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ON BV-INSTABILITY AND EXISTENCE FOR
LINEARIZED RADIAL EULER FLOWS∗

HELGE KRISTIAN JENSSEN† AND YUSHUANG LUO‡

Abstract. We provide concrete examples of immediate BV-blowup from small and radially sym-
metric initial data for the 3-dimensional, linearized Euler system. More precisely, we exhibit data
arbitrarily close to a constant state, measured in L-infinity and BV (functions of bounded variation),
whose solution has unbounded BV-norm at any positive time. Furthermore, this type of BV-instability
can occur in the absence of any focusing waves in the solution. We also show that the BV-norm of a
solution may well remain bounded while suffering L-infinity blowup due to wave focusing. Finally, we
demonstrate how an argument based on scaling of the dependent variables, together with 1-d variation
estimates, yields global existence for a class of finite energy, but possibly unbounded, radial solutions.
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1. Introduction

In the first part of this work we consider the issue of BV-instability for the 3-
dimensional, linearized compressible Euler system. As a constant coefficients, first-
order symmetrizable system with non-commuting Jacobians, it follows from a theorem
of Brenner [1] that the Cauchy problem is unstable in Lp whenever p ̸=2. The results
in [1] generalized earlier results of Littman [17,18] specifically for the wave equation in
more than one space dimension. This result was later used by Rauch [19] to establish
that BV-stability (in the sense of (1.1) below) requires commutativity also for non-
linear, symmetrizable systems in more than one space dimension.

Brenner’s and Rauch’s abstract arguments apply to general systems. In this work,
our first goal is to provide concrete examples of (violent) BV-instability for the particular
case of the linearized Euler system in R3. Motivated by De Lellis’ more recent work [6] on
BV-blowup for so-called Keyfitz-Kranzer systems, we show that immediate BV-blowup
can be achieved from initial data that are arbitrarily small in both BV (R3) and L∞(R3).

It is well known that the compressible Euler system admits solutions that undergo
wave-focusing. In particular, radial solutions may suffer blowup in L∞ (see [14] for
the classic case of radial similarity solutions first considered by Guderley [9]). It has
been indicated in the literature (e.g., introductions in [12,13]) that the phenomenon of
focusing is incompatible with BV-stability. Our examples illustrate, at the linearized
level, that the situation is somewhat more subtle.

We first exhibit a case in which the BV-norm of a focusing solution remains bounded,
while suffering blow up in L∞ (see Section 3.1). The possibility of this behavior relies on
the fact that, in dimension d>1, BVloc(Rd) contains unbounded functions. For example,
a standard calculation shows that, for the unit ball B1 in Rd, the radial function |x|−µ

is an unbounded element of W 1,1(B1)⊂BV (B1) whenever 0<µ<d−1 (see Ex. 5.2.3
in [7] and Section 13.1 in [16]).
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We then give an example which shows how initial data that are arbitrarily close to
a constant in both amplitude and variation can generate immediate BV-blowup, even
in the absence of any focusing waves (see Section 3.2). Thus, contrary to what may
appear to be a reasonable guess, BV instability is not directly related to wave focusing.

Remark 1.1 (Relevance of BV-instability). Glimm’s celebrated theorem [8] on global
existence of weak solutions for 1-d conservative systems applies to strictly hyperbolic
systems and provides an estimate of the form

Varu(t)≤Const.Varu0, (1.1)

whenever Varu0 is sufficiently small. The results of Brenner [1] and Rauch [19] show
that the same type of bound is not available in multi-d, unless the Jacobians of the
fluxes in different spatial directions commute (“commuting systems”). As it turns out,
a BV-theory is not possible even for this restricted class of systems. This follows from
the results in [6] where DeLellis gave initial data for a class of symmetric, multi-d,
commuting, nonlinear systems whose corresponding solutions suffer immediate blowup
in BV. Furthermore, this can occur for data arbitrarily close to a constant. We are
not aware of concrete examples of immediate BV-blowup, akin to DeLellis’ examples,
for nonlinear, non-commuting multi-d systems. Our second example mentioned above
provides an example at the linear level.

Having used radial solutions to generate examples of BV instability for the 3-d lin-
earized Euler system, we next provide a global existence result for such radial solutions.
Our motivation is as follows. While standard arguments based on energy methods pro-
vide global existence for general, linear and symmetrizable systems, no such result is
known for nonlinear systems. Even for the restricted class of radial solutions, global
existence remains an open problem for the full Euler model (i.e., including energy conser-
vation). Existence has been established for radial isentropic flows via arguments based
on compensated compactness [3,4,15,20]; however, there is little hope of extending these
results to the full model. It is therefore of interest to consider alternative construction
schemes - even at the level of radial solutions to the linearized Euler model.

Our existence result for radial solutions of the 3-d linearized Euler system exploits
a certain scaling of the dependent variables which yields a standard 1-d system without
singular source terms. A 1-d front-tracking scheme, together with an application of
Helly’s selection theorem, yields global existence of the scaled solution. Finally, applying
the inverse scalings we obtain, typically unbounded, global solutions to the original
radial linearized Euler system in R3.

This approach highlights, admittedly in a simple setting, the feasibility of using
“radial front-tracking” to establish existence of radially symmetric solutions. The key
step is to identify a class of suitable building blocks, i.e., solutions generated by initial
data that contain a single jump discontinuity. For this we use particularly simple,
piecewise r-independent solutions; see Section 2.3. In addition to providing the relevant
building blocks for radial front-tracking, these special solutions will also be used in one
of the examples of BV-instability. Identifying suitable building blocks in the case of the
nonlinear Euler system remains an outstanding challenge.

The rest of the paper is organized as follows. Section 2 gives the linearized 3-d Euler
system, defines weak solutions, introduce the r-scaled system, and provides the relevant
building blocks. Section 3 presents the examples of BV-instability and L∞-blowup
as discussed above. Finally, Section 4 gives the details of the radial front-tracking
scheme, giving global existence of radial solutions for a rich class of finite-energy data
(cf. Theorem 4.1).
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2. Preliminaries
Consider the compressible Euler system for radial flow in R3

x:

ρt+uρr+ρ(ur+
2u
r )=0 (2.1)

ρ(ut+uur)+pr=0 (2.2)

Here r= |x|≥0 is the radial distance to the origin, and ρ=ρ(t,r), u=u(t,r) denote the
density and radial velocity of the fluid, respectively, so that the 3-d velocity field is
u(t,x)=u(t,r)xr . The pressure p=p(ρ) is assumed to be an increasing function of ρ.

We linearize (2.1)-(2.2) about (ρ,u)≡ (ρ̄,0) (ρ̄>0 constant). With

v := cρ, w := ρ̄u, c :=
√
p′(ρ̄),

we obtain the symmetric, linear system[
v
w

]
t

+

[
0 c
c 0

][
v
w

]
r

=

[
− 2c

r w
0

]
, (2.3)

which is to be solved on R+
t ×R+

r with initial data

v(0,r)=v0(r) := cρ0(r), w(0,r)=w0(r) := ρ̄u0(r). (2.4)

2.1. Weak solutions. To define weak solutions of the radial system (2.3) we
start from the multi-d, linearized Euler system

ρt+ ρ̄divxu=0 ρ̄ut+c
2gradxρ=0, (2.5)

where ρ and u=(u1,u2,u3) denote perturbations of the constant background state (ρ̄,0).
In terms of

v := cρ, w=(w1,w2,w3) := ρ̄u, (2.6)

the weak form requires that∫
R3

θ0v0dx+

∫
R+

∫
R3

θtv+cgradxθ ·wdxdt=0 (2.7)

and ∫
R3

θ0wi0dx+

∫
R+

∫
R3

θtwi+cθxi
vdxdt=0 (i=1,2,3) (2.8)

for all smooth and compactly supported test functions θ∈C∞
c (Rt×R3

x). Here and
below we use a ‘0’ subscript on a function of (t,r) to denote evaluation at time t=0:
θ0(r)≡θ(0,r), etc. Positing radial symmetry, i.e.,

v(t,x)=v(t,r) w(t,x)=w(t,r)xr ,

and changing to spherical coordinates, we obtain the following (see [10] for details).
Equation (2.7) yields∫

R+

∫
R+

[vφt+cwφr] r
2drdt+

∫
R+

v0(r)φ0(r)r
2dr=0 (2.9)
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where

φ(t,r)=

∫
|x|=1

θ(t,rx)dSx,

while (2.8) yields∫
R+

∫
R+

[
wψt+cv(ψr+

2
rψ)

]
r2drdt+

∫
R+

w0(r)ψ0(r)r
2dr=0 (2.10)

where

ψ(t,r) :=

∫
|x|=1

xiθ(t,rx)dSx.

Note that the “test function” φ(t,r) in (2.9) typically does not vanish as r ↓0, while
ψ(t,r) in (2.10) vanishes at a linear rate as r ↓0. (In particular, the term 2

rψ in (2.10)
is bounded.) This motivates the following definitions.

Definition 2.1. With R+≡ (0,∞) and R+
0 ≡ [0,∞), we introduce the following sets of

functions. C∞
c (R×R+

0 ) denotes the set of functions φ(t,r) that are restrictions to R×
R+

0 of smooth and compactly supported functions defined on R×R. C∞
0 (R×R+

0 ) denotes
the set of functions ψ∈C∞

c (R×R+
0 ) with the additional property that limr↓0ψ(t,r)=0

for all t≥0.

Definition 2.2. Consider the radial wave system (2.3) for (t,r)∈R+
0 ×R+

0 . For
initial data v0,w0∈L1

loc(R
+
0 ,r

2dr) we say that the function pair v,w :R+
0 ×R+

0 →R is
a weak solution of the corresponding initial value problem for the wave system (2.3)
provided:

(i) the solution maps t 7→v(t) and t 7→w(t) map R+
0 continuously into

L1
loc(R

+
0 ,r

2dr) with v(0)=v0 and w(0)=w0; and

(ii) the equations in (2.3) are satisfied in the following distributional senses: (2.9) is
satisfied for all φ∈C∞

c (R×R+
0 ), and (2.10) is satisfied for all ψ∈C∞

0 (R×R+
0 ).

2.2. Scaled variables; AB-system. It will be convenient to employ the follow-
ing r-weighted variables:

A(t,r) := rv(t,r), B(t,r) := r2w(t,r). (2.11)

This transforms the system (2.3) into

rAt+cBr=0, Bt+crAr= cA, (2.12)

or, in conservative form,

(rA)t+cBr=0 (2.13)

Bt+c(rA)r=2cA, (2.14)

for (t,r)∈R+×R+. We refer to either form as the AB-system.
Reformulating Definition 2.2 in terms of the rescaled unknowns A and B yields the

following definition for the AB-system. (Recall Definition 2.1.)

Definition 2.3. Consider the AB-system (2.13)-(2.14) in conservative form. For
initial data A0,B0∈L1

loc(R
+
0 ,dr) we say that the function pair A,B :R+×R+→R is a

weak solution of the corresponding initial value problem for the AB-system provided:
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(i) the solution maps t 7→A(t) and t 7→B(t) map R+
0 continuously into L1

loc(R
+
0 ,dr)

with A(0)=A0 and B(0)=B0; and

(ii) (2.13)-(2.14) are satisfied in the following distributional sense:∫
R+

∫
R+

rAφt+cBφrdrdt+

∫
R+

rA0(r)φ0(r)dr=0 (2.15)

for all φ∈C∞
c (R×R+

0 ), and∫
R+

∫
R+

Bψt+cA(rψr+2ψ)drdt+

∫
R+

B0(r)ψ0(r)dr=0 (2.16)

for all ψ∈C∞
0 (R×R+

0 ).

We do not impose a boundary condition along {r=0}. However, we shall restrict
attention to finite energy solutions, i.e., we require that

E(t) := 1
2

∫ ∞

0

[
w2(t,r)+v2(t,r)

]
r2dr≡ 1

2

∫ ∞

0

A(t,r)2+ B(t,r)2

r2 dr (2.17)

is finite (and in fact constant) for all times t≥0. It will follow from this that the
approximate solutions to the AB-system we construct below will vanish near r=0 (see
Section 2.3.3).

2.3. Elementary solutions to the AB-system. We make use of a family of
particularly simple solutions to the AB-system. These will be used both for examples
of BV-instability (Section 3) and as building blocks for constructing approximate front-
tracking solutions (Section 4). It is immediate to verify that[

A(t,r)
B(t,r)

]
:=

[
a

act+b

]
(2.18)

is an exact solution to the AB-system for any choice of constants a,b∈R. We proceed to
verify that they, together with their t-translates, provide an invariant family of piecewise-
constant-in-r solutions. For this we need to resolve initial Riemann problems, interaction
Riemann problems, and also boundary Riemann problems along r=0. The system
(2.13)-(2.14) has constant characteristic speeds ±c, with Rankine-Hugoniot relations

[[B]]=±[[rA]] across discontinuities with speed ±c, respectively. (2.19)

2.3.1. Initial Riemann problems. Consider an initial Riemann problem for
the AB-system (2.13)-(2.14), centered at r= r̄ >0, and with constant left and right
states [

a−
b−

]
and

[
a+
b+

]
,

respectively. The solution consists of three parts separated by discontinuities propa-
gating along the two straight lines r= r̄±ct. The leftmost and rightmost parts of the
solution are, according to (2.18), given by[

a−
a−ct+b−

]
and

[
a+

a+ct+b+

]
,
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respectively, while (2.19) shows that the emerging middle state is[
â

âct+ b̂

]
, (2.20)

with

â= ⟨a⟩− 1
2r̄ [[b]], and b̂= ⟨b⟩− r̄

2 [[a]], (2.21)

where we have used the notations

⟨a⟩ := 1
2 (a++a−) and [[a]] :=a+−a−, (2.22)

and similarly for ⟨b⟩ and [[b]].

2.3.2. Wave interactions in {t>0, r>0}. Consider two discontinuities prop-
agating along r= r̄±c(t− t̄), respectively, that meet at (t̄, r̄), where t̄>0 and r̄ >0.
Denoting the incoming left, middle, and right states by[

a−
a−ct+b−

]
,

[
a0

a0ct+b0

]
, and

[
a+

a+ct+b+

]
,

respectively, the Rankine-Hugoniot relations (2.19) yield

(b0+a0ct)−(b−+a−ct)=(c(t− t̄)+ r̄)(a0−a−) (2.23)

(b++a+ct)−(b0+a0ct)=(c(t− t̄)− r̄)(a+−a0). (2.24)

Adding these two identities and solving for [[b]]≡ b+−b− gives

[[b]]=2r̄(a0−⟨a⟩)− [[a]]ct̄, (2.25)

with the same notation as in (2.22). Next, denoting the outgoing middle state as in
(2.20), the Rankine-Hugoniot relations (2.19) yield

(b̂+ âct)−(b−+a−ct)=(c(t− t̄)− r̄)(â−a−) (2.26)

(b++a+ct)−(b̂+ âct)=(c(t− t̄)+ r̄)(a+− â). (2.27)

Adding the last two identities and solving for â gives

â= ⟨a⟩− 1
2r̄ ([[b]]+[[a]]ct̄) , (2.28)

again with the same notation as in (2.22). According to (2.25) this yields

â=a++a−−a0. (2.29)

(The explicit expression for b̂ will not be needed.)

2.3.3. Riemann problem at the origin; wave reflection along {t>0, r=0}.
Finally we need to analyze the situation along {r=0}. Consider first the situation

at time t=0, where we use piecewise constant approximations to the initial data A0(r)
and B0(r). Let b0 be the constant value used to approximate B0(r) near r=0. From
the requirement of finite energy it follows that b0=0 (see (2.17)). We thus have an
initial state of the form [

a0
0

]
near r=0 at time t=0.
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The boundary Riemann problem at (t,r)=(0,0) must give a single discontinuity along
{r= ct}. The solution to its right is given by (2.18):[

A(t,r)
B(t,r)

]
=

[
a0
a0ct

]
for r>ct,

which is to connect to a state, again of the form (2.18), on its left. It follows from the
Rankine-Hugoniot condition, together with the requirement of finite energy, that the
left state is trivial [

A(t,r)
B(t,r)

]
≡
[
0
0

]
for 0<r<ct.

It remains to consider the case when a left-moving discontinuity, along r= r̄−ct,
say, and with the trivial state on its left, meets the boundary r=0 at time t̄ := r̄

c . Letting
the state to the right of the discontinuity be[

A(t,r)
B(t,r)

]
=

[
ã

b̃+ ãct

]
(r> r̄−ct, t< t̄), (2.30)

the Rankine-Hugoniot relation (2.19) for a left-moving discontinuity gives

b̃+ ãr̄=0. (2.31)

The left-moving wave will reflect off r=0 at time t̄ as a right-moving discontinuity
along r= ct− r̄. Imposing finite energy as above, we use the trivial state (A,B)=(0,0)
for 0<r<ct− r̄. It is immediate to verify that, thanks to (2.31), the Rankine-Hugoniot
condition is then verified across the reflected discontinuity. Note that, as the energy
(2.17) is finite, and since the characteristic rectangle on which (2.30) holds meets the
boundary {r=0} at t= t̄, it follows that B(t,r)= b̃+ ãct must vanish for t= t̄= r̄

c ; again,
this holds thanks to (2.31). Thus, by imposing finite energy we ensure that solutions
to the AB-system with piecewise constant initial data vanish on a band of adjacent
triangles bounded by characteristic lines and {r=0}.

The above calculations confirm that the family of solutions (2.18) (and their t-
translates) provide a family of piecewise-constant-in-r solutions to (2.13)-(2.14) that is
invariant under resolution of Riemann problems. They will be used in Section 4 to build
front-tracking approximations for (2.3).

3. BV-instability for 3-d linearized radial Euler
In this section we employ radial solutions to study BV-instability for the linearized

Euler system in R3 (see (2.5)-(2.6))

vt+cdivxw=0 wt+cgradxv=0, (3.1)

whose radial solutions (v,w)=(v(t,r),w(t,r) x
|x| ) solve (2.3).

A radial Riemann problem for (3.1) at r= r̄ refers to an initial value problem whose
data (v0,w0=w0

x
|x| ) are such that v0 and w0 are piecewise constant with a single jump

discontinuity across the sphere of radius r̄ >0.
We fix a large radius R and restrict attention to the solutions within the ball BR of

radius R about the origin. By finite speed of propagation it is clear that we can alter
the initial data outside BR to obtain data of compact support whose solutions exhibit
the same type of local behavior near the origin. In calculating the two parts of the
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BV-norm (L1-norm + variation) we drop the geometric factor 4π throughout. Also,
we write X∼Y (X≲Y ) when X=C ·Y (X≤C ·Y , respectively) for a constant C<∞.
Finally, we abuse notation slightly by using the same symbol for a radial function
whether regarded as a function of (t,r) or of (t,x). (However, we stress that all norms
we calculate in this section are norms of functions defined on R3

x.)

3.1. Amplitude blowup without BV-blowup. Consider a single radial Rie-
mann problem for (3.1) with initial data

[
v0(r)
w0(r)

]
=



[
v−
0

]
0<r< r̄

[
v+
0

]
r> r̄,

(3.2)

for different constants v±.

Remark 3.1. As discussed above, the data are understood to be truncated to vanish
far from the origin, and attention is restricted to the behavior of the solution within a
large ball BR about the origin. At any time t>0, the contribution from r>R to the
various norms we compute is bounded, and it is therefore not calculated in detail.

The data (3.2) generate two discontinuities along the characteristics r= r̄+ct and
r= r̄−ct, with the latter being reflected into r= ct− r̄ at time t̄ := r̄

c . Note that no
discontinuity is generated at the origin at time zero. The solution is explicitly given by
(see Figures 3.1 and 3.2):

[
v(t,r)
w(t,r)

]
=



[
v−
0

]
for (t,r)∈Ω1

 ⟨v⟩0+ ct
2r [[v]]0

[[v]]0
4

(
(ct)2−r2−r̄2

r2

)
 for (t,r)∈Ω2

[
v+
0

]
for (t,r)∈Ω3,

(3.3)

where ⟨v⟩0= 1
2 (v++v−), [[v]]0=v+−v−, and

Ω1={(t,r)|0<r< r̄−ct and t< t̄}

Ω2={(t,r) |ct− r̄ <r<ct+ r̄ and r> r̄−ct}

Ω3={(t,r)|0<r<ct− r̄ and t> t̄, or r> r̄+ct}.

A direct calculation verifies that the expressions in (3.3) define classic solutions of (2.3)
within each of Ω1-Ω3, and that the Rankine-Hugoniot relations [[w]]=±[[v]] across char-
acteristics with speeds ±c, respectively, are also met. It follows that the corresponding
solution of (3.1)-(3.2) is (v(t,r),w(t,r) x

|x| ) where v and w are given by (3.3).

Clearly, the initial data (v0,w0) are bounded and of (locally) finite energy, and with
∥v0,w0∥BV (BR)<∞.



HELGE KRISTIAN JENSSEN AND YUSHUANG LUO 2215

Fig. 3.1. Regions related to the solution (3.3).

Fig. 3.2. v-component (dashed) and w-component (solid) of the solution (3.3) at a time t∈ (0, t̄),
in the particular case with v−=−v+<0.

Next, evaluating (v(t,r),w(t,r)) along the focusing characteristic r=(r̄−ct)+, for
t< t̄, yields

v(t,(r̄−ct)+)= ⟨v⟩0+ [[v]]0
2

t
t̄−t

and

w(t,(r̄−ct)+)= [[v]]0
2

t̄
t−t̄ .
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These expressions show that both v and w suffer L∞-blowup as t↑ t̄.
We proceed to verify that ∥v(t)∥BV (BR) and ∥w(t)∥BV (BR) remain bounded for all

t>0. In the following calculations we use that for a radial function f(x)=f(|x|) on R3:

• a jump discontinuity across |x|= r contributes ∼ r2|[[f ]]r| to its variation;

• if f is smooth for r−< |x|<r+, its variation over this region is

∼
∫ r+

r−

|f ′(r)|r2dr;

see Section 13.1 in [16]. First, consider times 0<t≤ t̄. As v(t, ·) suffers jumps across
r= r̄±ct, we obtain from (3.3) that (with R>2r̄)

∥v(t)∥BV (BR)=∥v(t)∥L1(BR)+VarBR
v(t)

≲
∫ r̄−ct

0

|v−|r2dr+
∫ r̄+ct

r̄−ct

|v(t,r)|r2dr+
∫ R

r̄+ct

|v+|r2dr

+(r̄−ct)2|[[v(t)]]r̄−ct|+(r̄+ct)2|[[v(t)]]r̄+ct|+
∫ r̄+ct

r̄−ct

|vr(t,r)|r2dr

≤ |v−|
3 (r̄−ct)3+ |v+|

3 (R3−(r̄+ct)3)

+ |⟨v⟩0|
3 ((r̄+ct)3−(r̄−ct)3)+c2(t2+ t̄2)|[[v]]0|,

which remains uniformly bounded for 0<t≤ t̄. Similarly, since w(t, ·) suffers jumps
across r= r̄±ct and vanishes on (0, r̄−ct) and on (r̄+ct,∞), we have (for R>2r̄ and
0<t≤ t̄)

∥w(t)∥BV (BR)=∥w(t)∥L1(BR)+VarBR
w(t)

≲
∫ r̄+ct

r̄−ct

|w(t,r)|r2dr+(r̄−ct)2|[[w(t)]]r̄−ct|

+(r̄+ct)2|[[w(t)]]r̄+ct|+
∫ r̄+ct

r̄−ct

|wr(t,r)|r2dr

= |[[v]]0|
[
ct(r̄2− 1

3 (ct)
2)+ r̄2+ (r̄2−(ct)2)

2 · log r̄+ct
r̄−ct

]
,

which again remains uniformly bounded for 0<t≤ t̄.
Entirely similar calculations show that ∥v(t)∥BV (BR) and ∥w(t)∥BV (BR) are bounded

at all times t> t̄ as well.
Finally, we translate these results into statements about solutions to the 3-d lin-

earized Euler system (3.1). The calculations above show that the corresponding solution
(v,w)=(v,w1,w2,w3) of (3.1) suffers blowup in L∞(BR) as t↑ t̄, while ∥v(t)∥BV (BR) and
∥wi(t)∥L1(BR) (i=1,2,3) remain bounded for all times. Also, since

|∂xj
wi|≲ |wr|+ |w|

r , (3.4)

we deduce from above that VarBR
wi(t) remains bounded provided∫ r̄+ct

r̄−ct

|w(t,r)|rdr remains bounded.

A direct calculation shows that the latter integral is bounded (up to a constant) by
r̄ct+(r̄2−(ct)2) · log

∣∣ r̄+ct
r̄−ct

∣∣ for all times 0<t≤ t̄.
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A similar calculation yields the same result for t> t̄, and we conclude that each
wi(t), i=1,2,3, remains bounded in BV (BR) for all times.

Summing up, we have that the radial Riemann problem with data (3.2) for the 3-d
linearized Euler system (3.1) generates a solution that remains uniformly bounded in
BV (BR) for all times, while suffering blowup in L∞(BR) due to wave-focusing at time
t= t̄.

3.2. BV-instability without wave focusing and from small data. For our
second example we consider a radial solution of (3.1) generated by initial data that
suffer jump discontinuities across an infinite sequence of diminishing radii.

We want the solution to contain only outgoing waves. It is then convenient
to prescribe initial data (v0(r),w0(r)) with the property that r 7→ (A0(r),B0(r)) :=
(rv0(r),r

2w0(r)) is piecewise constant, and to use the analysis in Section 2.3.1 to make
sure that no focusing wave (i.e., no wave with speed −c) is generated. It follows from
(2.20)-(2.21) that, for the AB-system (2.13)-(2.14), the Riemann problem at r= r̄ with
inner and outer states [a−,b−] and [a+,b+], respectively, produces no focusing wave if
and only if

[[b]]r̄= r̄[[a]]r̄ (no focusing wave), (3.5)

where [[·]]r̄ denotes jump across r= r̄.
We further want a situation where the initial data are arbitrarily small in L∞ and

BV, while the resulting solution suffers immediate blowup in BV. (This behavior is
motivated by DeLellis’ examples in [6]; see Section 1.)

We start by fixing an integer N >1 which will serve as index for a sequence of initial
data (vN0 (r),wN

0 (r)) with the required properties. For convenience we mostly drop the
N from the notation. To define the data we introduce the following notations. For
integer k≥0 we set

σk :=

{
0 k even
−1 k odd,

and

βk :=
1

(N+k+σk)
√
N+k

.

It is immediate to verify that (βk) is a strictly decreasing sequence of positive numbers.
We define

aN :=0, bN :=

∞∑
k=0

(−1)k+1βk, (3.6)

and for n≥N+1 set

an :=

{
0 n−N even
1

n−1 n−N odd
, (3.7)

and

bn := bN −
n−N−1∑
k=0

(−1)k+1βk=

∞∑
k=n−N

(−1)k+1βk. (3.8)
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We finally set

rn :=
1√
n

and define the N -th set of initial data for the (A,B)-system as follows:

A0(r) :=

{
aN =0 r>rN
an rn<r<rn−1, n≥N+1,

and

B0(r) :=

{
bN r>rN
bn rn<r<rn−1, n≥N+1.

It is readily verified that these initial data are such that (3.5) is satisfied across each
radius r= rn. The corresponding initial data for v and w are

v0(r)=
A0(r)

r , w0(r)=
B0(r)
r2 . (3.9)

It follows that the resulting solution of (3.1) contains no focusing waves.
We next estimate the L∞- and BV -norms of v0(r) and w0(r). As in the previous

example it suffices to consider the behavior on a bounded set which we fix as the unit
ball B1⊂R3. We have

∥v0(r)∥L∞(B1)= sup
n≥N

n−N odd

sup
rn<r<rn−1

∣∣an

r

∣∣= sup
n≥N

n−N odd

an

rn

≤ sup
n≥N

√
n

n−1 =
√
N

N−1 , (3.10)

and (with rN−1 :=1)

∥w0(r)∥L∞(B1)= sup
n≥N

sup
rn<r<rn−1

∣∣ bn
r2

∣∣= sup
n≥N

|bn|
r2n

=supn≥N n|bn|

= sup
n≥N

n
∣∣∣ ∞∑
k=n−N

(−1)k+1βk

∣∣∣≤ sup
n≥N

n|βn−N |

≤ sup
n≥N

n
(n+σn)

√
n
≤ supn≥N

√
n

n−1 =
√
N

N−1 , (3.11)

where, in (3.11), we used that the tail of an alternating series with decreasing terms is
bounded by the size of the first term of the tail. It follows from (3.10)-(3.11) that the
L∞(B1)-norm, and thus the L1(B1)- and L2(B1)-norms, of the data (v0(r),w0(r))≡
(vN0 (r),wN

0 (r)) tend to zero as N→∞.
Next consider the variations of v0(r) and w0(r). We have

VarB1 v0≲
∑
n≥N

r2n|[[v0]]rn |+
∑
n≥N

n−N even

∫ rn

rn+1

∣∣∣(an+1

r

)
r

∣∣∣r2dr
≲

∑
n≥N

1
n
√
n
+

∑
n≥N

1
n

(
1√
n
− 1√

n+1

)
, (3.12)
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and

VarB1
w0≲

∑
n≥N

r2n|[[w0]]rn |+
∑
n≥N

∫ rn

rn+1

∣∣∣( bn+1

r2

)
r

∣∣∣r2dr
≲

∑
n≥N

|bn+1−bn|+
∑
n≥N

|bn+1| log rn
rn+1

≲
∑
n≥N

|βn−N |+
∑
n≥N

∣∣∣ ∞∑
k=n−N

(−1)k+1βk

∣∣∣ log n+1
n

≤
∑
n≥N

|βn−N |+
∑
n≥N

|βn−N | log n+1
n ≲

∑
n≥N

1
(n−1)

√
n
. (3.13)

It follows from (3.12)-(3.13) that the variations of both v0(r)≡vN0 (r) and w0(r)≡wN
0 (r)

on B1 tend to zero as N→∞. As the same applies to their L1(B1)-norms, we conclude
that the BV(R3)-norm of the initial data can be made arbitrarily small by choosing N
sufficiently large. By using (3.4) as in Section 3.1 we obtain that the same conclusion
holds for the corresponding initial data (vN0 (r),wN

0 (r)) for the linearized Euler system
(3.1).

We finally show that the corresponding solution suffers immediate blowup in BV,
i.e. (v(t,r),w(t,r))≡ (vN (t,r),wN (t,r)) has infinite BV(R3)-norm at all strictly positive
times. For this it suffices to verify that the variation of v(t,r) is unbounded whenever
t>0. According to the calculations in Section 2.3.1, v(t,r)= an

r within each of the strips
{(t,r) : rn+ct<r<rn−1+ct}. With [[a]]n=an+1−an we therefore have

VarB1
v(t)≳

∑
n≥N

(rn+ct)
2
∣∣∣ [[a]]n
rn+ct

∣∣∣>ct∑
n≥N

1
n =∞,

whenever t>0.
Summing up, this example provides finite-energy radial solutions of the 3-d lin-

earized Euler system (3.1) whose initial data are arbitrarily small in L∞(B1) and
BV (B1), and which generate only outgoing waves, while suffering immediate blowup in
BV (B1).

4. Front tracking for the 3-d linearized radial Euler system
In this section we give a detailed proof of existence for the 3-d linearized radial

Euler system (2.3). The approach exploits a 1-d front-tracking scheme for the rescaled
variables A= rv and B= r2w introduced in Section 2.2. (See [2, 5, 11] for background
on front tracking.)

The analysis in Section 2.3 shows how piecewise constant data (A0,B0) for the AB-
system can be propagated for all times by resolving Riemann problems. We claim that
these are exact weak solutions according to Definition 2.3. Part (i) of the definition
will follow from the L1-estimates in Section 4.3. For Part (ii) we first note that the
front tracking solutions are, by construction, piecewise exact classical solutions. Also,
all Riemann problems are resolved exactly according to the Rankine-Hugoniot relations
(2.19). Finally, in verifying the weak form via integration by parts, the boundary terms
Bφ|r=0 and rAψ|r=0 appear (in (2.13) and (2.14), respectively); both of these vanish
since A(t,0)=B(t,0)≡0 by construction.

To extract a convergent (sub)sequence of approximate solutions we shall apply
Helly’s criterion for BV-compactness in 1-d, and this requires bounding the variations
of A(t,r) and B(t,r). Translated back to the original v and w variables, this will entail
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certain r-weighted variation bounds on the initial data v0 and w0. These bounds dictate
the class of initial data covered by our approach.

The relevant variation and continuity estimates are given in Sections 4.1 and 4.3,
respectively; Section 4.2 describes the approximation of initial data. A standard con-
vergence argument then yields existence of weak solutions to (2.3); see Theorem 4.1.

4.1. Variation estimates. The first step is to monitor the spatial variation of
solutions A(t,r) and B(t,r) to (2.13)-(2.14) that are piecewise constant and piecewise
affine in t, respectively. We use the following notation: for any f :R+

0 →R,

Varf := sup

N∑
i=1

|f(ri)−f(ri−1)|,

where the supremum is taken over all finite, increasing selections of points in R+: 0=
r0< ·· ·<rN <∞.

4.1.1. Initial change in variations. Let A0, B0 be piecewise constant data
with vanishing B-value near r=0 and jumps at 0<r1< ·· ·<rN . Let

A0(r)=

N∑
i=0

aiχ[ri,ri+1)(r), B0(r)=

N∑
i=1

biχ[ri,ri+1)(r), (4.1)

where r0=0, rN+1=+∞, and we assume right-continuity. The data define a boundary
Riemann problem at r=0, and a Riemann problem at each location r= ri, 1≤ i≤N .
With b0 :=0 the initial variations are

VarA0=

N∑
i=1

|[[a]]i|, VarB0=

N∑
i=1

|[[b]]i|, (4.2)

where

[[a]]i :=ai−ai−1, [[b]]i := bi−bi−1 for 1≤ i≤N .

Fix a time t0>0 prior to any interaction of waves resulting from these Riemann prob-
lems. To calculate the variations of r 7→A(t0,r) and r 7→B(t0,r) we use the results
from Sections 2.3.1 and 2.3.3. Recall that the requirement of finite energy implies that
the boundary Riemann problem at r=0 is resolved by having the trivial state on the
left connect to the state (A,B)=(a0,a0ct) on the right across the characteristic line
r= ct. This wave thus contributes |a0| to VarA(t0) and |a0|ct0 to VarB(t0). Next,
let the outgoing middle state from the Riemann problem centered at r= ri (1≤ i≤N)

be (âi, b̂i+ âict). From (2.21)-(2.22) it follows that the contribution to VarA(t0) and
VarB(t0) from the two waves in the solution of this Riemann problem are given as

|ai− âi|+ |âi−ai−1|= 1
2 |[[a]]i+

1
r̄ [[b]]i|+

1
2 |[[a]]i−

1
r̄ [[b]]i|≤ |[[a]]i|+ 1

ri
|[[b]]i|,

and

|(bi+aict0)−(b̂i+ âict0)|+ |(b̂i+ âict0)−(bi−1+ai−1ct0)|
≤ (|[[b]]i|+ri|[[a]]i|)+(|[[a]]i|+ 1

ri
|[[b]]i|)ct0,
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respectively. We therefore have

VarA(t0)≤VarA0+ |a0|+
N∑
i=1

1
ri
|[[b]]i|=:V (A0,B0), (4.3)

and

VarB(t0)≤
(
VarB0+

N∑
i=1

ri|[[a]]i|
)
+ct0

(
VarA0+ |a0|+

N∑
i=1

1
ri
|[[b]]i|

)
=:W (A0,B0)+ct0V (A0,B0). (4.4)

4.1.2. No change in variations across interactions. Consider the reflection
of a left-moving characteristic into a right-moving characteristic at a time t̄>0 along
{r=0}. As the state adjacent to the boundary remains the same (trivial) state, the
reflection does not change the variation of (A,B).

Next, consider the situation in Section 2.3.2 where two discontinuities with speeds
±c intersect at some point (t̄, r̄), with t̄>0 and r̄ >0. With the same notation as there,
the contribution to VarA(t) from the two approaching waves, before interaction and
after interaction, respectively, are

|a0−a−|+ |a+−a0| and |â−a−|+ |a+− â|.

According to (2.29), these two sums are identical, and the interaction contributes no
change in the variation of A. Finally, it follows from this together with the Rankine-
Hugoniot relations (2.19), that the interaction also contributes no change in the variation
of B.

4.1.3. Changes in variations between interactions. Consider the situation
between two consecutive interactions. With A(t,r) and B(t,r) piecewise constant and
piecewise affine in t, respectively, assume t̄>0 and ∆t>0 are such that no discontinuities
in (A(t,r),B(t,r)) meet each other or the boundary {r=0} during the time interval
[t̄, t̄+∆t]. As the constant values of A(t,r) do not change between such interactions, it
follows that VarA(t) remains constant between interactions.

Finally, as B(t,r) is piecewise affine in t it follows that VarB(t) increases at most
at a linear rate between t̄ and t̄+∆t. Recalling that any discontinuity in the solutions
under consideration separates states of the form (a−,b−+ca−t) and (a+,b++ca+t), we
obtain that

VarB(t̄+∆t)≤VarB(t̄)+c∆t ·VarA(t̄).

4.1.4. Overall variation estimates. It follows from the analysis above that
the solution (A(t,r),B(t,r)) of (2.13)-(2.14) with the piecewise constant initial data
(4.1), satisfies the bounds (4.3)-(4.4) for all times t0≥0.

4.2. Initial data and their approximation. The variation bounds (4.3)-(4.4)
provide a natural class of initial data (A0,B0) for which an argument based on scaling
and Helly’s theorem will yield existence of a corresponding weak solution. For this we
define two “weighted” variations for any A0,B0∈L∞(R+

0 ) with B0(0)=0:

S(A0)=sup

N∑
i=1

ri|A0(ri)−A0(ri−1)| (4.5)



2222 LINEARIZED RADIAL EULER FLOWS

T (B0)=sup

N∑
i=1

1
ri
|B0(ri)−B0(ri−1)|, (4.6)

where the supremums are taken over all finite, increasing selections in R+: 0= r0< ·· ·<
rN <∞. Also, define the (partial) energy integrals

E(A0) :=

∫
R+

A2
0(r)dr, F(B0) :=

∫
R+

B2
0(r)

dr
r2 .

Then, according to (4.3)-(4.4), the relevant sets of initial data A0 and B0 for the AB-
system (2.13)-(2.14) are

A :={A0 :R+
0 →R |VarA0,S(A0), E(A0)<∞} (4.7)

and

B :={B0 :R+
0 →R|VarB0, T (B0),F(B0)<∞}, (4.8)

respectively.

Lemma 4.1. Given A∈A and B∈B. Then there are sequences (An) and (Bn) such
that

An→A in L2(R+
0 ,dr), Bn→B in L2(R+

0 ,
dr
r2 ), (4.9)

and such that for each integer n>0:

(a) An(r) is piecewise constant, right-continuous, and VarAn≤VarA, S(An)≤
S(A);

(b) Bn(r) is piecewise constant, right-continuous, and VarBn≤VarB, T (Bn)≤
T (B).

Proof. Fix A∈A and B∈B. We will show that there are sequences (An) and (Bn)
satisfying (a) and (b) and such that

∥A−An∥L2(R+
0 ,dr)≤

1
n and ∥B−Bn∥L2(R+

0 , dr
r2

)≤
1
n . (4.10)

We follow [2] and start with A. First define the variation function

V (r) :=sup
{ N∑

j=1

|A(ri)−A(rj−1)||N ≥1, 0= r0< ·· ·<rN = r
}
. (4.11)

By right continuity ofA(r), V (r) is a right continuous, non-decreasing function satisfying

V (0)=0, V (∞)=VarA. (4.12)

For ε>0, let N =N(ε) be the largest integer < VarA
ε and set

r0 :=0, rN :=∞, rj := inf{r :V (r)≥ jε}, j=1,·· · ,N−1. (4.13)

Defining the function Aε by

Aε(r) :=A(rj) if r∈ [rj ,rj+1), j=0,. ..,N−1, (4.14)
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we obtain from (4.13) that

∥Aε−A∥L∞(R+
0 )<ε. (4.15)

By definition, Aε is piecewise constant and takes values of the original function A.
It follows that VarAε≤VarA and S(Aε)≤S(A). Thus, for any ε>0 the function Aε

satisfies (a) with the additional property (4.15).
We next use this to find an An satisfying (a) and also (4.10)1. First, since A∈

L2(R+
0 ,dr), for each n there is an ηn so that∫ ∞

ηn

A2(r)dr< 1
2n2 . (4.16)

Now apply the argument above with ε= 1
n
√
2ηn

to find a piecewise constant function Ãn

satisfying (a) and with

∥A−Ãn∥L∞(R+
0 )<

1
n
√
2ηn

. (4.17)

We observe that, as A∈L2(R+
0 ,dr)∩BV (R+

0 ), we have

lim
r→∞

A(r)=0.

Now set

An(r) :=

{
Ãn(r) r∈ [0,ηn),

0 r≥ηn.
(4.18)

An is piecewise constant and, by definition, takes values of A(r). Thus (a) is satisfied,
while (4.10)1 follows from

∥A−An∥2L2(R+
0 ,dr)

=

∫ ∞

0

|A(r)−An(r)|2dr

=

∫ ηn

0

|A(r)−Ãn(r)|2dr+
∫ ∞

ηn

A2(r)dr

≤
∫ ηn

0

|A(r)−Ãn(r)|2dr+ 1
2n2 (by (4.16))

≤ηn
(

1
n
√
2ηn

)2

+ 1
2n2 =

1
n2 . (by (4.17))

A similar argument applies to B and yields (4.10)2 .

4.3. Lipschitz continuity in time. We next show that the solutions con-
structed above define Lipschitz continuous maps from R+

0 into L1
loc(R

+
0 ,dr). We fix

T >0 and piecewise constant data A0∈A, B0∈B as in (4.1). Let A(t,r), B(t,r) denote
the corresponding solutions. We shall first estimate

∥A(s′)−A(s)∥1 :=∥A(s′,r)−A(s,r)∥L1(R+,dr)

for times 0≤s<s′≤T , and we start with the situation when there are no interactions
during the time interval [s,s′]. The simplest case occurs when no front-location (i.e.,
position of a discontinuity) at time s is crossed by other fronts during [s,s′]. The
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following lemma reduces the issue to this simplest case, for concreteness formulated for
the A-component of the solution.

Lemma 4.2. With A(t,r) as above, assume that no interaction occurs during the time
interval [s,s′] where 0<s<s′≤T . Then, by letting M be a sufficiently large integer and
setting

∆t := s′−s
M , (4.19)

we have: during each subinterval (s+m∆t,s+(m+1)∆t], m=0,. ..,M−1, no front in
A(t,r) crosses any front location present at time s+m∆t.

Proof. Recall that A(t,r) is piecewise constant for any t. For any t∈ [s,s′], let
r0(t) :=0<r1(t)< ·· ·<rN (t) denote the front locations in A(t,r). As no interaction oc-
curs during [s,s′] the minimal distance between adjacent fronts remains strictly positive,
i.e.,

l := min
t∈[s,s′]
1≤i≤N

|ri(t)−ri−1(t)|>0.

Now letM be the smallest integer satisfyingM> c(s′−s)
l . It follows that c∆t< l and that

any two adjacent fronts at time tm :=s+m∆t (m=0,. ..,M−1) are at least a distance
l apart. As each front is either stationary or moves a distance c∆t< l during the time
interval Im := (tm,tm+1], it follows that during Im no fronts cross a front location present
at time tm.

Since discontinuities in B(t,r) propagate with the same speeds ±c, it is immediate
that Lemma 4.2 applies with A(t,r) replaced by B(t,r).

Lemma 4.3. With the same setup as in Lemma 4.2 we have

∥A(s′)−A(s)∥1≤ c|s′−s| ·VarA(s). (4.20)

Proof. Define ∆t as in (4.19). According to Lemma 4.2, and with the notation
introduced in its proof, we have: as t increases from tm to tm+1, each front moves a
distance c∆t without crossing any front location present at time tm. As the constant
values taken by A(t,r) do not change due to the absence of interactions during [s,s′], it
follows that

∥A(tm+1)−A(tm)∥1= c∆t ·VarA(tm).

Summing for 0≤m≤M−1, and using that VarA(t) is constant, we obtain

∥A(s′)−A(s)∥1≤
M−1∑
m=0

∥A(tm+1)−A(tm)∥1

=

M−1∑
m=0

c|tm+1− tm| ·VarA(tm)≤ c|s′−s| ·VarA(s).

The corresponding estimate for B(t,r) requires a separate analysis since its values
change with time. In particular, we need to restrict to a compact spatial domain. For
R>0, we set

∥B(s′)−B(s)∥1,R :=∥B(s′,r)−B(s,r)∥L1([0,R],dr).



HELGE KRISTIAN JENSSEN AND YUSHUANG LUO 2225

.

iriir’di−1

b’i−1

i−1b

bi
b’i

t m

t

B

r

r

tm+1

=−cr

d

Fig. 4.1. B-values (top) and front locations (bottom) in Ji=(di−1,di] during (tm,tm+1).

Lemma 4.4. With B(t,r) as above, assume that no interaction occurs during the time
interval [s,s′] where 0<s<s′≤T . Then, for any R>0 there is a number LR,T (A0,B0),
depending only on R, T , and the initial data A0 and B0 (see (4.22)), such that

∥B(s′)−B(s)∥1,R≤LR,T (A0,B0) · |s′−s|. (4.21)

Proof. Recall that Lemma 4.2 applies to B(t,r); using the notation introduced in
its proof we first consider one of the subintervals Im=(tm,tm+1] (m=0,. ..,M−1) in
which no front crosses a front location present at time tm. Without loss of generality we
can assume that no fronts cross the location r=R within the open interval (tm,tm+1).
(If a front does meet r=R at some time t̄∈ (s,s′), we add t̄ to the tm and rename them.)

Let 0<r1< ·· ·<rN be the front locations in [0,R] at time tm. With r0 :=0 and
rN+1 :=R, let

A(tm,r)=

N∑
i=0

aiχ[ri,ri+1)(r), B(tm,r)=

N∑
i=0

biχ[ri,ri+1)(r),

for 0≤ r≤R. As no interactions occur between times tm and tm+1 we have

A(tm+1,r)=

N∑
i=0

aiχ[r′i,r
′
i+1)

(r), B(tm+1,r)=

N∑
i=0

b′iχ[r′i,r
′
i+1)

(r),

where r′i= ri+ci∆t (∆t=(tm+1− tm)) for i=1,. ..,N , ci=±c, and r′0=0, r′N+1=R.
Also, b′i= bi+aic∆t for i=0,. ..,N .

By our choice of the times tm there is a partition 0=d0< ·· ·<dN =R of [0,R]
such that ri,r

′
i∈Ji := (di−1,di] for i=1,. ..,N . We first consider one of the intervals

Ji, assuming for concreteness that r′i<ri. Referring to Figure 4.1, which depicts the
situation where ai−1>0>ai, we have

∥B(tm+1)−B(tm)∥L1(Ji,dr)

= |b′i−1−bi−1|(r′i−di−1)+ |bi−1−b′i|(ri−r′i)+ |b′i−bi|(di−ri)
= c[|ai−1|(r′i−di−1)+ |bi−1−b′i|+ |ai|(di−ri)]∆t
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≤ c
[
|ai−1|(r′i−di−1)+ |bi−1−b′i−1|+ |b′i−1−b′i|+ |ai|(di−ri)

]
∆t

= c
[
|ai−1|(r′i−di−1)+ |ai−1|c∆t+ |b′i−1−b′i|+ |ai|(di−ri)

]
∆t

= c
[
|ai−1|(ri−di−1)+ |b′i−1−b′i|+ |ai|(di−ri)

]
∆t

= c
[
VarJiB(tm+1)+

∫
Ji

|A(tm,r)|dr
]
∆t,

where VarJi
denotes spatial variation over the interval Ji. Summing up the contributions

from each Ji, we obtain

∥B(tm+1)−B(tm)∥1,R≤ c
[
Var[0,R]B(tm+1)+

∫
[0,R]

|A(tm,r)|dr
]
∆t.

Estimating the last integral in terms of the energy,∫
[0,R]

|A(tm,r)|dr≤R
1
2

[∫
[0,R]

|A(tm,r)|2dr
] 1

2 ≤R 1
2

[
E(A0)+F(B0)

] 1
2 ,

and using (4.4), show that ∥B(tm+1)−B(tm)∥1,R is bounded by

c
[
W (A0,B0)+cs

′V (A0,B0)+R
1
2

[
E(A0)+F(B0)

] 1
2

]
∆t,

where V (A0,B0) and W (A0,B0) were defined in (4.3)-(4.4). Finally, summing up over
the time intervals Im, and using that s′≤T , we obtain

∥B(s′)−B(s)∥1,R≤
M−1∑
m=0

∥B(tm+1)−B(tm)∥1,R≤LR,T (A0,B0) · |s′−s|,

where

LR,T (A0,B0) := c
[
W (A0,B0)+cT ·V (A0,B0)+R

1
2

[
E(A0)+F(B0)

] 1
2

]
. (4.22)

Next, assume that an interaction occurs between times s and s′ (0<s<s′<T ), and
consider ∥A(s′)−A(s)∥1. First, assume that there is a single time s̄∈ (s,s′) at which one
or more interactions occur, one of which could be the reflection of a front at (t,r)=(s̄,0).
As fronts move at speed ±c, it is readily verified that ∥A(s̄±∆t)−A(s̄)∥1, where 0<
∆t<min(s′− s̄, s̄−s), is of order ∆t. Applying Lemma 4.3, and the fact that VarA(t)
is constant for t>0 (cf. Sections 4.1.2 and 4.1.3), we obtain

∥A(s′)−A(s)∥1≤∥A(s′)−A(s̄+∆t)∥1+∥A(s̄+∆t)−A(s̄)∥1
+∥A(s̄)−A(s̄−∆t)∥1+∥A(s̄−∆t)−A(s)∥1

≤cVarA(s̄+∆t) ·(s′−(s̄+∆t))+O(∆t)

+cVarA(s) ·(s̄−∆t−s)
≤cVarA(s)(s′−s−2∆t)+O(∆t). (4.23)

Sending ∆t↓0 we conclude that (4.20) holds whenever 0<s<s′ are times for which
there is a single intermediate time of interaction(s).

Let now s and s′ be arbitrary times with 0<s<s′. As there are at most finitely
many interactions occurring during the time interval [s,s′], we can partition it into
a finite number of subintervals of the type just considered. Applying (4.20) to each
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subinterval and using the triangle inequality show that (4.20) holds for any two positive
times s,s′.

Finally, assume that 0=s<s′= t0, where t0 is chosen small enough that no inter-
action occurs during the time interval (0,t0). With the data (4.1) and with notation as
in Section 4.1.1 we then have

∥A(t0)−A(0)∥1= |a0|ct0+
N∑
i=1

(|âi−ai−1|+ |âi−ai|)ct0

≤ c
(
VarA0+ |a0|+

N∑
i=1

1
ri
|[[b]]i|

)
t0= ct0 ·V (A0,B0). (4.24)

Combining the results above we conclude: for piecewise constant data A0∈A, B0∈B of
the form (4.1), the first component A(t,r) of the solution of the AB-system (2.13)-(2.14)
satisfies the Lipschitz estimate

∥A(s′)−A(s)∥1≤ c|s′−s| ·V (A0,B0) for any s,s′≥0, (4.25)

where V (A0,B0) is given by (4.3).
Next, consider the second component B(t,r) of the solution. As above, let 0<

s<s′<T and assume first that there is a single time s̄∈ (s,s′) at which one or more
interactions occur. Again it is readily verified that ∥B(s̄±∆t)−B(s̄)∥1, where 0<∆t<
min(s′− s̄, s̄−s), is of order ∆t. Fixing an R>0 and applying Lemma 4.4 we thus have

∥B(s′)−B(s)∥1,R≤∥B(s′)−B(s̄+∆t)∥1+∥B(s̄+∆t)−B(s̄)∥1
+∥B(s̄)−B(s̄−∆t)∥1+∥B(s̄−∆t)−B(s)∥1

≤LR,T (A0,B0) ·(s′−(s̄+∆t))+O(∆t)

+LR,T (A0,B0) ·(s̄−∆t−s)
≤LR,T (A0,B0)(s

′−s−2∆t)+O(∆t). (4.26)

Sending ∆t↓0 we conclude that (4.21) holds whenever 0<s<s′ are times for which
there is a single intermediate time of interaction(s).

If s and s′ are arbitrary times with 0<s<s′<T we argue as for A(t,r) above and
obtain that the estimate (4.21), with the Lipschitz constant LR,T (A0,B0) in (4.22),
holds for any two positive times s,s′.

Finally, assume that 0=s<s′= t0, where t0 is as above. Consider the initial data
(4.1) and use notation as in Section 4.1.1. Letting j be the largest index such that rj<R
and choosing, if necessary, t0 small enough that the forward wave from (t,r)=(0,rj)
does not reach r=R before time t0, we have (assuming R<rj+1)

∥B(t0)−B(0)∥1,R

=(r1−2ct0)|a0|ct0+
j−1∑
i=1

[
|b̂i−bi−1|+ |b̂i−bi|+ |ai|(ri+1−ri−2ct0)

]
ct0

+
[
|b̂j−bj−1|+ |b̂j−bj |+ |aj |(R−rj−2ct0)

]
ct0

≤ c
[ j∑
i=1

(|[[b]]i|+ri|[[a]]i|)+ |a0|r1+
j−1∑
i=1

|ai|(ri+1−ri)+(R−rj)|aj |
]
t0

= c
[
W (A0,B0)+

∫ R

0

|A0(r)|dr
]
t0≤ c

[
W (A0,B0)+R

1
2 E(A0)

1
2

]
t0. (4.27)
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(The same result is obtained if R= rj+1.) We conclude: for fixed R,T >0 and piecewise
constant data A0∈A, B0∈B of the form (4.1), the B-component of the AB-system
(2.13)-(2.14) satisfies the Lipschitz estimate

∥B(s′)−B(s)∥L1([0,R],dr)≤L · |s′−s| for any s,s′∈ [0,T ], (4.28)

with a Lipschitz constant L depending on R, T , A0 and B0:

L=max
(
LR,T (A0,B0),c

[
W (A0,B0)+R

1
2 E(A0)

1
2

])
, (4.29)

where LR,T (A0,B0) is given by (4.21).

4.4. Existence of Weak Solutions to the 3-d radial wave system.
Lemma 4.5. For initial data A0,B0 with A0∈A and B0∈B (see (4.7)-(4.8)), there
exists a weak solution of the initial-boundary value problem for the AB-system in the
sense of Definition 2.3.

Proof. Given the data A0, B0, we choose sequences (An,0), (Bn,0) as in Lemma
4.1, and let An(t,r), Bn(t,r) denote the resulting weak solutions. Note that Lemma 4.1
in particular implies that

An,0→A0 in L1
loc(R

+
0 ,dr), Bn,0→B0 in L1

loc(R
+
0 ,dr). (4.30)

Now fix R>0 and T >0. The results in Section 4.1 show that An(t) and Bn(t), for
t∈ [0,T ], satisfy the uniform variation estimates (4.3)-(4.4) (with t0 replaced by T ).
As An(t,r) vanishes for sufficiently large r while Bn(t,r) vanishes along {r=0}, these
variation bounds also yield uniform bounds on |An(t,r)| and |Bn(t,r)| (again for t∈
[0,T ]). Finally, the results in Section 4.3 show that An and Bn satisfy a uniform
Lipschitz estimate of the form

∥An(s
′)−An(s)∥L1([0,R],dr)+∥Bn(s

′)−Bn(s)∥L1([0,R],dr)≤L · |s′−s|,

where L depends on R, T , as well as on upper bounds for VarAn,0, VarBn,0, S(An,0),
T (Bn,0), E(An,0) and F(Bn,0). (Note: as An,0(r) vanishes for large r, the term |An,0(r)|
which appears in the Lipschitz constant L through LR,T (A0,B0) in (4.29), can be esti-
mated in terms of VarAn,0.) By Lemma 4.1, L is therefore bounded independently of
n in terms of R, T , VarA0, VarB0, S(A0), T (B0), E(A0) and F(B0).

A standard argument based on Helly’s Selection Theorem (see Theorem 2.4 in [2])
implies that there are subsequences, denoted (An′), (Bn′), and limit functions A, B
such that

An′ →A and Bn′ →B in L1
loc([0,T ]×R+

0 ), (4.31)

and such that

An′,0≡An′(0)→A(0) and Bn′,0≡Bn′(0)→B(0) in L1
loc(R

+
0 ). (4.32)

The same argument also shows that the limits A, B satisfy the bounds

∥A(s′)−A(s)∥L1([0,R],dr)+∥B(s′)−B(s)∥L1([0,R],dr)≤L · |s′−s| (4.33)

for all R>0, s, s′∈ [0,T ]. By (4.30), (4.32) we obtain A(0)=A0, B(0)=B0 as elements
in L1

loc(R
+
0 ). Finally, the limit functions A(t,r) and B(t,r) can be chosen to be right-

continuous with respect to r at each fixed time t; and these “good versions” satisfy the
variation bounds (4.3)-(4.4) for any t0.
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It is now straightforward to use linearity of the AB-system, together with energy
conservation, to show that the full sequences (An), (Bn) converge to the limits A, B,
respectively, in L1

loc([0,T ]×R+
0 ). It follows from this that A and B can be extended to

globally defined functions in L1
loc(R

+
0 ×R+

0 ).

Finally, fix any test functions φ∈C∞
c (R×R+

0 ), ψ∈C∞
0 (R×R+

0 ), and numbers
R,T >0 such that both φ(t,r) and ψ(t,r) vanish identically whenever r≥R or t≥T . As
(2.15) and (2.16) hold with A and B replaced by An and Bn, respectively, for each n it
follows from (4.31) that (A,B) is a weak solution of the initial boundary value problem
for the AB-system according to Definition 2.3.

We finally translate Lemma 4.5 into an existence result for the linearized radial
Euler system (2.3). Due to linearity it is immediate to verify that if (A,B) is a weak
solution with initial data A0(r),B0(r) of the AB-system according to Definition 2.3,
then

v(t,r) := 1
rA(t,r), w(t,r) := 1

r2B(t,r)

is a weak solution of (2.3) with initial data v0(r) :=
1
rA0(r),w0(r) :=

1
r2B0(r) according

to Definition 2.2. To formulate concisely the existence result for (2.3) we define data
classes V, W corresponding to the classes A, B. Introduce the following functionals for
functions v0,w0 :R+

0 →R with w0(0)=0:

S(v0) :=sup

N∑
i=1

ri|riv0(ri)−ri−1v0(ri−1)| (4.34)

T(w0) :=sup

N∑
i=1

1
ri
|r2iw0(ri)−r2i−1w0(ri−1)|, (4.35)

where the supremums are taken over all finite, increasing selections of points in R+:
0= r0< ·· ·<rN <∞. Next, define the (partial) energy integrals

E(v0) :=
∫
R+

v20(r)r
2dr, F(w0) :=

∫
R+

w2
0(r)r

2dr.

Finally, define the data sets

V :={v0 :R+
0 →R|Var(rv0(r)),S(v0),E(v0)<∞}, (4.36)

W :={w0 :R+
0 →R |Var(r2w0(r)),T(w0),F(w0)<∞}. (4.37)

Lemma 4.5 now yields the following result.

Theorem 4.1. For initial data v0∈V and w0∈W there exists a weak solution
(v(t,r),w(t,r)) of the initial-boundary value problem for the 3-d radial linearized Eu-
ler system (2.3) according to Definition 2.2. In turn

ρ(t,x) := 1
cv(t, |x|) u(t,x) := 1

ρ̄w(t,|x|)
x
|x|

provides a weak solution of the 3-d linearized Euler system (2.5).
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