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LOCAL WELLPOSEDNESS OF QUASILINEAR MAXWELL
EQUATIONS WITH CONSERVATIVE INTERFACE CONDITIONS*

ROLAND SCHNAUBELTT AND MARTIN SPITZ*

Abstract. We establish a comprehensive local wellposedness theory for the quasilinear Maxwell
system with interfaces in the space of piecewise H"*-functions for m > 3. The system is equipped with
instantaneous and piecewise regular material laws and perfectly conducting interfaces and boundaries.
We also provide a blow-up criterion in the Lipschitz norm and prove the continuous dependence on
the data. The proof relies on precise a priori estimates and the regularity theory for the corresponding
linear problem also shown here.
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1. Introduction

The Maxwell equations are the basis of electro-magnetic theory and thus one of
the fundamental partial differential equations in physics. In the case of instantaneous
nonlinear material laws, they form a symmetric quasilinear hyperbolic system under
natural assumptions. For such systems on R?, in [20] Kato has established a satisfactory
local wellposedness theory in H*(R?) for s>1+ %. However, on a domain G #R3, the
Maxwell system with the boundary conditions of a perfect conductor has a characteristic
boundary and does not belong to the classes of hyperbolic systems for which one knows a
wellposedness theory in H3. The available results need much more regularity and exhibit
a loss of derivatives in normal direction (encoded in weighted function spaces), see [16]
or [27]. In the recent papers [29] and [30] by one of the authors, a comprehensive local
wellposedness theory in H™ for m >3 has been established for the boundary conditions
of a perfect conductor. The main effort in these works is devoted to prove full regularity
in normal direction at the boundary, heavily using the structure of the Maxwell system.
In the paper [26] we have also treated the case of absorbing boundary conditions where
solutions have more trace regularity.

However, deriving boundary conditions for the Maxwell systems on a domain
G CR3, one starts from the interface conditions (1.2) at G and assumes that one
knows the trace of the fields outside G, see Section 1.4.2.2 of [12] or Section 7.12 in [15].
Moreover, in applications one often deals with composite materials in which the con-
stitutive relations are only piecewise regular in x € G. Here one has to treat the jumps
in the material as interfaces. It is thus necessary to investigate interface problems in
electro-magnetism, and not only (pure) boundary value problems.

In this work, we treat a (possibly unbounded) domain G CR? being the disjoint
union of two subdomains G4 and G_ and the interface ¥ =0G_, where ¥ and 0G are
smooth and have positive distance. Our results immediately extend to domains consist-
ing of finitely many such components. We establish a comprehensive local wellposedness
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theory in H™ with m >3 for the Maxwell system on G, given as

ODy=cuwlHy—J, for r€ Gy, ted,
0;By=—curlE, for re G4, ted,
divD4y=p4, divB4=0, for z € G4, ted, (1.1)
E, xv=0, B,-v=0, for x €0G, ted,

E (ty)=Eo+, Hi(to)=Ho+, forzecGy,

for an initial time tg € R, J=(to,T"), and the unit outward normal vector v of G. Here
E.(t,x),D4(t,x) €R3 are the electric and H (t,z), B4 (t,z) €R? the magnetic fields
on G 4. It is known that the divergence equations and the magnetic boundary condition
B, -v=01in (1.1) remain valid if they are satisfied by the initial fields. Here, the charge
densities p (¢,x) are given by the initial charge and the current densities J . (t,x) €R3
via

t
p+(t)=px(to) 7/ divJ 4 (s)ds
to
for all t >ty on G4 (see Section 1.4.2.2 in [12]). In (1.1) we have imposed the boundary
conditions of a perfect conductor on 9G. On ¥ the Maxwell equations imply the interface
conditions

[D-v]=-ps, [B-v]=0, [Exv]=0, [Hxv]=Jsg (1.2)

for x € X and t € (t9,T), see Section 1.4.2.4 of [12], where [D-v]=(D;—D_)-v etc. In
(1.2) the charge density px on the interface is determined by

t
pst)=ps(0)t0)~ [ (ivsTs(s) - [T vl(o)ds. te,
to
and the equations for D and B are true if they are valid at t =1, see Lemma A.1.
The system (1.1) has to be complemented by constitutive relations between the
electric and magnetic fields, where we choose E and H .y as state variables. There
are various classes of such material laws. In the so-called retarded ones the fields D4
and By depend also on the past of E1 and H 4, see [4,15,23], or [25]. In dynamical
material laws the material response is modelled by additional evolution equations, see
[3,13,18,19], or [23]. We concentrate on instantaneous material laws, see [9] or [15],
where the fields D1 and By are given by

Dy(t,x)=0, +(z,Ey(t,x),Hy(t,x)), B (t,x)=0s+(x,EL(t,x),Hi(t,x))

for regular functions 64 = (61 1,05 +): G+ x R6 - RS. The most prominent example is
the so called Kerr nonlinearity Dy = E4 + 9+ |E4|?EL and By = H . with 91: G4 —
R. In Example 7.1 we discuss a more general class of 1 also arising in nonlinear optics.
We further assume that the current density is composed by

Ji=Jo++06+(E+,Hy)E, (1.3)

where Jy + is a given external current density and 7+ is the conductivity on G+.
We insert these material laws into (1.1) and differentiate formally, obtaining

(8tDi,atBi)=8(Ei’Hi)9i($,Ei,Hi>at(Ei,Hi)Z(CurlHi—Ji,—CurlEi).
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Our main structural assumption is that O, g, )0+ is symmetric and positive definite,
which is true for the Kerr law for small E4 (and globally if 1 >0). These assumptions
ensure that one has a symmetrizer for the core energy estimates and that the problem
is hyperbolic. See also Example 7.1.

Such assumptions are quite standard already for linear Maxwell equations.

The resulting equations form a symmetric quasilinear hyperbolic system of first
order. In order to transform (1.1) into a standard form, we introduce the matrices

000 001 0-10
J=l0o0-1], L=[000], Ks=[100],

010 10 0 000
w (0 —J; .
AS (Jj 0 > je{1,2,3}. (1.4)

Note that J101 + Jo0z + J303 =curl. Writing x+ =0(g, 1, )0+, f+=(—Jo+,0), o+ =

(E’Oi 8), and using uy = (Ey,H 1) as a new variable, we obtain the system

3
Xi(ui)ﬁtuiﬁ—ZA‘f@jui +0’i(ui)Ui:fi, (t,z) e J xGx. (1.5)
j=1

To recast the electric boundary and interface conditions in (1.1) and (1.2), we set

0 Vs —U»y
B,=|-v3 0 v |, Bog=[B,0], Bg=
Vo —U1 0

B, 0 -B, 0

0B, 0 —-B, (1.6)

on OG respectively ¥, and put g=(0,Jx)?. System (1.1) is then equivalent to the
symmetric quasilinear hyperbolic initial boundary value problem

3
X (u+)Opus + ijl APOjuy +og(us)ur=fr, r€Gy, tEJ;

Baguy =0, r€0G, ted; (1.7)
BZ(U+7U*):gv ZCGZ, tGJ;
u(to) =1Uop, zeq.

On 9G we could also allow for inhomogeneous boundary values, see [29]. As noted
above, the magnetic boundary and interface conditions and the divergence relations in
(1.1) and (1.2) are true if we impose corresponding conditions on ug (see Lemma 7.25
in [28] and Lemma A.1). We look for solutions u of (1.7) in the spaces

(% G) ﬂ CI (T, H™(Q)), (1.8)
HE (G ):{veLQ(G): vy € HR(GL),v_ e H*(G_)},

cf. [8,24], where k,m €Ny and vy are the restrictions of v to G1. We assume that the
coefficients and data are appropriately smooth and compatible (in the sense of (6.5)).
Our main Theorem 7.1 then shows that

(1) the system (1.7) has a unique maximal solution u € G,,,(J x G) with m >3,
(2) finite existence time can be characterized by blow-up in the Lipschitz-norm,

(3) the solution depends continuously on the data.
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We are not aware of solvability results for the quasilinear Maxwell system (1.1) or (1.7)
with interfaces. It was however treated in the time-harmonic setting in some situations,
see [2,6] or [7].

These results are based on the detailed regularity theory in Theorem 3.1 for the
corresponding non-autonomous linear system

3
Aoyiﬁtui+Zj:1Aj°8jui+Diui:fi, relGy, teJ;

Bygu4 =0, x €0G, telJ; (1.9)
BZ(U’+7U—):ga xEZ, tEJ,
u(to) =uo, reG.

We follow the same strategy as for the pure initial boundary value problem in [29] and
[30]. We freeze a map @ in the nonlinearities of (1.7). The resulting linear problem (1.9)
can be solved in Gy(J x G) for Lipschitz coefficients using [14]. In a lengthy procedure
one can first show a priori estimates for solutions in G,,(J x G) and then prove that
the Go—solution actually belongs to G,,(J x G), provided that data and coefficients are
regular enough and compatible. Here one has to inductively intertwine different results
for the tangential, time, and normal directions. The normal part is the most difficult one
due to the characteristic interface and boundary (i.e., A§°ry + ASPvs + ASvs is singular).
Our treatment of the normal regularity heavily relies on the structure of the Maxwell
system, see Proposition 4.1 and Lemma 5.1.

For these arguments one has to localize the system. In this procedure one at first
loses many of the zeros in the coefficient matrices of (1.7), which also become non-
constant. However, using an additional transformation described in (3.8), (3.9) and
(3.12), we obtain localized systems with an unchanged space-independent matrix A$°
and space-independent boundary matrices By, and Byg. This fact allows us to partly
separate the treatment of the normal directions from the others. This achievement is
crucial for our analysis.

The nonlinear problem is then solved by a contraction argument in Theorem 6.1,
which is basically standard though one has to be very careful setting up the constants.
Here we employ the precise form of the a priori estimate in Theorem 3.1. In the
derivation of the blow-up criterion and the continuous dependence of the data, one has
to use the localized problems and the structure of the system once more.

Fortunately, the methods developed in [29] and [30] for the pure boundary value
problem work quite well in the present situation. Many arguments can be adapted
with straightforward changes. These are omitted below. However, at several points
the structure of the problem changes significantly because of the interface condition.
In the first step one has to apply the basic linear L? results of [14] to the localized
interface problem on R3. To this aim, one rewrites the Maxwell system as a 12 x 12
initial boundary value system on the positive half-space by reflecting the coefficients
from the negative one. In this procedure extra signs arise due to the reflection and spoil
the structure of the pure Maxwell system appearing in [30], see e.g. (3.6) and (4.4).
However, the core parts of the proof concerning normal regularity heavily depend on
cancellation properties of the arising (linear) Maxwell system. Similarly the structure
of the new 12 x 12 Maxwell system is crucial in order to obtain constant coefficients A§°
and By in the localization procedure. These and several other arguments are closely
tied to the structure of the interface problem. They are thus worked out in detail,
though they lead to lengthy and intricate calculations.
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In the next section we introduce our basic notation and some auxiliary results.
The localization procedure is discussed in Section 3. The core a priori estimates and
regularity results for the linear problem are shown in Sections 4 and 5, respectively. The
basic fixed-point argument is included in Section 6, and the main local wellposedness
theorem in Section 7.

2. Function spaces and linear compatibility conditions

Standing notation: Let m €Ny and set 7 =max{m,3}. We work with domains
G, G4, and G_ in R? such that G is the disjoint union of G, G_, and ¥:=0G_.
Moreover it is assumed that > and OG have a positive distance and are tame uniform
C™*+2-houndaries, see Definitions 2.24 and 5.4 of [28]. This means that they are uniform
C™*+2_boundaries (see e.g. [1]) and that there exist a smooth partition of unity (6;)ien,
of G_ respectively G subordinate to the locally finite covering (U;);cn, (where Uy=G_
respectively Up=G), as well as test functions o; with ;=1 on suppf; and w; with
w; =1 on @;(suppo;), which are all uniformly bounded in C™*2. Of course, compact
boundaries of class C™*2 or halfspaces satisfy these assumptions.

Our solutions take values in domains U and U_ in RS.  We further write
L(Ao,...,A3,D) or L(A;,D) for the differential operator Zj:o A;0; +D with the co-
efficients A; and D, where 0y=0;. By J we mean an open time interval and we set
Q=J xR%. The image of a function v is designated by imv. For a function w in H*(G),
we denote by d;w the L?(G)-function whose restriction to G4 coincides with d;wy. In
the localization procedure we employ the matrices

co A 0 . 1co Ag° 0
AS :( 6 A;TO) for je{1,2,3} and 3 =< 6’ _A§o>‘ (2.1)

To introduce the necessary trace operators, take coefficients A; € W>°(J x G), i.e.,
the restrictions A; 4 belong to W1>°(JxG1). Let vy be an element of L?(J x G4)
such that Zj:o Aj +0jvy is contained in L?(Jx Gy). Then the product A4 (v)vy =
(Z?:o Aj +vj)vy has a trace on J x 9G4 belonging to H~/2(.J x 9G.), cf. [28,30], for
instance. Here v denotes the unit outer normal of J x G;. We may restrict this trace to
J x ¥ and to J x G, respectively. Moreover, the corresponding trace operators Tr ;x5 1
and Try.pq are given by the standard ones try ; and trse 4, respectively, if vy takes
values in H!'(G ). Here we can replace the subscript + by —. We further set

Tryxs,+(AW)u) =(Tryxs 4+ (A4 (V)ug), Tryws, - (A- (V)u-))
if ue L2(J x G) satisfies 3°7_ A; 10jus € L2(J x Gt ), respectively
trg pu=(trg 4 uy,trs, _u_)

if ue H'(G). We define the trace Tr s + (M A(v)u) by M Trxs 4+ (A(v)u) for matrix-
functions M € W1°°(J x ), and correspondingly for the other trace operators. Finally,
try, is the usual trace at ¥ for functions in H'(G) or C(G). On R} ={z€R3: 23>0}
we use the trace operator Tr oR3 s introduced in [30].

We will employ the same function spaces as in [30], but we have to add variants
allowing discontinuities across the interface. For reasons of clarity, we introduce all

the spaces here. Take a subdomain G of R3. We have already encountered the spaces
Gm(J xG) and H™(G) in (1.8). Their norms are given by

[ollg,.7xc) = pnax 10| Loe (g 34m=i ().
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HU”?-[’"(G) = |\U+||§1m(c+) + HU—H%IW(G,)'

We also need the simpler version

G(JxG)= ;”:O CI(J,H™ I (G)).

Set e_(t)=e 7" for v>0 and t € R. We use the time-weighted norms

HUHGm,,Y(JXG):je{%laX ||€—78jv||Loo JHm=3(G))

for all v > 0. If v =0, we also write ||-[|g, (;xq) instead of ||-[|g,  (7xa)- Other function
spaces on J X G or Jx @ are treated analogously. We further set
G (J xG)={veL>®(J,L*(Q)): 0°ve L>®(J,L*(G)) for all acN§ with |a| <m},

and define g:m(J x G) in a similar way. These spaces are endowed with the same norms
as G (J x G) respectively G, (J x G).
The coefficients of the linear problem will be contained in
Fpi(JxG)={AcWL>(JxG)***: 9> Ac L>°(J,L*(G)) for all a € N}
with 1 <|a|<m},
||A||Fm(Jx@):maX{”A”WLOO(JxG)? max ||3 All o JL2(G))}
Frk(IxG)={Ac W' (I xG): A+ eFm,k(Jx Gy),A_€Fn 1 (JxG_)},

y=max{[|A+||r,, (7xc.) A=l F,xa_)}-

The regularity of time-evaluations is measured in the spaces

F (G)={Ae L>(G)"**: 0" A€ L*(G)"** for all a €N} with 1<|a|<m},

||A||F3L((;):maX{||A||Loo(c~;)al§Iﬁ§mHaaAHw(G)};

Fon(@)={AeL>(@)"*: Ay eF), 1 (Gy),A_€F), (G},
HAHfSn(G) :max{||A+||F,%(G+)7HA—HFT"H(G,)}'

The subscript 1 always designates the subspace of matrix-valued maps A with A7 = A >
n>0. By F. 7, (J xG) we mean those A€ Fp, (J x G) which are constant outside of a

compact subset of T x Jx G, and by F%, (J x G) those which have a limit as |(¢,2)] — oc.
The variants for F' instead of F are deﬁned analogously. We will only use the parameters
ke€{1,6,12}. As it will be clear from the context which parameter we consider, we
usually drop it from our notation.

After the localization procedure below, the coefficients in front of the spatial deriva-
tives belong to the space

EY oer(R D) ={AE€FP15(): 31,2, 3 € F,Y1 () independent of time,
3 co
such that A:Zj:fAj Wit (2.2)
Finally, we introduce the space for the data on the interface, namely

' (J X 3) ﬂ HI(J,H™ 271 (%)).
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We next state several bilinear estimates, which will be ubiquitous in the following.
One proves this result by applying Lemma 2.1 from [30] on G_ and on G.
LEMMA 2.1.  Take my,ms €N with my >mso and mq >2 and a parameter v > 0.
(1) Let k€{0,....,m1}, f€Gm, k(I xG), and g€G(J x G). Then
f9€Go(IxG) and | fgllg,,rxc) <Clfllgm, —rrxellglla, ., rxc)-

(2) Let f€Gm,(JxG) and g€ Gpmy,(J xG). Then fg&€Gm,(J xG) and

1£9llGn, - (7xc) < Cmin{|[fllg,. (7xc)llgllg,., - (7xc)s
1 £llGo, ~(7xc)9llGrny (7xc) -

The result remains true if we replace G, (JXG) by Fp, (J x Q) and if we replace
both G, (J X Q) and G, (J X G) by Fpy (J X G) and Fp, (J X G).

(3) Let k€{0,...,m1}, fEH™*(G), and g€ H*(G). Then fge L*(G) and

1 £9ll2(c) < Cll fllagmi—r (e lgllax ) -
(4) Let feH™ (G) and ge H"™*(G). Then fgeH™*(G) and

£ gllame )y S Cll fllma (@) lgllama @)

The result is also valid with ™ (G) replaced by F, (G).
In Assertions 1 and 2 one can also remove the tildes.

In Section 5 we develop a regularization procedure which needs the next approx-
imation result for the coefficients, taken from Lemma 2.2 of [30] (there it is stated
for k€{1,6}, but the proof works componentwise and thus for all k€N, cf. [28,
Lemma 2.21]).

LEMMA 2.2.  Let meN. Choose A€ F,,(2). Then there exists a family {Ac}eso in

C>*(Q) satisfying

(1) 0°A. € F,,,(Q) for all « €N§ and >0,

(2) [[Acllwr() SCllAllwre() and |0 Acll Lo (s r2r3 ) < CllAll R, ) for all multi-
indices 1 <|a|<m and >0,

(3) Ac = A in L*=(2) as e —0,

(4) A(0)— A(0) in L®(R3), and 0*A and 0*A. have a representative in the space
C(J,L*(R3)) with 0*A.(0) —0*A(0) in L*(R3) as e =0 for all a €N§ with 0<
o] <m—1.

If A is independent of time, the same is true for A, for all e>0. If A additionally

belongs to FP(Q), FS (), Fin () for a number n>0, or the intersection of two of
these spaces, then the same is true for A. for all € >0.

In order to discuss the compatibility conditions both for the linear Maxwell sys-
tem (1.9) and its localized variants, we look at (1.9) with variable, time-indepen-
dent coefficients Aj,As, As€ F,,(J X G) for a moment. We further fix coefficients
Ag € Frn (I xG) and D e Fp,(J xG), as well as data feH™(JxG), g€ En,(JxY),
and ug € H™(G). Given a solution u in G,,,(J x G) of (1.9), we can differentiate the dif-
ferential equation in (1.9) up to (m — 1)-times in time by means of Lemma 2.1, obtaining
the identity

8fu(t) = SG’mm(tAo,Al,AQ,Ag,D, f,u(t))7 (23)
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for all teJ and pe{0,...,m—1}. Here we inductively define the maps S m,=
SG,m,p(thAj7D7f7u0):SG,m,p(thAO;AlaA%AS,Daf,UO) by

SGm,0,+ =04,
3
— —1
SG,m,p,i = AO,i(tO) ! (af fi (to) - ZALiajSGﬂ’%P—Li
j=1
p—1

p—1
1 -1
-2 (p z >6£Ao,i(to)8c:,m,p—z¢ -2 (p z )aﬁDi(tO)SG”’“p‘l—li) (4]
=1 1=0

for 1 <p<m. On the other hand, we can differentiate the boundary condition in (1.9)
up to (m—1)-times in time and insert ¢. It follows the equation

Bstrs (07 u(t)) =07 g(t) (2.5)

on X for all 0<p<m—1 and t€.J. We proceed on G in the same way. For t=tg
equations (2.3) and (2.5) yield the compatibility conditions of order m

BEtrE,:I:SG,m,p(tO7AOa"'3A37D7f7u0):859@0) on Y for nggmfla
BagtraGsG7m7p(t0,Ao,...,Ag,D,f,Uo) =0 on G for 0<p<m-—1 (26)

for the coefficients and data. These conditions are thus necessary for the existence of a
solution in G,,(J x G). In Section 5 their sufficiency will be shown. We will also need
them to treat the half-space problem arising from the localization procedure, where
G:Ri, k=12, and A;, D, and By, are replaced by A;, D, and B. We often suppress
G in the notation.

As the maps Sg,m.p appear frequently, the following estimates are indispensable.
They follow from Lemma 2.3 of [30] applied on G4 and on G_.

LEMMA 2.3. Letn>0, meN, and m=max{m,3}. Pickro>0. Choose Ag€Fp, ,(J X
G), time-independent A1,A2,As€Fp(JXG), and DeFz(JxG) with

[A4i (o)l 7s,_, (@) <m0, [1D(to) |7, (@) <70,

| nax 107 Ao (to) llgm—1-5(ay <o, | Jnax 107 D(to) || 3m—1-3(c) <o
for all i€{0,...,3}. Take feH™(JXG) and ug € H™(G). Let 0<p<m. Then the
function Sg,m.p(to,Ao,-..,As, D, f,ug) is contained in H™ P(G). Moreover, there exist
constants Cp, p = Chr, p(1,70) >0 such that

p—1

[Hm=r(c) < Omp(Z 167 £ (o) llagm—1-3 (e + Hu0||wn(c:))~
=0

||SG,m,p

3. Localization

We first discuss the localization procedure. In fact, in the logical order of our
reasoning this section should be placed after the linear part as in [28], but we decided to
start with it as it determines the linear problems we have to study. The next theorem
thus assumes that we can solve the arising linear problems on the half space, which will
be shown in Sections 4 and 5.



R. SCHNAUBELT AND M. SPITZ 2273

THEOREM 3.1. Let >0, meNy, and m=max{m,3}. Fixr>ro>0. Take a domain
G as described at the beginning of Section 2. Choose to €R, T >0, T € (0,T"), and set
J=(to,to+T). Take coefficients Aoy €Fms ,n(J x G) and D Eff,:’,G(J x G) satisfying

HA0||.7-'m(J><G) <, ”D”]-'m(JxG) <r

maX{HAO(tO)Hr%_l(c)ylggng%gf_l||35A0(t0)HHm—j—1(G)}§7°07

rnax{||D(t0)| ]:’gLfl(G%lngnS%%(—l ||agD(t0)||Hm—j—l(G)} S ro.

Choose data feH™(JXG), g€EL(JxX), and ug€H™(G) such that the tuple
(to, Ao, AJ°,AS°, AS°, D, Br, f,g,u0) fulfills the compatibility conditions (2.6) of order m
onI'=% and on I'=0G.

Then the linear initial boundary value problem (1.9) has a unique solution wu in
Gm(J x G). Moreover, there is a number Ypm =ym(n,r,T") > 1 such that

m—1
|u ||gm,y(J><G) (Crmo+TCrm )mclT(Z||3§f(t0)||3vnflfj(c)+||9||%Em,7(sz)
j=0

Cm

+lhuollen )+

iy x0) (3.1)

for all v >, where C;=C;i(n,r,T')>1 and C; 0=C;0(n,1m0) >1 forie{l,m}.

Proof.  Set N_;={—1,0}UN. Fix a covering (U;);en_, of G, a sequence of sets
(Vi)ien_,, and sequences of functions (¢;)ien_,, (0i)ien_,, (0i)ien_,, and (w;)ien_, asin
Definition 5.4 in [28] for the tame uniform C™*2-boundary ¥ of G_ (complemented by
a domain U_; covering G'\ G_ and corresponding functions). We further take ¢; =id for
i€{—1,0}. Here, ¢;:U;—V; is a chart, (U;);en is a cover of X with positive distance
to G, the set Uy covers G_\J;=, U;, while G4 \U;jo,U; is contained in U_;. In
particular, (0;);en_, is a smooth partition of unity on G. We recall that the maps w;
equal 1 on the sets K; = p;(suppo;) and that o; =1 on supp¥; for all i e N_;. Moreover,
wi(UinGy)={yeV;: y3>0} and ¢;(U;NG_)={yeV;: y3 <0} for icN. We use the
same symbol for a function and its zero extensions.

(I) In the first step we determine the coefficients of the localized problem on R3.
To this aim, we write 1); :<pi_1: V; = U;, and define the composition operators

®;: L*(U;) — LA(V;), v vor; o' LA(V) = LA(Uy), vsvogp;

for all i€ N_;. Observe that ¢;, and thus ®;, are the identity for i€{—1,0}. The
operators ®; and ®; 1 act componentwise on vector-valued functions. With a slight
abuse of notation we also denote the composition with ¢; on L*(J x V;) and H~*(J x V;)
by ®;, and analogously for ®; L

For ve L?(J x V;) we introduce the differential operator

3
Ly =, (Ao,iat + AP0, +Di) ®; oy
i=1

3 3
= @iAO,:I: 8tvi + Z (ZA?’(I)Z@]@N) 3ZU:I: +®;,Divy, (32)
=1 j=1
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where ; ; is the [-th component of ¢; for all i € N. Throughout, for a function v defined
on V; respectively R® we write v1 for the restrictions to V;NR3 respectively to R3,
where R? ={z€R?:23<0}. We define

flé:@iAo, Aé:q)i(ijl A§Oaj90i,l>7 D'=o;D (33)

on V; for all i€N and [€{1,2,3}, as well as Agf@voon and D°=®,D=D on
Up, and A =@ _1Ap=Apand D'=®_1D=Don U_, (this notation is only used if
confusion Wlth a matrix inverse is not possible).

Lemma 5.1 in [28] yields numbers z(i) € {1,2,3} and 7€ (0,1) with

0.¢ypizl =T on U; (3.4)
for all i€ N. We pick a point y; € V; for each i €N and set
Al =w; AL+ (1—w;)n for 1eN_y,
D Pia 014 o) for ieN, je{1,2,3},  (35)

|8z( P, 3|
Di=w;D’ for i€ N_;.

Af=w A+ (1—w;)

These coefficients will only be multiplied with functions supported in the set where
w; =1, but we need the above extensions in our reasoning. The differential operator 2A*
can thus be extended to a differential operator on R? by setting

. . 3 . .
Wi vy = A} L 0wy + ijl Al L0jvs + Doy

for all ve L?(J xR?) and i € N. To rewrite the interface problem on R? as a boundary
value problem on R:j_, we set

Auz 7('7‘%3) :Ai' 7('7_:E3)a Aé’f(',{l?g) = —Aé’f(',—$3)7 ﬁl(,xd) :Di(,—.’IJg)

Js s

for j€{0,1,2}, and introduce the (12 x 12)-matrices

(AL 0 . (DL 0
14 = ‘]7+ oo g = + ~.
Aj ( 0 A;) and D ( 0 D’L_) (3.6)

for all j€{0,...,3} on J X Ri. Here the part of the equation on R3 is reflected to Ri
and written in the new 6 lines. The minus in front of A3 _ is needed to compensate the
inner derivative when applying Js.

We turn our attention to the interface condition. By Remark 5.2 in [28], the vector
field V; 3 is normal to ¥, and hence there is a number x;(z) € R with

Vi s(x)=ri(z)v(z)

for all ze¥NU; and i€ N. In particular, k; =V; 3-v belongs to Cm™tH(¥NU;,R) for
all € N. Moreover, we can extend the product x;v smoothly from U; "X to U; by V; 3.
Let i € N. We now introduce the interface matrices

8 YPi,3

Bi:wi@i(KiB2)+(l—wz)|a( o 3|

Wi(yi)) B2y, Bj”:=Bsl(e)), (3.7)
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on R? for j€{1,2,3}, where e; denotes the j-th unit vector in R* and Byx(e;) is given
by the second line in (1.6) with v=e;. Define the function b.;): R3 =R by

0, (1)%Pi,3

bz (i) = wi®i0z (i) pi,3 + (1 —wi) 1023l

(Vi(yi))-

Since 0,(;yi,3 does not change signs on U;, estimate (3.4) implies the lower bound
|bz(1)| :wi|<I>Z-8z(i)goi,3| + (1 —wi) >Twi+1l—w;=1— (1 —T)wi >T

on R? as 7€ (0,1). Consequently, the functions b, ;) and b ;) belong to C™H(R3) and
their restrictions to OR3 are elements of C™"*(9R3).

We next want to transform the coefficients A% and B to constant coefficients similar
to those in the original Maxwell system (1.9) on G. Here we only consider the case
2(i) =3 with b3 >7 on R3. The other ones are treated analogously, cf. Section 5 of [28].
To rewrite A%, we use the matrices

N 0 b —wi®;020; 3
Ay = —b% 0 w; ;0195 3
wi<1>132<p1-73 —w¢®181¢i73 0

on R3. Let @ be the reflection operator defined by Qu(-,x3)=wv(:,—x3) for any ve
L% (J xR3). The coefficient A% can now be written as

i (A, 0 =450 0 0
3 0 *QAZ7_

Our main tool are the matrix-valued functions

G.0 0 0
. . 10 Wiq)ialﬁpi,S ) 0 Gl 0 0
G:A :b;’il/z 01 wid)i@g% 3], gﬁ = " A (38)
i 0 0 QGL 0
00 b T
0 0 0 QG
on R3. Equation (2.1) then yields the first desired transformation
, o A 0 .
iNT qt o1 3 — Aco
S G 59

For the boundary condition, we note that

.. (B —Bi . -
Bl=| 30 A? 3.bl p,» with  Bj = Aj.
0 Bg,bl 0 _Bs,bl

Setting R = (G%)T, we calculate

i1/2 01— (82@1 3)b3 .
RiBj p=b3 —10 w;® (31501 3)51’_1 =:By 3
00 0
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on OR%. Consequently,

Ri 0
0 R

0 Bﬁ1,3

RéBz = ( =

)o

Bz 0 —Bjis
0

QUASILINEAR MAXWELL INTERFACE PROBLEMS

0

- .
_Bb1,3>

(3.10)

Delete in Bél)?) the line of zeros and call the resulting matrix Bél)?). We then introduce

the boundary matrices

. (B, 0 -Bj 0
By=|""% P ) 3.11
’ ( 0 Bps 0 —Bygs ( )
We next infer that
i\— 10w ®;01i3
P A i 0 1—wi<1>i(62<pi3)b’ ! i,—1/2 ’
BY Gi:bx’1/2< ’ i37 b Olwi@@ggpig
bl,3 3 ~10 wiq)i(al(pi,?))bg’ 1 3 00 bé
010
<—100> = Do
On the boundary ORi we thus obtain the second crucial identity
i i B, 0 =By 0
oot —. ]3co
Bi-G (0 B, 0 Bm) : B, (3.12)
Finally, we define the matrices
- 100 co __ 0 7Cbl 0 *Obl . co
Ob1_<010>’ ¢ _(Cm 0 Cp O )"M '
Using (1.4), we then compute
010
Cl-By=|-100|=-J35, BLCu=(-J)"=J;,
000
0 Cf
-CL 0 By 0 —-B 0
co\T ygco __ bl . bl bl
(CE)BE= | Ch (0 B, 0 —Bb1>
-CL o
0 C&Bbl 0 _CgiBbl
_ _CgiBbl 0 Cg}Bbl 0
0 CLByw 0 —CLBy |’
—CLB, 0 CLB, 0
0 —BSCM 0 —BﬂCbl
(BCO)TCCO _ Bgﬂlcbl 0 Bglel 0
0 BbTICbl 0 BbTICbl
-BIC, 0 —-BIC, 0

We can now check certain algebraic conditions needed to apply [14], namely

éR((Cco)TBco) — % ((CCO)TBCO + (BCO)TCCO> _

0—-Js 0 0
J3 0 0 0
0 0 0 Js
0 0 —=J30
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_ Ago 0 __ Aco
_< 0 _Ago) — Y3 (313)
MCOACO BCO
To simplify the notation, we write B* and R’ instead of Bi(i) and Ri(i) in the

following. Observe that the restrictions of B* and R’ to R} belong to Cﬁ”‘l(@). The

rank of B and C is 4 and R(z) is invertible for all z E@. The inverse of R is as
regular as R' itself. Moreover, the transformed coefficients satisfy

. . Al 0 ) .
Aaz(gi)T< 0" QA >gﬁ € Fib(Q),
Al = (G AIGL € FiY

m,coeff

D= (G)IDIGI -3 (6D AiGI0;(G) G} € FR(@),

(RY)  for je{1,2}, (3.14)

where we reduced the size of n independently of i if necessary.

We next fix a constant M; as in Lemma 5.1 of [28] and constants My, Ms, and
M, as in Definition 5.4 in [28] for the tame uniform C™*2-boundary % of G_. We put
4 M;. The construction of our extended coefficients then shows

.....

||A8||Fm(sz) <C(My,My)|| Aol 7,,(7xc) < R,

maX{HAé(O)HF%A(Riy max ||35A6(0)|\Hm7171(R1)}

1<j<m—1

<SC(My, My)max{]|Ao(0)]

FO

m—1

(@), max_ 107 Ao (0) | 3¢m—i-1(c) } < Ro,

1<j<m
A5 ) < C(Mi, My) <R, (3.15)
1D ) < C(My, Ma) | Dl| 7, (sxc) < R,
max{|[D*(0)[| o, &) <1;_n<a2<71H@gDZ(O)”H’“*J'*l(Ri)}
<Oy, Ma)max{[| D0}l 75, _, >, max_ 107 DO)ll3em-s-1c)} < B,
for all ieN and j €{1,2,3}, and for constants R=R(M,r) and Ry= Ro(M,ro).
(IT) After introducing some notation, we relate the compatibility conditions of the

localized problem to the given ones. Using the reflection operator @ from step (I), we
define the maps

RG: 10C(R3 R(S)*)LIOC(R:—}Q—?Rlz% UH(U+7QU—)7

Rexe: L%OC(R?),RGX6)_>L120C(R3,,R12X12)7 A (1%+ Q?{ >’

. A 0
R6><6: Lfoc(R?)?RGX(S) %L%OC(R:jﬂRlzXlz)v A < 0+ _QA> .
As it will be clear from the context which operator we consider, we drop the index, and
we put R; =id for i€ {—1,0} and R; =R for ieN.
In step (IV) we determine the initial (boundary) value problem solved by the
functions R;®;(0;u) on JxG, JxR3, respectively JXRi. For given functions v €&
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Gm(J xG) and he H™(J x G), then the transformed data
‘ 3
j=1
g'= ((traki Ri)‘i’i(trz(ei)“ig))a(i) € En(Jx0RY),

uh=Ri®i(fiuo) € H™(RY), (3.16)

arise for i € N_; respectively i € N. Here (i) denotes the 4-tuple obtained by removing

(i) and z(i)+3 from (1,...,6) and ®; the composition operator with the restriction of
Let v € Gy, (J x G) be a map with 97v(0) =S¢, m (0, Ao, AT°, A5°, A5, D, f,ug) for all

p€e{0,...,m—1}, with the operators Sg m, , from (2.4). We abbreviate

S = S8 mp (0, A, AL Ab, A3, DY, f2(f,0), ), (3.17)
Smp=Sc,m.p(0,A0,AT?, AT, AT, D, f,uo)

for all p€{0,...,m} and i€N. The maps S’  and S,,, are well-defined due to the

m,p

regularity of the coeflicients and the data. Fix an index 7 € N. We claim that
St p=R®i(0;Smp)  forall pef0,...,m}. (3.18)
To show this assertion, we first note that
Si

m

0= 'Ll/é = R(DZ (QZUQ) S R@Z(ezsmwo)

Next, let the claim (3.18) be true for all 1€{0,...,p—1} and some pe{1,...,m}. The
definition of the operators S]R3+ m,p then yields

=1

3 p—1
3 L - — 7 % % -1 7 7
S URILAATIOR ST 3l (e E VIO
=1

p—1
-3 <pl 1) D ()} 11]- (3.19)
1=0
The induction hypothesis implies that
suppan,pfl =suppP;(6;Sm ) Csupp®;6; CK;
for all [€{1,...,p}. Together with (3.5) and (3.6), we thus obtain
AL0; Sk =R(AD0; Sk, 1 =R(A;RP;(0:Smp—1) =R(A50;®:(0:Smp-1))
for j€{1,2}, as w; =1 on K. Similarly it follows
AL03Sk, 1 =R(AL)DRD; (0:Sm p—1) = R(A505®:(0; S p—1)).
Using also (3.3), we next compute

3
0;(2:(0:Sm.p—1)) = (V(0iSm.p—1)) 0¥i O30 = _ ®4(u(05Sm.p—1)) 0,

=1
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3

3
R(AL0;®:(0;Sm p-1)) = R(ZAEO‘IH&C%J Z‘I’ial (eiSm,p—l)ajwi,l>
k=1 =1

3
= R( Z Ag@ﬁl (QiSm,pfl)(DiakQPi,j 8j'l/)i,l>
kyi=1

for all j€{1,2,3}. Applying ®; to the identity

3
S = (Vidy, )ik = (V(¥io@i))ix =D _ ;' ;i1 0ki ;

j=1
on U; for all k,l€{1,2,3}, we conclude
3 _ 3
ZA}&‘jS;@,p_l :R( Z Ai"(bial(HiSm,p_l)fbié‘kcpm 83‘1%,1)
j=1 4k l=1

—R( 23: A0S m,p1)0 ) :R(iA;O@iak(eisw_l))_
k=1

k=1

Note that the support of every term in the brackets on the right-hand side of (3.19) is
contained in K; and w; =1 on K;. Proceeding as above, the induction hypothesis then
yields that S},  is equal to

3 3
RO A4)(0) " |R®(0:07 " 1(0))+ R | 3 ALO;0:00 " 0(0) = DAL, (0:S 1)
j=1 j=1

p—1 p—1
- ZCPJR(PZ' (aﬁAB (O))R(I)i(HiSmm,l) - Zcp,lR(I)i (8§D1 (0))R(I>i(9i5m,p,1,l)}

=1 =0

3 p—1
—R®, [e)iAo(or1 (af*l F0) =Y AL S p1 — > cpudAg(0) Som i

j=1 =1

p—1
— Zcp,laiD(O)vap_l_l)} s
=0

:R(Pz (92 Sm,p) 5

where ¢, ;= (pfl) and we also employed that 87~ 'v(0) = Sm.p—1- So (3.18) is true.

(IIT) In this step we show that the tuple (0,.4%,...,A%, D! B, fi(f,v),g%,ud) fulfills
the linear compatibility conditions (2.6) on G=R3 of order m, where v is any function
in G,,(J x G) with 97v(0) =S, for all p€{0,...,m—1}.

To that purpose, we exploit our assumption (2.6), i.e., Bytrs, + Sp , =097 ¢(0) for all
p€{0,...,m—1}. Fix a number p€{0,...,m—1}. The trace operator commutes with
multiplication by test functions and the composition with diffeomorphisms, so that (2.6)
and (3.7) imply the identities

02 (D4 (trs (0:)r49))(0) = i (trs (0;)k:07 9(0)) = B; (k; By trs (6:) trs, 4 Sm.p)
—tr8R3 B'd, itrs £ (0;Sm )—trB]R3 B trd]Ra +(Pi(0;Sm.p))
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=trops Bitrami (R®i(0:Sm.p)) = troms (B'S,,)-

m,p

Multiplying this equation with the trace of R!, we arrive at
troms (R')troms (B'S) = 07 (trozs (R')®i(trs(0:)5:9))(0). (3:20)

The z(7)-th and the (z(i) 4 3)-th components on the left-hand side are zero by (3.10),
so that the same is true for the right-hand side. In view of formulas (3.10), (3.11) and
(3.16), Equation (3.20) thus yields the desired compatibility conditions

trops (B'S,, ) = 0] (trors (R))®s(trs(6:)ki9))a(i) (0) =07 *(0).

(IV) Let u be a solution in G,,(J x G) of (1.9) with data f, g, and ug. In this step
we derive a priori estimates for u by applying a priori estimates on G4 from [30], on
R3 from [28], respectively on Ri from Theorem 5.1 below to 6_ju, fyu, respectively
®,(0;u) for i €N. To that purpose, we first note that the properties of the functions ¢;,
1, and 6; imply the equivalences

UE Gy (J X Q) = 0_1u € Gy (J X G),00u € G (J x R?)
and R®;(0;u) € G (J xR3) for all i €N,
fFEH™(IXG)=0_juc H™(JxG),00f € H™(J xR?) (3.21)
and R®;(0;u) € H™(J xR3) for all i €N,
GEEn(JxX)<=g'€E,,(Jx0RY) forall ieN,
with corresponding bounds.

Fix an index i€ N. Since supp®;(0;u) Csupp®,;6; C K;, the definition of the ex-
tended coefficients in (3.6) as well as formulas (3.2) and (3.16) yield

3
Ab0 (RO (07u)) + Y ALD; (R, (0iu)) + D' RE; (6;u)
j=1
3
=R, (Ao,iat(giui) + ZA;Oaj (eiui) + D4 (Giui))

j=1

3
—R®;(60:/)+RD: (Y AL, 000 ) = f(f,w)
j=1

on J xR%. Since Trjxx(Bs(uy,u_))=gon J x X, asimilar computation as in step (III)
shows that

Tty oms [B'R®: (051)] = Tr ycoms [®i(055: By (uu-))] = B Tr s [0 Br (ug u-)]

= q)i(tl‘z; (Hi)/ii ’I‘I‘sz[Bg(U+,u_)]) = (IJi(trg(Qi)mg).

Multiplying this equation with the trace of R? and removing the z(i)-th and z(7) +3-th
component of the result, we obtain

Tryxomy (B'R®;(0;u)) =Tr oRZ. (R'B"R®;(0;u)) i)

= (trges (R")®i(trs(0:)kig))a =9,
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cf. (3.10), (3.11) and (3.16). We conclude that the function R®;(0;u) is a Gy, (J x R3)-
solution of the initial boundary value problem

i 3 i i 3
Aoatv+zj:1Aj8jv+D v=f"(f,u), reRY, telJ;
Blv=g', z€OR3, teJ; (3.22)
v(0) =up, zeR3.

In the following we abbreviate U; NG by G; for all i € N_;. The spaces H™(G;), H™(J x
G;) and G,,(J x G;) are defined as their analogues on G.

To apply Theorem 5.1, we have to work with a constant boundary matrix A3z and
a constant matrix B. As shown in step (I), this is achieved via the multiplication with
the matrices G¢. We therefore recall, respectively define, the maps

3
A =(G)TAG), B =BG =B", D'=(G,)"D'G\~ (G,)"A;G19;(G;) "Gy,

j=1
Fr=@)Tr, g'=g' ay=(G) "uj (3.23)
for all j€{0,...,3}. Recall that /tg :Ago by (3.9). We claim that a function u’ belongs

to G, (Q) and solves (3.22) if and only if the function %' =G5~ !u’ belongs to G,,(Q)
and solves the initial boundary value problem

A i 3 5 i Fi 3
Ev::Aoatv—i—Zj:lAjajv—&—D’v:f'7 reRY, teJ;
By =g, z€IR3, teJ; (3.24)
v(0) =, zeR3.

To see this claim, we assume that u® is a solution of (3.22). We then compute

3 3
£t = (G1)" [Air’ + 3" A5G10,((G) )+ Diu = Y~ 4610,(G1) o'

j=1 j=1

3
= (GO [Abow’ + " Aoy + D' | = (G £ = ',
j=1
Bcogi :Biui :gz :§i7
@'(0)=(G;) "' (0) = (G})~tuy =g
Analogously, one shows the other direction. We further note that the tuple (O,A;'-,
D, B, f',g%,ud) fulfills the compatibility conditions of order m on 8R3_ if and only if

the tuple (O,A§»7@i78c°, fi, g',ub) fulfills the compatibility conditions of order m on GRi.
To that purpose it is enough to show that

S ,=GH71si (3.25)
for all 0 <p<m, where we use (3.23) and set, respectively recall,

. M R E g . PR
Sop= SRi)m,p(O,Aj,D‘, ‘), Stnp zSRi7m7p(0,A},D‘,fl,u6).
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For p=0 we have S! =1}=(G}) " uj=(G1)~S:, 5. Next, let (3.25) be true for all
0<I<p-—1. Inserting (3.23), we compute

3 p—1
Sp =5 (17 (0) Z 0Smp-1~ Z(pgl)a%(w””"l

j=1 =1

p—1
-1 ~ . ~.
> (7, )03, )
=0
:Qi’_lAg’_lgﬁ’_T(Q,’"Taff’( ) Zgz TAzgz (gz,—lsmp 1)
j=1

p—1 p—1 . o
- (7] )e T A 0081,
=1

p—1 3
5 (pll>ag (G7DGi -3 G 4iGi0,6511) (0)Gi S5,y
=0

j=1

p—1
— i,— 1 z i -1 ‘ :
=G Ay 1(3p 1f Z.A 0; Smp_l*Z <p / >5i¢40(0) m,p—l
=1

p—1 p—1
— i .
_Z< l >6tDZ(O) 71n,p—1—l>
=(G) " S
omitting some parentheses. The claim (3.25) is thus valid for all 0 <p<m.

Consequently, we can apply Theorem 5.1 to this transformed problem and then
obtain a solution of the same regularity of the original problem via the inverse transform.
Also the a priori estimates carry over to the original problem with an additional constant
C(My). In order to simplify the notation, we suppress this transform in the following

but assume that the matrices A} and B’ are constant. Theorem 5.1, in combination
with (3.16) and (3.21), then yields

IR®; (i) 1%, (o

,_\

m—

<(C5.1,m,0+TCs.1,m)e™ llT( 167 f° )] F— i(R3)
7=0

) 3 1, ..
: émmﬁ)+0541,mem0~71T;||f1<f,u>||%,¢m>

0|12
+ ”gl”Emw(Jxa]Ri) + ||

m—1
<C(M1)(C5.1,m,0+TCs5.1,m)e™ llT[Z”a 0] F(O)I3en-1-3 ()
7=0
-1

3
30D 10k60:Sm i [5im—1-3 ¢y + trs(0) 91T, ey + ||9iu0H’2}-tm(Gi):|
7 k=1

3

I
=]

3
C&'l,m mCs.11
“I‘C(Ml)i’y e T<||9if||’2HZY"(J><Gi)+Z”8keiu”§{ql(]x(}i)> (3.26)
k=1

for all 4>s 1,,. Here we exploited that 8/u(0)=S,, ; for all j€{0,...,m—1}, and
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Cs510m=Cs51.m(0,R,T"), Cs5.1,m,0=C5.1,m,0(n,Ro), and v5 1 m =75.1,m (1, R,T") are con-
stants from Theorem 5.1. The estimates for i€ {—1,0} follow in the same way from
Theorem 1.1 in [30] and Theorem 5.3 in [28] with corresponding constants C,, o and
Ch.

By Definition 2.24 of [28], at most N of the sets U; intersect at a given point, and we
use the constants M; and M introduced there and Definition 5.4 of [28]. The monotone
convergence theorem thus implies that

> l0suollemc Z / > 0% (Biuo 1)) dx—i—/ > 0% (Biuo,-)| dx]

i=—1 i=—1 7 G+ la|<m ~a|<m
<C(m, M) 0%ug, 4 | de‘/ Z Xv;|0%uo, | dx}
\oz|<m +i=—1 —i=—1
§C’(m,M2, )HUOH?-L"L(G)' (327)

Analogously, we treat the other terms on the right-hand side of (3.26). We set
Cr,=max{Cp,C5.1m} and C), y=max{Cr,0,C5.1,m,0}. Equation (3.26) then yields
the inequality

o0

[ull3,.  (rxa) <CN Z 105ullg, rxan SC(N, M) > R ()3,
i=—1 i=—1
m—1
Sc(manMlaM27T>(Cm O+TC/ ) mei T(Z ”8] H’H'" 1-7(Q)
=0
m—1
+ 3" ISmillem-1-56) + gl s + Iuolincy )
=0
C/ C T 2 2
+C(m, N, My, M>) Vm e™ (||f\|H;n(JxG)+||U||H;n(1xc))>

for all yv>max{F,75.1,m}. Choosing i, =~vm(n,7,N,My,Ms,r,T") large enough and
using Lemma 2.3 we thus arrive at

[ul

é,,,L,W(JxG)S(CmO‘f‘TC emaT (Z 187 £( 0)[[3m—1- i(@) ‘*‘Hg\ By (JX5)

+ ol ey) +Cone™ T 1 g v

for all v>~,,. Employing that R=R(M,r) and Ry= Ro(M,rq), we also deduce that
the constants C, o and C,, are of the claimed form (where we drop the dependence
on M as G is fixed). We have thus shown the a priori estimates (3.1), which imply
uniqueness of the G,,(J x G)-solution of (1.9).

(V) To solve (1.9), we introduce the spaces
gm (I X G)={vEGm (I xG): v(0) =Sy ;,j€{0,....m—1}},

We point out that G, iv(J x G) is nonempty by Lemma 2.34 from [28] and H[! f(J x G)
is nonempty as f € H} f(J x ). Because the time derivatives up to order m—1in 0 of
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functions from Hiy (J x G) respectively Gp, v (J x G) coincide, we obtain
S]Ri,m,p(oaA;'v,Divfi(fvfa)auf)) = SRi,m,p(OvAé‘aDiafi(fvv)auf)) = S:n,7p (328)

for all fEHT (JXG), v,0€Gmiv(J xG), pe{0,...,m}, and i€N, cf. (3.17). The
analogous equations for i € {—1,0} are also true. Step (III) thus implies that the tuple
(0,4%, D%, B, f*(f,v),9",up) fulfills the compatibility conditions of order m for all fe

i’(f’f(J X @), vEGn iv(J X G), and i € N. As explained in step (IV), we can now apply
Theorem 5.1 which shows that the problem

i 3 i i F 3
Aoatw+zj:1Aj3jw+D w=f*(f,v), reRY, teJ;
Biw=g', r€OR3, teJ, (3.29)
w(0) =up, zeR3;

has a unique solution U*(f,v) in G,,(Q)*? for all fEHmf(J X Q), V€ Gmiv(J xG), and

i € N. Moreover, Theorem 5.3 from [28] gives a function U°(f,v) in G, (J x R?)S solving
the initial value problem

3 ~
Agatw—l—zj:lAgoajw—&—DOw:fo(fm), zE€R?, teJ; (3.30)
w(0) =ud, reR?;

for all such f and v. Finally, Theorem 1.1 and Remark 1.2 in [30] yield a solution
UL(f,v) in Gy, (J x G)® of the initial boundary value problem

3 _
Aalatw—l—Zj:lA;O@jw—FD*lw:ffl(f,v), re@, teJ;
Bagw =0, x €0G, teJ, (3.31)
w(0)=ug !, reG;

for all such f and v. We claim that there is a map f* = f*(v) in HIY (I x G) with

oo 3
P Y Y AP0 RIUN (o) = f (3.32)

i=—1j=1

for all v € Gy, iv(J X G). To prove this claim, we define the operator

[e’e) 3
Uy HE (IXG) o HE ((TXG), fraf= > A9 'Ry UNf,v)

i=—1j=1

for each v€ Gy, iv(J X G). We fix such a function v. The operator ¥, indeed takes
values in H™(J x G) since ®; 'R~! maps the H™ (Q)-function U*(f,v) into H™(J x U;)
for i €N, 00, has compact support in U;, and the covering (U;);en is locally finite. We
further compute

oo 3
U (f)O)=0FF(0) = D > A0j00®; "R OFU (f,0)(0)

i=—1j=1
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Z ZACO@ 010 "Ry R (03 m.p)

i=—1j5=1

o) 3
=Y A0;0i0;Sm =07 f(0)

i=—1j=1

for all p€{0,...,m—1} and fE?—[{ff’f(Jx G), where we used (2.3), (3.28), (3.18), and
that o; equals 1 on the support of 6; for all i € N_;. Therefore ¥, indeed maps H{ f(J X
G) into itself.
We observe that the difference U*(f1,v) —U*(f2,v) solves a problem with zero initial
and boundary data. Moreover, formula (3.16) and the initial conditions in the spaces
m f(J x @) and G, iv(J X G) imply that the time derivatives of the inhomogeneities

fi(fx,v) coincide at t=0 (such facts are also used below without further notice). The-
orems 1.1 in [30], 5.3 in [28], and 5.1 then imply

”\Ilv(fl) _\IJv(fQ)Hg-L;ﬂ(JxG)

<O, My, My) (U (F1,0) = U (P20 iy

1, 0) U o,0) sy + DI CF0) U (o) )

i=1

Q\Q

Z i(f1—f2) ||Hm(1xc)_*||f1 f2||7-1m (IxG) (3.33)

for all v > max{v1.1,m,75.3,m:Y5.1,m |, proceeding as in (3.27) in the last step and putting
C=C(m,n,7,N,M,r,T"). We set

*
¥ =max{¥1.1,m,7V5.3,m,¥5.1,m,4C3.33},

where Cj 33 denotes the constant on the right-hand side of (3.33). This estimate then
leads to the bound

1
1V, (f1) = o (f2) I (1x) < 511 = fellum xa) (3.34)

for all y>~*. We conclude that ¥, is a strict contraction on H{} ;(J x G), and there
thus exists a unique function f*= f*(v) in H{y ;(J x G) satistying Bquation (3.32).
We next define the operator

St Giv(J X G) = G i (J X G), U%Zaz CIRUN ([ (0),0).

1=—1

Let v€Gniv(JxG). We first check that S(v) indeed belongs to G, iv(J X G).
Since U'(f*(v),v) is an element of G, (), the function ®; "R~1U*(f*(v),v) belongs
to Gm(Jx@G;) for i€N. Moreover, U (f*(v),v) is contained in G,,(JxG) and
U (F*(v),v) in Gp(JxR3). Exploiting that o; has compact support in U;, the a
priori estimates for U?, and (3.27), we infer that S(v) belongs to G,,(J xG). As
f*(v) €HY ;(J x G), we now combine formula (3.28) with (3.18) as well as 0;=1 on
supp#b; for all i €N _1, and compute

o0

OFS)(0)= Y 0@ " RIOFU (S (v),0)(0)

i=—1
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=0_10_1Smp+0000S erZaz TIRTIR®(0;S,,,) = Zesmp

1=—1

for all p€{0,...,m} and v € Gy, iv(J X G). Hence, S maps into G, iv(J X G).
To show that S is a strict contraction, we take v1,v3 € G, v (J x G). Estimate (3.34)
further yields

177 (v) = 7 (02) I (7 x @) = W (7 (01)) = W, (F*(02)) 1202 (1)
<o, (F (1)) = W, (F* (02)) I3 (30 [P (7 (02)) = o, (F (02)) 20 (100

S%Ilf*(vﬁ = 7 (2)llar (x ) + W0, (F (02)) = W, (f* (v2)) 20 (12 (3.35)

for all y>~*. The definition of the operator ¥,, Theorems 1.1 in [30], 5.3 in [28],
and 5.1, formula (3.16) and a variant of (3.27) imply

190, (F*(v2)) = Wuo (F* (02)) 3 (1)

SO(N,Ms) Y 107 RyU(f* (v2),01) = 07 Ry UNS* (v2),02) i (¢

i=—1

<C(m,n,7,N,M,r,T")— Z HZA ©0;0;(v1 U2)Him(‘]xg)
i — j=1 v

gC(m,n,T,MM,r,T');Hvl_UQ||${;,L(MG) (3.36)

for all v>~*. We set v** =max{y*,16C; 36} and insert (3.36) into (3.35), where C5 34
denotes the constant on the right-hand side of (3.36). We then arrive at

* * 1 *ok
177 (01) = f* (W)l (rx ey < 5llvr = v2llmmxgy  forall v27

After these preparations, we can now estimate the difference of S(v1) and S(vs).
Applying the a priori estimates from Theorem 1.1 in [30], Theorem 5.3 in [28], respec-
tively Theorem 5.1 once more and recalling that v, and vy belong to G, iv(J X G), we
infer as above

1S(v1) = S()IIZ,,  (sxc)

<SC(N, My, Ms) Y (107 Ry U (f* (v1),00) = U (F* (02),02)) 15, (rxc

i=—1
<C(m,n,7,N,Mr, T/) (||f (v1) — (02)”3-131(”0)+||U1*U2||3-z;n(JxG))
1
SC(’YT%T],T,N,M’T’T/);~Z||’U17U2||gmy’y(‘]><c) (337)

for all y>~**. We finally set vs=max{y**,5C5 37}, for the constant C537; on the
right-hand side of (3.37). It follows

18 (v1) = S(v2)

Gy (TxG) S 5 ||U1—U2 G (TXG)

for all v>~s. There thus exists a unique fixed point u € Gy, iv(J X G) of S.
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(VI) We claim that the fixed point u of S is a solution of (1.9). To verify this
assertion, we first compute for uy =8 (u)+

3
Liuy:=Ag+0ug + ZA;‘)ajui +Diuy
j=1
=3 oie (Aowd(@] RUS i+ZA°°5 DR () w) 1
i=—1
+ D (@7 RIUNf (w)w) 2 ) + ZZAO@ 01 (D7 RUN(F* (u),u)) 1

i=—1j=1

on J x G1. Recalling (3.3), (3.5), (3.6), and that w; =1 on ¢;(suppo;), on G4 Nsuppo;
we have

3
DAL (@R ) =D AR, 6) (9i(x))
j=1

'R (ZA%‘M)

whereas on G_ Nsuppo;, we deduce

3

ZACO@ ZACO@ v(7,...12) (00,1 (), 0i2(x), — @i 3(x))

=1
—ZACOVW 12) (031 (2),3,2(2), —pi,3(2)) - (050i,1(2), 0504 2(2), =001, 3())
= Z ACOer,12) (01,1 (2),0i.2(x), —pi3(x)) 050 () (—1)%

jl—l

3
_Z(I) 1% Qv ... 12)):Z(I)i’lQ(/vlf?_alv(7,...,12))
=1

3
=Z¢Z1Q(A?61v)(7,.,.,1z> = 'R (Y Ajow)
=1 1=1

for all ve L2(V;NR3)!2. Since also Ag . =(®;'R71A}): and Di =(0;'R™ID'),
(where we put Af = Ag and D= D for i € {—1,0}) on suppo; for all i e N_;, the defini-
tion of the maps U*(f*(u),u) and (3.16) imply the equality

o) 3
Liug=3" aii(@;lR;l(Agatui( f*(u),uHZA;ajui( £ (w),u)

i=—1

DU )+ 3 DA (BRI (1))

i=—1j=1
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3

=> {Uz‘,i(‘bflnflfi(f*(U%U))i +ZA§°3jUi,i(‘I’flR_lUi(f*(u)’u))i}

i=—1 j=1
o) 3

= Z [Ui,iei,if*(u)i-i-zz‘l;o [Gi,iaﬂi,iui +3j0i,i(q>;173[1wi)i”,
i—1 j=1

where w' :=U"(f*(u),u)). Employing that o; =1 on the support of ;, that (6;);en_, is
a partition of unity, and the defining property of f*(u), i.e. (3.32), we deduce

o0

3 3
Coup =3 [0 f (st D ALO0r pus+ I ALD012 (O] RTU(S* (w),w) 2

i=—1 j=1 j=1
e} 3 .
= Wt Y D AP (D7 RIUN(ST (1), u) s = fa
i=—1j=1
Since the covering (U;);en_, is locally finite, we can compute

et (Bs) = e s (B (S() 1, 8(u)-)) = Trys [ Bs Y 0@ U (1 (u), )]
i=1

:ZtrEUiTerE(BZq)i_lui(f*(u)7u))
i1
—Ztrz o)k T Tryxs (‘I’fl(M‘E(’%Bz)ui(f*(u)vu))),

using ®; 'w; =1 on suppo;. The identity Bi=w;®;(k;B) on suppo; then yields

T‘TJXZ BE’U, Ztrz Uz TYJXE( ;1 (E’Lll(f*(u),u)))

=Ztrz(m)f’vflé’flTl"JxaRz((Ri)*lRiBiui(f*(U)M))'

=1

Because U*(f*(u),u) solves the initial boundary value problem (3.29) with the boundary
value ¢° defined in (3.16) for every i €N, we arrive at

Trj«x(Bu) Ztrg (0:)k; ®; TeraRS ((Ri)_lRiBiui(f*(u),u))
i=1

=" trn(u; @ (trams (R) ™) gks)0)
ZZtrz(Ui)ﬁfl‘i’fl (tram((Ri)_l) trors (Ri)‘i)i(trz(ei)ﬁig))

—Ztl‘z J,L 7, ZtrE g g,

where g denotes the vector we get by adding a zero in the z(i)-th and z(z) +3-th

z(1)—0
component of ¢g°. Moreover, we get

Tryxoc(Bacu) =Trrxoc(BacS(u)) = Trixoc(Bacld ™ (f*(u),u)) =0
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as U L(f*(u),u) solves the problem (3.31). Similarly it follows

u(0) = Z 0@ RIUN(f Z 0@ R

1=—1 i=—1
—Zol _I’R IR, ®; (Oiup) = ZJZHUO—ZQUO—UO
1=—1 1=—1 1=—1
We conclude that u is a solution of (1.9) in G,,(J x G). |

4. A priori estimates for the linear problem
In the previous section we have reduced (1.9) to the system

3
Aoﬁtu+ZAj8ju+Du:f, JJGRi, teJ;

5=t (4.1)
Bu=yg, T€OR3, telJ;
u(0) = uo, TeR3;

on R? with A3 =A$°, B=B%, and A;, A, EFY o(RY), cf. (2.1) and (3.12). Here we
fix T' >0 and assume that J = (0,T) for a time T € (0,T").

In this section we derive a priori estimates for G,,(£2)-solutions of (4.1). A (weak)
solution of (4.1) is a function u€ C(J,L*(R3)) with £(Ay,...,A3,D)u= f in the weak
sense, Tr 7 ors. (Bu)=g on J x 9R3 , and u(0) =uy.

We first state the basic wellposedness result on L2-level which directly follows from
Proposition 5.1 in [14] because of the formulas (3.13). The precise form of the constants

is a consequence of the proof in [14].

LEMMA 4.1, Let n>0 and r>19>0. Take Ag€ Fgh (), Ai, Az € Foh ¢ (R3) with
| Aillwro ) <7 and ||Ai(0)||Loo(R§r)§r0 for all i€{0,1,2}, and A3=A5°. Let D€
L>=(Q) with |D| =) <7 and B=B%. Choose data f€L?*(Q), g€ L*(J,H'?(0R3)),
and up € L*(R%). Then (4.1) has a unique solution u in C(J,L*(R%)), and there exists
a number yo="0(n,r) >1 such that we obtain

—t 2 2
ig?“e U(t)Hm(Ri)‘FVH“HLg(Q)

CV()

§00,0||U0||2Lz(Ri) +CO.,0H9H%,%(J7H1/2(6]R3 ||fHL2 ) (4.2)

for all v >y, where Co=Cy(n,r) and Cyo=Co,o(n,70).

The a priori estimates for the a-th tangential and time derivatives of a regular
solution of (4.1) now follow in a standard way: These derivatives satisfy (4.1) with new
data fo, go and ug,o, where f, also contains commutator terms involving Ay, A1, As,
and D. On the resulting problem one can apply the L2-estimate (4.2). The differentiated
system has the same structure as the corresponding problem (3.4) in [30], and hence
the proof of the next result is analogous to that given there. It is thus omitted. We use
the space H{™(Q) of those maps v € L?(2) with 0% € L?(Q2) for all a € N} with |a| <m
and a3 =0. It is equipped with its natural norm.

LEMMA 4.2, Let >0, r>79>0, meN, and m=max{m,3}. Take A€ Fy’ (Q),
A, A € FP  2(RY), A3=AL, De FP(Q), and B =B with

m,coeff

||Ai||Fm(Q) Sru ||D||Fﬁ,(ﬂ) glru
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max{||.A;(0)]

J _ .
Fgfl(m)vlgf%i};{l 167 -AO(O)HH"L*I*J(REr)} <70,

maX{HD(O)HFT%_l(Ri)ang%aﬁl{_l ||85D<0)||H7ﬁ—1—j(n§1)} <ro,

for all i€{0,1,2}. Choose data f € H{2(Y), g€ Ey(J xORY), and uge H™(R3). As-
sume that the solution u of (4.1) belongs to G, (). Then there exists a parameter
Y =Ym (N, 1) > 1 such that u satisfies

m—1

S 10l oo+l oy < Cono| SO s a g

ta,y
la|<m j=0
063:0

2
Epm (JxOR3)

Cm
ol gy |+ = 11y oyl o)

for all v>~y, where Cy,, =C,(n,7,T"), and Cyy0=Chyo(n,70)-

The full H™-norm of solutions u to (4.1) cannot be controlled in this way since
normal derivatives destroy the boundary condition. From the system (4.1) itself one
can read off regularity of normal derivatives of the tangential components of v because
of the structure of the boundary matrix As :.%igo. The remaining four components will
be recovered by means of cancellation properties of the Maxwell equations which imply
that the ‘generalized divergence’ Div(.A;1,.42,.43) of the Maxwell operator only contains
first-order derivatives.

To define this concept, take A;, As € ngoeff (R3) and A3 = A$°. In particular, there
are functions p; € Fgh (Q) such that

3
Aj=) APw; for je{1,2}  and  puz=pe3=0, paz=1, (4.3)
=1

see (2.2) and (2.1). We now set

p000
3 . Hi1 H12 13 ) 0100

= (p1;)7 j=1, =1 p21 pr22 Ho3 |, =100 a0 (4.4)
H31 K32 —H33 000 [

and for h € L?(R3)'? we define

3
Div(Ay, Az, A3)h= Z ((,aTVh)klm ("R (3, (BT V1) (o6 (ﬂTVh)(kJrg)k) . (4.5)
k=1

In view of the iteration and regularization process below, in the next proposition we
treat solutions and data which are a bit less regular than needed in this section and we
consider the initial value problem

L(Ag,..., A3, D)u=T, cR3, teJ;
{(0 3,D)u=f TeRy (4.6)

u(0) =ug, zeR3.

A solution of (4.6) is a function u € C(J,L*(R3)) with u(0) =uo in L?(R3) and Lu= f
in H=1(Q). The following result is the core step in our regularity theory.
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PROPOSITION 4.1. Let T'">0, >0, y>1, and r>ro>0. Take coeffcients Ag €
FP(Q), Ay As € B o (RY), Ay= A5, and D € FP(Q) with

[Aillwro @) <7, [IDllwiee () <,
A (O] o 2 ) <70, [1P(0)]] oo 2 ) <o

for all i€{0,1,2}. Choose data f€Go(Q) with Div(A;, Az, A3)f € L*(Q) and ug €
H*(RY). Let u solve (4.6) and assume that u is an element of C'(J,L*(R%))N
C(J,HL(R3))NL>®(J,H (RY)). Then u belongs to G1(Q2) and there are constants
Ci,0=C1,0(n,1m0)>1 and C1 =C1(n,r,T") >1 such that it satisfies

2
IVal, @ <" ((Cro+ TC) (S I105ul, o)+ 1712, o) + ol as ) )
j=0

C .
+71||D1V(A17A2aA3)f||2L?Y(Q))' (4.7)

If f is even contained in H'(Q), we obtain

IVull3, @ <7 ((Cro+TCy) (Zna wllZy ) IO Fagas ) + lol3es ) )
7=0

Cl 2
+ = By (4.8)

Finally, if f merely belongs to L*(Q) with Div(A1, Az, A3) f € L?(2), we still have

2
HVUH%g(Q) SeclT((Cl,ﬁ‘TCl) (ZHajUH%g(Q) + ||f||%g(§z) + Hu0||§{1(Ri)>
§=0

Ci .
DIV (AL Ao As) T ) ) (4.9)
Proof.  We have to show that d;u € C(J, L*(RY)) and that inequalities (4.7) to (4.9)
are true. We employ the matrix fi from (4.4). Recall that the coefficients A4; are given by

(4.3) and Az =AS°, A% and A by (2.1), as well as AS° and J; by (1.4), for I €{1,2,3}
Morever, Ji.mn = —¢€imn for all I,m,ne€{1,2,3} and the Levi-Civita symbol, i.e.,

L if (6,5,k) €{(1,2,3),(2,3,1),(3,1,2)},
Eijk = -1 if (17]7 )6{( t) )7( ,1,3),(1,3,2)},
0 else.

Since the coefficients are Lipschitz, we can differentiate

(i AgVu) = i 0, AgVu+ i Agd, Vu

_ gTatAOVqu/lTAOV(Agl ( f- i.Aj@ju—Du))

j=1

3
=" AoVt i AV AT (f = 3 Ajdu—Du)

Jj=1
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3
+a'vf— MTZVAﬁu iWINDu— T DVu—ji Z.A Vo;u
Jj=1 Jj=1
3
= A—i" " A;Vou (4.10)
j=1

in L(J,H }(R?)). Here we use (4.6) and write (VA5 )h) k=32 dpAg b ete.
Note that A only contains first order spatial derivatives of u. We next compute

3 312 3 12
Z( TZA Vo; U) o Z Zﬁfl“‘lj;lpakajup: Z ZNZkAj;lpakajup

k=1 Jk=11p=1 ik l=1p=1

3 3
= ) kA Ok s = Y EnipliikingOkOjtp s (4.11)
J,k,l,n,p=1 J,k,l,n,p=1

3 3
= D Cinplinjk0iOktpis=— > EniphikingOrditpys, (4.12)
J,k,l,n,p=1 J,k,l,n,p=1

exchanging the indices [ and n as well as k£ and j in the penultimate step. Equa-
tions (4.11) and (4.12) yield

3
> (@ TZA V0, u) —0. (4.13)
k=1 j=1
Analogously, it follows
3
;( T]ZIA Vo, u) oo =" (4.14)

In the other components we take care of the extra signs in (4.4) and (2.1), calculating

3 3 3 12
> (i T; Ajvaju)(k+6)k %: z:: o Astp O

k=1

3 12 3

= D D mnAjwropOidiup = Y ik Ajiirs)(p+9)Ok0tpto
7.k, l=1p=1 7.k, l,p=1

3
= > ()AL g (—1)%09%57 0Dy 4
7,k,l,n,p=1

3
= > (=) (1) i ;OO o (4.15)
Jikln,p=1

3
= Etnp(—1)%579%9 (=1)%90%%% 1y 113 0 O v
Jik,lm,p=1

3
—— > e 1) (= 1) O D - (4.16)

J,k,lm,p=1
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Comparing the expressions (4.15) and (4.16), we infer

3
(ﬂT;Ajvaju) I (4.17)

N

>
Il

1

Proceeding similarly, we derive

Z( TZA Vo )(M)k:o. (4.18)

k=1
Integrating in time, the formulas (4.10), (4.13) (4.14), (4.17) and (4.18) imply the
identities
3

3 3 ¢
Z " AoVu) e iy ( Z fi" Ao V) oy (0) + Z/ Akyipk(s)ds
k=1 k=1

k=170

in H~*(RY) for all t€J and i€{0,3,6,9}. The function A is integrable with values in
L%*(R%) so that the equality holds in L?(R}) for all t € J. Let t € J. We denote the k-th
row respectively the k-th column of a matrix N by Nj. respectively N.i, and we set

2

3
Pis(t)=> (A" AoVtt) oy 1) (0 +Z/A(k+3z)k( )ds = (" Ao) r4an). Onult),
k=1

k=1

(F17'"7F12)T:f_ZAjaju—DU

=0

for 1€{0,1,2,3}. The map F = (F},...,Fis)” belongs to C(J,L*(R?)) and

As
(A" Ag)s.
f0su="F,  setting =] (AT Ay)e. | € Fo()'¢*2 (4.19)
(2" Ao)o.
(1" Ao)12
Let ¢ =" Ay and the matrix G; be equal to

1 0 0 O 0 0 0 0O 0 O 0 0000 O
0 -1 0 O 0 0 0 0O 0 O 0 0000 O
0 0 1 0 0 0 0 0O 0 O 0 0000 O
0 0o 0 -1 0 O 0 0O 0 O 0 0000 O
0 0O 0 O 1 0 0 0O 0 O 0 0000 O
0 0 0 O 0 1 0 0O 0 O 0 0000 O
0 0 0 O 0 0 -1 0O 0 O 0 0000 O
0 0 0 O 0 0 0 1 0 0 0 0000 O
0 0 0 O 0 0 0 0O 1 0 0 0000 O
0 0 0 O 0 O 0 0O 0 1 0 0000 O
0 0 0 O 0 O 0 0O 0 O -1 000 0 O
0 0 0 O 0 0 0 0O 0 O 0 1000 O
—(35 (34 0 (32 —C310 (311 —C3100—C38 C37 010 0 O
—C65 G4 0 G2 —C6,10 Co11 —C6,100 —Ce8 Gy 001 0 0O
Co5 —Coa 0 —Co2 Co1 0 —Co11 Co,i0 0 Co8 —Co7 000 -1 0

Ci2,5 —C12,4 0 =Ci2,2 Ci2,1 0 —Ci2,11 Ci2,00 0 G2 —Ci2,7000 0 —1
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We derive the crucial identity

0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
Gl 0 0 0 0 0 0 0 0 0 1 0 0
=10 o o o o o o 0 0 0 0 0 |
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 Qa3 3 0 0 Qa3 6 0 0 Q39 0 0 Qa3 12
0 0 Qg3 0 0 Q6.6 0 0 Qg9 0 0 Q6,12
0 0 Qa9 3 0 0 Qa9 6 0 0 Qa9 9 0 0 Qa9 12
0 0 appz 0 0 ape O 0 apg9 O 0 a1212

12

Qn ::Ckn:ZﬂﬂAO;ln:AO;kn for k€{376}3
=1

12
Akn 5:—Ckn=—z,&gl.»40;m=./40;kn for k‘E{g,lQ},
=1

where n€{3,6,9,12}. Here we use [ij, =1 for =k and fi;, =0 for [ £k, if k€{3,6}, as
well as fiy, =—1 for I=Fk and fi;, =0 for [ #k, if k€{9,12}. Since

Q33 (36 (39 Q312 A0;3,3 AO;3,6 A0;3,9 A0;3,12

@63 Qg6 (69 6,12 | A0;6,3 A0;6,6 AO;G,Q A0;6,12 >
T Avos Avos Asoes A =

Q93 Qg Q99 0912 09,3 09,6 0;9,9 0;9,12

Q12,3 (12,6 (12,9 (12,12 A0;12,3 A0;1276 A0;1279 Ao;12712

Ii2x12 0

this matrix has an inverse 8 bounded by C(n). Setting Go = ( o ﬂ), we compute

GyGiji= =M. (4.20)

O OO H OO OO
OO R OO OO OO0 OO OO0
OO DD DO ODODDODDODDODDDOoOOoOC OO
OO DD DD OO R OO O OO
O R O OO OO OoOooOo o oo
_H O OO DODODODDODDDIODDODDDOOo OO

DO OO DD OO ODOO OO OO
DO DD DD DDDODDODDODOoOO OO O
=N eoleoleolNeoloNoBeoBeoleololoBoReol =
=N eleoBeoNoNoNeoNeBelaolololole el S
DO OO DD DODDODDODO OO OO OO
S OO DD OO OO OHOOOOoOOoOOo
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Equations (4.19) and (4.20) yield
Mdsu=GyG, F. (4.21)

The formulas in (4.3) imply the inequality

.....

Since the matrix M has rank 12, equation (4.21) shows that Jsu is contained in
C(J,L*(R%)) and bounded by

105u(t)]| 23y <C(n)(1 +00)2||F(t)|\L2(R3+)- (4.22)

This estimate is analogous to (3.29) in the proof of Proposition 3.3 in [30], where a
comparable function F' was involved. The remaining arguments are the same as in
[30] and therefore omitted. They mainly consist of straightforward estimates and an
application of Gronwall’s inequality. 0

We can now combine Lemma 4.1, Lemma 4.2 and Proposition 4.1 in an iteration
argument to establish the desired a priori estimates of arbitrary order. This is done as
in the proof of Theorem 4.4 in [30], also using the auxiliary results from Section 2. Here
the different structure in (4.1) arising from the interface condition does not play a role.
So we do not give the proof.

THEOREM 4.1.  Let T'>0, n>0, r>rg>0, meN, and m=max{m,3}. Pick T¢€
(Q,T’] and set J=(0,T). Take coefficients Ao Fp, (), A1, A2 € Fy) o oq(RY), Az=
S, DeEFP(Q), and B=B satisfying

Al rn) <70 1Dl py ) <)
max{||.4;(0)]

J o
Ff—Ll(Ri)vK?lS%%{l 107 AO(O)HHWJA(RQ} <o,

maX{HD(O)HFg_l(Ri)a1§§,nga;%<_l||ag,D<0)||Hﬁl—.7‘—1(]Ri)}STO
for all i€{0,1,2}. Choose data feH™(Q), g€ En(Jx0R), and ugc H™(RY).
Assume that the solution u of (4.1) belongs to G, (). Then there is a number
Y =Ym (0,7, T") >1 such that u satisfies

m—1
lal,, o) < (07,L,0+T(Jm)emclT( D OO N1y + 9l | sxome)
=0

Cnm
ol ) + = 1 o

for all v>~yp,, where Cp,=Cpy (1,7, T") > 1, Cpyo=Cmo(n,70) >1, and C1 =C1(n,r,T")
is a constant independent of m.

5. Regularity of solutions to the linear problem

In this section we prove that the Go(€2)-solution u of (4.1) actually belongs to G, (£2)
if the data and the coefficients are accordingly smooth and compatible. To this aim,
different regularizing techniques in normal, tangential, and time directions are used.
We first show that regularity in time and in tangential directions implies regularity in
normal direction. This is the crucial step in the regularization argument, and it heavily
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relies on the structure of the Maxwell system. As in Proposition 4.1, we only look at
the linear initial value problem (4.6).

LEMMA 5.1.  Let n>0, meN, and m=max{m,3}. Take coefficients Ao € F (Q),
A1, A € FP  2(RY), A3=A%°, and DEFP(Q). Choose data fe€ H™(Q) and ug €

m,coeff
H™(R3). Let u be a solution of (4.6) for these coefficients and data. Assume that u
belongs to ﬂ LCI(J,H™ I (RY)).
Take k€ {1,...,m} and a multi-index o € N§ with |a|=m, ap=0, and az=k. Sup-
pose that 9Pu is contained in Go(Q) for all BEN] with |B|=m and B3<k—1. Then

0%u is an element of Go(2).

Proof. (I) We begin with several preparations. Let M., £>0, be a standard
mollifier on R3 with kernel p>0. Let § >0. We introduce the translation operator

Tsv(z) =v(z1,22,23+6) for ve L (RY) and a.e. 7 €R? x (—6,00). (5.1)

Notice that T maps W'P(R3) continuously into W?(R? x (—8,00)) and that 9%Tsv =
T50% for all ve WHP(RY), & €N§ with |a| <[, €Ny, and 1<p<oco. If ve L] (R?),
we further define T5v by formula (5 1) for all §eR.

Functions which are only defined on a subset of R?® will be identified with their
zero-extensions. Moreover, restrictions of a map v to a subset are also denoted by wv.
We extend the translations T to continuous operators on H *1(]1%3_) by setting

(T5v,9) m-1(rs ) xma w2) = (0, T-69) -1 (&2 ) x 113 (B2

for all ¢ € H}(R3) and 6 >0. It is then straighforward to check that 9;Tsv="T50;v for
all ve L?(R3.) and §>0.

We want to apply M. to functions in Li  (R3) without obtaining singularities at
the boundary in limit processes. To that purpose, we take 0 <e < d and look at the
regularization M.Tsv for UELIOC(Ri). If v and d;v belong to L (R%), then also
M_Tsv has a weak derivative in R and 0; M, Tgv—M T50;v for all j€{1,2,3}.

We set p(z) =p(—x) for all z € R3 and denote the corresponding mollifier by M.. A
straightforward computation shows that

(M T50,9) gr-1.r3 ) < g (rY) = (0, T- s M) gy ~1(RY)x H} (RY.) (5.2)

for all ve L2(R3) and ¢ € Hi(R%). As T_sM. maps H}(R3) continuously into itself,
the mapping M_.Tjs continuously extends to an operator on H _1(Ri) via formula (5.2).
We deduce the identity

8jM5T5’U = MgajTgv = MET[saj’U

by duality for all j€{1,2,3} and veL?*(R3). Finally, for A€ W>*(R3) and ve
H~'(R3) we obtain (T5A)Tsv=Ts(Av) in H~*(R%).

(IT) Let 0<e<d. We abbreviate the differential operators L£(T5.A;,T5D) by Ls
and D1V(T5A1,T5A2,T5.A3) by Divs (recall (4.5)). Let a €N} with |a|=m, ag=0, and
azs=k. We set o’ =a—e3€Nj. The derlvatlve 0™ u belongs to Go(£2) by assumption.
Because of the mollifier, the map M.T50% u is contained in C*(7, H2(IR3 )= G1(Q),

M_.T50% ug in Hl(R?’ ), LsM.Ts0% v in Go(Q), and Divs Ls M. T50% u in L?(Q). To
show convergence of s M. T50% u as £ — 0, we want to apply the a priori estimate (4.7).
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Therefore, we have to study the convergence properties of the functions £5M5T58a/u
and Divs Ls M. T50“ u as € — 0. We focus on the latter as this is the more difficult one.
We use the maps pg, fi, and g from (4.4). Exploiting step (I), we compute

(Tsii) "V Ls M T50% u

2

= (Tsit)" (TN A;)0; M. T50% u+ (T o) " (TsV D) M. T50% u
7=0

3
+T5 (i Ao) VML T50,0% u+Ts (i D)V M T50 u+Y_ Ts(i" A;)VO; M.T50% u
j=1

3
=A%+ Ty(a" A VO MT50% u. (5.3)
j=1

The cancellation properties of L5 established in formulas (4.13), (4.14), (4.17) and (4.18)
show that

3 3

Z Z(T(s (AT A;)VO; M. T50% u) 3170 =0

k=1j=1
for all 1€{0,1,2,3}. Equation (5.3) thus leads to
3

Divs LM T30 u=3_ (A2 AL gy AT

d,e
(k+3)k> (k+6)k’A
k=1

k+9 k) (5.4)

We rewrite A% in the form

2
A% =N (T3 (ATVA), M9, T50% u+ [T5 (37 VD), M T50% u
j=0

+[T5(5" Ag), MV T50,0% u+ [Ts (AT D), M.V T50% u

2
M. T; (Z ATVA;0;0% ut fTV DO ut iT AgV 8,0 u+ ﬁTDvaa’u) .
j=0

In view of the terms with m space derivatives in the last line, we introduce the map

.fa’ = Z (Oé/> aﬂ(ﬂTAo)vao‘/—Batu—i- Z (Oé/> 85([1TD)V80/—B’U,

O<ﬂ<(x’ 0<p<La’
+Z > ( ) BTV AN POt Y ( ) (VD)oY Fu
7=00<B<La’ 0<p<a’ IB

As u and Oyu are contained in C(J,H™ '(R3)), Lemma 2.1 implies that fo is an
element of L%(Q). It follows

2
APE = [T (T VA, MO, Ts0 u+ [T5(i" VD), MT50
§=0
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+[T5(i7 Ao), M)V T50,0% u+ [Ts (AT D), M.V T50% u+ 0% M.Ts(i"V f)
3
— M.Tsfor — > 0% M.T5(ji" A;VO,u)

j=1

3
=A% = "0 M.Ty (i A;V 05u).

Jj=1

Equations (4.13), (4.14), (4.17) and (4.18) also yield that

Se £SO, 5 5, o 18 X0, %6, 76,
Z (Akli’A(k6+3)k7A(k6+6)k’A(kE+9)k> = Z (Aklf’A(k6+3)k’A(kE+6)k’A(k:—%))k)'

3 3
k=

1 k=1
By means of (5.4), we arrive at the core identity

3

Divy E(;MET(;({)Q,u = Z (Ai’;7A6’E ZN\(S’E ]\6’8

(k+3)k D (ko) (k+9)k)' (5.5)
k=1

Starting from its counterpart (4.7) in [30], the rest of the reasoning is now the same as
in the proof of Lemma 4.1 in this paper. One uses that M_T50* u solves the initial value
problem (4.6) with differential operator Ls, inhomogeneity L5 M. T50* u and initial value
M_Tsug. In these data and in (5.5), one can pass to the limit in L? as e — 0 employing
estimates for the commutators of the mollifier and the coefficients. The estimate (4.7)
from Proposition 4.1 then allows to bound V750 u in Go(Q), uniformly in § >0, see
(4.15) in [30]. One can then let § — 0 obtaining the result. We omit the details. d

Replacing estimate (4.7) from Proposition 4.1 by inequality (4.9) in the above proof,
one derives the following variant of Lemma 5.1, cf. Corollary 4.2 in [30].

COROLLARY 5.1. Let >0, meN, and m=max{m,3}. Take coefficients Ao €
FR(Q), A, e B q(RY), As=AS, and DEFRP(Q). Choose data fe H™(Q)

and uo € H™(RY). Let u be a solution of the initial value problem (4.6) with these
coefficients and data. Assume that u belongs to ﬂ;nzl CI(J,H™ I (RY)).

Take k€ {1,...,m} and a multi-index o € N} with |a|=m, ag=0, and az=k. Sup-
pose that OPu is contained in L*(Q) for all BENS with |3|=m and f3<k—1. Then
0%u is an element of L*((2).

Based on Lemma 5.1 and Corollary 5.1, the regularization arguments in tangential
and time directions are analogous to the proofs of Lemmas 4.4 and 4.5 in [30]. One
first studies the solution w mollified in (x1,25). The regularized solution u. satisfies the
Maxwell system with modified data (as in (4.20) of [30]). It then crucially enters into
the bound of u in a family of weighted tangential Sobolev norms, taken from Section 1.7
and Section 2.4 in [17]. The a priori estimate from Lemma 4.1 allows us to control u,
in Gy. It is then possible to take the limit e —0. The results from [17] require smooth
coefficients so that temporarily we have to assume this extra regularity.

In the time direction one looks at the problem solved by the time derivative v of u,
cf. (4.32) in [30]. Integration with respect to time yields a function which coincides with
u, implying the required time regularity. Here the compatibility conditions are needed.
In these arguments the new features of the problem (4.1) do not play a role and one
can follow along the lines of the proofs of [30]. We thus only state the results.
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LEMMA 5.2, Let n>0, meN, and m=max{m,3}. Take coefficients Ao € F5’ (Q),
A, Ay € P (R3), Ay =A%, D€ FP(Q) and B=B%. We further assume that these

,coeff
coefficients belong to C>(Q). Let u be the weak solution of (4.1) with data f€ H™(S),
g€ En(J xOR3), and ug € H(RY). Suppose that u belongs to ﬂ;nzl CI(J,H™ I (R3)).
Pick a multi-indezx o €N§ with |a|=m and ag=a3=0. Then 0%u is an element of
C(T,L2(RY)).

LEMMA 5.3. Let n>0. Take coefficients Ao € F3h (Q), A1, A€ F5% 4(R3),
A3 =A, DEFP(Q), and B=B. Choose data ug€ H'(R%), g€ E1(J x9R3), and
feHYQ). Assume that the tuple (0,Ao,...,A3,D,B, f,g,u0) fulfills the compatibility
conditions (2.6) on G=R3 of order 1. Let ueC(J,L*(R3)) be the weak solution
of (4.1) with data f, g, and ug. Assume thatue C*(J',L*(RY)) implies ue G1(J' xR3)
for every open interval J' CJ. Then u belongs to G1(Q).

To iterate the previous result, we need a relation between the operators S, , of
different order stated in the next lemma. It follows from a straightforward computation
based on definition (2.4) of Sy, , as in Lemma 4.8 of [28].

LEMMA 5.4. Let n>0, meN and m=max{m,3}. Take AOGF;Zx{mH,?,},n(Q)

with atAOGFS’Lp(Q)7 'Al’ AZEF;I;x{erl,B},cocff(Ri)? Ag:‘Ago’ DEFIZI;X{erl,B}(Q)’
and B=B®. Choose data to€J, ug€ H" ™ (R3), g€En41(Jx0RY), and f€
H™H1(Q).  Assume that u€G,, () solves (4.1) with initial time to. Set uj=
Sm+1.1(to, Aoy, A3, D, foug) and f1=0f —0Du. Let pe{0,...,m—1}. We then ob-
tain

Sm,p(to,Ao,...,Ag,atA0+D7f1;ul) :Sm—l—l,p—l—l(t(),AOa'"3A37Daf7u0)'

Combining the above results with an iteration argument, we derive the desired
regularity of the solution w provided the coefficients are smooth.

PROPOSITION 5.1.  Let >0, meN, and m=max{m,3}. Take Ay€F () with

m,n
DA€ Fap i 1.3(Q) AL A€ P q(RY), A3=A5, DeF(Q), and B=B5".
Assume that these coefficients are contained in C*(2). Choose data fe H™(Q),
g€ En(Jx0RY), and ug € H™(RY) such that the tuple (0, Ay, ..., As,D,B, f,g,u) sat-
isfies the compatibility conditions (2.6) on G:Ri of order m. Let u be the weak solution
of (4.1). Then u belongs to G, (£2).

Proof. Lemma 5.3, Lemma 5.2, and Lemma 5.1 show the assertion for m=1. Let
the claim be true for some m €N and let the assumptions be fulfilled for m+1. The
weak solution u of (4.1) hence belongs to G,,(Q2), and d;u satisfies

Lov=0,f—0Du=:f1, zeR3, teJ;
Bv=0,g, xeaRi, teJ,;
U(O):Sm+1,1(07~'407"'7“433Daf7u0) =iu1, $ER3_,

where we write Ly, for L(Ay,...,As,0:A0+D). The initial field u; belongs to H™ (Ri)
by Lemma 2.3, the inhomogeneity f; to H™ () by Lemma 2.1, and 8,9 to E,,(J x 9R?).
The coefficients satisfy the conditions of Lemma 5.4 and 0;Ag+D is an element of
FP(Q)NC>(Q). Lemma 5.4 thus shows the compatibility conditions (2.6) of order
m for the tuple (0,Ao,...,As,0040+D, f1,0¢g,u1). By the induction hypothesis, the
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function dyu is contained in G,, (), so that u belongs to ﬂj:tl CI(J,H™ 171 (RY)).
Lemma 5.2 and Lemma 5.1 then imply that the solution u is an element of G, 41(€2). O

It remains to remove the extra regularity assumptions. Lemma 2.2 provides suitable
approximations of the given coefficients. However, after this procedure the compatibility
conditions can be violated. To overcome this difficulty, we modify the initial fields
appropriately in Lemma 5.6. The proof of this result is based on the next fact which
again relies on the algebraic structure of the coefficient matrices.

LEMMA 5.5. Let n>0, peNy, and m,keN with m>3 and k<m-—1. Take
Ao € Fr12.9(Q2) and A3=AS. Choose r>0 such that HAO(O)”Fﬂ,_l(Ri)ST‘ Take an

approzimating family {Ao < }e>o0 provided by Lemma 2.2. Let vy . be maps in H* (Ri)12
for e>0. Then there exists a number g9 >0, a constant C=C(n,r), and a family of
functions {vp e }ocece, in HF(RY)'? such that

As(Aoe(0) " As)Pvpe=Asvoe  and  [[opellmns) < Cllvoellan ez

for all e €(0,e9).
Proof.
(I) By Lemma 2.2 there is a number £y >0 such that
[ Ao.e(O)Fo,_, m3) <2r (5.6)

for all € (0,ep). Let e € (0,60). We introduce the invertible matrices

010
-100

00

00

01000 (Q o0
10000 and Q( )
0000

0

001

O OO oo

0
0
and note that

Jo 0 0 O
0 Ju 0 O
0 0 Ju 0 )’
0 0 0 Jy

100
where J,y=(010
000

A3Q=ALQ=

Since Ag ¢ >, also the matrix

Aoe3s Aoese Aoeso Aoesiz
o.— Aoei6,3 Ao, Aoes,9 Aoes,12
AO,E;Q,S AO,6;9,6 A0,6;9,9 A0,€;9,12
Ao.e:12,3 Ao,e;12,6 Ao,e;12,9 Ao ei12.12

satisfies ©. >n on Q. In particular, ©. has an inverse with
||@g1(O)HF3n71(Ri)§C(77,7") for all € (0,e9). (5.7)
(IT) Let wo € H* (Ri)m. We can define scalar functions hq,...,ha by

(hier s hac) =—07"1(0)(Ao,e (0)wo)(3,6,9,12):
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where we write ((36,9,12) = ((3,(6,{0,C12) for any vector (€R'2, Lemma 2.1 and the
inequalities (5.6) and (5.7) imply that

[(h1es-ewshae)ll e sy <Cm,r)lwoll e es)- (5.8)
We next set
We = Qg We =—Ap,(0) (wo+h1,s€3+h2,e€6+h3,s€9+h4,5612)~ (5.9)
Lemma 2.1, (5.6), and (5.8) again provide a constant C(n,r) such that
l[e || e s y < C(n,7)[|wol e wes - (5.10)
Observe that
(@e)(3,6,9,12) = (—A0,e (0)wo)(3,6,9,12) = O (0) (A1 e, hae) =
and hence A3Qw. =w.. We thus compute
As(—Ap < (0) "t Az)e = Az (—Ag e (0) e = Azwy (5.11)

using (5.9) and ker .43 =span{es,eq,€9,€12}.
(III) To show the assertion of the lemma, we proceed inductively. We claim that for
all peNp, € €(0,e¢), and w e H¥(R3 )12 there is a function wy, - (w) in H*(R3)'? and a
constant Cj, =C)(n,r) such that
As(— Ao (0) " As)Pwy, - (w) = Azw, (5.12)
[wp.e (W) e rs ) < Cpllwl e ) (5.13)
We can simply set wp . (w) =w. Let the claim be true for a number p e Ny. Fix e € (0,¢¢)

and we H*(R3)'. Step (II) applied with wo=w yields a function w,. € H*(R%)"?
satisfying

As(—A0.(0) " As)p e =Asw and (| Bp.c || prcrey SCOr)llwllge@y).  (5.14)

We now define wpy1 (W) =w, (Wp) for each €€ (0,e9). The map wpt1(w) then is
contained in H*(R%)!?, and we compute

Az (= Ao (0) " AP g o (w) = Az (— Ao (0) 1) Az (— Ao - (0) " EAz)Pwy (D, - )
= A3(_A0,E(0)71)A3u~)p,s =Asw,

where we employed the induction hypothesis (5.12) and (5.14). Combining (5.13)
with (5.10), we further obtain

[wps1,e (W)l (r2 ) = lwp,e (Wp.e) e (rs ) < Cpllp.ell mrrrs ) < Cllwll e s ),
where C'=C(n,r). The claim now follows by induction.

We obtain the assertion of the lemma by setting vy, . =wp - (vo,c)- O
LEMMA 5.6.  Let n>0, meN, and m=max{m,3}. Take coefficients Ay € F" (),

m,n

A1, Ay € F3Y g (RY), A3 =AL, DeFP(Q), and B=B%. Choose data f € H™(Q2), g€

m,coeff

E,.(Jx OR3 %), and up € H™(R3) which fulfill the compatibility conditions (2.6) on G =



2302 QUASILINEAR MAXWELL INTERFACE PROBLEMS

Rﬁ_ of order m into € J. Let {A;c}es0 and {D.}eso be the families of functions provided
by Lemma 2.2 for A; and D respectively for i €{0,1,2}. Then there exists a number
£0>0 and a family {uo.c}o<e<e, in Hm(Ri) such that the compatibility conditions for
the tuple (to, Ao, A1 e, A2, A3,De, B, f,g,u0,) of order m are satisfied and ug. tends
to ug in H™(RY) as e —0.

Proof. Without loss of generality we assume tp=0. We set ug.=1wu¢+h. and
look for functions h. € H™(R3) with h. —0 in H™(R3) such that the compatibility
conditions are fulfilled. Since B=MA;3 for a constant matrix M=M= by (3.13), it
suffices to find h, with

A3Sm.,p(07A0,€7A1,67A2,€7A37D€af7u0+h€) :ABSm,p(OvAOw"7A3aD7f7u0)

for all 0<p<m—1 on ORY. Using Lemma 5.5 one can now repeat steps (I) and (II) of
the proof of Lemma 4.8 of [30] in which the structure arising from the interface problem
does not play a role. We thus omit the details. ]

We can now deduce the differentiability theorem by applying Proposition 5.1 to the
solutions of the approximating initial boundary value problems with coefficients and
data from Lemma 5.6. Compared to [30], again the specific structure of our problem
does not enter the reasoning, and thus we do not give a proof and refer to Theorem 4.10
of [30] for the details.

THEOREM 5.1. Letn>0, meN, and m=max{m,3}. Take coefficients Ay € F,C;f?n(Q),
A1, A2 € FY oo (RY), Az = 2, De FP(Q), and B=B%. Choose data f € H™(Q2), g€
Ep(J x0RY), and ug € H™(R3) such that the tuple (0, Ao, ..., As,D,B, f,g,uq) satisfies
the compatibility conditions (2.6) on G:Ri of order m. Then the weak solution u
of (4.1) belongs to G ().

REMARK 5.1. Recall that Theorem 3.1 is valid for coefficients Ag and D which have
merely a limit as |(¢,2)] — co. Also all intermediate results extend to such coefficients.
In particular, Proposition 4.1, Theorem 4.1, and Theorem 5.1 are still true if Ay and D
only have a limit as |(¢,x)| — oo, cf. the proof of Theorem 4.13 in [28].

6. Local existence and uniqueness of the nonlinear system

In this section we prove existence and uniqueness of a solution of (1.7) by a fixed-
point argument based on the a priori estimates and the regularity theory from Sections 4
and 5 for the corresponding linear problem. We define a solution of (1.7) to be a function
u belonging to 2, CI(I,H™ I (G)) with imuy CUy for all te I and satisfying (1.7).
Here I is an interval with to € I. We further allow more general functions o than arising
from the model (1.3). The specific structure of the interface conditions does not enter
very much in the proofs from now on. For this reason we can be more brief in this part
of the paper and often refer the reader to the article [29], where the initial boundary
value problem was treated in detail. We first introduce the spaces

ML G, UL)
={6: (G4 xUL)U(G_ xU_) > R™"™ with 01 € C"(G+ xUx,R™™"™) and
sup |0°0(z,y)| < oo for all € NJ with |a| <m and Uy ; €U},

(z,y)€G L xUL 1
ML (G UL ) ={0 € ML™™(G,Us.): There exists n>0 with =07 >7
on Gi xZ/{i} (6.1)
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for our nonlinearities. Here 6, and 6_ denote the restrictions of 6 to G XU, respec-
tively G_ xU_. Moreover, by writing G+ XU, we address the two sets G4 xUy and
G_ xU_. Actually, we only need the dimensions n=1 or n=6.

We often have to control compositions 6(v) in higher regularity in terms of v. In
Lemma 2.1 and Corollary 2.2 of [29] the necessary formulas and estimates have been
provided for functions defined on a single domain. Our interface case can then be
treated by applying these facts to the subsets G4 separately. Since the proofs below are
only sketched, we do not repeat the modified versions of these rather lengthy auxiliary
results.

As in the linear case discussed in Section 2, regular solutions of (1.7) have to satisfy
compatibility conditions. To express them, we first introduce the operators that give
the initial values of the time differentiated version of (1.7), cf. (2.4).

DEFINITION 6.1. Let JCR be an open interval, meN, xGMﬁggG(G,Ui), and
o e ML™C(G,UL). We inductively define the operators

Sx,U,G,m,p . 7 % Hmax{m,B}(J % G) % erax{m,Z}(Gvu) —)’Hmip(G)
by Sx.0.Gm,0,+(tos f+,U0,+) =uo .+ and

SX,U’G,W’P’i (th fiﬂ«bo,i)

3
= (t0,6) ™ (O Fa(to) = Y AT S0, Gmp-1, (to i 00,2
j=1
.

1
p—1
Z( I )M{,:l:(thf:l:7u0,:|:)5x,o,G,m,p—l,:t(t0af:taUO,:t)
=1

p—1

p—1
- ( ; )Mé,i(thfi7“0,i)5x,a7G,m,p—1—l,i(thfi;UO,i))a (6.2)
1=0

6

M= Y Y. Cl(p.0,0,0)m,...7)

1<j<p,,..., ’)’jeNg\{O}l17~~-7lj=1
>>7:=(p,0,0,0)

J
: (8y,j "'5y,19k,i)(uo,i)HS ,o‘,G,m,\’yH,:ﬁ:(t07f:|:uu0,:|:)li (63)
i=1
for 1<p<m, ke{1,2}, where 6, =x, =0, M3, =0+(uo.+), and C is a combina-
torical constant, cf. Lemma 2.1 and (2.8) of [29]. By H™>{m2}(G.U) we mean those
functions ug € H™>{m2H(G) with tmug + CU5.

Lemma 2.4 of [29] shows that the operators Sy 4 ¢ m,p indeed map into H™P(G)
and it provides corresponding estimates (one applies it to the subsets G4 separately).
Using Lemma 2.1 of [29], we can differentiate (1.7) p-times and obtain

Ru(to) = Sy.0.c.m.p(to, fruo) for all pe{0,...,m} (6.4)

if u€G,,(Jx@G) is a solution of (1.7) with data feH™(J xG), up e H™(G), and g€
E,,(J x3). Proceeding similarly with the interface and boundary conditions, equation
(6.4) leads to the identities

stx,a,G,m,p(t07f7 uO) :afg(tO) on 27 (65)
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By Sy.,0,cmp(to, f,uo)=0 on 0G for all pe{0,...,m—1},

which are necessary for the existence of a G,,(J x G)-solution of (1.7). We say that
the data tuple (x,0,t0, Bs,Bac, f,g,uo) fulfills the compatibility conditions of order m
if imug + CUy and the equations (6.5) are true.

REMARK 6.1. Analogously to Remark 1.2 in [30], the linear theory allows for co-
efficients in W1*°(J x G) whose derivatives up to order m on G4 are contained in
L*°(J,L3(G1))+L>®(J x G1). In view of Lemma 2.1 in [29], we can thus apply the
linear theory with coefficients x() and o(@) and @€ Gy (J x Q). However, the part
of the derivatives in L*°(J x G) is easier to treat so that we concentrated on coef-
ficients from F,,(J x G) in Sections 4 and 5. The same is true for the nonlinear
problem. In the proofs we will thus assume without loss of generality that x and o
from ML™5(G,Us) have decaying space derivatives as |z|— oco. More precisely, for
all multi-indices o €NJ with ay=...=ag=0 and 1<|a|<m, R>0, U; + EUs, and
ve L®(J,L*(G)) with imvy CU + and [|[v]| (s, 22(c)) < R we require

(0%x) (v£), (0% 4 ) (vs) € L=(J,L* (G)),

1(0%Xx ) ()| oo (,22(G1)) H(0%01) (V)| L= (1 02(G1)) < C, (6.6)
where C'=C(x,0,m,R,U1,+). With this assumption, we obtain from Lemma 2.1 in [29]
that x(@) and o(@) belong to Fp, (J X G).

Finally, we note that for bounded G the above considerations are unnecessary since
then LQ(Gi) + L (Gi) = LQ(Gi).

The next lemma relates the maps Sy ».G.m,p to their linear counterparts in (2.4).

LEMMA 6.1. Let JCR be an open interval, to € J, and m €N with m>3. Take x €
./\/lﬁgzi’ﬁ(G,Z/{i) and 0 € ML™(G,UL). Choose data feH™(JxG) and ug€H™(G)
with imug + CUx. Let r>0. Assume that f and wy satisfy

HUOHHm(G) <, Oggng%_l ||3§f(t0)||7-tmﬁfl(c) <,

1£G, s rxay <7y [fllHmrxa) <

(1) Let 0 € G (J X G) with 8Pi(to) = Sy.0.c.mp(to, fu0) for 0<p<m—1. Then i
fulfills the equations

SG,m,p(thX(’a)aAiovAgoaAgovo'(ﬂ)vfaUO) = Sx,o,G,m,p(thfauo) (67)

for all ped{0,...,m}.
(2) There is a constant C(x,0,m,r,Us +) >0 and a function u in G, (J x G) realizing
the initial conditions

8fu(to) = SX,U,G,m,p(t0>f7 uO)

for all pe{0,...,m} and it is bounded by

m—1

lullg,,(7xa) < C(XJ,m,T,ULi)( > 18] £(to)llaem-i-1(c) + ||U0||Hm(G))-
=0

Here Uy 1+ denote compact subsets of Ux with imug + CU; +.
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Proof. Assertion (1) can be shown by induction using the definitions of the
operators Sa.m.p in (2.4) and of Sy 5 Gmp in (6.2), as well as Lemma 2.1 in [29)].

Since Sy.o,G,m.p(to, f,uo) belongs to H™ P(G) for all pe{0,...,m}, an extension
theorem (see e.g. Lemma 2.34 in [28] applied on G, and G_ separately) yields the
existence of a function u in G,,,(J x G) with 87 u(to) = Sy,0,G.m.p(to, fuo) and

[ullg,.7xc) <CD_lISx.0.cmp(tos fr10) l3m-r(c)
p=0

for all p€{0,...,m}. Lemma 2.4 of [29] then implies assertion (2). d

We introduce slightly strengthened assumptions on our material laws y and o to
guarantee that x(@) and o (%) converge at infinity, as required in Theorem 3.1.

ML (G UL)={0eML™ (G, Ux): FA€R™ ™ such that for all
(g, yr)k € (G xU)N with |z1| = oo and yp —0:
O(z,yr) = A as k— oo},

ML (G UL) = ML (G UL) DML ™ (G U ).

The space ML™™(G,Uy) coincides with ML™"(G,Uy) in (6.1) if G is bounded.
The next result provides the uniqueness of solutions of (1.7). Its proof is an obvious
modification of Lemma 7.1 in [29] and therefore omitted.

LEMMA 6.2. Let to€R,T >0, J=(to,to+T), and meN with m>3. Take material
laws XEM,C;"(]G’CV(G,Ui) and 0 € ML™%(G,UL). Choose data feH™(JxG), g€
E,(Jx3), and ug € H™(G). Let uy and us be two solutions in G, (J X G) of (1.7) with
initial time tg. Then ui =us.

We now show the basic local existence theorem for (1.7) by a contraction argument.
To close the argument, one has to take great care of the constants. In particular, the
structure of the a priori estimate in Theorem 3.1 is crucial here.

THEOREM 6.1.  Let toeR, T>0, J=(to,to+T), and meN with m>3. Take x €
ML SV(GUL) and o€ ML™5Y(G,UL). Let By, and By be given by (1.6). Choose
data f EH™(IXG), g€ Ep(J xX), and up € H™(G) with imug + CU+ such that the tu-
ple (x,0,t0, Bs,Bac, f,g,u0) fulfills the nonlinear compatibility conditions (6.5) of order
m. Pick a radius r >0 satisfying

,-.

m—

167 £ (t0) [3m - J(G)+H9HE (JXE) +HUOH7-L'”(G +||f||9'-tm(JxG)< r?. (6.8)
7=0

Take a number k>0 with
dist({uo 4 (z): x€ G4 },0Us) > k.

Then there exists a time 7=71(x,0,m,T,r,k) >0 such that the nonlinear initial boundary
value problem (1.7) with data f, g, and ug has a unique solution u on [to,to+ 7] which
belongs to G (J- X G), where J. = (to,to+T).

Proof. Without loss of generality we assume tg =0 and that (6.6) holds true for x
and o, cf. Remark 6.1. Let 7€ (0,7]. We set J.=(0,7) and

U+ ={yely: dist(y,0Us) >k} m§2Cgobr(0)7 (6.9)
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where Cgop, is the norm of the Sobolev embedding H?(G) < L>(G). The sets U, + are
compact and contain imwug +.
Let R>0. As in step I of the proof of Theorem 3.3 in [29] one checks that

Br(J;) :={v€Gn(Jr xG): |[v]lg,.(1. xc) < By [0 =10l Lo (1, x o) < /2,
N v(0) =Sy .0.c.m.j (0, f,ug) for 0<j<m—1}

is a complete metric space when endowed with d(vi,v2) = |[v1 —v2llg, (s, x@). It is
non-empty thanks to Lemma 6.1 and the choice of R and 7 below.

Let € Br(J;). We have x>n for some n>0. The map x(@) is contained
in FV,(Jr xG) and o(a) in F5Y(Jr xG) by Lemma 2.1 in [29], Remark 6.1,
and Sobolev’s embedding. Lemma 6.1 and the assumptions imply that the tu-
ple (to,x (), A, A5, A, 0(1), By, Bag, f,g,u0) fulfills the linear compatibility condi-
tions (2.6). Theorem 3.1 then yields a solution u € G,,(J; X G) of the linear sytem (1.9)
with differential operator L(x(4),AS°, AS?, A, 0 (%)) and data f, g, and wug. In this way
one defines a mapping ®: 4 — u from Bg(J;) to G, (J- x G). We are now looking for a
radius R>0 and a (small) time 7> 0 such that ® leaves invariant Bgr(J;).

For this purpose take numbers 7 € (0,T] and R > Cs 1(x,0,m, Uy +)(m+ 1)r which
will be fixed below. Let 4 € Bg(J;). Lemma 2.4 in [29] and (6.8) imply that

HS ,J,G,m,p(ovfauo)||H"‘*P(G) S 02.4, [29] (X707mar7uﬁ,i) (610)
for all p€{0,...,m} and a constant Cs 4, [29]. From Lemma 2.1 of [29] we infer
Ix(@) )| 70 _ () llo(@)(0)ll o _ () < Coa, 9] (X,0,m, 1 Usc 1),

using (6.8) and x(a)(0)=x(ug), for instance. Note that imd is contained in the
compact set

Uyt =Us + +B(0,r/2) CUL
as G € Br(J;). Lemma 2.1 in [29] and estimate (6.10) lead to the bounds
1;x () (0)]

=C.1, (20) (XU ) (1 18X [[Sy0.6.m (0, f10) =1 ()™

-1

pm—1-1(c) < Ca.1, [20] (X, m, U ) (1 + max, 107 (0)||3m—r—1 ()™

<Co1, 120)(Xsm, Ui ) (14 Co 4 0] (X, 0,m,m U +)) ™,
||6£U(ﬁ)(0)||%¢m*l71(c) <Cy,, [29] (a,m,un,i)(1+02,4, [29] (X,a,m,r,u,{,i))m_l
for all 1€ {1,...,m—1}. We thus find a radius ro =7r¢(x,0,m,r,x) such that
N0 (@) (0 [3em-1-1(6)} <70,

m-1(G)’ <?}37Sf_1||5t‘7(u)( Mwm—1-1cy} <ro.

max{|[x(@)(0)ll,_, )
max{||o(@)(0)[|

’1<l<

Since @ belongs to Br(J;), Lemma 2.1 in [29] yields the inequality

Ix(@)| 7, (7xays llo(@)|| £, (7xa) < Ca, [29](X>0,m7?/~1~,i)(1+3)m

Hence, there is a radius Ry = Ry (x,0,m, R,x) with

IX(@)|| 7, oxey <R and  |lo(@)|| £, (sxq) < R
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We next define the constant C,, o =Cp, 0(x,0,7,k) by

Om,O(X7O-7Ta KJ) = 053-l7m,0(77(X)7T0 (X,O’,m,’/‘, ’i))a

where (51,0 denotes the constant C,,o from Theorem 3.1. The radius R=
R(x,0,m,r,k) for Br(J;) is now fixed as

R= max{ 6Ch0(x,0,7,K)r, Co1(x,0,m, U+ )(m+1)r+ 1}. (6.11)
We further introduce the constants

TYm :’Ym(X,O',T,’I", 'ka) ::'y&l,m(n(X)7R1(XaUam7R(X70_7maraﬁ)7H)7T>7
Cm = Cm(X,O'7T,7") = Ciﬁ-l,m(n(X)aRl (X,O’,?TL,R(X,O}?TL,TMQ%/i),T),

where 731, and C3,,, are the corresponding constants from Theorem 3.1. Let
Ca.2, [20](0,m, R, Uy +) be the constant that arises when applying Corollary 2.2 of [29] to

the components of § € ML™%(G,U). We now define the parameter v =~(x,o,m,T,r, k)
and the time step 7=71(x,0,m,T,r,k) by

fy:max{’ym,c;}oCm},
7':rnin{T7 (27+mC’3,1)1)_1log2, C,;lCm707(QC’SObR)_1/{,
[32R20m,00123(c22.2, [29] (X7m7R7L~{H)+CQ2,2, [29] (Uvmasz;{K))]_l}ﬂ (6'12)

where C'p denotes the constant from Lemma 2.1.

From now on the reasoning follows along the lines of steps (III)~(V) of the proof of
Theorem 3.3 in [29]. The above choice of constants and the linear results of our paper
imply that ® is a strict contraction on Br(J,) which yields the assertion. |

REMARK 6.2. Using time reversion and adapting coefficients and data accordingly, we
can transfer the result of Theorem 6.1 to the negative time direction, cf. Remark 7.12
in [28].

We assume that the conditions of Theorem 6.1 are valid and that the functions f
and g belong to the spaces H™ ((—=T,T') x G) respectively E,,((—T,T) x ), for all T'> 0.
We now define the mazximal ezistence times by

T4 (m,to, f,g,u0) =sup{7T >to: 3G,-solution of (1.7) on [tg,7]},

6.13
T_(m,to, f,g,up) =inf{r <tg: 3G,,-solution of (1.7) on [r,to]}. (6.13)

The interval (T-(m,to,f,g,u0),T+(m,to, f,9,u0)) =: Imax(m,to, f,g,u0) is called the
mazximal interval of existence. These notions are modified in a straightforward way
if the inhomogeneities are given on an open interval JCR with to€J. By standard
methods we can extend the solution given by Theorem 6.1 and Remark 6.2 to a max-
imal solution u € (L C? (Imax, H™ 7 (G)) of (1.7) on Ipax which cannot be extended
beyond this interval. More precisely, we obtain the following basic blow-up criterion,
cf. Lemma 4.1 of [29].

PROPOSITION 6.1. Let toeR and meN with m>3. Take XEME;'Q&CV(GL&)
and 0 € ML™5 (G Uy.). Choose data f € H™((—T,T)x G), g€ Ep((~=T,T) x %), and
ug €EH™(G) for all T>0 and define By, and By as in (1.6). Assume that the tuple
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(x,0,t0, By, Bac, f,g,u0) fulfills the compatibility conditions (6.5) of order m. Let u be
the maximal solution of (1.7) on Inax introduced above. If T =Ty (m,to, f,g,u0) <00,
then one of the following blow-up properties

(1) liminf, ~p, dist({uy(t,2): € G4},0UL) =0 or correspondingly for u_,

(2) limg o, [lu(t)[lggm () =00
occurs. The analogous result is true for T_(m,to, f,g,uo).

7. Local well-posedness

The blow-up criterion in Proposition 6.1 can be improved. By Theorem 7.1, if
T, <oo (and the solution does not come arbitrarily close to OU; or OU_), then the
spatial Lipschitz norm of the solution has to blow up as ¢t — 77, see Theorem 7.1 below.
Similar blow-up criteria have been established for several quasilinear hyperbolic systems
both on the full space and on domains, see e.g. [5,8,21,22]. For this improvement over
the H™(G)-norm, one has to exploit that a solution w of the nonlinear problem (1.7)
solves the linear problem (1.9) with coefficients x(u) and o(u), and then use Moser-type
estimates. Lemma 4.2 from [29] provides a version of these estimates suited to our
setting in which we admit space dependent nonlinearities. We can apply this lemma to
the subdomains G4 separately.

The next proposition is the main step towards the improved blow-up condtion. In
its proof one differentiates (1.7) and applies the basic L?-estimate (4.2) to the derivative
of u. For the tangential and time derivatives, the Moser-type estimates allow us to treat
the arising inhomogeneities in such a way that the Gronwall lemma yields the desired
estimate. In order to bound the normal derivatives of u, we have to combine the above
approach with Proposition 4.1. Once more the reasoning is parallel to that in [29],
making use of the linear results of the present paper. For details we thus refer to the
proof of Proposition 4.4 in [29].

ProOPOSITION 7.1. Let meN with m>3 and togeR. Take nonlinearities x €
Mﬁgﬁi’ﬁ’cv(G,Ui) and 0 € ML™%Y (G Us). Let By, and Byg be defined as in (1.6).
Choose data ug € H™(G), g€ Ep (=T, T)x X)), and fe H™((—T,T)x G) for all T >0
such that the tuple (x,0,to, Bs, Boag, f,g,u0) fulfills the compatibility conditions (6.5) of
order m. Let u denote the mazimal solution of (1.7) on (T-,Ty). We introduce the
quantity

w(T)= sup [[u®)[[wr=()
te(to,T)

for every T € (to,T+). We further take r >0 with

m—1
> 18] £ (to) lagm-i-1(6) F9 o (10,11 y ) Fwollagm () I Fllaem ((to,rs ) x ) S -
=0

We set T* =T, if Ty <oo and take any T* >ty if Ty =oc0. Let wo>0 and let Uy + be
compact subsets of Uy .
Then there exists a constant C'=C(x,o,m,r,wo,Us +,T* —t¢) such that

m—1

G (10, T)xG) < C( Z ||agf(t0)||$-t""*1*j(G) +luollFm (y + llgl

Jj=0

HU’| 2Em((t0aT)><E)

+ ||f\|3{m((to,T)xG))



R. SCHNAUBELT AND M. SPITZ 2309

for all times T € (o, T*) which have the property that w(T) <wg and imuy (t) CUy + for
all t€[to,T]. The analogous result is true on (T_,to).

The main missing part of the final local wellposedness theorem is the continuous
dependence on initial data. Here a loss of derivatives occurs since the difference of
two solutions satisfies an equation with a less regular right-hand side. The next lemma
shows the core fact in this context. It improves the convergence of solutions u, by
one level of regularity, assuming uniform bounds of u, and convergence of the data
in the higher norm. In the proof one uses that derivatives of the solutions satisfy a
system with modified forcing terms. These problems are then splitted in one with fixed
inhomogeneities (arising from the limit data) and one with right-hand sides tending
to 0 (up to an error term treated in a Gronwall argument). Such techniques were
developed for the full space (see e.g. [5]). We combine this approach with our linear
results to prevent a loss of normal regularity at the characteristic boundary. Here again
the structure of Maxwell’s equations is crucially used. The proof is a combination of
that of Lemma 5.2 in [29] with the theorems of the previous sections. It is thus omitted.

LEMMA 7.1. Let J'CR be an open and bounded interval, to€J’, and meN with
m>3. Take functions XGMﬁgf’CV(G,Ui) and 0 € ML™%(G,Uz). Let By, and By
be defined by (1.6). Choose data fr,,f € H™(J' X G), gn,g € En(J' xX), and ug n,uo €
H™(G) for all neN with

wo,m —wollm@y —0,  llgn—9llE,. x5y =0, || fu—Fllamxa) —0,

as n—o0. We further assume that the system (1.7) with data (to,fn,Gn,uon) and
(to, f,g,u0) has G (J' X G)-solutions w, and u for all n€N, that there are compact
subsets Z:llyi of Uy with imuy (t) gdl,i for allte J', that (uy), is bounded in G, (J' x
G), and that (uy,), converges to u in Gy—1(J' X G). Then the functions u, tend to u in
Gm(J' x@G).

Finally, we can prove the full local wellposedness theorem. In the following we will
write By (z,r) for the ball of radius r around a point = from a metric space M. For
times to <T we further define the data space

Mx,o’,m(t07T) = {(f7§7ﬂ0) EHm((t()aT) X G) X Em((thT) X E) X Hm(G)
(X,a,to,Bg,Bag,f,g,ao) is compatible of order m},

and endow it with the metric

d((f1,91,70.1), (f2. G2, 0,2))

=max{[|fi = fallsem (to,1)x ) 171 = Foll B (10,7 x5y 0,1 — T 2]l 30m () }-

THEOREM 7.1. Let meN with m>3 and fix to €R. Take XEML’ZHG’CV(G,L&) and

o EML™5Y(G,Us). Let By and Bag be defined by (1.6). Choose data ug € H™(G),
gEE,((-T,T)xX), and f e H™((—=T.T)x G) for all T >0 such that imug + CU+ and
the tuple (x,0,to, By, Baa, f,9,u0) fulfills the compatibility conditions (6.5) of order m.

Then the mazimal existence times Ty =Ty (m,to, f,g,u0) from (6.13) do not depend
on ke€{3,...,m}. Moreover, the following assertions are true.

(1) There exists a unique mazimal solution u of (1.7) which belongs to the function
space (o C¥ (T, T4 ), H™3(G)).
(2) If Ty <o, then
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(a) the restriction uy leaves every compact subset of U or u_ leaves every compact
subset of U_, or

(b) limsup, ~p, max{||[Vui ()|~ (), |Vu— ()l L G_)} =o0.
The analogous result holds for T_.

(3) Fiz T € (to,Ty) and take T' € (T,T). Then there is a number 6 >0 such that for
all data (f,g,%0) € Bar,, .t 7y ((f9,u0),0) the maximal evistence time satisfies

T, (m,to,f,g,ﬂo) >T. We denote by u(-;f,g,ﬂo) the corresponding mazimal solution
of (1.7). The flow map

v BMX)aym,(t(],T/)((f’gvu0)76) %gm((tO»T) X G)v (fagv'ELO) Hu(';fvgfaO)a

is continuous, and there is a constant C'=C(x,o,m,r, Ty —to,ko) such that

10 ( f1,G1,10,1) _‘I’(f27§27a0,2)Hgm71((to,T)><G)

m—1
<C Y 10! fi(to) = 0] fa(to)llwm—s-1 () + Clldr — Gall £y (10,1 x5)
j=0

+Clliig,1 — Tio 2|l 2¢m (@) + Cll fr = Follem—1((to,1)x )

for all (f1,§1,70.1), (f2.92.10,2) € Bur, . (10,7 ((f:9,u0),0), where the parameter ko
is given by ko =dist(imug,+,0Us). The analogous result is true for T_.

Proof.  We only give a sketch of the proof. We note that in part (3) one may
extend f and g to the time interval R to be in the framework of the previous parts of
the theorem. Except for part (3), the assertions easily follow from Propositions 6.1 and
7.1. In the context of part (3) we set @=wu(+; f,g,ao). If this solution exists on an interval
[to,t'] with G,,—norm less than R’, Theorem 3.1 and the results of Section 2 in [29] allow
us to bound u—u in G,—1 4((t0,t') X G) by analogous norms of the differences of the
data, if v(R’) is large enough. We next use a time step 7 as in (6.12) and a radius R
as in (6.11) in the proof of Theorem 6.1, where we have fixed a sufficiently large radius
r >0 for the data. If § >0 is small enough, this theorem then yields a solution @ of (1.7)
in G ((to,t+7) x G) with norm less or equal R, for data (f,§,o). Using the bound in
Gm—1~((to,t") x G) just mentioned and Lemma 7.1, we obtain the continuity of the flow
map on Gy, ((to,t+7) X G). Decreasing 6 > 0 if necessary, one can then deduce assertion
(3) iteratively. The details are analogous to the proof of Theorem 5.3 in [29] which only
uses different linear results. |

We now discuss a class of material laws arising in nonlinear optics, cf. [10].

ExXAMPLE 7.1. We look at material laws involving only linear dependence on the
magnetic fields, i.e.,

Dy=6,+(v,Et)=cy(z,E1)E, Bi=0yi(x,Hy)=p+(v)H

for functions e1 : G+ xUx —R3*3 and py : G+ —R3*3 whose values are symmetric ma-
trices bounded below by some n>0. Here the maps x4 take the form diag(si,,ui) with

3

el (@) =ex jp(2,6)+ ) Ogew (,6) &

=1

For simplicity we assume that G is bounded and that e4 (v, By ) =¢€in + () +en+ (2, E+)
with pig,€lin+ € C3(Gx) and ey + = El—irn,i >2n. A typical anisotropic nonlinearity is
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given by
3 .
Kl
enx(z,Ex) = (ZJ et azt,i(x)E:t,jE:t,k) .
yhv=— (2
for scalar coefficients azi € C3(Gy). Because of the triple sum in eq 4 (2, E1)EL, the
tensor (aztkll)”kl has to be symmetric in {j,k,l}. Our symmetry assumptions on X+
also require symmetry in {i,l}, i.e., we can only prescribe ozfli for, say, 1<i<j<k<

1<3. Note that here ¢} =¢lin+ +3en+. We have e%(z,EL)>n if |Ex|<r for some
r>0 and so Uy = B(0,r). One can choose Uy =R? for instance if

3 .
€nl, (7, Ex) =diag, (ijl O‘Zt,i(x)Ei,j)

for coefficients aii >0.
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Appendix. Preservation of interface conditions. In this appendix we show
that the interface conditions for D and B are preserved. We refer to Definition 2.2 of
Vy and divy in [11].

LEMMA A.1. Let tg, T €R with to<T and set J=(to,T). Let (E,H,D,B)
in C(J,HYGQ))NCYJ,L*(G)) be a solution of the Mazwell system (1.1) with Ji €
L2(J,H(div,G+)) and Jx € L?*(J,H(divs,Y)) satisfying [E xv]=0 and [H xv]=Jx
on JxX. Set pz(t):pz’o—ﬁto(diVEJz— [J-v])(s)ds for all teJ.
(1) If [B-v](to)=0 on X, then [B-v]=0 on J x X.
(2) If [D-V](to) =—ps,0, then [D-v]=—pxs on J x X.

Proof.

(1) Since 9; B+ belongs to H(div,G+), these fields have a normal trace in H-'/2(%)
for each t € J. Employing that also curl E1 € H(div,G), we compute

(OB -v](t),0) m-172(syxm1/2(s) = ([OeB - V](1), ) H-1/2(2)x 11/2(3)

=([—curl E-v](t),0) g-1/2(s)x z1/2(x)
=(—curl B (t)-v,9) 1722y vz (s + (CWLE_(8) - v,0) gr-1/2(s5) x 11/2(x)

:7/ divcurlE_,_(t)godz—/ Cur1E+(t)~Vgadx—/ diveuwrl E_(t)pdx
Gt

Gy G_

—/ curl E_(t)-Vodz

= — E+ (t) 'CuﬂV(pdlE+ <E+(t) X V’VW>H—1/2(E)XH1/2(Z)
Gy

— E,(t) ~cuer<pd:v+ <E,(t) X (_V)7V(P>H*1/2(E)><H1/2(E)
G_
=([E x 1’](t)av@HflM(z)le/?(z) =0

for all t€ J and ¢ € C2°(G). Since trs HY (G) = H'Y?(X), we infer that 6;[B-v]=0 on
JxG. As [B-V](tp) =0 on X, we arrive at [B-v]=0 on J X X.
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(2) We proceed as in part 1. Using the assumptions on J, we compute

(O[D-V|(),0) 172y w12 (z) = [0: D -V](),0) H-1/2() x 1 /2(30)
=([(curlH = J)-v|(t), ) g-1/2(syx H1/2(%)
== <[J'V}(t>790>H*1/2(E)><H1/2(2) —([H x V](t)7V(P>H*1/2(E)><H1/2(E)
=—([J-V|](t), P u-12m)xm1/2() — (Is(8), V) g-1/2(5yx H12(3)

for all p € C°(G) and almost all t € J. Since Jx, =[H x v], the boundary current density
Js is tangent to X, i.e., Jy, =mxJy, where mx, =7y, denotes the orthogonal projection
on the tangent space at x € 3. We infer that

(Js(t), Vo) =172y x /2 (2) = (T £(8), Te V) o172 () x 1/2(5)
:<JZ (t);vz(p>H*1/2(E)><H1/2(2) = _<diVZ Jz(t>7<p>H*1/2(E)><H1/2(Z)-

We conclude that

(O[D-v](t),0) 1122y xmrr2(zy = (dive I = [T V(1)) m-1/2(2)x H1/2(x)

for all p € C°(G) and almost all t € J. Arguing as in (1), we derive claim (2). O
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