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LARGE, MODERATE DEVIATIONS PRINCIPLE AND α-LIMIT FOR
THE 2D STOCHASTIC LANS-α∗

ZAKARIA IDRISS ALI† , PAUL ANDRE RAZAFIMANDIMBY‡ , AND

TESFALEM ABATE TEGEGN§

Abstract. In this paper we consider the Lagrangian Averaged Navier-Stokes Equations, also
known as, LANS-α Navier-Stokes model on the two dimensional torus. We assume that the noise is a
cylindrical Wiener process and its coefficient is multiplied by

√
α. We then study through the lenses

of the large and moderate deviations principles the behaviour of the trajectories of the solutions of the
stochastic system as α goes to 0. Instead of giving two separate proofs of the two deviations principles
we present a unifying approach to the proof of the LDP and MDP and express the rate function in
term of the unique solution of the Navier-Stokes equations. Our proof is based on the weak convergence
approach to large deviations principle. As a by-product of our analysis we also prove that the solutions
of the stochastic LANS-α model converge in probability to the solutions of the deterministic Navier-
Stokes equations.

Keywords. LANS-α model; Camassa-Holm equations; large deviation principle; Stochastic
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1. Introduction
The Navier-Stokes system is the most used model in turbulence theory, but its nu-

merical simulation is computationally expensive. In order to overcome this issue, reg-
ularisation models of Navier-Stokes equations such as the Navier-Stokes-α (also known
as Lans-α), Leray-α, modified Leray-α, Clark-α to name a few, were introduced as
subgrid scale models of the Navier-Stokes equations (NSEs) in recent years. See, for
instance, [6, 7, 9–11, 20]. Numerical analyses in [12, 21, 23, 25, 28, 29, 32, 33] seem to con-
firm that the previous examples of α-models can capture remarkably well the physical
phenomenon of turbulence in fluid flows at a lower computational cost. It is worth
mentioning that while many of the regularisations of the NSEs mentioned above do not
satisfy Kelvin’s circulation theorem, the LANS-α, for α>0, regularisation model does.
This particularity overcomes some of the physical limitations present in the other reg-
ularisations. Furthermore, the derivation of the LANS-α was based on substituting in
Hamilton’s principle the decomposition of the Lagrangian fluid-parcel trajectory into its
mean and fluctuating components. This was followed by truncating a Taylor series ap-
proximation and averaging at constant Lagrangian coordinate, before taking variations.
This derivation has more “physical” flavour than the derivations of other regularisation
models. We refer to [10] for more detail on the derivation of the LANS-α.

Another tool used to tackle the closure problem in turbulent flows is to introduce
a stochastic forcing. These forcings were introduced in order to better understand
the situation of small variations or perturbations at small scale present in fluid flows.
Similar to the derivation of the LANS-α, this probabilistic approach, which is motivated
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by Reynolds’ work which stipulates that hydrodynamic turbulence is composed of slow
(deterministic) and fast (stochastic) components, was used in [31] to derive stochastic
Navier-Stokes equations with gradient and nonlinear diffusion coefficient. It is also
worth emphasising that the presence of the stochastic term (noise) in the model often
leads to qualitatively new types of behaviour, which are very helpful in understanding
real processes and is also often more realistic. In particular, for the 2D Navier-Stokes
equations, some ergodic properties are proved when adding a random perturbation.

Motivated by these facts, in this paper we will consider a stochastic version of the
LANS-α in non-dimensionalised form. More precisely we let O=[0,2π]2 be the 2D
torus, we fix an arbitrary time horizon T ∈ (0,∞) and we consider the following system

dvα+[−∆vα+uα ·∇vα+
∑2

j=1v
α
j ∇uα+∇pα]dt=α

1
2G(uα)dW

vα=uα−α2∆uα

divuα=0∫
Ouα(x)dx=0
uα(t=0)= ξ,

(1.1)

where uα,pα are the fluid velocity and fluid pressure, respectively. The symbol W
represents the cylindrical Wiener process evolving on a given separable Hilbert space K.
The noise coefficient is a nonlinear map defined to take values on Hilbert spaces that
will be given later. The symbol α denotes a small positive parameter.

We should note that the choice of the form of the stochastic perturbation
α

1
2G(uα)dW appearing in (1.1) is for mathematical convenience. In fact, in some parts

of this paper we rely on previous results on existence and uniqueness of solutions of the
stochastic LANS-α proved in [8] and [17]. Hence, we chose the form of and assumptions
on the stochastic perturbation in our system in such a way that we can use the results
in [8] and [17]. In view of the derivation of the LANS-α model, see [9–11], or the ap-
proach in [31] the stochastic perturbation will probably take the form α2F (uα,vα)dW

for some (possibly) mapping F . Here we chose the pre-factor α
1
2 having in mind the

time dimensionality of noise and as it is customary in the study of LDP for SPDEs. We
postpone the investigation of this issue of the noise of the form α2F (uα,vα)dW to the
future.

We also observe that when α=0 the above system reduces to the deterministic 2D
Navier-Stokes equations (NSEs):

du+[−∆u+u ·∇u+∇p]dt=0
divu=0∫
Ou(x)dx=0
u(t=0)= ξ.

(1.2)

Thus, we expect that a sequence of solutions to the system (1.1) will converge in ap-
propriate sense to a solution to (1.2) as α→0. For the deterministic case, i.e., when
G≡0, it is known from [20] that then as α→0 a weak solution to the deterministic
3D LANS-α (1.1) model converges to 3D Navier-Stokes equations. In [7], when G≡0
the rate of convergence of the unique solution to (1.1) to the unique solution to the 2D
Navier-Stokes equations was studied. For the stochastic models, it was proved in [8]
that the stochastic 3D (1.1) has a unique strong solution when the noise coefficient G is
globally Lipschitz. When G is only continuous, it was proved in [17] that the stochastic
3D (1.1) has global weak (or martingale) solutions. Furthermore, it is shown in [16]
that when α→0 a sequence of weak (or martingale) solutions of the stochastic 3D (1.1)
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model converges in distribution to a weak solution (or martingale) of the 3D Navier-
Stokes equations. In the above references, the coefficient of the noise is not allowed to
converge to 0 as α→0.

Our main goal in this paper is to study the behaviour of the solutions uα to the
system (1.1) as α→0 through the lenses of the Large and Moderate Deviations Prin-
ciples (LDP and MDP). For this purpose we assume that the coefficient of the noise

is multiplied by the square root of α, i.e., of the form α
1
2G(uα). We then analyse

the asymptotic behaviour, as α→0, of the family of trajectories of (uα)α∈(0,1] and(
α− 1

2λ−1(α)[uα−u]
)
α∈(0,1]

where λ : (0,1]→ (0,∞) is a function satisfying

λ(α)→∞ and α
1
2λ(α)→0 as α→0, (1.3)

and u is the solution to the deterministic NSEs with initial data ξ. Thus, our goal
and results in the present paper are different from the results in [16] and from results
from several papers dealing with the deviation principles of α-models of Navier-Stokes
equations, see for instance [13] and [39].

Roughly speaking, in the study of the MDP one is interested in probabilities of
deviations of lower speed than in the classical LDP. In small diffusion (the coefficient

of the noise is usually multiplied by α
1
2 ) the speed for the LDP is usually of order

α. The speed for the MDP is of order λ2(α) and is provided by an LDP result for(
α− 1

2λ−1(α)[uα−u]
)
α∈(0,1]

. Observe that since λ(α) converges to∞ as slow as desired,

then the MDP bridges the gap between the Central Limit Theorem and the LDP. We
refer, for instance, to [22] and [24] for more detailed explanation and historical account
of the MDP. We refer, for instance, to [1–5, 13, 18, 26, 27, 37, 38, 40–42] and references
therein for a small sample of results from the extensive literature devoted to MDP and
LDP for stochastic differential equations with small noise.

In several papers about LDP and MDP for stochastic system, the authors usually
present two separate proofs of the two deviations principles. In this present paper,
instead of presenting two separate proofs of the LDP and MDP results we present
a unifying approach for these deviation principles for the LANS-α model. A similar
approach was introduced in [35] for the vanishing viscosity limit of the second grade
fluid. To be precise, we fix δ∈{0,1} and consider the following problem

dyα,δ+
[
Ayα,δ+λδ(α)B̃α(y

α,δ,zα,δ)+δ
[
B̃α(u,z

α,δ)+B̃α(y
α,δ,J−1

α u)
]]

=−λ−1
δ (α)δ[B̃α(u,J

−1
α u)−B(u,u)]dt+α

1
2λ−1

δ (α)Gα(δu+λδ(α)y
α,δ)dW,

zα,δ =yα,δ+α2Ayα,δ,

yα,δ(t=0)=(1−δ)ξ,

(1.4)

where

• u is the unique solution to the deterministic NSEs with initial data ξ;

• A is the Stokes operator, Jα=(I+α2A)−1;

• B(u,v) is roughly speaking the projection of u ·∇v into the space of divergence-
free functions;

• B̃(u,v) is the projection of u ·∇v+
∑2

j=1vj∇uj into the space of divergence-free
functions;

• finally, B̃α(u,v)=JαB̃(u,v) and Gα(u)=JαG(u).
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The major part of the paper is devoted to the proof of LDP result for the system
(1.4). Denoting by H the subspace of the Sobolev space L2(O) consisting of periodic,

divergence-free functions that have zero mean, by V the space D(A
1
2 ) and by L2(X,Y )

the space of Hilbert-Schmidt operators from X onto Y , the main results in this paper
can be roughly summarised in the following theorem.

Theorem 1.1. Let δ∈{0,1}, ξ∈D(A
1
2 ) and the map G :H−→L2(K,H)∩L2(K,V)

has the following property: there exists C>0 such that for any u,v∈H,

∥G(u)−G(v)∥L2(K,V)+∥G(u)−G(v)∥L2(K,H)≤C|u−v|
∥G(u)∥L2(K,V)+∥G(u)∥L2(K,H)≤C(1+ |u|).

Then, the family (uα,δ)α∈(0,1] of solutions to (1.4) satisfies an LDP on the space

C([0,T ];H)∩L2(0,T ;D(A
1
2 )) with speed α−1λ2δ(α) and rate function Iδ given by

Iδ(x)= inf
{h∈L2(0,T ;K):x=Γ0,δ

ξ (
∫ ·
0
h(r)dr)}

{
1

2

∫ T

0

∥h(r)∥2Kdr
}
.

As usual, we understand that inf ∅=∞.

In the above theorem Γ0,δ
ξ :C([0,T ];K)→C([0,T ];H)∩L2(0,T ;D(A

1
2 )) is the solu-

tion map of the skeleton equation associated to (1.4) which is obtained by replacing
dW by an element h∈L2(0,T ;K) in (1.4), see Subsection 4.2 and Proposition 4.1 for
more details. The precise definitions of all used notations and the formulation of the
assumptions on our problem are presented in Section 3.

The above theorem, which will be restated and proved in Section 5.3, provides the
LDP and MDP results for the LANS-α model (1.1). In fact, we observe that:

• when δ=0, the unique solution to (1.4) is exactly the unique solution to the
LANS-α (1.1). Thus, the LDP results for system (1.1) follow from the LDP
result for the system (1.4) when δ=0.

• When δ=1, the unique solution to (1.4) is exactly α− 1
2λ−1(α)[uα−u] where

uα and u are the unique solutions to (1.1) and the deterministic NSEs with
initial data ξ, respectively. Hence, the MDP result for (1.1) follows from the
LDP results for the system (1.4) when δ=1.

The precise statement of the above result will be done in Theorem 5.1 whose proof is pre-
sented in Section 5.3 and based on weak convergence approach to LDP and Budhiraja-
Dupuis’ results on representation of functionals of Brownian motion, see [4] and [5].
Also, we closely follow the techniques presented in the recent paper [3]. Note how-
ever that our results do not fall into the framework of these papers or the results
in [1,2,13,35,37,39]. The authors of the papers [13,37] and [39] study the LDP or MDP
of the Navier-Stokes equations and other hydroddynamical models, but their physical
parameters such as the viscosity in their equations are not allowed to vanish. The
papers [1, 2] and [35] treat the LDP and zero viscosity limit of the shell models, the
Navier-Stokes equations and the second grade fluids, respectively.

It is also worth pointing out that even though we rely on the abstract results
in [4] and [5], our analysis is not trivial. Our results require the derivation of uniform
estimates on the difference between the terms in the LANS-α model and the Navier-
Stokes equations. Due to the unifying approach to the LDP and MDP we present in
this paper, these crucial estimates are not available from previous works. We also note
that as a by-product of our analysis we also show that the solution to (1.1) converges
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in probability to the unique solution to the deterministic NSEs with initial data ξ as
α→0, see Lemma 5.1 and Remark 5.1. Of course, since we are in the two-dimensional
case this result is stronger than what was proved in [16].

To close this introduction we now outline the layout of the paper. We introduce the
necessary notations and the basic model in Section 2. In the same section we also give
several preliminary results which are crucial for the subsequent analysis. In Section 3,
we introduce the standing assumption on the noise and state and prove a theorem on
the existence and uniqueness of the solution to the problem 1.4. Section 4 is devoted to
the study of auxiliary deterministic and stochastic controlled systems. The results in
Section 4 are important not only for the description of the rate functions associated to
the LDP and MDP results but also for their proofs. Section 5 contains the main results
and their proofs. Therein, we show the convergence in probability of the solution to the
stochastic LANS-α to the unique solution of the deterministic Navier-Stokes equations.
By using the weak convergence approach we also prove in Section 5 that the solution of
(1.4) satisfies the LDP on C([0,T ];H)∩L2(0,T ;V). This LDP result for (1.4) provides
the LDP and MDP results for the problem (1.1).

2. Notations, the basic problems and some key estimates

2.1. Notation and the basic problems. We introduce necessary definitions
of functional spaces frequently used in this work.

For a topological vector space X we denote by X ′ its dual space and we denote by
⟨u,u∗⟩X′ the duality paring between u∈X and u∗∈X ′.

Throughout this paper we denote by Lp(O;R2) and Wm,p(O;R2), p∈ [1,∞], m∈N,
the Lebesgue and Sobolev spaces of functions defined on O and taking values in R2.
The spaces of u∈Lp(O;R2) and Wm,p(O;R2) which are 2π-periodic in each direction
xi, i=1,2, see for example [14], are denoted by Lp(O) and Wm,p(O), respectively. We
simply write Lp (resp. Wm,p) instead of Lp(O) (resp. Wm,p(O)) when there is no risk of
ambiguity. We will also use the notationHm :=Wm,2. For non-integer r>0 the Sobolev
space Hr is defined by using classical interpolation method. The space [C∞

per(R2)]2 :=
C∞
per(R2,R2) denotes the space of functions which are infinitely differentiable and 2π-

periodic in each direction xi, i=1,2.
We also introduce the following spaces

H=

{
u∈L2(O);

∫
O
u(x)dx=0, divu=0

}
,

V=H1∩H.

It is well-known, see [36], that H and V are the closure of

V=

{
u∈ [C∞

per(R2)]2;

∫
O
u(x)dx=0, divu=0

}
,

with respect to the L2 and H1 norms. We denote by (·, ·) and | · | the inner product
and the norm induced by the inner product and the norm in L2(O) on H, respectively.
Thanks to the Poincaré inequality we can endow the space V with the norm ∥u∥=
|∇u|,u∈V.

Let Π :L2(O)→H be the Helmholtz-Leray projection, and A=−Π∆ be the Stokes
operator with the domain D(A)=H2(O)∩H. It is well-known that A is a self-adjoint
positive operator with compact inverse, see for instance [36, Chapter 1, Section 2.6].
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Hence, it has an orthonormal sequence of eigenvectors {ej ; j∈N} with corresponding
eigenvalues 0<λ1<λ2<... The domain of Ar, r∈R is characterised by

D(Ar)=V∩H2r,

see [14, page 43].

For α∈ (0,1) we set

∥u∥α=
√

|u|2+α2|Au|2, u∈V.

Then, we observe that ∥·∥, ∥·∥α, α∈ (0,1), and |A 1
2 ·| define three equivalent norms on

V.
For the time being we assume that the stochastic perturbation G(uα)dW is a

divergence-free function. Then, when projecting the system (1.1) onto the space of
divergence-free functions we obtain the following stochastic evolution equationdvα+[Avα+B̃(uα,vα)]dt=α

1
2G(uα)dW

vα=uα+α2Auα

uα(t=0)= ξ.
(2.1)

In a similar way, we can also write the 2D Navier-Stokes equations as the abstract
evolution equation {

d
dtu+Au+B(u,u)=0
u(t=0)= ξ.

(2.2)

In (2.1) and (2.2) the nonlinear terms B̃ and B are roughly defined by

B̃(u,v)=Π(u ·∇v+
2∑

j=1

vj∇uj)

B(u,v)=Π(u ·∇v),

respectively. These nonlinear maps satisfy several properties that will be recalled in the
last subsection of this section.

By introducing the following nonlinear maps

B̃α(u,v)=(I+α2A)−1B̃(u,v),

Gα(u)=(I+α2A)−1G(u),

the Equation (2.1) can be rewritten in the following form:{
duα+Auα+B̃α(u

α,vα)=α
1
2Gα(u

α)dW
uα(t=0)= ξ.

In the next few lines we will introduce an abstract stochastic evolution equation
which will enable us to give a unifying approach to the large and moderate deviations
for the problem (2.1). For this purpose we fix a δ∈{0,1} and introduce the function
λδ : (0,∞)→ (0,∞) defined by

λδ(α)=

{
1, if δ=0,

α
1
2λ(α), if δ=1,
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where λ : (0,∞)→ (0,∞) is a function satisfying (1.3).

Remark 2.1. In view of the definition of λδ(α), we see that as α→0

λδ(α)→1−δ.

Observe also that for ℓ∈{1,2} and k≥ ℓ
2

αkλ−ℓ
δ (α)→0 as α→0.

Hence, we can and will assume that for ℓ∈{1,2}, k≥ ℓ
2 and α∈ (0,1)

αkλ−ℓ
δ (α)≤2 (2.3)

where λ(α) is the function considered in (1.3).

Before proceeding further we recall the following result on the 2D Navier-Stokes
equations, see, for instance, [14] and [36] for its proof.

Theorem 2.1. Let ξ∈V. Then, the problem (2.2) has a unique solution u∈
C([0,T ];V)∩L2(0,T ;D(A)).

Throughout this paper, the symbol u will denote the unique solution of the problem
(2.2).

Now, we consider the following stochastic evolution equations.
dyα,δ+

[
Ayα,δ+λδ(α)B̃α(y

α,δ,zα,δ)+δ
[
B̃α(u,z

α,δ)+B̃α(y
α,δ,J−1

α u)
]]

=−λ−1
δ (α)δ[B̃α(u,J

−1
α u)−B(u,u)]dt+α

1
2λ−1

δ (α)Gα(δu+λδ(α)y
α,δ)dW,

zα,δ =yα,δ+α2Ayα,δ,

yα,δ(t=0)=(1−δ)ξ,

(2.4)

where Jα=(I+α2A)−1.

Remark 2.2. Observe that, if one is able to prove a LDP result for (2.4) then one
just proved LDP and MDP results for (2.1). In fact, (2.4) reduces to (2.1) when δ=0.
When δ=1 then an LDP result for (2.4) yields an LDP for the process yα,1= uα−u

λδ(α)
.

This is just an MDP result for (2.1).

2.2. Several key estimates. To close the present section, we recall and prove
several well-known properties of the bilinear maps B and B̃. These properties will play
an important role in the sequel.

We first recall the following lemma that was proved in [20].

Lemma 2.1.
(1) Let X be either B or B̃. Then, the operator X can be extended continuously

from V×V with values in V′ (the dual space of V). In particular, for u,v,w∈
V,

|⟨X(u,v),w⟩V′ |≤ c|u|1/2||u||1/2||v||||w||, (2.5)

and

(B̃(u,v),w)=(B(u,v),w)−(B(w,v),u). (2.6)
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Moreover

(B(u,v),w)=−(B(u,w),v), u,v,w∈V, (2.7)

which in turn implies that

(B(u,v),v)=0, u,v∈V. (2.8)

Also,

(B̃(u,v),w)=(B(u,v),w)−(B(w,v),u), u,v,w∈V, (2.9)

and hence

(B̃(u,v),u)=0, u,v∈V. (2.10)

(2) Furthermore, let u∈D(A),v∈V,w∈H and let X be either B or B̃, then

|(X(u,v),w)|≤ c|A 1
2u|1/2|Au|1/2|A 1

2 v||w|. (2.11)

(3) Let u∈V,v∈D(A),w∈H, then

|(B(u,v),w)|≤ c|A 1
2u||A 1

2 v|1/2|Av|1/2|w|. (2.12)

(4) The operator B and B̃ can be also extended continuously from D(A
1
2 )×H with

values in D(A−1). In particular, if u∈D(A
1
2 ),v∈H,w∈D(A), then

⟨B̃(u,v),w⟩≤C[|u| 12 |A 1
2u| 12 |A 1

2w| 12 |Aw| 12 + |Aw||A 1
2u|]|v|, (2.13)

hence the Poincaré inequality yields

|⟨B̃(u,v),w⟩D(A)′ |≤C|A
1
2u||v||Aw|. (2.14)

Also, by symmetry we have for all u∈D(A),v∈H,w∈D(A
1
2 ),

|⟨B̃(u,v),w⟩D(A)′ |≤C|Au||v||A
1
2w|. (2.15)

Remark 2.3. Observe that by using the Hölder and the Gagliardo-Nirenberg in-
equalities one can refine the estimate (2.12) as follows. Let u∈V,v∈D(A),w∈H, then

|(B(u,v),w)|≤ c|u| 12 |A 1
2u| 12 |A 1

2 v|1/2|Av|1/2|w|. (2.16)

See [14] and [36] for the details.
Notice also that thanks to (2.10) we have

(B̃α(u,v),J
−1
α u)= ⟨B̃(u,v),u⟩V′ =0 for all u, v∈V. (2.17)

The following lemma, which was proved in [7], will be needed in several places later on.

Lemma 2.2. Let ϕ∈H, w∈D(A
1
2 ). Then, for any α∈ (0,1) we have

⟨ϕ−Jαϕ,w⟩≤
α

2
|ϕ||A 1

2w|. (2.18)
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We also need the following three lemmata.

Lemma 2.3. There exists a constant C>0 such that for any α∈ (0,1), any y,u∈D(A)
we have

(J−1
α y,B(u,u)−B̃α(u,J

−1
α u))≤C

[α
2
|A 1

2 y|+α2|Ay|
](

|B(u,u)|+ |A 1
2u||Au|

)
, (2.19)

(y,B(u,u)−B̃α(u,J
−1
α u))≤Cα

2
|A 1

2 y||B(u,u)|+ α

2
C|Au|2 |y|. (2.20)

Proof. Let y,u∈D(A) and α∈ (0,1). In order to simplify the notation we set
ϕ=B(u,u). By the bilinearity of B̃ and B, and the fact B(u,u)= B̃(u,u) we have

(J−1
α y,B(u,u)−B̃α(u,J

−1
α u))

=(J−1
α y,B(u,u)−JαB(u,u))+α2(J−1

α y,B(u,u)−JαB̃(u,Au)),

=(y,B(u,u)−JαB(u,u))+α2(Ay,B(u,u)−JαB̃(u,Au))+α2(J−1
α y,B(u,u)−JαB̃(u,Au)).

By using the last line, (2.18), the facts that

|α2A(I+α2A)−1|L (H)=sup
k∈N

α2λk
1+α2λk

≤1, (2.21)

|αA 1
2 (I+α2A)−1|L (H)=sup

k∈N

(α2λk)
1
2

1+α2λk
≤ 1

2
, (2.22)

and the inequalities (2.13) we easily establish (2.19).
The second estimate (2.20) is proved in a similar way.

Lemma 2.4. There exists a constant C>0 such that for any y,∈H,v,w∈D(A), and
any α∈ (0,1) we have

(B̃α(v,J
−1
α w),y)≤C|Av||y|

(
|A 1

2w|+α|Aw|
)
. (2.23)

Proof. Throughout this proof C will denote a constant independent of α.
Let y∈H,v,w∈D(A), and α∈ (0,1). Observe that

(B̃α(v,J
−1
α w),y)=(B̃(v,w),Jαy)+α

2⟨B̃(v,Aw),Jαy⟩D(A)′ .

Now, by applying the inequalities (2.9), (2.6), (2.13) and the Hölder inequality we find
that there is a constant C>0 such that

(B̃α(v,J
−1
α w),y)≤C|Av||A 1

2w||Jαy|+α2|A 1
2 Jαy||Aw||Av|.

By using the fact |(α2A)
1
2 (I+α2A)−1|L (H)≤ 1

2 and |Jα|L (H)≤1 we see that

(B̃α(v,J
−1
α w),y)≤C|Av||A 1

2w||y|+α|y||Aw||Av|,

which completes the proof of the lemma.

Lemma 2.5. There exists a constant C>0 such that for any α∈ (0,1) and any
u∈D(A), y∈D(A) :∣∣∣(B̃α(u,J

−1
α y),J−1

α y)+(B̃α(y,J
−1
α u),J−1

α y)
∣∣∣
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≤1

4
|y|2+ α2

2
|A 1

2 y|2+ α4

4
|Ay|2+α−2C|u|2D(A)

[
|y|2+α2|A 1

2 y|2
]
.

Proof. Let u∈D(A), y∈D(A) and z=y+α2Ay. Using equation (4) on page 5
of [20] we obtain:

(B̃α(u,z),z)=(JαB̃(u,z),J−1
α y)

= ⟨B̃(u,z),y⟩V′

= ⟨B(u,z),y⟩V′ −⟨B(y,z),u⟩V′ .

Using the well-known property

⟨B(u,z),y⟩V′ =−⟨B(u,y),z⟩V′ ,

we obtain

(B̃α(u,z),z)=−⟨B(u,y),z⟩V′ +⟨B(y,u),z⟩V′ .

Now the Hölder and Young inequalities along with the Sobolev embedding, D(A)⊂L∞

and V⊂L4 we find that there exists C>0 such that

(B̃α(u,z),z)≤C|z|
[
|u|L∞∥y∥+∥y∥|u|D(A)

]
≤C|z||u|D(A)∥y∥

≤ 1

4
|z|2+C|u|2D(A)∥y∥

2

≤ 1

4
|y+α2Ay|2+α−2C|u|2D(A)α

2∥y∥2

≤ 1

4
|y|2+ α2

2
|A 1

2 y|2+ 1

4
|Ay|2+α−2C|u|2D(A)

[
|y|2+α2∥y∥2

]
.

The last line of the inequality completes the proof of the lemma because

(B̃α(y,J
−1
α u),z)=(JαB̃(y,J−1

α u),J−1
α y)

= ⟨B̃(y,J−1
α u),y⟩D(A)′ =0.

3. Assumptions on the noise coefficient and a well-posedness result
This section is devoted to the formulation of the standing assumption on the noise

and the presentation of a well-posedness result.

3.1. Formulation of the assumptions on the noise. Throughout we fix
a complete filtered probability space U := (Ω,F ,F,P) where the filtration F={Ft; t∈
[0,T ]} satisfies the usual conditions. We also fix two separable Hilbert spaces K and K1

such that the canonical injection ι :K→K1 is Hilbert-Schmidt. The operator Q= ιι∗,
where ι∗ is the adjoint of ι, is symmetric, nonnegative. Since ι is Hilbert-Schmidt Q is
also of trace class. Moreover, from [34, Corollary C.0.6] we infer that K=Q

1
2 (K1). Now,

let W be a cylindrical Wiener process evolving on K. It is well-known, see [15, Theorem
4.5], that W has the following series representation

W (t)=

∞∑
j=1

√
qjβj(t)hj , t∈ [0,T ],
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where {βj ; j∈N} is a sequence of mutually independent and identically distributed stan-
dard Brownian motions, {hj ;j∈N} is an orthonormal basis of K consisting of eigen-
vectors of Q and {qj ; j∈N} is the family of eigenvalues of Q. It is also well-known,
see [15, Section 4.1] and [34, Section 2.5.1], that W is a K1-valued Wiener process with
covariance Q.

Now, we recall few basic facts about stochastic integrals with respect to a cylin-
drical Wiener process evolving on K. For this purpose, let H be a separable Banach
space, L (K,H ) the space of all bounded linear H -valued operators defined on K,
and M 2

T (H ) :=M 2(Ω× [0,T ];H ) the space of all equivalence classes of F-progressively
measurable processes Ψ :Ω× [0,T ]→K satisfying

E
∫ T

0

∥Ψ(r)∥2H dr<∞.

We denote by L2(K,H ) the Hilbert space of all operators Ψ∈L (K,H ) satisfying

∥Ψ∥2L2(K,H )=

∞∑
j=1

∥Ψhj∥2H <∞.

From the theory of stochastic integration on infinite dimensional Hilbert space,
see [30, Chapter 5, Section 26 ] and [15, Chapter 4], for any Ψ∈M 2

T (L2(K,H )) the
process M defined by

M(t)=

∫ t

0

Ψ(r)dW (r),t∈ [0,T ],

is an H -valued martingale. Moreover, we have the following Itô isometry

E
(∥∥∥∥∫ t

0

Ψ(r)dW (r)

∥∥∥∥2
H

)
=E

(∫ t

0

∥Ψ(r)∥2L2(K,H )dr

)
, ∀t∈ [0,T ], (3.1)

and the Burkholder-Davis-Gundy’s (BDG’s) inequality

E
(

sup
0≤s≤t

∥∥∥∥∫ s

0

Ψ(r)dW (r)

∥∥∥∥q)
≤CqE

(∫ t

0

∥Ψ(r)∥2L2(K,H )dr

) q
2

,∀t∈ [0,T ],∀q∈ (0,∞). (3.2)

The standing assumptions on G are given below.

Assumption 3.1. The map G :H−→L2(K,H)∩L2(K,V) satisfies the following:
there exists C>0 such that for any u,v∈H

∥G(u)−G(v)∥L2(K,V)+∥G(u)−G(v)∥L2(K,H)≤C|u−v|
∥G(u)∥L2(K,V)+∥G(u)∥L2(K,H)≤C(1+ |u|).

Remark 3.1. From the above assumption, we infer that there exists C>0 such that
for any u,v∈V

∥G(u)−G(v)∥L2(K,V)≤
{
C|A 1

2 (u−v)|
C|u−v| + α2|A 1

2 (u−v)|,
and

∥G(u)∥L2(K,V)≤


C (1+ |u|)
C
(
1+ |A 1

2u|
)

C (1+ |u|) + α2|A 1
2u|.
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3.2. The well-posedness of the basic problem (2.4). In this subsection
we state a well-posedness result of basic problem (2.4). Since there are several papers
which deal with the existence of solutions of LANS-α model we give a rather sketchy
proof of this well-posedness result.

We first give the concept of solutions to (2.4) that we adopt in this paper.

Definition 3.1. Given δ∈{0,1}, u0∈V :=D(A
1
2 ), a stochastic process yα,δ : [0,T ]→

V is a strong solution to (2.4) if and only if

• yα,δ is F−adapted, i.e., for each t, yα,δ(t) is Ft-measurable,

• and yα,δ ∈C([0,T ];V)∩L2([0,T ];D(A)) with probability 1.

• Moreover, for all t∈ [0,T ], P.a.s.

⟨yα,δ(t),φ⟩+
∫ t

0

⟨Ayα,δ+λδ(α)B̃α(y
α,δ,zα,δ)+δ[B̃α(u,z

α,δ)

+B̃α(y
α,δ,J−1

α u),φ]⟩ds

=⟨yα,δ(0),φ⟩+
∫ t

0

⟨λ−1
δ (α)[B(u,u)−B̃α(u,J

−1
α u)],φ⟩ds

+α
1
2λ−1

δ (α)⟨
∫ t

0

Gα(δu+λδ(α)y
α,δ)dW,φ⟩.

With this definition in mind we now give the following results which concerns the
uniqueness of solutions to problem (2.4).

Proposition 3.1. Let δ∈{0,1} and ξ∈V. Assume that G satisfies the Assumption

3.1. If the stochastic evolution Equation (2.4) has two strong solutions yα,δ
i , i=1,2 in

the sense of Definition 3.1 such that

yα,δ
i ∈L4(Ω;C[0,T ];V)∩L2([0,T ];D(A)).

then with probability 1

yα,δ
1 (t)=yα,δ

2 (t) for all t∈ [0,T ].

That is, the strong solution to the system (2.4) is pathwise unique.

Proof. The proof of the proposition follows the same lines as in [8], but for the
sake of completeness we give the details.

Since the system reduces to the 2D Stochastic LANS-α model when δ=0 and the
proof of the uniqueness result can be done as in [8]. Hence, we will focus on the case
δ=1. Since the parameter α does not play an important role for the proof of uniqueness,
we can and will assume α=1 and λδ(α)=1. With these in mind, let y1 and y2 be two
solutions to the system (2.4). We set

y=y1−y2

z=y+Ay

zi=yi+Ayi, for i=1,2.

Then, using the bilinearity of B̃α, B we see that y satisfies:
dy+

[
Ay+B̃1(y,z1)+B̃1(y2,z)+B̃1(u,z)+B̃1(y,J

−1
1 u)

]
=[G1(u+y1)−G1(u+y2)]dW

y(t=0) =0.
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Recall that B̃1(x,y)=(I+A)−1B̃(x,y) and G1(x)=(I+A)−1G(x). Let N >0 and τN
be the stopping time defined by

τN =inf
{
t∈ [0,T ] : |A 1

2y1(t)|>N
}
∧ inf

{
t∈ [0,T ] : |A 1

2y2(t)|>N
}
.

Let t∈ (0,T ] be fixed.

Applying the Itô formula to y and the functional φ(x)= |x|2+ |A 1
2x|2 for x∈V,

yields

d
(
|y|2+ |A 1

2y|2
)
+
[
|A 1

2y|2+ |Ay|2+(y,B̃(y2,z)+B̃(u,z))
]
dt

=∥G(u+y1)−G(u+y2)∥2L2(K,H)dt+⟨y,G(u+y1)−G(u+y2)dW ⟩,

where we used the facts that for x∈H

φ′(y)[(I+A−1)x]=2(y+Ay,(I+A)−1x)=2(y,x)

1

2
φ′′(y)[x,x]= (x+Ax,(I+A)−1x)= |x|2,

and the cancellation property (2.10). Note that thanks to (2.15), the continuous em-

bedding H⊂D(A
1
2 ) and the Young inequality we deduce that there exists a constant

C0>0 such that

2|(B̃(y2+u,z),y)|

≤
[
|A 1

2y|2+ |Ay|2
]
+C0

[
|Ay2|2+ |Au|2

][
|A 1

2y2|2+ |Au|2+ |y|2
]
. (3.3)

Now, we let

Ψ(t)=e−C0

∫ t
0
[|Ay2(s)|2+|Au(s)|2]ds, t∈ [0,T ],

and apply the Itô formula to the real-valued process

x(t)=Ψ(t)φ(y(t))=Ψ(t)
[
|y(t)|2+ |A 1

2y(t)|2
]
, t∈ [0,T ].

This procedure, along with (3.3) and the Lipschitz continuity of G, yield

x(t∧τN )+2

∫ t∧τN

0

ψ(s)
[
|A 1

2y(s)|2+ |Ay(s)|2
]
ds

≤x(0)−C0

∫ t∧τN

0

Ψ(s)
[
|Ay2(s)|2+ |Au(s)|2

][
|A 1

2y(s)|2+ |y(s)|2
]
ds

+

∫ t∧τN

0

Ψ(s)|(B̃(y2+u,z),y)|ds+
∫ t∧τN

0

Ψ(s)∥G(u+y1)−G(u+y2)∥2L (K,H)ds

+

∫ t∧τN

0

Ψ(s)⟨y(s),G(u+y1)−G(u+y2)dW ⟩

≤x(0)+C
∫ t∧τN

0

Ψ(s)|y1−y2|2Hds+
∫ t∧τN

0

Ψ(s)
[
|A 1

2y(s)|2+ |Ay(s)|2
]
ds

+

∫ t∧τN

0

Ψ(s)⟨y(s),G(u+y1)−G(u+y2)dW ⟩.
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Observe that,

|y1−y2|2= |y|2≤|y|2+ |A 1
2y|2.

Hence, by taking the mathematical expectation and using the fact that the stopped
stochastic integral in the above inequalities are a zero mean martingale we obtain that

Ex(t∧τN )+E
∫ t∧τN

0

Ψ(s)
[
|A 1

2y(s)|2+ |Ay(s)|2
]
ds

≤Ex(0)+C
∫ t∧τN

0

Ex(s∧τN )ds.

By applying the Gronwall Lemma and the fact that x(0)=0, we see that

Ex(t∧τN )=0, t∈ [0,T ].

Since x≥0 and Ψ>0 we see that for all t∈ [0,T ] a.e.

y1(t)=y2(t) in V.

From the fact yi∈C([0,T ];D(A
1
2 )) a.e. we finally conclude that a.e. for all t∈ [0,T ]

y1(t)=y2(t),

which completes the proof of the proposition.

Theorem 3.1. Let δ∈{0,1} and ξ∈V. Assume that G satisfies the Assumption 3.1.
Then the stochastic evolution Equation (2.4) has a unique solution yα,δ in the sense of
Definition 3.1 such that

yα,δ ∈Lp(Ω;C[0,T ];V)∩L2([0,T ];D(A)) for all p∈ [1,∞).

Proof. Observe that if δ=0, then the problem (2.4) reduces to the stochastic
system (2.1). Under the Assumption 3.1 it was proved in [8] that (2.1) has a unique
solution yα,0 satisfying yα,0∈L4(Ω;C([0,T ];V))∩L2(0,T ;D(A)). The fact that yα,0∈
Lp(Ω;C([0,T ];V))∩L2(0,T ;D(A)) for all p≥1 is proved in [17].

Next, we recall that the deterministic evolution Equation (2.2) with initial data
ξ∈V has a unique strong solution, u∈C([0,T ];V)∩L2(0,T ;D(A)). Note that u is de-
terministic. If δ=1, then, as discussed above, the stochastic process yα,1 defined by

yα,1=
yα,0−u

λδ(α)
∈Lp(Ω;C([0,T ];V))∩L2(0,T ;D(A)),

satisfies the problem (2.4).

Remark 3.2. The existence and uniqueness of a strong solution to (2.4) enables us

to define a Borel measurable map Γα,δ
ξ :C([0,T ];K)→C([0,T ];H)∩L2(0,T ;D(A

1
2 )) such

that Γα,δ
ξ (W ) is the unique solution to (2.4) on the filtered probability space (Ω,F ,F,P)

with the Wiener process W .
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4. Analysis of the controlled evolution equations
In order to describe the rate functions associated to the LDP and MDP results,

we also need to introduce a few additional notations and two auxiliary problems: the
stochastic and deterministic controlled evolution equations.

For fixed M>0 we set

AM =
{
h∈L2(0,T ;K) :

∫ T

0

∥h(r)∥2Kdr≤M
}
.

The set AM , endowed with the weak topology

d1(h,k)=
∑
k≥1

1

2k
∣∣∫ T

0

(
h(r)−k(r), ẽk(r)

)
K
dr
∣∣, (4.1)

where (ẽk,k≥1) is an orthonormal basis for L2(0,T ;K), is a Polish (complete separable
metric) space, see [5].

We also introduce the class A as the set of K-valued (Ft)−predictable stochastic pro-

cesses h such that
∫ T

0
∥h(r)∥2Kdr<∞, a.s. For M>0 we set

AM ={h∈A :h∈AM a.s.}. (4.2)

4.1. Analysis of the stochastic controlled evolution equations. With the
above notations at hand we now consider the stochastic controlled equation:

dyα,δ+Ayα,δdt+λδ(α)B̃α(y
α,δ,zα,δ)dt+δB̃α(u,z

α,δ)dt+δB̃α(y
α,δ,J−1

α u)dt

+δλ−1
δ (α)

[
B̃α(u,J

−1
α u)−B(u,u)

]
dt

=Gα(δu+λδ(α)y
α,δ)h(t)dt+α

1
2λ−1

δ (α)Gα(δu+λδ(α)y
α,δ)dW, (4.3)

where h∈L2(0,T ;K).

We now need to prove the existence and uniqueness of (4.3) and derive uniform
estimates for its solution. This will be the subject of the following theorem.

Proposition 4.1. Let δ∈{0,1}, ξ∈D(A
1
2 ), p∈ [1,∞). Let us also fix M>0 and

h∈AM . If Assumption 3.1 is satisfied, then the stochastic controlled system (4.3) has

a unique solution yα,δ
h ∈C([0,T ];V)∩L2(0,T ;D(A)) such that

yα,δ
h =Γα,δ

ξ

(
W +α− 1

2λδ(α)

∫ ·

0

h(r)dr

)
.

Furthermore, then there exists a constant C>0 (which may depend on p) such that
for any α∈ (0,1) we have

E sup
t∈[0,T ]

∥yα,δ
h (t)∥2pα +E

∫ t

0

∥yα,δ
h (t)∥2p−2

α ∥yα,δ
h ∥2Vds

≤C
(
1+ |A 1

2yα,δ
h (0)|2+CM 1

2T
1
2

(
1+δ2p|A 1

2u|2p
))
e
∫ T
0

Φδ(s)ds P-a.s., (4.4)

where

Φδ :=1+∥h∥K+δ2[|Au|2+ |u|2]+ |B(u,u)|2+ |Au|2|A 1
2u|2.
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Proof. Let δ∈{0,1}, ξ∈D(A
1
2 ), p∈ [1,∞). Let us also fixM>0 and h∈AM . The

proof of the theorem is divided into two parts.

Part I: Well-posedness of problem (4.3). Since h∈AM we have

Eexp

(
1

2
α−1λ2δ(α)

∫ T

0

∥h(r)∥2dr

)
<∞.

Thus, by Girsanov’s theorem there exists a probability measure Ph such that

dPh

dP
=exp

(
1

2
α−1λδ(α)

2

∫ T

0

∥h(r)∥2Kdr−α− 1
2λδ(α)

∫ T

0

h(r)dW (r)

)
,

and the stochastic process W̃ (·) :=W (·)+α− 1
2λ(α)

∫ ·
0
h(r)dr defines a cylindrical Wiener

process evolving on K and defined on the filtered probability space (Ω,F ,F,Ph). Fur-
thermore, the probability measure P is absolutely continuous with respect to the new
probability measure Ph. We also note that on (Ω,F ,F,Ph) the problem (4.3) reads as

dyα,δ+Ayα,δdt+λδ(α)B̃α(y
α,δ,zα,δ)dt+δB̃α(u,z

α,δ)dt+δB̃α(y
α,δ,J−1

α u)dt

+δλ−1
δ (α)

[
B̃α(u,J

−1
α u)−B(u,u)

]
dt=α

1
2λ−1

δ (α)Gα(δu+λδ(α)y
α,δ)dW̃ . (4.5)

Thus, similarly to the proof of Theorem 3.1 we can show that on (Ω,F ,F,Ph) the

problem (4.5) admits a unique strong solution yα,δ
h . In view of Remark 3.2 yα,δ

h =

Γα,δ
ξ (W̃ ) on (Ω,F ,F,Ph). Note that on (Ω,F ,F,P) we have

yα,δ
h =Γα,δ

ξ

(
W (·)+α− 1

2λ(α)

∫ ·

0

h(r)dr

)
.

That is, yα,δ
h is the unique solution to (4.3).

Part II: Proof of the uniform estimates (4.4).
The proof of the estimate (4.4) relies on the application of the Itô formula to the

functional Nα(x) :=∥x∥2α and the Itô process yα,δ. Before proceeding further let us
observe that Nα(·) is twice differentiable and its first and second derivatives satisfy

N ′
α(x)[h]=2(x,h)+2α2(A

1
2x,A

1
2h) x,h∈D(A

1
2 ),

N ′′
α(x)[h,k]=2(h,k)+2α2(A

1
2h,A

1
2 k) x,h,k∈D(A

1
2 ).

Also, if x∈D(A) and h∈D(A
1
2 ) then

N ′
α(x)[h]=2((I+α2A)x,h)=2(x,h)+α2(A

1
2x,A

1
2h)=:2⟨x,h⟩α.

Now, by applying the Itô’s formula to Nα(y
α,δ) and then to the function φ(x)=xp

and ∥yα,δ∥2α and using the property (2.17) we obtain

∥yα,δ
h (t)∥2pα +p

∫ t

0

∥yα,δ
h (s)∥2p−2

α ∥A 1
2yα,δ

h ∥2Hds+pα2

∫ t

0

∥yα,δ
h (s)∥2p−2

α ∥Ayα,δ
h ∥2Hds

−pδ
∫ t

0

∥yα,δ
h (s)∥2p−2

α ⟨yα,δ
h ,B̃α(u,z

α,δ
h )⟩αds
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+2λ−1
δ (α)

∫ t

0

∥yα,δ
h (s)∥2p−2

α ⟨B̃α(u,J
−1
α u)−B(u,u),yα,δ

h ⟩αds

≤∥yα,δ
h (0)∥2pα +pαλ−2

δ (α)
∑
k≥1

∫ t

0

∥yα,δ
h (s)∥2p−2

α ∥G(δu+λδ(α)y
α,δ
h )ek∥2L2ds

+p(p−1)αλ−2
δ (α)

∑
k≥1

∫ t

0

∥yα,δ
h (s)∥2p−4

α

(
G(δu+λδ(α)y

α,δ
h )ek,y

α,δ
)2
ds

+α
1
2λ−1

δ (α)p

∫ t

0

∥yα,δ
h (s)∥2p−2

α ⟨yα,δ
h ,Gα(δu+λδ(α)y

α,δ
h )dW̃ ⟩α. (4.6)

We need to estimate the terms one by one in this relation. For doing this we start with
the Itô correction terms. It is not difficult to see that there exists a constant C(p)>0
such that

I1+I2 :=pαλ
−2
δ (α)

∑
k≥1

∫ t

0

∥yα,δ
h (s)∥2p−2

α ∥G(δu+λδ(α)yα,δ
h )ek∥2L2ds

+p(p−1)αλ−2
δ (α)

∑
k≥1

∫ t

0

∥yα,δ
h (s)∥2p−4

α

(
G(δu+λδ(α)y

α,δ
h )ek,y

α,δ
)2
ds

≤C(p)αλ−2
δ (α)

∫ t

0

∥yα,δ
h (s)∥2p−2

α ∥G(δu+λδ(α)y
α,δ
h )∥2L2(K,H)ds,

from which, along with the Assumption 3.1 and Remark 3.1 and the Young inequality,
we deduce that

I1+I2≤C(p)αλ−2
δ (α)

∫ t

0

[
1+∥yα,δ

h (s)∥α
]2p−2(

1+δ2|u|2+λ2
δ(α)∥yα,δ

h ∥2α
)
ds

≤C(p)αλ−2
δ (α)

∫ t

0

∥yα,δ
h (s)∥2p−2

α

[
1+δ2|u|2

]
ds+C(p)α

∫ t

0

∥yα,δ
h (s)∥2pα ds

≤C(p)αλ−2
δ (α)

∫ t

0

[
1+∥yα,δ

h (s)∥2pα
][
1+δ2|u|2

]
ds+C(p)α

∫ t

0

∥yα,δ
h (s)∥2pα ds. (4.7)

Next, since h∈AM , applications of Cauchy-Schwarz’s inequality, Assumption (3.1) and
Remark 3.1, and Young’s inequality imply that there exists a constant C>0 such that
for any α∈ (0,1)∫ t

0

∥yα,δ(r)∥2p−2
α (G(δu+λδ(ε)y

α,δ)h(r),yα,δ(r))dr

≤C(1+λδ(α))
∫ t

0

∥yα,δ(r)∥2pα ∥h(r)∥Kdr+CM
1
2T

1
2

(
1+δ2p sup

s∈[0,T ]

|u(s)|2p
)
.

The perturbation term containing u can be estimated as follows. By applying (2.19)
we infer that

λ−1
δ (α)

∫ t

0

∥yα,δ
h (s)∥2p−2

α (B̃α(u,J
−1
α u)−B(u,u),(I+α2A)yα,δ

h )ds

≤Cλ−1
δ (α)

∫ t

0

∥yα,δ
h ∥2p−2

α [α2|yα,δ
h |+α|A 1

2yα,δ
h |+α2|Ayα,δ

h |]|B(u,u)|ds

+Cα2λ−1
δ (α)

∫ t

0

∥yα,δ
h ∥2p−2

α |Ayα,δ
h ||Au||A 1

2u|ds.
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Several applications of the Young inequality on the right-hand side of the last inequality
imply

λ−1
δ (α)

∫ t

0

∥yα,δ
h (s)∥2p−2

α (B̃α(u,J
−1
α u)−B(u,u),(I+α2A)yα,δ

h )ds

≤C(p)α2λ−2
δ (α)

∫ t

0

(
1+ |B(u,u)|2+ |Au|2|A 1

2u|2
)[

1+∥yα,δ∥2pα
]
ds

+
p

4

∫ t

0

∥yα,δ
h ∥2p−2

α

(
|A 1

2yα,δ|2+α2|Ayα,δ|2
)
ds (4.8)

By using the estimate (2.15), the Young inequality yields and the fact |y|≤∥y∥α we
see that

pδ

∫ t

0

∥yα,δ
h (s)∥2p−2

α ⟨yα,δ
h ,B̃α(u,z

α,δ
h )⟩αds

=pδ

∫ t

0

∥yα,δ
h (s)∥2p−2

α ⟨yα,δ
h ,B̃(u,zα,δh )⟩ds

≤Cpδ
∫ t

0

∥yα,δ
h (s)∥2p−2

α |A 1
2yα,δ

h ||Au|
(
|yα,δ

h |+α2|Ayα,δ
h |
)
ds

≤C(p)δ2
∫ t

0

∥yα,δ
h (s)∥2pα |Au(s)|2ds

+
p

4

∫ t

0

∥yα,δ
h (s)∥2p−2

α

(
|A 1

2yα,δ|2+α2|Ayα,δ|2
)
ds. (4.9)

The following estimates are obtained by applying the Burkholder-Davis-Gundy in-
equality (BDG) and the Young inequality

E sup
0≤s≤t

∣∣∣∣∫ s

0

∥yα,δ(s)∥2p−2
α ⟨Gα(δu+λδ(α)y

α,δ)dW̃ ,yα,δ⟩α
∣∣∣∣

≤E
[∫ t

0

∥yα,δ(s)∥2p−2
α ∥G(δu+λδ(α)y

α,δ)∥2L2(K,H)∥y
α,δ(s)∥2pα ds

] 1
2

≤ 1

2
E sup

0≤s≤t
∥yα,δ∥2pα +CE

∫ t

0

∥yα,δ(s)∥2p−2
α ∥G(δu+λδ(α)yα,δ)∥2L2(K,H)ds.

Observe that second term of the right-hand side of the last inequality can be dealt with
the same technique as used in the proof of (4.7). In particular, we see that

E sup
0≤s≤t

∣∣∣∣∫ s

0

∥yα,δ(s)∥2p−2
α ⟨Gα(δu+λδ(α)y

α,δ)dW̃ ,yα,δ⟩α
∣∣∣∣

≤1

2
E sup

0≤s≤t
∥yα,δ∥2pα +CE

∫ t

0

[
1+∥yα,δ(s)∥2pα

][
1+δ2|u|2+λ2δ(α)

]
ds. (4.10)

By plugging the inequalities (4.7), (4.8), (4.9) and (4.10) into (4.6) and by taking into
account the Remark 2.1 we find that there exists a constant C(p)>0 such that

E sup
s∈[0,t]

∥yα,δ
h (t)∥2pα +pE

∫ t

0

∥yα,δ
h (t)∥2p−2

α

[
∥A 1

2yα,δ
h ∥2H+α2∥Ayα,δ

h ∥2H
]
ds
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≤C(p)E
∫ t

0

[
1+∥yα,δ

h (t)∥α
]2p(

1+∥h∥K+δ2[|Au|2+ |u|2]
)
ds

+C(p)E
∫ t

0

[
1+∥yα,δ

h (t)∥α
]2p(

|B(u,u)|2+ |Au|2|A 1
2u|2

)
ds

+CM
1
2T

1
2

(
1+δ2p|A 1

2u|2p
)
+E∥yα,δ

h (0)∥2pα . (4.11)

Applying the Gronwall lemma now yields that there exists a constant C>0 such that
for any α∈ (0,1) we have

E sup
t∈[0,T ]

∥yα,δ
h (t)∥2pα +E

∫ t

0

∥yα,δ
h (t)∥2p−2

α ∥yα,δ
h ∥2Vds

≤C
(
1+E|A 1

2yα,δ
h (0)|2+CM 1

2T
1
2

(
1+δ2p|A 1

2u|2p
))

Ee
∫ T
0

Φδ(s)ds, (4.12)

where

Φ :=1+M+δ2[|Au|2+ |u|2]+ |B(u,u)|2+ |Au|2|A 1
2u|2.

This completes the proof of Proposition 4.1.

4.2. Analysis of the deterministic controlled Navier-Stokes-α. In this sub-
section we fix h∈L2(0,T ;K) and analyse the following deterministic controlled Navier-
Stokes-α model:

dyδ+Ayδdt+(1−δ)B(yδ,yδ)dt+δB(u,yδ)+δB(yδ,u)=G(δu+(1−δ)yδ)h, (4.13a)

yδ(0)=(1−δ)ξ. (4.13b)

The main result of this subsection is given in the following theorem.

Theorem 4.1. Let h∈L2(0,T ;K) and ξ∈V. Then, (4.13) has a unique solution
yδ
h∈C([0,T ];H1)∩L2(0,T ;H2). Moreover, if h∈AM ,M >0, then there exists a deter-

ministic constant C>0, which depends only on M and ∥ξ∥, such that

sup
t∈[0,T ]

(|yδ
h(t)|2+∥yδ

h(t)∥2)+
∫ T

0

(
|Ayδ

h(t)|2+|Ayδ
h(t)|2

)
dt≤C. (4.14)

Remark 4.1.
• Note that when δ=0 and h=0 the above theorem provides also the following

estimates for u, the unique solution to (2.2):

sup
t∈[0,T ]

∥u(t)∥2+
∫ T

0

|Au(t)|2dt≤C. (4.15)

This estimate could be found in many classical works for the Navier-Stokes
equations such as [36] and [14].

• Note that when h∈AM ,M >0, then (4.13) still has a unique solution yδ
h such

that yδ
h∈C([0,T ];H1)∩L2(0,T ;H2) with probability 1. Moreover, the estimate

(4.14) holds with probability 1.

Proof. (Proof of Proposition 4.1.) Since the system (4.13) is the Navier-Stokes
equations with the linear perturbations δB(u,yδ)+δB(yδ,u) and the Lipschitz continu-
ous perturbations G(δu+(1−δ)yδ)h, we can prove the existence and uniqueness results
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in the above theorem by following the standard scheme of proof for the Navier-Stokes
equations, see, for instance, [36]. Since this is now standard we only focus on deriving
the crucial estimates for the solutions. For the sake of simplicity, we will just write yδ

instead of yδ
h. We will also suppress the dependence of yδ on the time variable.

By formally multiplying the first equation in (4.13) by (I+A)yδ(t) we find that

1

2

d

dt

(
|yδ|2+ |A 1

2yδ|2
)
+|Ayδ|2+|A 1

2yδ|2+(1−δ)((I+A)yδ,B(yδ,yδ))

+δ((I+A)yδ,B(u,yδ)+B(yδ,u))=
(
(I+A)yδ,G(δu+(1−δ)yδ)h(t)

)
. (4.16)

Observe that since we are working on the torus

((I+A)yδ,B(yδ,yδ))=0 and (B(u,yδ),yδ)=0.

By the Hölder, the Gagliardo-Nirenberg and the Young inequalities we obtain

δ(B(u,yδ)+B(yδ,u),(I+A)yδ)

≤δ|C(I+A)yδ|[|u|L∞ |A 1
2yδ|+ |yδ|L2 |∇u|L2 ]

≤δC[|y|δ+ |Ayδ|]|Au||A 1
2yδ|

≤1

4
|Ayδ|2+Cδ[1+ |Au|2][|yδ|2+ |A 1

2yδ|].

We will now deal with the term containing G. By using the Cauchy-Schwartz, the
Young inequalities and the Assumption 3.1 we see that

(G(δu+(1−δ)yδ)h,(I+A)yδ)

≤G|(I+A)yδ||h|K|G(δu+(1−δ)yδ)|L2(K,H)

≤1

4
|Ayδ|2+C|yδ|2[|h|2K+(1−δ)2]+C|h|2K[1+δ2|u|2].

Collecting these inequalities together implies

1

2

d

dt
[|yδ|2+ |A 1

2yδ|]+ |A 1
2yδ|2+ 1

2
|Ayδ|2

≤C[|yδ|2+ |A 1
2yδ|][δ(1+ |Au|2)+ |h|2K+(1−δ)2]+C|h|2K[1+δ2|u|2].

Applying the Gronwall’s inequality yields that there exists a constant C>0, depending
only on M and |Aξ|, such that

sup
t∈[0,T ]

(|yδ(t)|2+ |A 1
2yδ(t)|2)+

∫ T

0

[|A 1
2yδ(t)|2+ |Ayδ(t)]dt≤C, (4.17)

which completes the proof of Proposition 4.1.

Remark 4.2. The above theorem enables us to define a map Γ0,δ
ξ :C([0,T ];K)→

C([0,T ];H)∩L2(0,T ;D(A
1
2 )) by setting

• Γ0,δ
ξ (x) is the unique solution uδ

h to (4.13a) if x=
∫ ·
0
h(r)dr, h∈L2(0,T ;K);

• Γ0,δ
ξ (x)=0 otherwise.
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We will see in the next theorem and Remark 4.3 that this map is in fact Borel measur-
able.

We now state and prove the following two important results.

Proposition 4.2. Let δ and ξ∈D(A
1
2 ). Then, the set {Γ0,δ

ξ (
∫ ·
0
h(s)ds) :h∈AM} is a

compact set of C([0,T ] :H)∩L2(0,T ;D(A
1
2 )).

Remark 4.3. The above proposition amounts to saying that if (hn)n∈N⊂AM , M>0,

is a sequence that converges weakly to h∈AM , then Γ0,δ
ξ

(∫ ·
0
hn(r)dr

)
strongly converges

to Γ0,δ
ξ (
∫ ·
0
h(r)dr) in C([0,T ];H)∩L2(0,T ;D(A

1
2 )). Consequently, the map

AM ∋h 7→Γ0,δ
ξ (

∫ ·

0

h(r)dr)∈C([0,T ];H)∩L2(0,T ;D(A
1
2 )),

is Borel measurable.

Proof. (Proof of Proposition 4.2.) Let (hn)n∈N⊂AM and h∈AM such that

hn→h weakly in L2(0,T ;K).

Let us denote by yn=Γ0,δ(
∫ ·
0
hn(s)ds), n∈N. Then by Proposition 4.1 there exists a

constant C>0 such that for all n∈N

sup
t∈[0,T ]

(
|yn(t)|2+ |A 1

2yn(t)|2
)
+

∫ T

0

(
|A 1

2yn|2+ |Ayn(t)|2
)
ds<C. (4.18)

Furthermore,

|∂tyn|≤ |Ayn|+(1−δ)|B(yn,yn)|+δ[|B(u,yn)|+ |B(yn,u)|]

Now, observe that by making use of the Hölder and the Gagliardo-Nirenberg inequalities
we obtain that there exists C>0 such that for all n∈N

(1−δ)|yn|L∞ |A 1
2yn|+δ[|u|L∞ |A 1

2yn|+ |yn|L∞ |A 1
2u|]

≤C|Ayn|[(1−δ)|A
1
2yn|+δ|A

1
2u|]+Cδ|A 1

2yn||Au|.

Hence, ∫ T

0

|∂tyn|2dt≤C[(1−δ)sup
t
|A 1

2yn|2+δ sup
t
|A 1

2u|2]
∫ T

0

|Ayn|2ds

+Cδ sup
t
|A 1

2yn|2
∫ T

0

|Au|2ds

≤C[(1−δ)+δ sup
t
|A 1

2u|2]+Cδ
∫ T

0

|Au|2ds. (4.19)

The estimates (4.18) and (4.19) imply that

• (yn)n is uniformly bounded in C([0,T ];D(A
1
2 ))∩L2(0,T ;D(A)).

• (∂tyn)n is uniformly bounded in L2(0,T ;H).

Hence, by the Banach-Alaoglu and the Aubin-Lions theorem there exists a subsequence,
still denoted by yn, of yn and y such that

yn→ ỹ weak-* in L∞(0,T ;D(A
1
2 ))
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yn→ ỹ weak in L2(0,T ;D(A)) (4.20)

yn→ ỹ strong in L2(0,T ;D(A
1
2 )) (4.21)

∂tyn→∂tỹ weak in L2(0,T ;H)

The last convergence and the first one imply that

ỹ∈C([0,T ];H)∩Cw([0,T ];D(A
1
2 )),

where Cw([0,T ];D(A
1
2 )) denotes the space of functions f : [0,T ]→X, X a given Banach

space, that are weakly continuous. By passing to the limits we shall show that ỹ is a
solution to the system (4.13). In fact by arguing exactly as in [36] we see that

B(yn,yn)→B(ỹ,ỹ) in L2(0,T ;H).

Since B(u,yn), B(yn,u) and Ayn are linear continuous D(A
1
2 ), D(A

1
2 ) and D(A), re-

spectively, by using the strong convergence (4.21) and the weak convergence (4.20) we
obtain

• B(u,yn)+B(yn,u)→B(u,ỹ)+B(ỹ,u) strong in L2(0,T ;H).

• Ayn→Aỹ weak in L2(0,T ;H).

Note that the first convergence holds because u∈C([0,T ],D(A
1
2 ))∩L2(0,T ;D(A)).

What remains to prove is that

G(δu+λδ(α)yn)hn→G(δu+λδ(α)y)h in L2(0,T ;H). (4.22)

To prove this fact we first observe that the Assumption 3.1 and the strong convergence
(4.21) imply

G(δu+λδ(α)yn)→G(δu+λδ(α)ỹ) strongly in L2(0,T ;L2(K,H)).

This, along with the assumption that hn→h weak in L2(0,T ;K), implies that conver-
gence (4.22) holds true.

By collecting all the above convergences, it is not difficult to see that ỹ is a solution
to (4.13). By uniqueness, ỹ=yδ

h=Γ0,δ(
∫ ·
0
h(s)ds) and the whole sequence yn converges

to yδ
h . This completes the proof of Proposition 4.2.

5. The deviation principles result and its proofs

5.1. Formulation of the main results. This section is the heart of this paper.
We will state and prove our main results in this section, but before doing so we briefly
recall a few definitions from the LDP theory.

Let E be a Polish space and B(E) its Borel σ-algebra.

Definition 5.1. A function I :E→ [0,∞] is a (good) rate function if it is lower
semicontinuous and the level sets {e∈E ;I(e)≤a}, a∈ [0,∞), are compact subsets of E.

Next let ϱ be a real-valued map defined on [0,∞) such that

ϱ(ε)→∞ as ε→∞.

Definition 5.2. Let (Ω,F ,P) be a complete probability space. An E-valued random
variable (Xε)ε∈(0,1] satisfies the LDP on E with speed ϱ(ε) and rate function I if and
only if the following two conditions hold
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(a) for any closed set F ⊂E

limsup
ε→0

ϱ−1(ε)logP(Xε∈F )≤− inf
x∈F

I(x);

(b) for any open set O⊂E

liminf
ε→0

ϱ−1(ε)logP(Xε∈O)≥− inf
x∈O

I(x).

We are now ready to state our main results.

Theorem 5.1. Let δ∈{0,1}, ξ∈D(A
1
2 ) and Assumption 3.1 holds. Then, the family

(uα,δ)α∈(0,1] satisfies an LDP on C([0,T ];H)∩L2(0,T ;D(A
1
2 )) with speed α−1λ2δ(α) and

rate function Iδ given by

Iδ(x)= inf
{h∈L2(0,T ;K):x=Γ0,δ

ξ (
∫ ·
0
h(r)dr)}

{
1

2

∫ T

0

∥h(r)∥2Kdr
}
.

As usual, we understand that inf ∅=∞.

Proof. The proof requires a few preparations and hence it will be postponed to
Subsection 5.3.

We can divide the result in the above theorem into two parts which will form the
following two corollaries. They give the LDP and MDP on C([0,T ];H)∩L2(0,T ;D(A

1
2 ))

for the solution uα to (2.1).

Corollary 5.1. Let ξ∈D(A
1
2 ) and G satisfies Assumption 3.1. Then, the family

of solutions (uα)α∈(0,1] to (2.1) satisfies an LDP on C([0,T ];H)∩L2(0,T ;D(A
2
2 )) with

speed α−1 and rate function I0 given by

I0(x)= inf
{h∈L2(0,T ;K):x=Γ0,0

ξ (
∫ ·
0
h(r)dr)}

{
1

2

∫ T

0

∥h(r)∥2Kdr
}
. (5.1)

Corollary 5.2. If ξ∈D(A
1
2 ) and G satisfies Assumption 3.1, then(

α− 1
2λ−1(α)[uα−u]

)
α∈(0,1]

satisfies an LDP on C([0,T ];H)∩L2(0,T ;D(A
1
2 )) with

speed λ2(α) and rate function I1 given by

I1(x)= inf
{h∈L2(0,T ;K):x=Γ0,1

ξ (
∫ ·
0
h(r)dr)}

{
1

2

∫ T

0

∥h(r)∥2Kdr
}
. (5.2)

5.2. Intermediate results. In order to prove Theorem 5.1 we will use the
weak convergence approach to LDP and Budhiraja-Dupuis’ results on representation of
functionals of Brownian motion, see [4] and [5]. These require a few intermediate results
which are stated and proved below.

Lemma 5.1. Let M>0, (hn)n⊂AM and (αn)n∈N be a sequence such that αn→0 as

n→∞. Let yn=Γαn,δ
(
W +α

− 1
2

n λδ(αn)
∫ ·
0
hn(s)ds

)
and zn=Γ0,δ

(∫ ·
0
hn(s)ds

)
. Then,

for any ε>0

lim
n→∞

P

([
sup

t∈[0,T ]

|yn(t)−zn(t)|2+
∫ T

0

|A 1
2 (yn−zn)|2ds

]
>ε

)
=0.
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Before proving lemma we state the following important remark.

Remark 5.1. Observe that if hn≡0, ∀n∈N, and δ=0, then the above lemma gives
a result on the convergence in probability of the solutions of the stochastic LANS-αn

to the solution of the NSEs (2.2) as αn→0. In fact, yn=Γαn,0 (W ) and Γ0,0 (0)=u are
the unique solutions to the stochastic LANS-αn corresponding to problem (2.1) and to
the NSEs (2.2), respectively.

Proof. (Proof of Lemma 5.1.) Let yn and zn be as in the statement of the
theorem. Let us put wn=yn−zn. Let τn,N be the stopping time defined

τn,N =inf{t∈ [0,T ] : |yn(t)|≥N}∧T,N ≥0.

For the sake of simplification we just write α instead of αn throughout this proof. Also,
we simply write τN in place of τn,N .

Since yn and zn are the unique solutions to the stochastic controlled and determin-
istic controlled systems, respectively, it is not difficult to see that wn satisfies

dwn+Awn+λδ(α)B̃α(yn,J
−1
α yn)−(1−δ)B(zn,zn)

+δ[B̃α(u,J
−1
α yn)−B(u,zn)+B̃α(u,J

−1
α u)−B(zn,u)]

= δλ−1
δ (α)[B(u,u)−B̃α(u,J

−1
α u)]

+Gα(Ψn)hn−G(Φn)h+α
1
2λ−1

δ (α)Gα(Ψn)dW,

where Ψn= δu+λδ(α)yn and Φn= δu+(1−δ)zn.
Let

N[yn,zn]=λδ(α)B̃α(yn,J
−1
α yn)−(1−δ)B(zn,zn) and

L[yn,zn]= δ
[
B̃α(u,J

−1
α yn)−B(u,zn)+B̃α(yn,J

−1
α u)−B(zn,u)

]
.

By applying Itô’s formula to φ(x)=∥x∥α= |x|2+α2
∣∣∣A 1

2x
∣∣∣2 and to the process wn, tak-

ing the supremum and the mathematical expectation to the resulting equation we obtain

∥wn(t∧τN )∥2α+2

∫ t∧τN

0

[∣∣∣A 1
2wn(s)

∣∣∣2+α2 |Awn(s)|2
]
ds

≤2

∫ t∧τN

0

|(N[yn,zn]+L[yn,zn],J
−1
α wn)|ds

+2δλ−1
δ (α)

∫ t∧τN

0

|(B(u,u)−B̃α(u,J
−1
α u),J−1

α wn)|ds

+2

∫ t∧τN

0

|(Gα(Ψn)hn,G(Φ)hn,J
−1
α wn)|ds

+αλ−2
δ (α)E

∫ t∧τN

0

∥G(Ψn)∥2L (K,H)ds+α
1
2λ−1

δ (α)

∫ t∧τN

0

(wn,G(Ψn)dW ). (5.3)

Using (2.19) and Young’s inequality we see that

2δλ−1
δ (α)

∫ t∧τN

0

(B(u,u)−B̃α(u,J
−1
α u),J−1

α wn)ds

≤2δλ−1
δ (α)

∫ t∧τN

0

([α
2

∣∣∣A 1
2wn

∣∣∣+α2|Awn|2
]
|B(u,u)|+Cα2

∣∣∣A 1
2wn

∣∣∣2 |Au|2
)
ds
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≤
∫ t∧τN

0

(
1

24

∣∣∣A 1
2wn

∣∣∣2+ α2

24
|Awn|2+C

[
α2λ−1

δ (α)
∣∣∣A 1

2u
∣∣∣2+α2

]
|Au|2

)
ds. (5.4)

It follows from the bilinearity of B and B̃, and the Equations (2.8) and (2.10) that

λδ(α)
(
B̃α(yn,J

−1
α yn)−B̃α(zn,J

−1
α zn),J

−1
α wn

)
=λδ(α)

(
B̃(wn,wn),zn

)
+α2λδ(α)

(
B̃(zn,Awn),wn

)
.

(5.5)

Thanks to the estimate (2.16) and the Young inequality we obtain

λδ(α)(B(wn,wn),zn)=−λδ(α)(B(wn,zn),wn)

≤λδ(α)|wn|
∣∣∣A 1

2 zn

∣∣∣ 12 |Azn|
1
2 |wn|

1
2

∣∣∣A 1
2wn

∣∣∣ 12
≤λδ(α)|wn|

3
2

∣∣∣A 1
2 zn

∣∣∣ 12 |Azn|
1
2

∣∣∣A 1
2wn

∣∣∣ 12
≤ 1

24

∣∣∣A 1
2wn

∣∣∣2+λ 4
3

δ (α)|wn|2
∣∣∣A 1

2 zn

∣∣∣ 23 |Azn|
2
3 . (5.6)

We now proceed in estimating the term α2λδ(α)(B̃(zn,Awn),wn). For doing so we
utilise (2.15) and Young’s inequality and find that

α2λδ(α)(B̃(zn,Awn),wn)≤α2λδ(α)|Awn||Azn|
∣∣∣A 1

2wn

∣∣∣
≤ α2

24
|Awn|2+Cλ2δ(α)α2

∣∣∣A 1
2wn

∣∣∣2 |Azn|2. (5.7)

Thus,

λδ(α)
(
B̃α(yn,J

−1
α yn)−B̃α(zn,J

−1
α zn),J

−1
α wn

)
≤ 1

24

∣∣∣A 1
2wn

∣∣∣2+Cλ 4
3

δ (α)|wn|2
∣∣∣A 1

2 zn

∣∣∣ 23 |Azn|
2
3

+
α2

24
|Awn|2+Cλ2δ(α)|Azn|2

(
α2
∣∣∣A 1

2wn

∣∣∣2+ |wn|2
)
. (5.8)

By using the bilinearity of B̃ and B it is not difficult to see that

(λδ(α)B̃α(zn,J
−1
α zn)−(1−δ)B(zn,zn),J

−1
α wn)

=(λδ(α)B̃α(zn,zn)−(1−δ)B(zn,zn),J
−1
α wn)+α

2λδ(α)(B̃α(zn,Azn),J
−1
α wn)

=([λδ(α)−(1−δ)]B(zn,zn),wn⟩+(1−δ)⟨JαB(zn,zn)−B(zn,zn),J
−1
α (α)wn)

+α2λδ(α)(B̃α(zn,Azn),wn)

=R1+R2+R3.

Owing to (2.12) and the Young inequality we get:

R1≤|λδ(α)−(1−δ)|
∣∣∣A 1

2 zn

∣∣∣ 32 |Azn|
1
2 |wn|.

In a similar way,

R2≤ (1−δ)α2⟨B(zn,zn),Awn⟩
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≤ (1−δ)α2|zn|
1
2

∣∣∣A 1
2 zn

∣∣∣ |Azn|
1
2 |Awn|

≤ α2

24
|Awn|2+(1−δ)2α2|zn|

∣∣∣A 1
2 zn

∣∣∣2 |Azn|.

As for R3 we use (2.14) and the Young inequality to obtain

R3=α
2λδ(α)⟨B̃(zn,Azn),wn⟩

≤α2λδ(α)
∣∣∣A 1

2 zn

∣∣∣ |Azn||Awn|

≤ α2

24
|Awn|2+α2λ2δ(α)

∣∣∣A 1
2 zn

∣∣∣2 |Azn|2.

Hence

(λδ(α)B̃α(zn,J
−1
α zn)−(1−δ)B(zn,zn),J

−1
α wn)

≤α
2

12
|Awn|2+Cα2[λ2δ(α)+(1−δ)]

∣∣∣A 1
2 zn

∣∣∣2 |Azn|[|zn|+ |Azn|]

+ |λδ(α)−(1−δ)|
∣∣∣A 1

2 zn

∣∣∣ 32 |Azn|
1
2 |wn|. (5.9)

Combining (5.8) and (5.9) we see that

|(−N[yn,zn],J
−1
α wn)|

≤Cλ
4
3

δ (α)
∣∣∣A 1

2 zn

∣∣∣ 23 |Azn|
2
3 [|wn|2+α2|A 1

2wn|2]

+Cλ2δ(α)|Azn|2
(
|wn|2+α2

∣∣∣A 1
2wn

∣∣∣2)
+ |λδ(α)−(1−δ)|

(∣∣∣A 1
2 zn

∣∣∣ |Azn|+ |A 1
2 zn|2

[
|wn|2+α2|A 1

2wn|2
])

+Cα2[λ2δ(α)+(1−δ)]
∣∣∣A 1

2 zn

∣∣∣2 |Azn|[|zn|+ |Azn|]+
3α2

24
|Awn|2+

1

24

∣∣∣A 1
2wn

∣∣∣2 . (5.10)

Our next task is to estimate

(L[yn,zn],J
−1
α wn)=δ(B̃α(u,J

−1
α yn)−B(u,zn),J

−1
α wn)

+δ(B̃α(yn,J
−1
α u)−B(zn,u),J

−1
α wn)

=:I+L.

Using the bilinearity of B̃ and (2.6) we see that

I= δ⟨B̃(u,J−1
α wn),wn⟩D(A)′ +δ(B̃α(u,J

−1
α zn)−B(u,zn),J

−1
α wn)

=−δ(B̃(wn,wn),u)+δα
2⟨B̃(u,Awn),wn⟩D(A)′ +δ(B̃α(u,J

−1
α zn)−B(u,zn),J

−1
α wn).

By denoting I1 and I2 the first two terms on the right-hand side of the above equation
and using the bilinearity of B̃ again and (2.9) we find that

I= I1+I2+δα
2⟨B̃(u,Azn),wn⟩D(A)′ −δα2⟨B(u,zn),Awn⟩D(A)′ −δ(B(wn,zn),u).

In a similar way we can show that

L= δ(B̃α(yn,J
−1
α u)−B(zn,u),J

−1
α wn)
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= δα2⟨B̃(zn,Au),wn⟩D(A)′ +δα
2⟨B(zn,u),Awn⟩D(A)′ +δ(B(wn,zn),u).

Hence

I+L= I1+I2+δα
2⟨B̃(u,Azn),wn⟩D(A)′ −δα2(B(u,zn),Awn)

+δα2⟨B̃(zn,Au),wn⟩D(A)′ +δα
2⟨B(zn,u),Awn⟩D(A)′

=:

6∑
i=1

Ii.

In the next lines we will estimate Ii, i=1,. ..,6.

Using (2.7), (2.16) and the Young inequality we see that

I1= δ(B(wn,u),wn)≤ δ|wn|
1
2

∣∣∣A 1
2wn

∣∣∣ 12 ∣∣∣A 1
2u
∣∣∣ 12 |Au| 12 |wn|

≤ 1

24

∣∣∣A 1
2wn

∣∣∣2+Cδ2|wn|2
∣∣∣A 1

2u
∣∣∣ 23 |Au| 23 .

In a similar fashion we can show that

I2= δ(B(u,wn),Awn)+δα
2(B(wn,u),Awn)

≤ δα2|Awn|
[
|u| 12

∣∣∣A 1
2u
∣∣∣ 12 ∣∣∣A 1

2wn

∣∣∣ 12 |Awn|
1
2 + |wn|

1
2

∣∣∣A 1
2wn

∣∣∣ 12 ∣∣∣A 1
2u
∣∣∣ 12 |Au|

1
2

]
≤ α2

96
|Awn|2+Cδ2α2

[
|u|2

∣∣∣A 1
2u
∣∣∣2 ∣∣∣A 1

2wn

∣∣∣2+ |wn|2
∣∣∣A 1

2wn

∣∣∣∣∣∣A 1
2u
∣∣∣ |Au|

]
≤ α2

96
|Awn|2+Cδ2α2

[(
1+ |u|2

∣∣∣A 1
2u
∣∣∣2)∣∣∣A 1

2wn

∣∣∣2+ |wn|2
∣∣∣A 1

2u
∣∣∣2 |Au|2

]
.

We now proceed to the estimate of I3. By using (2.14) and Young’s inequality

I3= δα
2⟨B̃(u,Azn),wn⟩D(A)′

≤Cδα2|Azn|
∣∣∣A 1

2u
∣∣∣ |Au|

≤Cδ2α2|Azn|2
∣∣∣A 1

2u
∣∣∣+ α2

96
|Awn|2.

In a similar way we show that

I5= δα
2⟨B̃(zn,Au),wn⟩D(A)′

≤Cδ2α2|Au|2
∣∣∣A 1

2 zn

∣∣∣+ α2

96
|Awn|2.

Finally by using (2.11), (2.12) and the Young inequality, the term I4+I6 can be esti-
mated as follows

I4+I6≤ δα2|Awn|
∣∣∣A 1

2u
∣∣∣ 12 |Au| 12

∣∣∣A 1
2 zn

∣∣∣
≤ α2

96
|Awn|2+

∣∣∣A 1
2 zn

∣∣∣2 ∣∣∣A 1
2u
∣∣∣ |Au|.

Thus,

I+L= ⟨L[yn,zn],J
−1
α wn⟩
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≤ α2

24
|Awn|2+

1

24

∣∣∣A 1
2wn

∣∣∣2+Cδ2(|wn|2+α2
∣∣∣A 1

2wn

∣∣∣2)(1+ ∣∣∣A 1
2u
∣∣∣2 |Au|2

)
+Cδ2α2

[∣∣∣A 1
2u
∣∣∣2(|Azn|2

∣∣∣A 1
2 zn

∣∣∣2)+ |Au|2
∣∣∣A 1

2 zn

∣∣∣2]. (5.11)

We now deal with the control terms. It is not difficult to prove that

(Gα(Φn)hn−G(Φ)hn,J−1
α wn)

=(JαG(Ψn)hn−JαG(Φn)hn,J
−1
α wn)+(JαG(Φn)hn−G(Φ)hn,J−1

α wn)

≤|G(Ψn)hn−G(Φ)hn||wn|+⟨JαG(Φn)hn−G(Φn)hn,J
−1
α wn⟩.

Using the Assumption 3.1 and the definitions of Ψn and Φn yields

(Gα(Φn)hn−G(Φ)hn,J−1
α wn)

≤|Ψn−Φn|∥hn∥K|wn|+ |(JαG(Φn)hn−G(Φn)hn,J
−1
α wn)|

≤C[λδ(α)|wn|2+ |λδ(α)−(1−δ|)|zn||wn|]∥hn∥K+ |(JαG(Φn)hn−G(Φn)hn,J
−1
α wn)|.

Let us now deal with the second term on the right-hand side of the last inequality.
Thanks to Assumption 3.1, inequality (2.22) and the Young inequality we have

|(JαG(Φn)hn−G(Φn)hn,J
−1
α wn)|

≤α|(α2A)
1
2 JαA

1
2G(Φn)hn||J−1

α wn|
≤Cα(1+ |Φn|)∥hn∥K|J−1

α wn|

≤Cα2(1+δ2|u|2+(1−δ)2|zn|2)∥hn∥2K+C∥hn∥2K|wn|2+
α2

24
|Awn|2.

Thus,

(Gα(Ψn)hn−G(Φn)hn,J
−1
α wn)

≤C(1+λδ(α))∥hn∥2K[|wn|2+α2|A 1
2wn|2]+

α2

24
|Awn|2

+Cα2(1+δ2|u|2+(1−δ)2|zn|2)∥hn∥2K+ |λδ(α)−(1−δ)|2|zn|2. (5.12)

By using Assumption 3.1 and the definition of the stopping time τN , it is not difficult
to show that

αλ−2
δ (α)

∫ t∧τN

0

∥G(Ψn)∥2L (K,H)ds≤Cαλ
−2
δ (α)

∫ t∧τN

0

(1+δ2|u|2+λ2δ(α)|yn|2)ds

≤Cαλ−2
δ (α)T (1+δ2 sup

s∈[0,T ]

|u(s)|2+λ2δ(α)N). (5.13)

Before proceeding further we set

Yn=
(
λ2δ(α)+ |λδ(α)−(1−δ)|+λ

4
3

δ (α)
)(

1+ |Azn|2
)
+δ2(1+ |A 1

2u|2|Au|2)

+(1+λδ(α))∥hn∥2K.

Rn=
(
|λδ(α)−(1−δ)|+α2[λ2δ(α)+(1−δ)]|A 1

2 zn|2+δ2α2|A 1
2u|2|A 1

2 zn|2
)
|Azn|2

+
(
α2+α2λ−1

δ (α)|A 1
2u|2+δ2α2|A 1

2 zn|2
)
+ |λδ(α)−(1−δ)|2|zn|2
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+α2

(
1+δ2 sup

s∈[0,T ]

|u(s)|2+(1−δ)2 sup
s∈[0,T ]

|zn(s|2
)
∥hn∥2K

+αλ−2
δ (α)T (1+δ2 sup

s∈[0,T ]

|u(s)|2+λ2δ(α)N).

Then, by plugging (5.4), (5.10), (5.11), (5.12), and (5.13) into (5.3) and invoking
the Poincaré inequality we obtain that there exist constants C0,C1>0 such that with
probability 1 and for all n∈N

∥wn(t∧τN )∥2α+
∫ t∧τN

0

[
1

2

∣∣∣A 1
2wn(s)

∣∣∣2+ α2

2
|Awn(s)|2

]
ds

≤∥wn(0)|2α+C0

∫ t∧τN

0

Yn(s)∥wn(s)∥2αds+C1

∫ t∧τN

0

Rn(s)ds+α
1
2λ−1

δ (α)Mn(t∧τN ),

(5.14)

where

Mn(t)=

∫ t

0

(J−1
α wn,Gα(Ψn)dW ), t∈ [0,T ].

We now deal with the stochastic term. By using the Burkholder-Davis-Gundy inequality,
the Assumption 3.1 and the Young inequality we deduce that for any θ>0 there exist
two constant C2,c2>0 such that for all n∈N

α
1
2λ−1

δ (α)E sup
0≤s≤t

∣∣∣∣∫ s∧τN

0

(J−1
α wn,Gα(Ψn)dW )

∣∣∣∣
=α

1
2λ−1

δ (α)E sup
0≤s≤t

∣∣∣∣∫ s∧τN

0

(wn,G(Ψn)dW )

∣∣∣∣
≤c2α

1
2λ−1

δ (α)E
[∫ t∧τN

0

∥wn∥2α∥G(Ψn)∥2L (K,H)ds

] 1
2

≤θE sup
s∈[0,t]

∥wn(s∧τN )∥2α+C2αλ
−2
δ (α)E

∫ t∧τN

0

(1+δ2|u|2+λ2δ(α)|yn|2)ds.

Using the definition of the stopping time τN yields

α
1
2λ−1

δ (α)E sup
0≤s≤t

∣∣∣∣∫ s∧τN

0

⟨J−1
α wn,Gα(Ψn)dW ⟩

∣∣∣∣
≤θE sup

s∈[0,t]

∥wn(s∧τN )∥2α+C2αλ
−2
δ (α)E

∫ t∧τN

0

(1+δ2|u|2+λ2δ(α)N)ds. (5.15)

Next observe that thanks to the estimates (4.14)-(4.15), the fact
∫ T

0
∥hn∥2K≤M we see

that there exists a deterministic constant c3>0 such that with probability 1

e
∫ T
0

C0Yn(s)ds≤e
(T+c3)

(
λ2
δ(α)+|λδ(α)−(1−δ)|+λ

4
3
δ (α)

)
+δ2c3(1+c3)M+α2λδ(α)T.

(5.16)

In a similar way, we can show that there exists a deterministic constant C3>0, which
may depend on M , N and T , such that with probability 1∫ T∧τn

0

Rn(s)ds≤C3Σn, (5.17)
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where the sequence Σn, n∈N is defined by

Σn= |λδ(αn)−(1−δ)|+α2
n[λ

2
δ(αn)+(1−δ)]+δ2α2

n+α
2
nλ

−1
δ (αn)+αnλ

−2
δ (αn)+α

2
n+αn. (5.18)

Next, since λδ(αn)≤1, |λδ(αn)−(1−δ)|→0, and α2
nλδ(αn)→0 as n→∞, we deduce

that there exists a deterministic constant C4>0 such that with probability 1

sup
n∈N

e
∫ T
0

C0Yn(s)ds≤C4. (5.19)

Thus, by choosing θ>0 so that 2θC4≤1 and applying the version of Gronwall’s lemma
given in [13, Lemma A.1] we obtain that for all t∈ [0,T ] and n∈N

E sup
s∈[0,t]

∥wn(t∧τN )∥2α+E
∫ t∧τN

0

[
1

2

∣∣∣A 1
2wn(s)

∣∣∣2+ α2

2
|Awn(s)|2

]
ds≤C4C3Σn,

which implies

E sup
s∈[0,t]

|wn(t∧τN )|2+E
∫ t∧τN

0

1

2

∣∣∣A 1
2wn(s)

∣∣∣2ds≤C4C3Σn.

Now, since λδ(αn)≤1, |λδ(αn)−(1−δ)|→0 and αnλ
−ℓ
δ (αn)→0, ℓ∈{1,2}, as n→∞

we infer that

E sup
r∈[0,T ]

|wn(r∧τN )|2+E
∫ T∧τN

0

|A 1
2wn(s)|2ds→0 as n→∞. (5.20)

Next, let γ>0 and ε>0 be arbitrary numbers. Let us set

Xn(T )= sup
r∈[0,T ]

|wn(r)|2+
∫ T

0

|A 1
2wn(s)|2ds.

Then, it is not difficult to check that

P(Xn(T )≥ε)≤P( sup
r∈[0,T ]

|Xn(T ),τN =T )+P( sup
r∈[0,T ]

|yn(r)|2≥N)

≤ 1

ε
EXn(T ∧τN )+

1

N
E sup

r∈[0,T ]

(|yn(r)|). (5.21)

Owing to estimate (4.4) one can find N0>0 such that if N ≥N0 then

1

N
E sup

r∈[0,T ]

(|yn(r)|2)<
γ

2
.

Thus, thanks to (5.20) and (5.21) we infer that there exists n0∈N such that for all
n≥n0

P

([
sup

r∈[0,T ]

|wn(r)|2+
∫ T

0

|A 1
2wn(s)|2ds

]
≥ε

)
<γ,

which completes the proof of Proposition 5.1.

We will also need the following result.
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Lemma 5.2. Let M>0, (hn)n∈N⊂AM , h∈AM , and (αn)n∈N⊂ (0,1] be a sequence

converging to 0. Also, let δ∈{0,1} and ξ∈D(A
1
2 ). Let us assume that Assumption

3.1 holds. Let hn be a sequence converging in distribution to h as AM -valued random
variable.

Then, the process Γ0,δ
ξ

(∫ ·
0
hn(r)dr

)
converges in distribution to Γ0,δ

ξ

(∫ ·
0
h(r)dr

)
as

C([0,T ];H)∩L2(0,T ;D(A
1
2 ))-valued random variables.

Proof. (Proof of Lemma 5.2.) Before diving into the depth of the proof we
recall that AM is a Polish space when endowed with the metric defined in (4.1). Now,
since, by assumption, hn→h in law as AM -valued random variables, we can infer from
the Skorokhod’s theorem that one can find a probability space (Ω̄,F̄ ,P̄) on which there
exist AM -valued random variables h̄n, h̄ having the same laws as hn and h, respectively,
and satisfying

h̄n→h in AM ,P̄−a.s.. (5.22)

From the last property and Proposition 4.2 we derive that

Γ0,δ
ξ

(∫ ·

0

h̄n(r)dr

)
→Γ0,δ

ξ

(∫ ·

0

h̄(r)dr

)
in C([0,T ];H)∩L2(0,T ;D(A

1
2 )) P̄−a.s..

(5.23)

Observe that Proposition 4.2 implies in particular that Γ0,δ
ξ :AM →C([0,T ];H)∩

L2(0,T ;D(A
1
2 )) is continuous. Hence, from the equality of the laws of hn (resp. h)

and h̄n (resp. h̄) we infer that the laws of Γ0,δ
ξ

(∫ ·
0
h̄n(r)dr

)
and Γ0,δ

ξ

(∫ ·
0
h̄(r)dr

)
are

equal to the laws of Γ0,δ
ξ

(∫ ·
0
hn(r)dr

)
and Γ0,δ

ξ

(∫ ·
0
h(r)dr

)
, respectively. This observa-

tion and the convergence (5.23) complete the proof of Lemma 5.2.

The next result that we need is contained in the following theorem.

Proposition 5.1. Let M>0, (hn)n∈N⊂AM , h∈AM , and (αn)n∈N⊂ (0,1] be a se-

quence converging to 0. Also, let δ∈{0,1} and ξ∈D(A
1
2 ).

If Assumption 3.1 holds and hn is a sequence converging in distribution to h as AM -

valued random variable, then the process Γαn,δ
ξ

(
W +α

− 1
2

n λδ(αn)
∫ ·
0
hn(r)dr

)
converges

in distribution to Γ0,δ
ξ

(∫ ·
0
h(r)dr

)
as C([0,T ];H)∩L2(0,T ;D(A

1
2 ))-valued random vari-

ables.

Proof. Proposition 5.1 readily follows from [19, Theorem 11.3.3], Lemmata 5.1
and 5.2.

5.3. Proof of Theorem 5.1. In this subsection we will give the proof of our
main results which are contained in Theorem 5.1. The proof relies on a LDP result
which follows from [4, Theorem 3.6 and Theorem 4.4]. We first recall this LDP result.

Let K, K1 be two separable Hilbert spaces andW a Wiener process as in Subsection
3. We recall that A is the set of all K-valued predictable processes h such that

P

(∫ T

0

∥h(r)∥2Kdr<∞

)
=1. (5.24)

We recall the following result which is exactly [4, Theorem 3.6].
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Theorem 5.2. Let Γ :C([0,T ];K)→R be a bounded, Borel measurable function. Then

−logEe−Γ(W )= inf
h∈A

E
{
1

2

∫ T

0

∥h(r)∥2K+Γ

(
W +

∫ ·

0

h(r)dr

)}
. (5.25)

Next, let E be a Polish space, (Ψε)ε∈(0,1] a family of Borel measurable maps from
C([0,T ];K) onto E , and (Xε)ε∈(0,1] a family of E-valued random variables. We have the
following result which can be proved by using Theorem 5.2 and the idea in the proof
of [4, Theorem 4.4].

Theorem 5.3. Let ϱ be a real-valued function defined on (0,∞) such that

ϱ(ε)→∞ as ε→0.

Assume that there exists a Borel measurable map Ψ0 :C([0,T ];K)→E such that the
following hold:

(A1) if (hε)ε∈(0,1]⊂AM , M>0, converges in distribution to h∈SM as AM -valued

random variables, then Ψε(W +ϱ(ε)
∫ ·
0
hε(r)dr) converges in distribution to

Ψ0(
∫ ·
0
h(r)dr).

(A2) For every M>0 the set KM ={Ψ0(
∫ ·
0
h(r)dr) :h∈AM} is a compact subset of

E.
Then, the family (Xε)ε∈(0,1] satisfies an LDP with speed ϱ2(ε) and rate function I given
by

I(x)= inf
{h∈L2(0,T ;K): x=Ψ0(

∫ ·
0
h(r)dr)}

{
1

2

∫ T

0

∥h(r)∥2K
}
. (5.26)

Now, we are ready to give the promised proof of our main theorem.

Proof. (Proof of Theorem 5.1.) Owing to Propositions 4.2 and 5.1 the assump-

tions (A1) and (A2) of Theorem 5.3 are satisfied on E=C([0,T ];H)∩L2(0,T ;D(A
1
2 )).

Thus, we infer that for δ∈{0,1} the solution uα,δ to (2.4) satisfies an LDP on E with
speed α−1λ2δ(α) and rate function Iδ. This completes the proof of Theorem 5.1.
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