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HOMOGENIZATION OF
PARABOLIC SYSTEMS WITH SINGULAR PERTURBATIONS∗

QING MENG† AND WEISHENG NIU‡

Abstract. We investigate convergence rates in periodic homogenization of second-order parabolic
systems with fourth-order singular perturbations. Different rates depending on κ and ε, which represent
respectively the strength of the singular perturbation and the scale of the heterogeneities, are obtained
for the problem with Dirichlet and Navier boundary conditions.
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1. Introduction
Let Ω be a bounded domain in Rd, d≥2. We consider the quantitative homogeniza-

tion of second-order parabolic systems with fourth-order perturbations,

∂tuε+Lεuε=F in Ω×(0,T ), (1.1)

where

Lε=κ
2∆2−div(A(x/ε,t/ε2)∇), 0<κ,ε<1.

We assume thatA(y,s)=(Aαβ
ij (y,s)),1≤ i,j≤d,1≤α,β≤n, is real, bounded measurable

and satisfies the ellipticity condition,

µ|ξ|2≤Aαβ
ij (y,s)ξαi ξ

β
j ≤ 1

µ
|ξ|2 (1.2)

for any ξ=(ξαi )∈Rn×d and a.e. (y,s)∈Rd+1, where µ>0. Furthermore, we assume
that A is 1-periodic in (y,s), i.e.,

A(y+z,s+τ)=A(y,s) for any (z,τ)∈Zd+1 and a.e. (y,s)∈Rd+1. (1.3)

Investigations on homogenization of partial differential equations with singular per-
turbations goes back to 1970s. In [2], Bensoussan, Lions, and Papanicolaou established
the qualitative homogenization theory of (1.1) and the associated elliptic problems

κ2∆2vε−div(A(x/ε)∇vε)=F (x) in Ω, 0<ε<1, (1.4)

with κ=ε. Later on, in [5] Francfort and Müller conducted systematic studies on
qualitative homogenization of (1.4) and the related nonlinear functionals for the case
κ=ελ,0<λ<∞. The results in [2,5] show that singular perturbations play an essential
role in determining the coefficients of the effective problems. With the aim to quantify
the combined effect of singular perturbations and homogenization, we investigated the
quantitative homogenization theory of elliptic systems in the form of (1.4) in [14, 17].
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Particularly, the convergence rates, which depend on the scale κ that represents the
strength of the singular perturbation and on the length scale ε of the heterogeneities,
were established in [14]. More recently, the convergence rate for (1.4) with κ=ε in Rd

was studied in [18]. The aim of this paper is to extend our previous results in [14] to
the parabolic settings.

Let ΩT =Ω×(0,T ), and ΓT =∂Ω×(0,T ). For F ∈L2(ΩT ), h∈L2(Ω), let uε be the
weak solution of the problem

∂tuε+Lεuε=F in ΩT , uε=h on Ω×{t=0} (1.5)

with Dirichlet boundary conditions

uε=0,
∂uε
∂ν

=∇uε ·ν=0 on ΓT (1.6)

(where ν is the outward unit normal to ∂Ω), which means that uε∈L2(0,T ;H2
0 (Ω))∩

L∞(0,T ;L2(Ω)),

−
ˆ
ΩT

uε∂tϕdxdt+κ
2

ˆ
ΩT

∆uε∆ϕdxdt+

ˆ
ΩT

A(x/ε,t/ε2)∇uε∇ϕdxdt

=

ˆ T

0

⟨F,ϕ⟩H−2(Ω)×H2
0 (Ω)dt+

ˆ
Ω

hϕ(0)dx

for any ϕ∈C∞
c (Ω× [0,T )). Suppose that κ=κ(ε) satisfies the assumption

κ→0 as ε→0, and lim
ε→0

κ

ε
=ρ. (1.7)

Under conditions (1.2), (1.3) and (1.7), we prove that as ε→0 the weak solution uε of
(1.5) and (1.6) converges weakly in L2(0,T ;H1(Ω)) and strongly in L2(0,T ;L2(Ω)) to
the solution u0 of the following problem

∂tu0−div(Â∇u0)=F in ΩT ,

u0=h on Ω×{t=0}, and u0=0 on ΓT ,
(1.8)

where the effective coefficient Â depends on ρ in three cases: ρ=∞,0<ρ<∞ and ρ=0
(see Section 3 for the details).

Our first result can be stated as follows.

Theorem 1.1. Let Ω be a bounded C1,1 domain in Rd,d≥2 and A satisfy (1.2)-(1.3).
Suppose (1.7) holds, and if ρ=0 we also assume that A(y,s) is Lipschitz continuous in
y, i.e.,

|A(y1,s)−A(y2,s)|≤L|y1−y2|, for any y1,y2∈Rd and s>0. (1.9)

Let uε be the solution to (1.5) and (1.6), and u0 the solution to (1.8). Then

∥uε−u0∥L2(ΩT )≤
{
∥F∥L2(ΩT )+∥h∥H1

0 (Ω)

}

×


C1

(
κ+ε+(ε/κ)2

)
if ρ=∞,

C2

(
κ+ε+ρ−2|ρ2−(κ/ε)2|

)
if 0<ρ<∞,

C3

(
κ+ε+(κ/ε)2

)
if ρ=0,

(1.10)
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where C1,C2 depend only on d,n,µ,Ω and T , while C3 depends only on d,n,µ,Ω,T and
L.

Note that the error estimate in (1.10) involves three terms. The first term κ is
due to the singular perturbation, and the second term ε by homogenization, while the

third term is generated by the error between Â and Âλ (see (3.5) for the definition of

Âλ). There are one-dimensional examples in the elliptic case [6], which show that the
perturbation error O(κ) is optimal. It is well known that homogenization error O(ε)

is also optimal. Moreover, our estimate on |Â−Âλ| should also be sharp as λ→0 or
λ→∞. Therefore, the convergence rate in (1.10) should be optimal.

Our next theorem provides the error estimate for the problem with the Navier
boundary condition

uε=∆uε=0 on ΓT . (1.11)

Theorem 1.2. Let Ω be a bounded C1,1 domain in Rd,d≥2 and A satisfy (1.2)-(1.3).
Suppose (1.7) holds, and if ρ=0 we also assume that A(y,s) satisfies (1.9). Let uε be
the solution to (1.5) and (1.11), and u0 the solution to (1.8). Then

∥uε−u0∥L2(ΩT )≤
{
∥F∥L2(ΩT )+∥h∥H2(Ω)

}

×


C1

(
κ2+ε+(ε/κ)2

)
if ρ=∞,

C2

(
κ2+ε+ρ−2|ρ2−(κ/ε)2|

)
if 0<ρ<∞,

C3

(
κ2+ε+(κ/ε)2

)
if ρ=0,

(1.12)

where C1,C2 depend only on d,n,µ,Ω and T , while C3 depends only on d,n,µ,Ω,T , and
L in (1.9).

The difference of the convergence rates in (1.10) and (1.12) is due to the variance
of optimal convergence rates for the singular perturbation problem

∂tuκ+κ
2∆2uκ−div(A(x,t)∇uκ)=F in ΩT , uκ=h on Ω×{t=0} (1.13)

supplemented with different (Dirichlet and Navier) boundary conditions. We note that
convergence rates in singular perturbations (without homogenization) of elliptic and
parabolic equations have been studied deeply [3, 6, 11–13, 19]. For problem (1.13) with
Dirichlet boundary conditions, the O(κ1/2) convergence rate was obtained in [12], while
the interior O(κ) convergence rate was obtained in [6]. Later on, Schuss established
the O(κ) rate in [19] for the case d=2 and A= I. It is also worth remarking that the
example in [6] shows that the O(κ) rate is optimal for the initial-Dirichlet problems.
Yet, in Theorem 2.2 we shall prove that the optimal convergence rate should be O(κ2)
for problem (1.13) with the Navier boundary condition (1.11). Moreover, our proof of
Theorem 2.2 is quite different from the one in [19].

We recall that the convergence rate in homogenization of parabolic equations (sys-
tems) has been studied intensively. For the case κ=0, the O(ε)-order convergence rate
in homogenization of Equation (1.5) has recently been derived in [8]. The result was
then extended to higher order parabolic systems in [15], and to second order parabolic
systems in non-smooth cylinders in [16, 24]. See also [1, 7, 9, 10, 23, 25] for more related
results. Compared with the previous works for parabolic systems, the main difficulty
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we encounter here is that the original equation and its limit have different orders, and
therefore have different number of boundary conditions. Moreover, the scaling of the
singular perturbation is different from the other parts of the operators.

To prove Theorem 1.1, we first introduce a family of λ-dependent operators

∂t+Lλ
ε =∂t+λ

2ε2∆2−div(A(x/ε,t/ε2)∇), (1.14)

for which the ε-scaling is the same in each part of the operator. Let ∂t−div(Âλ∇)

be the homogenized operator of ∂t+Lλ
ε , where Â

λ is given by (3.5). Let uε,λ be the
solution to

(∂t+Lλ
ε )uε,λ=F in ΩT , uε,λ(x,0)=h in Ω×{t=0}

with homogeneous Dirichlet boundary conditions, and u0,λ the solution to the homog-
enized problem. We first investigate the convergence rate in the singular perturbation
of the parabolic systems with periodic boundary conditions (see Section 2), by which

we establish the error estimate between Â and Âλ (see Section 3 for the details), and
moreover, the bound of ∥u0,λ−u0∥L2(ΩT ). Then we introduce proper auxiliary function
(see (4.6) in Section 4 for the meaning of each term)

wε,λ(x,t)=uε,λ−u0,λη1,δ−ε(χλ)εKε(∇u0,λ)+ε2(Bλ
k(d+1)j)

ε ∂

∂xk
Kε(

∂u0,λ
∂xj

),

which helps us overcome the difficulty caused by the difference of the orders of the
original equations and its limit (see Section 4 for more explanations). Finally, by per-
forming the two-scale expansion and adapting the duality argument originated in [22]
(see also [8,20,21]), we derive the estimate of ∥uε,λ−u0,λ∥L2(ΩT ), which, together with
the bound of ∥u0,λ−u0∥L2(ΩT ) and the observation uε,λ=uε if λ=κ/ε, gives the esti-
mate 1.1.

The proof of Theorem 1.2 is slightly different. The key point is to deal with con-
vergence rates of singular perturbation and homogenization separately. To this aim,
besides (1.14) we also introduce an intermediate problem

(∂t+Lλ
0 )vε,λ+λ

2ε2∆2vε,λ=F in ΩT ,

vε,λ=h on Ω×{t=0} and vε,λ=∆vε,λ=0 on ΓT ,
(1.15)

where Lλ
0 is given by (3.4) and (3.5). Let v0,λ be the unique solution to the limit problem

(as ε→0) of (1.15), i.e.,

(∂t+Lλ
0 )v0,λ=F in ΩT

with v0,λ=h on Ω×{t=0} and v0,λ=0 on ΓT . We first establish the error estimate in
singular perturbation, i.e., the error estimate between vε,λ and v0,λ (see Theorem 2.2).
Then we consider the convergence rate in pure homogenization, i.e., the error estimate
between uε,λ and vε,λ. This step is quite similar to the proof of Theorem 1.1, except the
auxiliary functions. Note that the error estimate between u0 and v0,λ follows from the

estimate on |Â−Âλ| and standard energy estimates. We can finally complete the proof
of Theorem 1.2 by using the triangle inequality and setting λ=κ/ε as in Theorem 1.1.
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2. Singular perturbations

2.1. Periodic boundary conditions. Let C∞
p (Rd) be the space of C∞, 1-

periodic vector valued functions in Rd. For k≥0 and Td=[0,1]d, let Hk
p (Td) denote the

closure of C∞
p (Rd) in Hk(Td), and Ḣk

p (Td) the subspace of Hk
p (Td) with zero spatial

mean, i.e.,
´
Td vdx=0. In particular, Ḣ0

p (Td)= L̇2
p(Td).

Consider the operator

∂t+Lλ=∂t+λ
2∆2−div(A(x,t)∇), (2.1)

where A is 1-periodic in x and satisfies the ellipticity condition (1.2). For F ∈
L2(0,T ;L̇2

p(Td)),h∈ L̇2
p(Td), let uλ∈L2(0,T ;Ḣ2

p (Td)) be the unique solution to

∂tuλ+Lλuλ=F in Td×(0,T ) and uλ(x,0)=h, (2.2)

and u0∈L2(0,T ;Ḣ1
p (Td)) the unique solution to

∂tu0−div(A(x,t)∇u0)=F in Td×(0,T ) and u0(x,0)=h. (2.3)

Lemma 2.1. Assume that A satisfies (1.2) and is 1-periodic in x. Let uλ,u0 be,
respectively, the weak solutions to (2.2) and (2.3), and u0∈L2(0,T ;Ḣ2(Td)). Then

∥∇uλ−∇u0∥L2(Td×(0,T ))≤Cλ∥u0∥L2(0,T ;H2(Td)), (2.4)

where C depends only on d,n,µ and T .

Proof. Let w=uλ−u0. Then

(∂t+Lλ)w=−λ2∆2u0.

Thus for any ψ∈L2(0,T ;Ḣ2
p (Td)),

|⟨(∂t+Lλ)w,ψ⟩|≤λ2∥∆u0∥L2(0,T ;L2(Td))∥∆ψ∥L2(0,T ;L2(Td)). (2.5)

By taking ψ=w in (2.5) and using the Cauchy inequality, we obtain

λ∥∆w∥L2(Td×(0,T ))+∥∇w∥L2(Td×(0,T ))≤Cλ∥u0∥L2(0,T ;H2(Td)), (2.6)

which gives (2.4).

Theorem 2.1. Suppose A is 1-periodic in x and satisfies the assumptions (1.2) and
(1.9). Let uλ and u0 be, respectively, the weak solutions to (2.2) and (2.3). Then

∥uλ−u0∥L2(0,T ;L2(Td))≤Cλ2
{
∥F∥L2(0,T ;L2(Td))+∥h∥L2(Td)

}
, (2.7)

where C depends on d,n,µ,T , and L in (1.9).

Proof. For H ∈L2(0,T ;L2(Td)), let vλ∈L2(0,T ;Ḣ2
p (Td)) be the weak solution to

the problem

−∂tvλ+Lλ∗vλ=H in Td×(0,T ) and vλ=0 on Td×{t=T},

where Lλ∗=λ2∆2−div(A∗∇) with A∗=((Aαβ
ij )∗)=(Aβα

ji ),1≤ i,j≤d,1≤α,β≤n. Let

v0∈L2(0,T ;Ḣ1
p (Td)) be the unique solution to the limit problem

−∂tv0−div(A∗∇v0)=H in Td×(0,T ) and v0=0 on Td×{t=T}.
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Then vλ(T − t) and v0(T − t) are the solutions to (2.2) and (2.3) with h=0,F =H(x,T −
t) and A(x,t) replaced by A∗(x,(T − t)). Define w̃(x,t)=vλ(x,T − t)−v0(x,T − t). We
derive from (2.6) that

λ∥∆w̃∥L2(Td×(0,T ))+∥∇w̃∥L2(Td×(0,T ))≤Cλ∥v0∥L2(0,T ;H2(Td)). (2.8)

Note that∣∣∣ˆ T

0

ˆ
Td

w ·Hdxdt
∣∣∣= ∣∣∣ˆ T

0

⟨(∂t+Lλ)w,vλ(t)⟩dt
∣∣∣

≤
∣∣∣ˆ T

0

⟨(∂t+Lλ)w,w̃(T − t)⟩dt
∣∣∣+ ∣∣∣ˆ T

0

⟨(∂t+Lλ)w,v0(t)⟩dt
∣∣∣. (2.9)

By (2.5), (2.6), and (2.8),∣∣∣ˆ T

0

⟨(∂t+Lλ)w,w̃(T − t)⟩dt
∣∣∣≤λ2∥∆u0∥L2(0,T ;L2(Td))∥∆w̃∥L2(0,T ;L2(Td))

≤Cλ2∥u0∥L2(0,T ;H2(Td))∥v0∥L2(0,T ;H2(Td)), (2.10)

and ∣∣∣ˆ T

0

⟨(∂t+Lλ)w,v0⟩
∣∣∣≤λ2∥∆u0∥L2(0,T ;L2(Td))∥∆v0∥L2(0,T ;L2(Td)). (2.11)

Since A satisfies (1.9), we have the following H2 estimates

∥u0∥L2(0,T ;H2(Td))≤C
{
∥F∥L2(0,T ;L2(Td))+∥h∥L2(Td)

}
,

∥v0∥L2(0,T ;H2(Td))≤C∥H∥L2(0,T ;L2(Td)),

where C depends on d,n,µ, and L in (1.9). From (2.9)–(2.11), it follows that∣∣∣ˆ T

0

ˆ
Td

w ·Hdxdt
∣∣∣≤Cλ2{∥F∥L2(0,T ;L2(Td))+∥h∥L2(Td)

}
∥H∥L2(0,T ;L2(Td)),

which, by duality, gives (2.7).

Remark 2.1. Let F (x,t) be 1-periodic in (x,t), and A satisfy (1.2), (1.3) and (1.9).
Let uλ be the solution to{

∂tuλ+Lλ(uλ)=F in Q1=Td×(0,1),

uλ(x,t) is 1-periodic in (x,t),
´ 1

0

´
Td uλ(x,t)dxdt=0,

and let u0 be the unique solution to the limit (as λ→0) problem, i.e,{
∂tu0−div(A(x,t)∇u0)=F in Q1,

u0(x,t) is 1-periodic in (x,t),
´ 1

0

´
Td u0(x,t)dxdt=0.

With slight modifications on the proofs of Lemma 2.1 and Theorem 2.1, we can prove
that

∥uλ−u0∥L2(Td+1)≤Cλ2∥u0∥L2(0,1;H2(Td)). (2.12)
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2.2. Navier boundary conditions. For h∈L2(Ω),F ∈L2(ΩT ), let uλ be a
weak solution to

∂tuλ+Lλuλ=F in ΩT ,

uλ=h on Ω×{t=0} and uλ=∆uλ=0 on ΓT ,
(2.13)

where Lλ is defined in (2.1), and u0 the solution to

∂tu0−div(A(x,t)∇u0)=F in ΩT ,

u0=h on Ω×{t=0} and u0=0 on ΓT . (2.14)

We investigate the convergence rate of uλ to u0 as λ tends to zero.

Lemma 2.2. Assume that A satisfies conditions (1.2). Let uλ,u0 be, respectively, the
weak solutions to (2.13) and (2.14), and u0∈L2(0,T ;H2(Ω)). Then

∥∇uλ−∇u0∥L2(ΩT )≤Cλ∥u0∥L2(0,T ;H2(Ω)), (2.15)

where C depends only on d,n,µ and T .

Proof. Note that

∂t(uλ−u0)−div(A∇(uλ−u0))+λ2∆2uλ=0.

Since uλ=∆uλ=0 on ΓT . For any ψ∈L2(0,T ;H1
0 (Ω)∩H2(Ω)), we have

ˆ T

0

⟨∂t(uλ−u0)−div(A∇(uλ−u0)),ψ⟩dt+λ2
ˆ
ΩT

∆uλ∆ψdxdt=0.

By setting ψ=uλ−u0, we get

∥∇(uλ−u0)∥2L2(ΩT )+λ
2∥∆uλ∥2L2(ΩT )≤Cλ

2∥∆u0∥2L2(ΩT ), (2.16)

from which (2.15) follows.

Remark 2.2. The proof above doesn’t seem to work directly for the problem with
Dirichlet boundary conditions. Note that in this case uλ=∇uλ ·ν=0 on the boundary,
but ∇u0 does not necessarily equal to 0 on the boundary. To derive the convergence
rate, one may first consider the error estimate between uλ and u0ζε for proper smooth
cut-off functions ζε, see e.g., (4.6). Then by some boundary layer estimate and the
triangle inequality to derive the error estimate between uλ and u0. It is also worth
remarking that due to the deviations of ∇uλ and ∇u0 on the boundary, one can not
expect the first order error ∥uλ−u0∥L2(0,T ;H1

0 (Ω)) with the sharp order O(λ) [6].

Theorem 2.2. Assume that A satisfies conditions (1.2) and (1.9). Let uλ,u0 be,
respectively, the weak solutions to (2.13) and (2.14), and u0∈L2(0,T ;H2(Ω)). Then

∥uλ−u0∥L2(ΩT )≤Cλ2∥u0∥L2(0,T ;H2(Ω)), (2.17)

where C depends only on d,n,µ,Ω,T , and L in (1.9).

Proof. For H ∈C∞
0 (ΩT ), let vλ∈L2(0,T ;H2(Ω)) be the weak solution to the

problem

−∂tvλ+Lλ∗vλ=H in ΩT ,
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vλ=0 on Ω×{t=T}, v=∆v=0 on ΓT ,

where Lλ∗=λ2∆2−div(A∗∇) with A∗=((Aαβ
ij )∗)=(Aβα

ji ),1≤ i,j≤d,1≤α,β≤n. Let

v0∈L2(0,T ;H1
0 (Ω)) be the unique solution to the limit problem

−∂tv0−div(A∗∇v0)=H in ΩT and v0=0 on Ω×{t=T}.

Then vλ(T − t) and v0(T − t) are the solutions to (2.13) and (2.14) with h=0 and A(x,t)
replaced by A∗(x,(T − t)). In view of (2.16), we have

∥∇(vλ−v0)∥2L2(ΩT )+λ
2∥∆vλ∥2L2(ΩT )≤Cλ

2∥∆v0∥2L2(ΩT ). (2.18)

Let w=uλ−u0 and w̃(x,t)=vλ(x,T − t)−v0(x,T − t). Note that∣∣∣ˆ T

0

⟨w,H⟩dt
∣∣∣≤ ∣∣∣ˆ T

0

⟨∂tw−div(A∇w),v0⟩dt
∣∣∣

≤
∣∣∣ˆ T

0

⟨∂tw−div(A∇w),w̃(T−t)⟩dt
∣∣∣+ ∣∣∣ˆ T

0

⟨∂tw−div(A∇w),vλ(t)⟩dt
∣∣∣

≤Cλ2∥∆uλ∥L2(ΩT )

{
∥∇w̃∥L2(ΩT )+∥∆vλ∥L2(ΩT )

}
. (2.19)

This, together with (2.16), (2.18) and the H2 estimates for v0 (see [4] for the H2

estimates of parabolic systems in nondivergence form in Rd
+×R+. One can derive the

estimate for v0 by using standard extension and covering argument)

∥∇2v0∥L2(ΩT )≤C∥H∥L2(ΩT ),

gives (2.17) by duality.

3. Qualitative homogenization

3.1. Correctors and the effective problem. The aim of this part is to
investigate qualitative homogenization of (1.1), for which the effective problem has
been recognized in [2] for κ=ε. Denote κε−1 as λ=λ(ε). Then 0<λ<∞ and the first
equation in (1.1) can be rewritten as

∂tuε,λ+Lλ
εuε,λ=F, (3.1)

with

Lλ
ε =λ

2ε2∆2−div(A(x/ε,t/ε2)∇).

For fixed 0≤λ<∞ and 1≤β≤n, 1≤ j≤d, let χλ,β
j =(χλ,1β

j ,...,χλ,nβ
j ) be the unique

weak solution to the following cell problem
∂sχ

λ,β
j +λ2∆2χλ,β

j −div
[
A(y,s)∇(P β

j +χλ,β
j )

]
=0 in Rd+1,

χλ,β
j (y,s) is 1-periodic in (y,s),´
Td+1χ

λ,β
j (y,s)dyds=0,

(3.2)

where P β
j =yj(0...1...0) with 1 in the βth position. Note that

´
Tdχ

λ(y,s)dy=0 for s∈R.
By standard energy estimates and Poincaré’s inequality, we have for 0<λ<∞,

∥χλ∥L2(Td+1)+∥∇χλ∥L2(Td+1)≤C(1+λ)−2,

∥∇2χλ∥L2(Td+1)≤Cλ−1(1+λ)−1, ∥∇3χλ∥L2(Td+1)≤Cλ−2
(3.3)
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for some constant C depending only on d,n,µ. On the other hand, for λ=0 one has
∥∇χ0∥L2(Td+1)≤C.

Thanks to [2], for each fixed λ≥0 the homogenized operator of ∂t+Lλ
ε is given by

∂t+Lλ
0 =∂t−div(Âλ∇), (3.4)

where the effective coefficient matrix Âλ=(Âλ
αβ

ij ) with 1≤α,β≤n, 1≤ i,j≤d, is defined
as

Âλ
αβ

ij =

 
Td+1

[Aαβ
ij (y,s)+Aαγ

ik (y,s)∂yk
χλ,γβ
j (y,s)]dyds. (3.5)

Here and henceforth we use
ffl
E
u to denote the L1 average of u over the set E, i.e.,ffl

E
u= 1

|E|
´
E
u.

Lemma 3.1. The matrix Âλ is bounded and satisfies the condition (1.2) with 1
µ

replaced by some constant µ0 depending only on d,n, and µ.

Proof. By the estimates of χλ in (3.3), we know that |Âλ|≤µ0 with µ0 depending

only on d,n, and µ. On the other hand, observe that for any matrix ξ=(ξβj )∈Rn×d,

⟨Âλξ,ξ⟩=
 
Td+1

Aζγ
ℓk ∂yk

(ξβj P
γβ
j +ξβj χ

λ,γβ
j )∂yℓ

(ξαi P
ζα
i +ξαi χ

λ,ζα
i )dyds

+λ2
 
Td+1

ξβj ∆χ
λ,β
j ξαi ∆χ

λ,α
i dyds+

ˆ 1

0

〈
∂sχ

λ,β
j ξβj ,χ

λ,α
i ξαi

〉
ds. (3.6)

Note that

ˆ 1

0

〈
∂sχ

λ,β
j ξβj ,χ

λ,α
i ξαi

〉
ds=0.

We therefore obtain from (3.6) that

⟨Âλξ,ξ⟩≥
 
Td+1

Aζγ
ℓk ∂yk

(ξβj P
γβ
j +ξβj χ

λ,γβ
j )∂yℓ

(ξαi P
ζα
i +ξαi χ

λ,ζα
i )dyds.

≥µ
 
Td+1

|∇(ξβj P
β
j +ξβj χ

λ,β
j )|2dyds

=µ|ξ|2+µ
 
Td+1

|∇(ξβi χ
λβ
i )|2dyds

≥µ|ξ|2, (3.7)

where we have used the fact
´
Td+1∇χλdyds=0 for the third step.

Define

Â=

{
A=

ffl
Td+1A(y,s)dyds if ρ=∞,

Âρ if 0≤ρ<∞,
(3.8)

where Âρ is defined as in (3.5).
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Lemma 3.2. Suppose A satisfy (1.2) and (1.3). Then Âλ→ Â as λ→ρ.More precisely,
we have

∣∣Âλ−Â
∣∣≤


Cλ−2 for 1≤λ<∞,ρ=∞,

C|1−(λ/ρ)2| for 0<ρ,λ<∞,

C ′λ2 for 0<λ≤1,ρ=0,if in addition ∥∇yA∥∞<L,

(3.9)

where C depends only on µ,n and d, while C ′ depends on µ,n,d and L.

Proof. The estimate for ρ=∞ in (3.9) is a direct consequence of (3.3) and Hölder’s
inequality. We pass to the case 0<ρ<∞. Note that

∂s(χ
ρ−χλ)−div

(
A(y,s)∇(χρ−χλ)

)
+λ2∆2(χρ−χλ)=(λ2−ρ2)∆2χρ.

By standard energy estimates,

∥∇(χρ−χλ)∥2L2(Td+1)+λ
2∥∆(χρ−χλ)∥2L2(Td+1)

≤C|λ2−ρ2|∥∇3χρ∥L2(Td+1)∥∇(χρ−χλ)∥L2(Td+1).

This, combined with (3.3), gives

∥∇χρ−∇χλ∥L2(Td+1)≤Cρ−2|λ2−ρ2|,

which, together with the definitions of Âλ and Â, implies the desired estimate. Finally,
the estimate in (3.9) for ρ=0 follows from (2.12) and the observation

|Âλ−Â0|= |
 
Td+1

A(y,s)∇(χλ−χ0)dyds|≤∥∇yA∥∞∥χλ−χ0∥L2(Td+1). (3.10)

The convergence of Âλ to Â (as λ→ρ) for the case 0<ρ≤∞ follows directly from
the first two estimates in (3.9). By approximating A with a sequence of smooth matrices,

we can obtain the convergence of Âλ for ρ=0 from the third estimate in (3.9). Let us
omit the details for concision.

Theorem 3.1. Suppose A satisfies (1.2)-(1.3) and κ satisfies (1.7). Let Ω be a bounded
Lipschitz domain in Rd. For F ∈L2(0,T ;H−1(Ω)),h∈L2(Ω), let uε be the solution to
(1.5) subjected to the boundary condition (1.6) or (1.11), and u0 the unique solution to

(1.8), with Â being defined as (3.8). Then uε converges to u0 weakly in L2(0,T ;H1(Ω))

and A∇uε converges to Â∇u0 weakly in L2(ΩT ) as ε→0.

Proof. By standard energy estimate,

κ∥∆uε∥L2(ΩT )+∥uε∥L2(0,T ;H1(Ω))≤C
{
∥F∥L2(0,T ;H−1(Ω))+∥h∥L2(Ω)

}
. (3.11)

Thus κ∆uε and A
ε∇uε are uniformly bounded in L2(ΩT ), where A

ε(x,t)=A(x/ε,t/ε2),
while uε,∂tuε are uniformly (in ε) bounded in L2(0,T ;H1(Ω)) and L2(0,T ;H−2(Ω)),
respectively. And there exists a function u0 such that, up to subsequences,

uε−→u0 weakly in L2(0,T ;H1(Ω)),

∂tuε−→∂tu0 weakly in L2(0,T ;H−2(Ω)),

Aε∇uε−→M(x,t) weakly in L2(ΩT ),

uε−→u0 strongly in L2(ΩT ).

(3.12)
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Moreover, it is not difficult to see that u0(0)=h, and

∂tu0−divM=F in L2(0,T ;H−1(Ω)).

Next, we show that M= Â∇u0, which implies that u0 is the weak solution to (1.8), and
the whole sequence uε converges to u0 weakly in L2(0,T ;H1(Ω)).

Let χ∗λ,β
j (y,s) be the corrector of the dual operator of ∂t+Lλ

ε with λ=κ/ε. Let

θε=P
β
j +εχ∗λ,β

j (x/ε,t/ε2), 1≤ j≤d, 1≤β≤n.

We have for any ϕ∈C∞
c (ΩT ),

−
ˆ T

0

⟨∂tθε,uεϕ⟩dt+λ2ε2
ˆ
ΩT

∆θε∆(uεϕ)dxdt+

ˆ
ΩT

(Aε)∗∇θε∇(uεϕ)dxdt=0. (3.13)

On the other hand, by (1.1),

ˆ T

0

〈
∂tuε,ϕθε

〉
dt+λ2ε2

ˆ
ΩT

∆uε∆(ϕθε)dxdt+

ˆ
ΩT

Aε∇uε∇(ϕθε)dxdt=

ˆ T

0

〈
F,ϕθε

〉
dt,

from which, we subtract (3.13) to obtain that

2λ2ε2
ˆ
ΩT

∆uε∇θε∇ϕdxdt−2λ2ε2
ˆ
ΩT

∆θε∇uε∇ϕdxdt

+λ2ε2
ˆ
ΩT

∆uεθε∆ϕdxdt−λ2ε2
ˆ
ΩT

∆θεuε∆ϕdxdt

+

ˆ
ΩT

Aε∇uεθε∇ϕdxdt−
ˆ
ΩT

(Aε)∗∇θεuε∇ϕdxdt

=

ˆ T

0

⟨uε,θε∂tϕ⟩dt+
ˆ T

0

⟨F,ϕθε⟩dt. (3.14)

Denote the right-hand side of (3.14) as (3.14)r, and the terms in the left-hand side of
(3.14) by (3.14)1,...,(3.14)6 sequentially. By (3.3) and (3.11), we know that

(3.14)1+ ...+(3.14)4−→0 as ε→0. (3.15)

Note that by (3.3)

θβε,j −→P β
j strongly in L2(ΩT ) and weakly in L2(0,T ;H1(Ω)),

which implies that

(3.14)5−→
ˆ
ΩT

Mα
i P

αβ
j ∂xi

ϕdxdt,

(3.14)r−→
ˆ T

0

⟨u0,P β
j ∂tϕ⟩dt+

ˆ T

0

⟨F,P β
j ϕ⟩dt=

ˆ
ΩT

M∇(P β
j ϕ)dxdt.

(3.16)

Furthermore, since

Âλ
αβ

ij =

 
Td+1

A∗∇(Pα
i +χ∗λ,α

i )∇P β
j dyds,
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the weak convergence result for periodic functions implies that for each fixed λ>0,

(Aε)∗∇θε−→ Âλ
βα

ji weakly in L2(ΩT ).

Noticing that uε→u0 strongly in L2(ΩT ) and Âλ→ Â as ε tends to zero (see Lemma
3.2), we get

(3.14)6−→−
ˆ
ΩT

Âβα
ji u

α
0 ∂xi

ϕdxdt=

ˆ
ΩT

Âβα
ji ∂xi

uα0ϕdxdt. (3.17)

By taking (3.15)-(3.17) into (3.14), we get
ˆ
ΩT

Mβ
j ϕdxdt=

ˆ
ΩT

Âβα
ji ∂xi

uα0ϕdxdt

for any ϕ∈C∞
c (ΩT ). It follows that M= Â∇u0. The proof is complete.

3.2. Flux correctors and an ε smoothing operator. Let χλ be the correctors
given by (3.2). For 1≤ τ ≤d+1, 1≤ i≤d, we define

Bλ,αβ
τj =

{
−λ2 ∂

∂yi
∆χλ,αβ

j +Aαβ
ij +Aαγ

ik

∂χλ,γβ
j

∂yk
−Âλ

αβ

ij if τ = i,

−χλ,αβ
j if τ =d+1.

(3.18)

The following lemma provides the existence of flux correctors for the operator ∂t+
Lλ
ε .

Lemma 3.3. Let 1≤α,β≤n, 1≤ i,k,j≤d and 1≤ ς,τ ≤d+1. There exist 1-periodic
functions Bλ,αβ

ςτj (y,s) in Rd+1 such that ,

Bλ,αβ
ςτj =−Bλ,αβ

τςj ,

Bλ,αβ
ij (y,s)=∂yk

Bλ,αβ
kij (y,s)+∂sB

λ,αβ
(d+1)ij(y,s).

(3.19)

Furthermore, there exists a constant C, depending only on d, n,µ, such that

∥Bλ,αβ
ςτj ∥L2(0,1;H1(Td))≤C, if 1≤ ς,τ ≤d,

∥∇Bλ,αβ
ςτj ∥L2(Td+1)+∥∇2Bλ,αβ

ςτj ∥L2(Td+1)≤C(1+λ)−2, if ς or τ =d+1,

∥∇3Bλ,αβ
ςτj ∥L2(Td+1)≤Cλ−1(1+λ)−1, if ς or τ =d+1.

(3.20)

Proof. The construction of Bλ,αβ
ςτj is completely the same as in [8]. The estimates

in (3.20) are direct consequences of the estimates for χλ in (3.3). Let us omit the details.

Let φ1(s)∈C∞
c (−1/2,1/2), φ2(y)∈C∞

c (B(0, 12 )) be fixed nonnegative functions
such that ˆ

R
φ1(s)=1 and

ˆ
Rd

φ2(y)=1.

Set φ1,ε(s)=
1
ε2φ1(s/ε

2), φ2,ε(y)=
1
εd
φ2(y/ε), and define

Sε(f)(x,t)=

ˆ
Rd+1

φ1,ε(s)φ2,ε(y)f(x−y,t−s)dyds. (3.21)
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Lemma 3.4. Let Sε be defined as above. Then

∥Sε(∇f)−∇f∥L2(Rd+1)≤Cε
{
∥∇2f∥L2(Rd+1)+∥∂tf∥L2(Rd+1)

}
, (3.22)

where C depends only on d. Moreover, let g(y,s) be 1-periodic in (y,s). Then

∥g(x/ε,t/ε2)Sε(∇kf)(x,t)∥L2(Rd+1)≤Cε−k∥g∥L2(Td+1)∥f∥L2(Rd+1), for k=0,1,2...,

(3.23)

where C depends only on d.

Proof. See Lemmas 3.2 and 3.3 in [8], or Lemma 3.2 in [15] for the proof.

For Ω⊆Rd and 0<δ<c0diam(Ω), let

ΩT,δ =
(
Ωδ×(0,T )

)
∪
(
Ω×(0,δ2)

)
, (3.24)

where Ωδ ={x∈Ω:dist(x,∂Ω)<δ}.
The following lemma is a direct consequence of Lemma 2.8 in [14].

Lemma 3.5. Let Ω be a bounded Lipschitz domain in Rd. Then,

∥u∥L2(Ωδ×(0,T ))≤Cδ∥∇u∥L2(Ω2δ×(0,T )) for u∈L2(0,T ;H1
0 (Ω)),

∥u∥L2(Ωδ×(0,T ))≤Cδ1/2∥u∥
1/2
L2(ΩT )∥u∥

1/2
L2(0,T ;H1(Ω)) for u∈L2(0,T ;H1(Ω)),

(3.25)

and for u∈L2(0,T ;H2(Ω)∩H1
0 (Ω)),

∥u∥L2(Ωδ×(0,T ))≤Cδ3/2∥u∥
1/2
L2(0,T ;H1(Ω))∥u∥

1/2
L2(0,T ;H2(Ω)), (3.26)

where C depends on d and Ω.

4. Convergence rate for the initial-Dirichlet problem
For F ∈L2(ΩT ),h∈L2(Ω), let uε,λ,u0,λ be respectively the weak solutions to

(∂t+Lλ
ε )uε,λ=F in ΩT ,

uε,λ=h on Ω×{t=0}, uε,λ=
∂uε,λ
∂ν

=0 on ΓT ,
(4.1)

and

(∂t+Lλ
0 )u0,λ=F in ΩT ,

u0,λ=h on Ω×{t=0}, u0,λ=0 on ΓT , (4.2)

where Lλ
ε ,Lλ

0 (0<λ<∞) are defined as in (3.1) and (3.4).

We now investigate the error estimate between uε,λ and u0,λ by the classical two-
scale expansion method [8, 12]. The key step is to find the proper first-order approxi-
mation of uε,λ, say ϕε,λ, and derive the

√
ε-order error estimate between uε,λ and ϕε,λ

in L2(0,T ;H1(Ω)). By formal expansions, one might expect the function

ϕε,λ=u0,λ+ε(χ
λ)ε∇u0,λ−ε2(Bλ

k(d+1)j)
ε ∂

2u0,λ
∂xj∂xk

to be the right approximation of uε,λ in L2(0,T ;H1(Ω)). Unfortunately, it can not be
the candidate as it does not necessarily belong to L2(0,T ;H1(Ω)). Actually, since the
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Equation (4.1) is fourth order, to proceed the two-scale expansion strictly and effectively,
the right approximation should belong to L2(0,T ;H2(Ω)). Moreover, ϕε,λ given above
does not satisfy the Dirichlet boundary condition, and therefore cannot approximate
well the function uε,λ near the boundary. To overcome these difficulties, we need to
introduce the smoothing operators and cut-off functions to make proper modifications
on ϕε,λ.

For 0<δ<1 to be determined, define the operator Kε=Kε,δ as following

Kε(f)(x,t)=Sε(f)(x,t)ηδ(x,t), (4.3)

where Sε is the smoothing operator defined in (3.21), and ηδ =η1,δ(x)η2,δ(t) is the cut-off
function with η1,δ ∈C∞

c (Rd),η2,δ ∈C∞
c (R), and

0≤η1,δ ≤1, η1,δ =0 in Ω3δ, η1,δ =1 in Ω\Ω4δ,

0≤η2,δ ≤1, η2,δ =0 in (0,3δ2), η2,δ =1 in (4δ2,T ),

|∂tη2,δ|≤Cδ−2 and |∇kη1,δ|≤Cδ−k,k=1,2.

(4.4)

By (4.4), it is not difficult to find that

ηδ =1 in ΩT \ΩT,4δ, ηδ =0 in ΩT,3δ,

|∇ηδ|≤Cδ−1, |∂tηδ|+ |∇2ηδ|≤Cδ−2,
(4.5)

where ΩT,δ is given by (3.24).
We now introduce the right approximation of uε,λ in L2(0,T ;H1(Ω)),

ϕ̃ε,λ=u0,λη1,δ+ε(χ
λ)εKε(∇u0,λ)−ε2(Bλ

k(d+1)j)
ε ∂

∂xk
Kε(

∂u0,λ
∂xj

).

Note that the smoothing operator Sε contained in Kε ensures that ϕ̃ε,λ∈
L2(0,T ;H2(Ω)), which allows us to perform the two-scale expansion strictly in the weak
sense in Lemma 4.1. See also [26] for similar techniques involving the Steklov smooth-
ing. On the other hand, thanks to the cut-off functions ηδ and in particular η1,δ in (4.6),

wε,λ=uε,λ− ϕ̃ε,λ belongs to the space L2(0,T ;H2
0 (Ω)). We can therefore take wε,λ as a

test function in (4.11) to derive the desirable error estimate (4.13).

Lemma 4.1. Let Ω be a bounded Lipschitz domain in Rd and 0<T <∞. Suppose A
satisfies conditions (1.2) and (1.3). Define

wε,λ(x,t)=uε,λ−u0,λη1,δ−ε(χλ)εKε(∇u0,λ)+ε2(Bλ
k(d+1)j)

ε ∂

∂xk
Kε(

∂u0,λ
∂xj

). (4.6)

Then we have

(∂t+Lλ
ε )wε,λ

=(∂t+Lλ
ε )
{
u0,λ(1−η1,δ)

}
−λ2ε2∆2u0,λ

−div
{
(Âλ−Aε)(∇u0,λ−Kε(∇u0,λ))

}
−εdiv

{
(Bλ)ε∇Kε(∇u0,λ)

}
−ε2 ∂

∂xi

{
(Bλ

(d+1)ij)
ε∂tKε

(∂u0,λ
∂xj

)}
+εdiv

{
Aε(χλ)ε∇Kε(∇u0,λ)

}
−λ2εdiv

{
(∆χλ)ε∇Kε(∇u0,λ)

}
−2λ2ε2∆

{
(∇χλ)ε∇Kε(∇u0,λ)

}
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−λ2ε3∆
{
(χλ)ε∆Kε(∇u0,λ)

}
−εdiv

{
Aε(∇Bλ

k(d+1)j)
ε ∂

∂xk
Kε

(∂u0,λ
∂xj

)}
−ε2div

{
Aε(Bλ

k(d+1)j)
ε∇ ∂

∂xk
Kε

(∂u0,λ
∂xj

)}
+λ2ε2∆

{
(∆Bλ

k(d+1)j)
ε ∂

∂xk
Kε

(∂u0,λ
∂xj

)
+2ε(∇Bλ

k(d+1)j)
ε∇ ∂

∂xk
Kε

(∂u0,λ
∂xj

)
+ε2(Bλ

k(d+1)j)
ε∆

∂

∂xk
Kε

(∂u0,λ
∂xj

)}
(4.7)

in the weak sense.

Proof. Since wε,λ(x,t)∈L2(0,T ;H2
0 (Ω)), by direct calculations we have

(∂t+Lλ
ε )wε,λ=(∂t+Lλ

ε )[u0,λ(1−η1,δ)]+(Lλ
0 −Lλ

ε )u0,λ

−(∂t+Lλ
ε )
{
ε(χλ)εKε(∇u0,λ)

}
+(∂t+Lλ

ε )
{
ε2(Bλ

k(d+1)j)
ε ∂

∂xk
Kε

(∂u0,λ
∂xj

)}
=(∂t+Lλ

ε )
{
u0,λ(1−η1,δ)

}
−λ2ε2∆2u0,λ

−div
{
(Âλ−Aε)(∇u0,λ−Kε(∇u0,λ))

}
+div

{
(Bλ)εKε(∇u0,λ)

}
+div

{(
λ2(∇∆χλ)ε−Aε(∇χλ)ε

)
Kε(∇u0,λ)

}
−(∂t+Lλ

ε )
{
ε(χλ)εKε(∇u0,λ)

}
+(∂t+Lλ

ε )
{
ε2(Bλ

k(d+1)j)
ε ∂

∂xk
Kε

(∂u0,λ
∂xj

)}
in the weak sense, where Bλ=Bλ

ij ,1≤ i,j≤d, is defined as (3.18). Since

(∂t+Lλ
ε )
{
ε(χλ)εKε(∇u0,λ)

}
=ε∂t

{
(χλ)εKε(∇u0,λ)

}
−div

{
Aε(∇χλ)εKε(∇u0,λ)

}
−εdiv

{
Aε(χλ)ε∇Kε(∇u0,λ)

}
+λ2div

{
(∇∆χλ)εKε(∇u0,λ)

}
+λ2εdiv

{
(∆χλ)ε∇Kε(∇u0,λ)

}
+2λ2ε2∆

{
(∇χλ)ε∇Kε(∇u0,λ)

}
+λ2ε3∆

{
(χλ)ε∆Kε(∇u0,λ)

}
.

We obtain that

(∂t+Lλ
ε )wε,λ=(∂t+Lλ

ε )
{
u0,λ(1−η1,δ)

}
−λ2ε2∆2u0,λ

−div
{
(Âλ−Aε)(∇u0,λ−Kε(∇u0,λ))

}
+div

{
(Bλ)εKε(∇u0,λ)

}
−ε∂t

{
(χλ)εKε(∇u0,λ)

}
+εdiv

{
Aε(χλ)ε∇Kε(∇u0,λ)

}
−λ2εdiv

{
(∆χλ)ε∇Kε(∇u0,λ)

}
−2λ2ε2∆

{
(∇χλ)ε∇Kε(∇u0,λ)−λ2ε3∆

{
(χλ)ε∆Kε(∇u0,λ)

}
+(∂t+Lλ

ε )
{
ε2(Bλ

k(d+1)j)
ε ∂

∂xk
Kε

(∂u0,λ
∂xj

)}
. (4.8)
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In view of Lemma 3.3,

∂

∂xi

{
(Bλ

ij)
εKε

(∂u0,λ
∂xj

)}
−ε∂t

{
(χλ

j )
εKε

(∂u0,λ
∂xj

)}
=

∂

∂xi

{(
ε
∂

∂xk
(Bλ

kij)
ε+ε2∂t(B

λ
(d+1)ij)

ε
)
Kε

(∂u0,λ
∂xj

)}
+ε2∂t

{ ∂

∂xk
(Bλ

k(d+1)j)
εKε

(∂u0,λ
∂xj

)}
=ε

∂

∂xi

∂

∂xk

{
(Bλ

kij)
εKε

(∂u0,λ
∂xj

)}
−ε ∂

∂xi

{
(Bλ

kij)
ε ∂

∂xk
Kε

(∂u0,λ
∂xj

)}
+ε2

∂

∂xi
∂t

{
(Bλ

(d+1)ij)
εKε

(∂u0,λ
∂xj

)}
−ε2 ∂

∂xi

{
(Bλ

(d+1)ij)
ε∂tKε

(∂u0,λ
∂xj

)}
+ε2

∂

∂xk
∂t

{
(Bλ

k(d+1)j)
εKε

(∂u0,λ
∂xj

)}
−ε2∂t

{
(Bλ

k(d+1)j)
ε ∂

∂xk
Kε

(∂u0,λ
∂xj

)}
.

By the skew-symmetry of Bλ, we derive that

div
{
(Bλ)εKε(∇u0,λ)

}
−ε∂t

{
(χλ)εKε(∇u0,λ)

}
=−εdiv

{
(Bλ)ε∇Kε(∇u0,λ)

}
−ε2 ∂

∂xi

{
(Bλ

(d+1)ij)
ε∂tKε

(∂u0,λ
∂xj

)}
−ε2∂t

{
(Bλ

k(d+1)j)
ε ∂

∂xk
Kε

(∂u0,λ
∂xj

)}
. (4.9)

Finally, note that

(∂t+Lλ
ε )
{
ε2(Bλ

k(d+1)j)
ε ∂

∂xk
Kε

(∂u0,λ
∂xj

)}
=ε2∂t

{
(Bλ

k(d+1)j)
ε ∂

∂xk
Kε

(∂u0,λ
∂xj

)}
−εdiv

{
Aε(∇Bλ

k(d+1)j)
ε ∂

∂xk
Kε

(∂u0,λ
∂xj

)}
−ε2div

{
Aε(Bλ

k(d+1)j)
ε∇ ∂

∂xk
Kε

(∂u0,λ
∂xj

)}
+λ2ε2∆

{
(∆Bλ

k(d+1)j)
ε ∂

∂xk
Kε

(∂u0,λ
∂xj

)
+2ε(∇Bλ

k(d+1)j)
ε∇ ∂

∂xk
Kε

(∂u0,λ
∂xj

)
+ε2(Bλ

k(d+1)j)
ε∆

∂

∂xk
Kε

(∂u0,λ
∂xj

)}
. (4.10)

By taking (4.9) and (4.10) into (4.8), we get (4.7) immediately.

Lemma 4.2. Let Ω be a bounded Lipschitz domain in Rd and 0<T <∞. Suppose that
A satisfies conditions (1.2)-(1.3). Let uε,λ,u0,λ be, respectively, the solutions to (4.1)
and (4.2). Let wε,λ be defined as (4.6) with Kε given by (4.3) and δ=(1+λ)ε<1. Then
for any ψ∈L2(0,T ;H2

0 (Ω)),∣∣∣ˆ T

0

⟨(∂t+Lλ
ε )wε,λ,ψ⟩H−2(Ω)×H2

0 (Ω)dt
∣∣∣

≤Cε
{
∥∇2u0,λ∥L2(ΩT \ΩT,2δ)+∥∂tu0,λ∥L2(ΩT \ΩT,2δ)

}
∥∇ψ∥L2(ΩT )

+C∥∂tu0,λ∥L2(ΩT )∥ψ∥L2(Ω4δ×(0,T ))

+Cλ2ε2δ−1/2∥∆u0,λ∥L2(ΩT )∥∆ψ∥L2(Ω5δ×(0,T ))

+Cλ2ε2δ−1∥∇u0,λ∥L2(Ω5δ×(0,T ))∥∆ψ∥L2(Ω5δ×(0,T ))
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+Cλ2ε2∥∇2u0,λ∥L2(ΩT \ΩT,2δ)∥∆ψ∥L2(ΩT )

+C∥∇u0,λ∥L2(ΩT,5δ)∥∇ψ∥L2(ΩT,5δ), (4.11)

where C>0 depends only on d,n,µ,T and Ω.

Proof. By (4.7), we can take ψ∈L2(0,T ;H2
0 (Ω)) as a test function to deduce that∣∣∣ˆ T

0

⟨(∂t+Lλ
ε )wε,λ,ψ⟩H−2(Ω)×H2

0 (Ω)dt
∣∣∣

≤C
ˆ
ΩT

|∂tu0,λ(1−η1,δ)ψ|+C
ˆ
ΩT

|∇
(
u0,λ(1−η1,δ)

)
||∇ψ|

+Cλ2ε2
ˆ
ΩT

|∆
(
u0,λ(1−η1,δ)

)
||∆ψ|+Cλ2ε2

ˆ
ΩT

|∆u0,λ||∆ψ|

+C

ˆ
ΩT

|∇u0,λ−Kε(∇u0,λ)||∇ψ|+Cε
ˆ
ΩT

|(χλ)ε∇Kε(∇u0,λ)||∇ψ|

+Cε

ˆ
ΩT

|(Bλ)ε∇Kε(∇u0,λ)||∇ψ|+Cε2
ˆ
ΩT

∣∣∣(Bλ
(d+1)ij)

ε∂tKε

(∂u0,λ
∂xj

)∣∣∣∣∣∣ ∂ψ
∂xi

∣∣∣
+Cλ2ε

ˆ
ΩT

|(∆χλ)ε∇Kε(∇u0,λ)||∇ψ|+Cλ2ε2
ˆ
ΩT

|(∇χλ)ε∇Kε(∇u0,λ)||∆ψ|

+Cε

ˆ
ΩT

∣∣∣(∇Bλ
k(d+1)j)

ε ∂

∂xk
Kε

(∂u0,λ
∂xj

)∣∣∣|∇ψ|+Cλ2ε3ˆ
ΩT

|(χλ)ε∆Kε(∇u0,λ)||∆ψ|

+Cε2
ˆ
ΩT

∣∣∣(Bλ
k(d+1)j)

ε ∂

∂xk
∇Kε

(∂u0,λ
∂xj

)∣∣∣|∇ψ|
+Cλ2ε2

ˆ
ΩT

∣∣∣(∆Bλ
k(d+1)j)

ε ∂

∂xk
Kε

(∂u0,λ
∂xj

)∣∣∣|∆ψ|
+Cλ2ε3

ˆ
ΩT

∣∣∣(∇Bλ
k(d+1)j)

ε∇ ∂

∂xk
Kε

(∂u0,λ
∂xj

)∣∣∣|∆ψ|
+Cλ2ε4

ˆ
ΩT

∣∣∣(Bλ
k(d+1)j)

ε∆
∂

∂xk
Kε

(∂u0,λ
∂xj

)∣∣∣|∆ψ|
= I1+ ...+I16, (4.12)

where C depends only on d,n and µ.
It is easy to see that

I1≤C∥∂tu0,λ∥L2(ΩT )∥ψ∥L2(Ω4δ×(0,T )),

I4≤Cλ2ε2∥∇2u0,λ∥L2(ΩT )∥∆ψ∥L2(ΩT ).

By Lemma 3.5, we deduce that

I2≤C
{
∥∇u0,λ∥L2(Ω4δ×(0,T ))+δ

−1∥u0,λ∥L2(Ω4δ×(0,T ))

}
∥∇ψ∥L2(Ω4δ×(0,T ))

≤C∥∇u0,λ∥L2(Ω5δ×(0,T ))∥∇ψ∥L2(Ω4δ×(0,T )).

Likewise

I3≤Cλ2ε2∥∆u0,λ∥L2(ΩT )∥∆ψ∥L2(Ω4δ×(0,T ))

+Cλ2ε2δ−1/2∥∆u0,λ∥L2(ΩT )∥∆ψ∥L2(Ω4δ×(0,T )).
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Note that

∇u0,λ−Kε(∇u0,λ)=∇u0,λ(1−ηδ)+ηδ
(
∇u0,λ−Sε(∇u0,λ)

)
.

By Lemma 3.4, we can bound I5 as following

I5≤Cε
{
∥∇2u0,λ∥L2(ΩT \ΩT,2δ)+∥∂tu0,λ∥L2(ΩT \ΩT,2δ)

}
∥∇ψ∥L2(ΩT )

+C∥∇u0,λ∥L2(ΩT,5δ)∥∇ψ∥L2(ΩT,5δ).

Observe that

∇Kε(∇u0,λ)=Sε(∇u0,λ)∇ηδ+Sε(∇2u0,λ)ηδ,

∂tKε(∇u0,λ)=Sε(∇u0,λ)∂tηδ+Sε(∇∂tu0,λ)ηδ.

We can use Lemma 3.4 and the estimates on χλ and Bλ to deduce that

I6+ ...+I9+I11≤Cε
{
∥∇2u0,λ∥L2(ΩT \ΩT,2δ)+∥∂tu0,λ∥L2(ΩT \ΩT,2δ)

}
∥∇ψ∥L2(ΩT )

+C∥∇u0,λ∥L2(ΩT,5δ)∥∇ψ∥L2(ΩT,5δ),

I10+I14≤Cλ2ε2∥∇2u0,λ∥L2(ΩT \ΩT,2δ)∥∆ψ∥L2(ΩT )

+Cλ2ε2δ−1∥∇u0,λ∥L2(Ω5δ×(0,T ))∥∆ψ∥L2(Ω5δ×(0,T )).

Also since

∇2Kε(∇u0,λ)=Sε(∇3u0,λ)ηδ+2Sε(∇2u0,λ)∇ηδ+Sε(∇u0,λ)∇2ηδ

and εδ−1<1, we can perform similar analysis to derive that

I12+I15+I16≤Cλ2ε2∥∇2u0,λ∥L2(ΩT \ΩT,2δ)∥∆ψ∥L2(ΩT )

+Cλ2ε2δ−1∥∇u0,λ∥L2(Ω5δ×(0,T ))∥∆ψ∥L2(Ω5δ×(0,T )),

and

I13≤Cε∥∇2u0,λ∥L2(ΩT \ΩT,2δ)∥∇ψ∥L2(ΩT )

+C∥∇u0,λ∥L2(Ω5δ×(0,T ))∥∇ψ∥L2(Ω5δ×(0,T )).

The desired estimate (4.11) follows directly from (4.12) and the estimates on I1–I16.

Lemma 4.3. In addition to the assumptions of Lemma 4.2, we assume that h∈H1(Ω).
Then

λε∥∆wε,λ∥L2(ΩT )+∥∇wε,λ∥L2(ΩT )≤C(1+λ)1/2ε1/2
{
∥F∥L2(ΩT )+∥h∥H1(Ω)

}
, (4.13)

where C depends only on d,n,µ,T and Ω.

Proof. Note that δ=(λ+1)ε and wε,λ∈L2(0,T ;H2
0 (Ω)) with wε,λ(x,0)=h(1−

η1,δ). By taking ψ=wε,λ in (4.11) and using Cauchy’s inequality as well as Lemma 3.5,
we obtain that

λ2ε2∥∆wε,λ∥2L2(ΩT )+∥∇wελ∥2L2(ΩT )

≤C(λ+1)ε
{
∥∇2u0,λ∥2L2(ΩT )+∥∂tu0,λ∥2L2(ΩT )

}
+C∥∇u0,λ∥2L2(ΩT,5δ)

+C∥h(1−η1,δ)∥2L2(Ω), (4.14)
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Note that

∥∇u0,λ∥2L2(ΩT,5δ)
≤∥∇u0,λ∥2L2(Ω5δ×(0,T ))+

ˆ 25δ2

0

∥∇u0,λ(s)∥2L2(Ω)ds. (4.15)

By Lemma 3.5,

∥h(1−η1,δ)∥L2(Ω)≤Cδ1/2∥h∥H1(Ω), (4.16)

∥∇u0,λ∥L2(Ω5δ×(0,T ))≤Cδ1/2∥∇2u0,λ∥1/2L2(ΩT )∥∇u0,λ∥
1/2
L2(ΩT ). (4.17)

On the other hand, for F ∈L2(ΩT ) and h∈L2(Ω), standard energy estimates imply that

sup
25δ2≤t≤T

ˆ t

t−25δ2
∥∇u0,λ∥2L2(Ω)ds

≤Cδ
{
∥∂tu0,λ∥L2(ΩT )+∥F∥L2(ΩT )

}
sup

0<t<T
∥u0,λ(·,t)∥L2(Ω)

≤Cδ
{
∥∂tu0,λ∥2L2(ΩT )+∥F∥2L2(ΩT )+∥h∥2L2(Ω)

}
≤Cδ

{
∥∇2u0,λ∥2L2(ΩT )+∥F∥2L2(ΩT )+∥h∥2L2(Ω)

}
, (4.18)

where for the last step we have used the estimate

∥∂tu0,λ∥2L2(ΩT )≤C
{
∥∇2u0,λ∥2L2(ΩT )+∥F∥2L2(ΩT )

}
. (4.19)

Taking (4.17) and (4.18) into (4.15), we derive that

∥∇u0,λ∥2L2(ΩT,5δ)
≤Cδ

{
∥u0,λ∥2L2(0,T ;H2(Ω))+∥F∥2L2(ΩT )+∥h∥2L2(Ω)

}
, (4.20)

which, together with (4.14), (4.16) and the H2 estimate for u0,λ

∥u0,λ∥2L2(0,T ;H2(Ω))≤C
{
∥F∥2L2(ΩT )+∥h∥2H1(Ω)

}
, (4.21)

gives (4.13).

To prove Theorem 1.1, we shall use the following sharp convergence rate for the
operator ∂t+Lλ

ε with fixed λ.

Theorem 4.1. Suppose Ω is a bounded C1,1 domain in Rd and 0<T <∞. Assume A
satisfies conditions (1.2)-(1.3). Let uε,λ,u0,λ be, respectively, the solutions to (4.1) and
(4.2) with F ∈L2(ΩT ) and h∈H1

0 (Ω). Then for any fixed 0<λ<∞,

∥uε,λ−u0,λ∥L2(ΩT )≤C(1+λ)ε
{
∥F∥L2(ΩT )+∥h∥H1

0 (Ω)

}
, (4.22)

where C depends only on d,n,µ,Ω and T.

We now give the proof of Theorem 1.1 by using Theorem 4.1, the proof of which is
left as the end of this section.

Proof. (Proof of Theorem 1.1.) Let uε be the solution of (1.5) and (1.6), and
u0 the solution of (1.8). Note that uε is the solution to (4.1) with λ=κ/ε. Therefore,
by (4.22),

∥uε−u0∥L2(ΩT )≤∥uε,λ−u0,λ∥L2(ΩT )+∥u0,λ−u0∥L2(ΩT )

≤C(1+λ)ε
{
∥F∥L2(ΩT )+∥h∥H1

0 (Ω)

}
+∥u0,λ−u0∥L2(ΩT ). (4.23)
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Since u0,λ−u0=0 on ∂ΩT and

∂t(u0,λ−u0)−div
(
Âλ∇(u0,λ−u0)

)
=div

(
(Âλ−Â)∇u0

)
in ΩT .

We have

∥u0,λ−u0∥L2(0,T ;H1
0 (Ω))≤C|Âλ−Â|∥u0∥L2(0,T ;H1(Ω))

≤C|Âλ−Â|
{
∥F∥L2(ΩT )+∥h∥L2(Ω)

}
. (4.24)

By taking (4.24) into (4.23), and using (3.9), we derive (1.10) and complete the proof.

Finally, let us prove Theorem 4.1 following the idea of [8, 22].

Proof. (Proof of Theorem 4.1.) Let Lλ∗
ε =λ2ε2∆2−div(A∗(x/ε,t/ε2)∇) be

the adjoint operator of Lλ
ε , where A∗=((Aαβ

ij )∗)=(Aβα
ji ),1≤ i,j≤d,1≤α,β≤n. For

H ∈L2(ΩT ), let vε,λ∈L2(0,T ;H2
0 (Ω)), be the weak solution to the problem

−∂tvε,λ+Lλ∗
ε vε,λ=H in ΩT and vε,λ=0 on Ω×{t=T},

and v0,λ the homogenized solution. Then vε,λ(T − t) and v0,λ(T − t) are the solutions
to (1.5) and (1.8) with h=0,F =H(x,T − t) and A(x/ε,t/ε2) replaced by A∗(x/ε,(T −
t)/ε2). Let χλ∗

T and Bλ∗
T be respectively the matrix of correctors and flux correctors for

the family of parabolic operators ∂t+λ
2ε2∆2−div{A∗(x/ε,(T − t)/ε2)∇}.

Similar to (4.6), we define

w̃ε,λ(t)=vε,λ(T − t)−v0,λ(T − t)η̃1+ε(χλ∗
T )εK̃ε(∇v0,λ(T − t))

+ε2(Bλ∗
T,k(d+1)j)

ε ∂

∂xk
K̃ε(

∂v0,λ
∂xj

(T − t)),

where K̃ε(f)=Sε(f)(x,t)η̃δ, and η̃δ = η̃1(x)η̃2(t) is the smooth cut-off function, such
that 0≤ η̃1, η̃2≤1 and

η̃δ =1 in ΩT \ΩT,10δ, η̃δ =0 in ΩT,8δ,

|∇η̃δ|≤Cδ−1 and |∂tη̃δ|+ |∇2η̃δ|≤Cδ−2,
(4.25)

where δ=(1+λ)ε. Thanks to (4.13), we have

λε∥∆w̃ε,λ∥L2(ΩT )+∥∇w̃ε,λ∥L2(ΩT )≤C(1+λ)1/2ε1/2∥H∥L2(ΩT ), (4.26)

where C depends only on d,µ,n,T and Ω.
Note that∣∣ˆ

ΩT

wε,λ ·Hdz
∣∣= ∣∣ˆ T

0

⟨(∂t+Lλ
ε )wε,λ, vε,λ⟩dt

∣∣+ˆ
Ω

|h(1−η1,δ)vε,λ(0)|

≤
∣∣ˆ T

0

⟨(∂t+Lλ
ε )wε,λ,w̃ε,λ(T − t)⟩dt

∣∣
+
∣∣ˆ T

0

⟨(∂t+Lλ
ε )wε,λ, v0,λ(t)η̃1⟩dt

∣∣
+
∣∣ˆ T

0

⟨(∂t+Lλ
ε )wε,λ, vε,λ(t)−v0,λ(t)η̃1− w̃ε,λ(T − t)⟩dt

∣∣
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+

ˆ
Ω

|h(1−η1,δ)vε,λ(0)|. (4.27)

Denote the terms in the right-hand side of (4.27) as J1,J2,J3 and J4 sequentially.
Thanks to (4.11) and Lemma 3.5, we deduce that

J1≤Cε
{
∥∇2u0,λ∥L2(ΩT \ΩT,2δ)+∥∂tu0,λ∥L2(ΩT \ΩT,2δ)

}
∥∇w̃ε,λ(T − t)∥L2(ΩT )

+Cδ3/2∥∂tu0,λ∥L2(ΩT )∥∇2w̃ε,λ(T − t)∥L2(ΩT )

+Cλ2ε2δ−1/2
{
∥∇2u0,λ∥L2(ΩT )+∥∇u0,λ∥L2(ΩT )

}
∥∆w̃ε,λ(T − t)∥L2(Ω5δ×(0,T ))

+Cλ2ε2∥∇2u0,λ∥L2(ΩT \ΩT,2δ)∥∆w̃ε,λ(T − t)∥L2(ΩT )

+C∥∇u0,λ∥L2(ΩT,5δ)∥∇w̃ε,λ(T − t)∥L2(ΩT,5δ)

≤C(1+λ)ε
{
∥F∥L2(ΩT )+∥h∥H1(Ω)

}
∥H∥L2(ΩT ),

where we have used (4.19)-(4.21), and (4.26) for the last step.

On the other hand, since η̃1=0 in Ω8δ, we derive from (4.11) that

J2≤Cε
{
∥∇2u0,λ∥L2(ΩT \ΩT,2δ)+∥∂tu0,λ∥L2(ΩT \ΩT,2δ)

}
∥∇(v0,λ(t)η̃1)∥L2(ΩT )

+Cλ2ε2∥∇2u0,λ∥L2(ΩT \ΩT,2δ)∥∆(v0,λ(t)η̃1)∥L2(ΩT )

+C∥∇u0,λ∥L2(ΩT,5δ)∥∇(v0,λ(t)η̃1)∥L2(ΩT,5δ)

.
=J21+J22+J23, (4.28)

where δ=(1+λ)ε. By Lemma 3.5, (4.19) and (4.21), we deduce that

J21≤Cε
{
∥u0,λ∥L2(0,T ;H2(Ω))+∥∂tu0,λ∥L2(ΩT )

}
×
{
∥∇v0,λ∥L2(ΩT )+δ

−1∥v0,λ∥L2(Ω4δ×(0,T ))

}
≤Cε

{
∥F∥L2(ΩT )+∥h∥H1(Ω)

}
∥H∥L2(ΩT ). (4.29)

Likewise, J22 can be bounded as following

J22≤C(λ+1)ε∥u0,λ∥L2(0,T ;H2(Ω))∥∇2v0,λ∥L2(ΩT )

≤C(λ+1)ε
{
∥F∥L2(ΩT )+∥h∥H1(Ω)

}
∥H∥L2(ΩT ). (4.30)

For J23, we note that by Lemma 3.5 and the definition of η̃1,

∥∇(v0,λ(t)η̃1)∥L2(ΩT,5δ)≤C∥∇v0,λ∥L2(Ω×(0,(10δ)2)).

In view of (4.20) and (4.21), we get

J23≤C(1+λ)ε
{
∥F∥L2(ΩT )+∥h∥H1(Ω)

}
∥H∥L2(ΩT ),

which, together with (4.29) and (4.30), implies that

J2≤C(1+λ)ε
{
∥F∥L2(ΩT )+∥h∥H1(Ω)

}
∥H∥L2(ΩT ).

To estimate J3, we take ψ=vε,λ(t)−v0,λ(t)η̃1− w̃ε,λ(T − t), which is zero in ΩT,8δ,
in (4.11). In view of the estimates on χλ∗

T and Bλ∗
T , we can perform similar analysis as

we did for J2 to derive that

J3≤C(1+λ)ε
{
∥F∥L2(ΩT )+∥h∥H1(Ω)

}
∥H∥L2(ΩT ).
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Finally, by Lemma 3.5,

J4≤C∥h∥L2(Ω10δ)∥vε,λ(0)∥L2(Ω)≤Cδ∥h∥H1
0 (Ω)∥H∥L2(ΩT ),

which, combined with the estimates on J1-J3 and (4.27), gives

∥wε∥L2(ΩT )≤C(1+λ)ε
{
∥F∥L2(ΩT )+∥h∥H1

0 (Ω)

}
. (4.31)

Note that

∥u0,λ(1−η1,δ)∥L2(ΩT )≤C∥u0,λ∥L2(Ω5δ×(0,T ))≤Cδ∥∇u0,λ∥L2(ΩT ),

ε∥(χλ)εKε(∇u0,λ)∥L2(ΩT )≤Cε∥∇u0,λ∥L2(ΩT ),

ε2
∥∥(Bλ

k(d+1)j)
ε ∂

∂xk
Kε(

∂u0,λ
∂xj

)
∥∥
L2(ΩT )

≤Cε∥∇u0,λ∥L2(ΩT ),

where (3.23) has been used for the last two estimates. We obtain (4.22) from (4.31) and
complete the proof immediately.

5. Convergence rate for the initial-Navier problem
This part is devoted to the convergence rate of problem (1.5) with the Navier

boundary condition (1.11). For fixed 0<λ<∞, let Lλ
ε and Lλ

0 be defined as in (3.1)
and (3.4) respectively. Let uε,λ be the weak solution of

(∂t+Lλ
ε )uε,λ=F in ΩT ,

uε,λ=h on Ω×{t=0} and uε,λ=∆uε,λ=0 on ΓT .
(5.1)

To prove Theorem 1.2, we introduce the following intermediate problem

(∂t+Lλ
0 )vε,λ+λ

2ε2∆2vε,λ=F in ΩT ,

vε,λ=h on Ω×{t=0} and vε,λ=∆vε,λ=0 on ΓT .
(5.2)

Let χλ and Bλ be the correctors and flux correctors introduced in (3.2) and Lemma
3.3. Similar to (4.6), we define

w1
ε,λ(x,t)=uε,λ−vε,λ−ε(χλ)εKε(∇vε,λ)+ε2(Bλ

k(d+1)j)
ε ∂

∂xk
Kε(

∂vε,λ
∂xj

), (5.3)

whereKε(f)(x,t)=Sε(f)(x,t)ηε(x,t), with ηε(x,t)=η1,ε(x)η2,ε(t) being the smooth cut-
off function, such that 0≤η1,ε,η2,ε≤1 and

ηε=1 in ΩT \ΩT,4ε, ηε=0 in ΩT,3ε,

|∇ηε|≤Cε−1, |∂tηε|+ |∇2ηε|≤Cε−2.

We remark that since vε,λ satisfies the same boundary condition as uε,λ, we do not need
to multiply it with the cut-off function η1,δ as we did for u0,λ in (4.6).

Lemma 5.1. Let Ω be a bounded Lipschitz domain in Rd and 0<T <∞. Suppose A
satisfies conditions (1.2)-(1.3). Let uε,λ,vε,λ be, respectively, the solutions to (5.1) and
(5.2). Let w1

ε,λ be defined as in (5.3). Then we have

(∂t+Lλ
ε )w

1
ε,λ

=−div
{
(Âλ−Aε)(∇vε,λ−Kε(∇vε,λ))

}
−εdiv

{
(Bλ)ε∇Kε(∇vε,λ)

}
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+εdiv
{
Aε(χλ)ε∇Kε(∇vε,λ)

}
−ε2 ∂

∂xi

{
(Bλ

(d+1)ij)
ε∂tKε

(∂vε,λ
∂xj

)}
−λ2εdiv

{
(∆χλ)ε∇Kε(∇vε,λ)

}
−2λ2ε2∆

{
(∇χλ)ε∇Kε(∇vε,λ)

}
−λ2ε3∆

{
(χλ)ε∆Kε(∇vε,λ)

}
−εdiv

{
Aε(∇Bλ

k(d+1)j)
ε ∂

∂xk
Kε

(∂vε,λ
∂xj

)}
−ε2div

{
Aε(Bλ

k(d+1)j)
ε∇ ∂

∂xk
Kε

(∂vε,λ
∂xj

)}
+λ2ε2∆

{
(∆Bλ

k(d+1)j)
ε ∂

∂xk
Kε

(∂vε,λ
∂xj

)
+2ε(∇Bλ

k(d+1)j)
ε∇ ∂

∂xk
Kε

(∂vε,λ
∂xj

)
+ε2(Bλ

k(d+1)j)
ε∆

∂

∂xk
Kε

(∂vε,λ
∂xj

)}
. (5.4)

Proof. Similar to (4.8), we can prove that

(∂t+Lλ
ε )w

1
ε,λ=−div

{
(Âλ−Aε)(∇vε,λ−Kε(∇vε,λ))

}
+div

{
(Bλ)εKε(∇vε,λ)

}
−ε∂t

{
(χλ)εKε(∇vε,λ)

}
+εdiv

{
Aε(χλ)ε∇Kε(∇vε,λ)

}
−λ2εdiv

{
(∆χλ)ε∇Kε(∇vε,λ)

}
−2λ2ε2∆

{
(∇χλ)ε∇Kε(∇vε,λ)−λ2ε3∆

{
(χλ)ε∆Kε(∇vε,λ)

}
+(∂t+Lλ

ε )
{
ε2(Bλ

k(d+1)j)
ε ∂

∂xk
Kε

(∂vε,λ
∂xj

)}
.

The remaining proof is the same as Lemma 4.1. We therefore omit the details.

Lemma 5.2. Under the assumption of Lemma 5.1, for any ψ∈L2(0,T ;H1
0 (Ω)∩H2(Ω))

we have ∣∣∣ˆ T

0

⟨(∂t+Lλ
ε )w

1
ε,λ,ψ⟩dt

∣∣∣
≤Cε

{
∥∇2vε,λ∥L2(ΩT \ΩT,2ε)+∥∂tvε,λ∥L2(ΩT \ΩT,2ε)

}
∥∇ψ∥L2(ΩT )

+Cλ2(1+λ)−2ε∥∇vε,λ∥L2(Ω5ε×(0,T ))∥∆ψ∥L2(Ω5ε×(0,T ))

+Cλ2(1+λ)−2ε2∥∇2vε,λ∥L2(ΩT \ΩT,2ε)∥∆ψ∥L2(ΩT )

+C∥∇vε,λ∥L2(ΩT,5ε)∥∇ψ∥L2(ΩT,5ε), (5.5)

where ΩT,δ is given by (3.24), and C depends only on d,n,µ,T and Ω.

Proof. By (5.4), we have∣∣∣ˆ T

0

⟨(∂t+Lε)w
1
ε,λ,ψ⟩dt

∣∣∣
≤C

ˆ
ΩT

|∇vε,λ−Kε(∇vε,λ)||∇ψ|+Cε
ˆ
ΩT

|(Bλ)ε∇Kε(∇vε,λ)||∇ψ|

+Cε

ˆ
ΩT

|(χλ)ε∇Kε(∇vε,λ)||∇ψ|+Cε2
ˆ
ΩT

∣∣∣(Bλ
(d+1)ij)

ε∂tKε(
∂vε,λ
∂xj

)
∣∣∣|∂xiψ|

+Cλ2ε

ˆ
ΩT

|(∆χλ)ε∇Kε(∇vε,λ)||∇ψ|+Cλ2ε2
ˆ
ΩT

|(∇χλ)ε∇Kε(∇vε,λ)||∆ψ|

+Cε

ˆ
ΩT

∣∣∣(∇Bλ
k(d+1)j)

ε ∂

∂xk
Kε(

∂vε,λ
∂xj

)
∣∣∣|∇ψ|+Cλ2ε3ˆ

ΩT

|(χλ)ε∆Kε(∇vε,λ)||∆ψ|
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+Cε2
ˆ
ΩT

∣∣∣(Bλ
k(d+1)j)

ε ∂

∂xk
∇Kε(

∂vε,λ
∂xj

)
∣∣∣|∇ψ|

+Cλ2ε2
ˆ
ΩT

∣∣∣(∆Bλ
k(d+1)j)

ε ∂

∂xk
Kε(

∂vε,λ
∂xj

)
∣∣∣|∆ψ|

+Cλ2ε3
ˆ
ΩT

∣∣∣(∇Bλ
k(d+1)j)

ε∇ ∂

∂xk
Kε(

∂vε,λ
∂xj

)
∣∣∣|∆ψ|

+Cλ2ε4
ˆ
ΩT

∣∣∣(Bλ
k(d+1)j)

ε∆
∂

∂xk
Kε

(∂vε,λ
∂xj

)
∣∣∣|∆ψ|, (5.6)

where C depends only on d,n and µ. Note that (3.20) implies that for λ≥1,

∥∇kBλ,αβ
ςτj ∥L2(Td+1)≤C(1+λ)−2,

for k=0,1,2. By performing the same analysis as in Lemma 4.2, we derive (5.5) imme-
diately.

Lemma 5.3. Let Ω be a bounded C1,1 domain in Rd and 0<T <∞. Suppose A
satisfies conditions (1.2)-(1.3). Let uε,λ,vε,λ be, respectively, the solutions to (5.1) and
(5.2) with F ∈L2(ΩT ),h∈H2(Ω). Then

λε∥∆w1
ε,λ∥L2(ΩT )+∥∇w1

ε,λ∥L2(ΩT )≤Cε1/2
{
∥h∥H2(Ω)+∥F∥L2(ΩT )

}
, (5.7)

where w1
ε,λ is defined as in (5.3), and C depends only on d,n,µ,T and Ω.

Proof. Since w1
ε,λ∈L2(0,T ;H1

0 (Ω)), w
1
ε,λ(x,0)=0, and ∆w1

ε,λ=0 on ΓT . By taking

ψ=w1
ε,λ in (5.5) and the Cauchy inequality, we obtain that

λ2ε2∥∆w1
ε,λ∥2L2(ΩT )+∥∇w1

ελ∥2L2(ΩT )

≤Cε
{
∥∇2vε,λ∥2L2(ΩT )+∥∂tvε,λ∥2L2(ΩT )

}
+C∥∇vε,λ∥2L2(ΩT,5ε)

. (5.8)

Let v0,λ be the solution to the limit problem of (5.2), i.e.,

(∂t+Lλ
0 )v0,λ=F in ΩT ,

v0,λ=h on Ω×{t=0} and v0,λ=0 on ΓT . (5.9)

We have vε,λ=v0,λ on ∂ΩT , and

∂t(vε,λ−v0,λ)−div(Âλ∇(vε,λ−v0,λ))+λ2ε2∆2vε,λ=0 in ΩT .

Taking vε,λ−v0,λ as a test function, we deduce that

∥∇(vε,λ−v0,λ)∥L2(ΩT )+λε∥∆vε,λ∥L2(ΩT )≤Cλε∥∆v0,λ∥L2(ΩT ). (5.10)

Furthermore, taking ∂tvε,λ as the test function in (5.2), it yields

∥∂tvε,λ∥L2(ΩT )+λε sup
0≤t≤T

∥∆vε,λ(t)∥L2(Ω)

≤C{∥∇2vε,λ∥L2(ΩT )+∥F∥L2(ΩT )+λε∥h∥H2(Ω)}. (5.11)

Note that similar to (4.18), we have

ˆ ε2

0

∥∇vε,λ∥2L2(Ω)ds≤Cε
{
∥∂tvε,λ∥L2(ΩT )+∥F∥L2(ΩT )

}
sup

0<t<T
∥vε,λ(·,t)∥L2(Ω)

≤Cε
{
∥∇2vε,λ∥2L2(ΩT )+∥F∥2L2(ΩT )+∥h∥2H2(Ω)

}
,
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where we have used (5.11) for the last step. This, combined with (4.17) (for vε,λ), gives

∥∇vε,λ∥2L2(ΩT,5ε)
≤Cε

{
∥∇2vε,λ∥2L2(ΩT )+∥F∥2L2(ΩT )+∥h∥2H2(Ω)

}
. (5.12)

By taking (5.10)-(5.12) into (5.8) and using the H2 estimate for v0,λ (see e.g., (4.21)),
one gets (5.7) immediately.

With Lemmas 5.2 and 5.3 at our disposal, we can prove the optimal error estimate
between uε,λ and vε,λ by using the duality argument as in Theorem 4.1.

Theorem 5.1. Suppose Ω is a bounded C1,1 domain in Rd and 0<T <∞. Assume A
satisfies conditions (1.2)-(1.3). Let uε,λ,vε,λ be, respectively, the solutions to (5.1) and
(5.2) with F ∈L2(ΩT ) and h∈H2(Ω). Then for any fixed 0<λ<∞,

∥uε,λ−vε,λ∥L2(ΩT )≤Cε
{
∥h∥H2(Ω)+∥F∥L2(ΩT )

}
, (5.13)

where C depends only on d,n,µ,Ω and T.

Proof. The proof is completely parallel to Theorem 4.1. Let us omit the details.

Proof. (Proof of Theorem 1.2.) Let uε be the solution of (1.5) and (1.11), and
u0 the solution to (1.8). Note that uε is the solution to (5.1) with λ=κ/ε, and

∥uε−u0∥L2(ΩT )≤∥uε,λ−vε,λ∥L2(ΩT )+∥vε,λ−v0,λ∥L2(ΩT )+∥v0,λ−u0∥L2(ΩT ), (5.14)

where v0,λ is the solution to (5.9). Thanks to (4.24), we know that

∥v0,λ−u0∥L2(0,T ;H1
0 (Ω))≤C|Âλ−Â|∥u0∥L2(0,T ;H1(Ω)). (5.15)

In view of Theorem 2.2 and (4.21), we have

∥vε,λ−v0,λ∥L2(ΩT )≤Cκ2∥v0,λ∥L2(0,T ;H2(Ω))≤Cκ2
{
∥h∥H1(Ω)+∥F∥L2(ΩT )

}
. (5.16)

By taking (5.13), (5.15) and (5.16) into (5.14), and using (3.9), we obtain (1.12) and
complete the proof.

Remark 5.1. We have mentioned that the proof of Theorem 1.2 is slightly different
from the one of Theorem 1.1. Since we have observed that the convergence rate of
the pure singular perturbation problem with Navier boundary conditions admits better
error estimate, we therefore introduced the intermediate problem (5.2) to separate the
settings of singular perturbation and homogenization. By calculating the error estimates
in each process individually, we eventually derive the desirable error estimate (1.12).

For the initial Dirichlet problem (1.5)-(1.6), one may also perform similar analysis
(with some modifications as stated in Remark 2.2) to consider the error estimates in ho-
mogenization and singular perturbation separately. But there is no need to do so, as we
mentioned before that the optimal convergence rate for the pure singular perturbation
problem with Dirichlet boundary conditions is O(κ) [6]. One can therefore consider the
two processes in a deal as in the proof of Theorem 1.1 without any loss.
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