(AXMEV K (Ve )| |[Vip| 4+ CA2e? / |(VXA)€VK5(Vv€7,\)\|Aw|
Qr

Qr
C A € 9 a’UEA 2.3 A EA A
02 [ (VB n) g K G [V0l+ 08 |10 AR(Vee )l aw

Qr
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c 0 8’1}5)\
+052/Q ‘(%g(dﬂ)j) g VE( ‘|v¢\

81}8 A

0
+C,\252/Q (AB 141))° o K

2)[1av)

e 0 81}5 by
+C)\263/QT (VB a;) Vo (G )’|A1/)|

8 6v >\
2. 4 A en_Z €
+C\¢e /T (%k(d 1)j) A ka ( ’|A1/J| (5.6)

where C' depends only on d,n and u. Note that (3.20) implies that for A>1,

[VEBLA| L2 parsy <C(1+A) 72,

CTJ

for k=0,1,2. By performing the same analysis as in Lemma 4.2, we derive (5.5) imme-
diately. ]

LEMMA 5.3. Let Q be a bounded C*' domain in R and 0<T <oco. Suppose A
satisfies conditions (1.2)-(1.3). Let ue x,vsx be, respectively, the solutions to (5.1) and
(5.2) with F € L*(Qr),h€ H?(Q). Then

)‘EHAw;,)\”LQ(QT) + ”Vw;,)\HL%QT) §C€1/2{”hHH2(Q) + ||FHL2(QT)}’ (5.7)
where w;’)\ is defined as in (5.3), and C depends only on d,n,u,T and .

Proof.  Since w! , € L*(0,T; H(Q)), w ,(x,0)=0, and Aw] , =0 on T'7. By taking
’L/J:’w‘; y in (5.5) and the Cauchy inequality, we obtain that

)‘252||Aw;,>\”%2(QT) + va;)\H%?(QT)
SCE{”V%E,/\”QL?(QT) + ||8tvs7/\||2L2(QT)}‘|‘CHVU5,/\H%2(QT,5E)~ (5.8)
Let vg » be the solution to the limit problem of (5.2), i.e

(8t+£3)v0,,\:F in QT,
vor=h on Qx{t=0} and vy =0 on I'p. (5.9)

We have v, y =vg » on 07, and

Op(vex —vo.0) — div(//l?‘V(vE,,\ —vp.\)) —|—>\2€2A2U57>\ =0 in Q.
Taking ve » —vo,) as a test function, we deduce that

IV (vex —vo)L2(0r) +AellAve a2 () S CAel| Avo Al L2 01 - (5.10)
Furthermore, taking 0,v. » as the test function in (5.2), it yields

[0rve a2 (@r) + A2 sup [[Ave x(£)]|22(e)
0<t<T
<C{lIV?veall 2@y + 1F [l 207 + Al Pl 20 }- (5.11)

Note that similar to (4.18), we have

2

/ Ve All72 (o) ds < Ce{llOwe allz2@r) + I Fllz2@n) b sup [lvz (582
0 0<t<T

<Cef HV%E,AH%%QT) + ||F||%2(QT) + ||h‘|%12(sz) I
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where we have used (5.11) for the last step. This, combined with (4.17) (for v »), gives
||VUE,/\||2L2(QT,5E) SC‘E{HVQUE,AHQL?(QT) + ||F||2L2(QT) + ||h||§{2(9)}~ (5.12)

By taking (5.10)-(5.12) into (5.8) and using the H? estimate for vo ) (see e.g., (4.21)),
one gets (5.7) immediately. d

With Lemmas 5.2 and 5.3 at our disposal, we can prove the optimal error estimate
between u. » and v, ) by using the duality argument as in Theorem 4.1.

THEOREM 5.1.  Suppose Q is a bounded C*' domain in R? and 0 <T < oo. Assume A

satisfies conditions (1.2)-(1.3). Let ue x,vsx be, respectively, the solutions to (5.1) and
(5.2) with F € L*(Qr) and h€ H?(). Then for any fired 0 <\ < 0o,

e —ve L2 (r) < Ce{llbllg2@) + 1 Fll L2 (00) }» (5.13)

where C' depends only on d,n,u,2 and T.
Proof. The proof is completely parallel to Theorem 4.1. Let us omit the details. O

Proof. (Proof of Theorem 1.2.) Let u. be the solution of (1.5) and (1.11), and
ug the solution to (1.8). Note that u. is the solution to (5.1) with A=x/e, and

llue —uo|lL2(0r) < lJtex —ven | L2020y + Ve x —vo x|l L2(r) + |vox — ol L2(0r), (5.14)

where v 5 is the solution to (5.9). Thanks to (4.24), we know that

l[vo,x —toll L2 0,712 (0)) < C1A* — Al[[uol| L2 0,711 (2))- (5.15)

In view of Theorem 2.2 and (4.21), we have

e —vorll 20 < CrlvoallL20,mm2 ) S CR* { Bl o) + |1 FllL2 ) - (5.16)

By taking (5.13), (5.15) and (5.16) into (5.14), and using (3.9), we obtain (1.12) and
complete the proof. 0

REMARK 5.1.  We have mentioned that the proof of Theorem 1.2 is slightly different
from the one of Theorem 1.1. Since we have observed that the convergence rate of
the pure singular perturbation problem with Navier boundary conditions admits better
error estimate, we therefore introduced the intermediate problem (5.2) to separate the
settings of singular perturbation and homogenization. By calculating the error estimates
in each process individually, we eventually derive the desirable error estimate (1.12).

For the initial Dirichlet problem (1.5)-(1.6), one may also perform similar analysis
(with some modifications as stated in Remark 2.2) to consider the error estimates in ho-
mogenization and singular perturbation separately. But there is no need to do so, as we
mentioned before that the optimal convergence rate for the pure singular perturbation
problem with Dirichlet boundary conditions is O(k) [6]. One can therefore consider the
two processes in a deal as in the proof of Theorem 1.1 without any loss.

Acknowledgement. The second author would like to thank Professor Zhongwei
Shen for the enlightening discussions. This work is supported by the NSF of China
(11971031) and NSF of Anhui Province(2108085Y01).



2132 HOMOGENIZATION OF PERTURBED PARABOLIC SYSTEMS

REFERENCES

S. Armstrong, A. Bordas, and J.C. Mourrat, Quantitative stochastic homogenization and regularity
theory of parabolic equations, Anal. PDE, 11:1945-2014, 2018. 1
A. Bensoussan, J.L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures,
North-Holland Publishing Company Amsterdam, 5, 1978. 1, 1, 3.1, 3.1
J.G. Besjes, Singular perturbation problems for linear parabolic differential operators of arbitrary
order, J. Math. Anal. Appl., 48:594-609, 1974. 1
H. Dong and D. Kim, On Ly-estimates for elliptic and parabolic equations with Ap weights, Trans.
Amer. Math. Soc., 370:5081-5130, 2018. 2.2
G.A. Francfort and S. Miiller, Combined effects of homogenization and singular perturbations in
elasticity, J. Reine Angew. Math., 454:1-35, 1994. 1
A. Friedman, Singular perturbations for partial differential equations, Arch. Ration. Mech. Anal.,
29:280-303, 1968. 1, 1, 2.2, 5.1
J. Geng and W. Niu, Homogenization of locally periodic parabolic operators with non-self-similar
scales, arXiv preprint, arXiv:2103.01418, 2021. 1
J. Geng and Z. Shen, Convergence rates in parabolic homogenization with time-dependent periodic
coefficients, J. Funct. Anal., 272:2092-2113, 2017. 1, 1, 3.2, 3.2, 4, 4
J. Geng and Z. Shen, Homogenization of parabolic equations with non-self-similar scales, Arch.
Ration. Mech. Anal., 236:145-188, 2020. 1
J. Geng and Z. Shen, Asymptotic expansions of fundamental solutions in parabolic homogenization,
Anal. PDE, 13:147-170, 2020. 1
W.M. Greenlee, Rate of convergence in singular perturbations, Ann. Inst. Fourier (Grenoble),
18:135-191, 1968. 1
J.L. Lions, Perturbations Singuliéres dans les Problémes auxz Limites et en Controle Optimal,
Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 323, 1973. 1, 4
B. Najman, The rate of convergence in singular perturbations of parabolic equations, in F. Kappel
and W. Schappacher (eds.), Infinite-dimensional Systems (Retzhof, 1983), Lecture Notes in
Math., Springer, Berlin, 1076:147-167, 1984. 1
W. Niu and Z. Shen, Combined effects of homogenization and singular perturbations: Quantitative
estimates, Asymptot. Anal., 128(3):351-384, 2022. 1, 3.2
W. Niu and Y. Xu, Convergence rates in homogenization of higher order parabolic systems, Dis-
crete Contin. Dyn. Syst. Ser. A, 38:4203-4229, 2018. 1, 3.2
W. Niu and Y. Xu, A refined convergence result in homogenization of second order parabolic
systems, J. Differ. Equ., 266:8294-8319, 2019. 1
W. Niu and Y. Yuan, Convergence rate in homogenization of elliptic systems with singular per-
turbations, J. Math. Phys., 60:111509, 2019. 1
S.E. Pastukhova, Homogenization estimates for singularly perturbed operators, J. Math. Sci.,
251:724-747, 2020. 1
Z. Schuss, Singular perturbations and the transition from thin plate to membrane, Proc. Amer.
Math. Soc., 58:139-147, 1976. 1
Z. Shen, Periodic Homogenization of Elliptic Systems, Birkh&user/Springer, Cham., 2018. 1
Z. Shen and J. Zhuge, Convergence rates in periodic homogenization of systems of elasticity, Proc.
Amer. Math. Soc., 145:1187-1202, 2017. 1
T.A. Suslina, Homogenization of the Dirichlet problem for elliptic systems: L%-operator error
estimates, Mathematika, 59:463-476, 2013. 1, 4
T.A. Suslina, Homogenization of higher-order parabolic systems in a bounded domain, Appl. Anal.,
98:3-31, 2019. 1
Q. Xu and S. Zhou, Quantitative estimates in homogenization of parabolic systems of elasticity
in Lipschitz cylinders, arXiv preprint, arXiv:1705.01479, 2017. 1
Y. Xu, Convergence rates in homogenization of parabolic systems with locally periodic coefficients,
arXiv preprint, arXiv:2007.03853, 2020. 1
V.V. Zhikov and S.E. Pastukhova, On operator estimates for some problems in homogenization
theory, Russ. J. Math. Phys., 12:515-524, 2005. 4


https://msp.org/apde/2018/11-8/p04.xhtml
https://doi.org/10.1115/1.3424588
https://doi.org/10.1016/0022-247X(74)90180-2
https://doi.org/10.1090/tran/7161
https://doi.org/10.1515/crll.1994.454.1
https://linkspringer.53yu.com/article/10.1007/BF00276729
https://doi.org/10.48550/arXiv.2103.01418
https://doi.org/10.1016/j.jfa.2016.10.005
https://linkspringer.53yu.com/article/10.1007/s00205-019-01467-5
https://doi.org/10.2140/apde.2020.13.147
https://doi.org/10.5802/aif.296
https://linkspringer.53yu.com/book/10.1007/BFb0060528
https://linkspringer.53yu.com/chapter/10.1007/BFb0072774?noAccess=true
https://content.iospress.com/articles/asymptotic-analysis/asy211709
https://doi.org/10.48550/arXiv.1801.02297
https://doi.org/10.1016/j.jde.2018.12.033
https://doi.org/10.1063/1.5124140
https://linkspringer.53yu.com/article/10.1007/s10958-020-05125-0
https://doi.org/10.1090/S0002-9939-1976-0412571-6
https://linkspringer.53yu.com/book/10.1007/978-3-319-91214-1?noAccess=true
https://doi.org/10.1090/proc/13289
https://doi.org/10.1112/S0025579312001131
https://doi.org/10.1080/00036811.2017.1408083
https://doi.org/10.48550/arXiv.1705.01479
https://doi.org/10.48550/arXiv.2007.03853
https://www.elibrary.ru/item.asp?id=13494377

