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LOCAL WELLPOSEDNESS OF QUASILINEAR MAXWELL
EQUATIONS WITH CONSERVATIVE INTERFACE CONDITIONS∗

ROLAND SCHNAUBELT† AND MARTIN SPITZ‡

Abstract. We establish a comprehensive local wellposedness theory for the quasilinear Maxwell
system with interfaces in the space of piecewise Hm-functions for m≥3. The system is equipped with
instantaneous and piecewise regular material laws and perfectly conducting interfaces and boundaries.
We also provide a blow-up criterion in the Lipschitz norm and prove the continuous dependence on
the data. The proof relies on precise a priori estimates and the regularity theory for the corresponding
linear problem also shown here.
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1. Introduction

The Maxwell equations are the basis of electro-magnetic theory and thus one of
the fundamental partial differential equations in physics. In the case of instantaneous
nonlinear material laws, they form a symmetric quasilinear hyperbolic system under
natural assumptions. For such systems on Rd, in [20] Kato has established a satisfactory
local wellposedness theory in Hs(Rd) for s>1+ d

2 . However, on a domain G ̸=R3, the
Maxwell system with the boundary conditions of a perfect conductor has a characteristic
boundary and does not belong to the classes of hyperbolic systems for which one knows a
wellposedness theory inH3. The available results need much more regularity and exhibit
a loss of derivatives in normal direction (encoded in weighted function spaces), see [16]
or [27]. In the recent papers [29] and [30] by one of the authors, a comprehensive local
wellposedness theory in Hm for m≥3 has been established for the boundary conditions
of a perfect conductor. The main effort in these works is devoted to prove full regularity
in normal direction at the boundary, heavily using the structure of the Maxwell system.
In the paper [26] we have also treated the case of absorbing boundary conditions where
solutions have more trace regularity.

However, deriving boundary conditions for the Maxwell systems on a domain
G⊆R3, one starts from the interface conditions (1.2) at ∂G and assumes that one
knows the trace of the fields outside G, see Section I.4.2.2 of [12] or Section 7.12 in [15].
Moreover, in applications one often deals with composite materials in which the con-
stitutive relations are only piecewise regular in x∈G. Here one has to treat the jumps
in the material as interfaces. It is thus necessary to investigate interface problems in
electro-magnetism, and not only (pure) boundary value problems.

In this work, we treat a (possibly unbounded) domain G⊆R3 being the disjoint
union of two subdomains G+ and G− and the interface Σ=∂G−, where Σ and ∂G are
smooth and have positive distance. Our results immediately extend to domains consist-
ing of finitely many such components. We establish a comprehensive local wellposedness
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theory in Hm with m≥3 for the Maxwell system on G, given as

∂tD±=curlH±−J±, for x∈G±, t∈J,
∂tB±=−curlE±, for x∈G±, t∈J,

divD±=ρ±, divB±=0, for x∈G±, t∈J,
E+×ν=0, B+ ·ν=0, for x∈∂G, t∈J,
E±(t0)=E0,±, H±(t0)=H0,±, for x∈G±,

(1.1)

for an initial time t0∈R, J =(t0,T ), and the unit outward normal vector ν of G+. Here
E±(t,x),D±(t,x)∈R3 are the electric and H±(t,x),B±(t,x)∈R3 the magnetic fields
on G±. It is known that the divergence equations and the magnetic boundary condition
B+ ·ν=0 in (1.1) remain valid if they are satisfied by the initial fields. Here, the charge
densities ρ±(t,x) are given by the initial charge and the current densities J±(t,x)∈R3

via

ρ±(t)=ρ±(t0)−
∫ t

t0

divJ±(s)ds

for all t≥ t0 on G± (see Section I.4.2.2 in [12]). In (1.1) we have imposed the boundary
conditions of a perfect conductor on ∂G. On Σ the Maxwell equations imply the interface
conditions

[D ·ν]=−ρΣ, [B ·ν]=0, [E×ν]=0, [H×ν]=JΣ (1.2)

for x∈Σ and t∈ (t0,T ), see Section I.4.2.4 of [12], where [D ·ν]= (D+−D−) ·ν etc. In
(1.2) the charge density ρΣ on the interface is determined by

ρΣ(t)=ρΣ(t)(t0)−
∫ t

t0

(divΣJΣ(s)− [J ·ν](s))ds, t∈J,

and the equations for D and B are true if they are valid at t= t0, see Lemma A.1.
The system (1.1) has to be complemented by constitutive relations between the

electric and magnetic fields, where we choose E± and H± as state variables. There
are various classes of such material laws. In the so-called retarded ones the fields D±
and B± depend also on the past of E± and H±, see [4, 15, 23], or [25]. In dynamical
material laws the material response is modelled by additional evolution equations, see
[3, 13, 18, 19], or [23]. We concentrate on instantaneous material laws, see [9] or [15],
where the fields D± and B± are given by

D±(t,x)=θ1,±(x,E±(t,x),H±(t,x)), B±(t,x)=θ2,±(x,E±(t,x),H±(t,x))

for regular functions θ±=(θ1,±,θ2,±) : G±×R6→R6. The most prominent example is
the so called Kerr nonlinearity D±=E±+ϑ±|E±|2E± and B±=H± with ϑ± : G±→
R. In Example 7.1 we discuss a more general class of θ± also arising in nonlinear optics.
We further assume that the current density is composed by

J±=J0,±+ σ̃±(E±,H±)E±, (1.3)

where J0,± is a given external current density and σ̃± is the conductivity on G±.
We insert these material laws into (1.1) and differentiate formally, obtaining

(∂tD±,∂tB±)=∂(E±,H±)θ±(x,E±,H±)∂t(E±,H±)=(curlH±−J±,−curlE±).
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Our main structural assumption is that ∂(E±,H±)θ± is symmetric and positive definite,
which is true for the Kerr law for small E± (and globally if ϑ±≥0). These assumptions
ensure that one has a symmetrizer for the core energy estimates and that the problem
is hyperbolic. See also Example 7.1.

Such assumptions are quite standard already for linear Maxwell equations.
The resulting equations form a symmetric quasilinear hyperbolic system of first

order. In order to transform (1.1) into a standard form, we introduce the matrices

J1=

 0 0 0
0 0 −1
0 1 0

, J2=

 0 0 1
0 0 0
−1 0 0

 , J3=

 0 −1 0
1 0 0
0 0 0

 ,
Aco

j =

(
0 −Jj
Jj 0

)
, j∈{1,2,3}. (1.4)

Note that J1∂1+J2∂2+J3∂3=curl. Writing χ±=∂(E±,H±)θ±, f±=(−J0,±,0), σ±=

( σ̃± 0
0 0

), and using u±=(E±,H±) as a new variable, we obtain the system

χ±(u±)∂tu±+

3∑
j=1

Aco
j ∂ju±+σ±(u±)u±=f±, (t,x)∈J×G±. (1.5)

To recast the electric boundary and interface conditions in (1.1) and (1.2), we set

Bν =

 0 ν3 −ν2
−ν3 0 ν1
ν2 −ν1 0

, B∂G=
[
Bν 0

]
, BΣ=

[
Bν 0 −Bν 0
0 Bν 0 −Bν

]
(1.6)

on ∂G respectively Σ, and put g=(0,JΣ)
T . System (1.1) is then equivalent to the

symmetric quasilinear hyperbolic initial boundary value problem
χ±(u±)∂tu±+

∑3

j=1
Aco

j ∂ju±+σ±(u±)u±=f±, x∈G±, t∈J ;

B∂Gu+=0, x∈∂G, t∈J ;
BΣ(u+,u−)=g, x∈Σ, t∈J ;
u(t0)=u0, x∈G.

(1.7)

On ∂G we could also allow for inhomogeneous boundary values, see [29]. As noted
above, the magnetic boundary and interface conditions and the divergence relations in
(1.1) and (1.2) are true if we impose corresponding conditions on u0 (see Lemma 7.25
in [28] and Lemma A.1). We look for solutions u of (1.7) in the spaces

Gm(J×G)=
⋂m

j=0
Cj(J,Hm−j(G)), (1.8)

Hk(G)={v∈L2(G) : v+∈Hk(G+),v−∈Hk(G−)},

cf. [8, 24], where k,m∈N0 and v± are the restrictions of v to G±. We assume that the
coefficients and data are appropriately smooth and compatible (in the sense of (6.5)).
Our main Theorem 7.1 then shows that

(1) the system (1.7) has a unique maximal solution u∈Gm(J×G) with m≥3,

(2) finite existence time can be characterized by blow-up in the Lipschitz-norm,

(3) the solution depends continuously on the data.
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We are not aware of solvability results for the quasilinear Maxwell system (1.1) or (1.7)
with interfaces. It was however treated in the time-harmonic setting in some situations,
see [2, 6] or [7].

These results are based on the detailed regularity theory in Theorem 3.1 for the
corresponding non-autonomous linear system

A0,±∂tu±+
∑3

j=1
Aco

j ∂ju±+D±u±=f±, x∈G±, t∈J ;

B∂Gu+=0, x∈∂G, t∈J ;
BΣ(u+,u−)=g, x∈Σ, t∈J ;
u(t0)=u0, x∈G.

(1.9)

We follow the same strategy as for the pure initial boundary value problem in [29] and
[30]. We freeze a map û in the nonlinearities of (1.7). The resulting linear problem (1.9)
can be solved in G0(J×G) for Lipschitz coefficients using [14]. In a lengthy procedure
one can first show a priori estimates for solutions in Gm(J×G) and then prove that
the G0–solution actually belongs to Gm(J×G), provided that data and coefficients are
regular enough and compatible. Here one has to inductively intertwine different results
for the tangential, time, and normal directions. The normal part is the most difficult one
due to the characteristic interface and boundary (i.e., Aco

1 ν1+A
co
2 ν2+A

co
3 ν3 is singular).

Our treatment of the normal regularity heavily relies on the structure of the Maxwell
system, see Proposition 4.1 and Lemma 5.1.

For these arguments one has to localize the system. In this procedure one at first
loses many of the zeros in the coefficient matrices of (1.7), which also become non-
constant. However, using an additional transformation described in (3.8), (3.9) and
(3.12), we obtain localized systems with an unchanged space-independent matrix Aco

3

and space-independent boundary matrices BΣ and B∂G. This fact allows us to partly
separate the treatment of the normal directions from the others. This achievement is
crucial for our analysis.

The nonlinear problem is then solved by a contraction argument in Theorem 6.1,
which is basically standard though one has to be very careful setting up the constants.
Here we employ the precise form of the a priori estimate in Theorem 3.1. In the
derivation of the blow-up criterion and the continuous dependence of the data, one has
to use the localized problems and the structure of the system once more.

Fortunately, the methods developed in [29] and [30] for the pure boundary value
problem work quite well in the present situation. Many arguments can be adapted
with straightforward changes. These are omitted below. However, at several points
the structure of the problem changes significantly because of the interface condition.
In the first step one has to apply the basic linear L2 results of [14] to the localized
interface problem on R3. To this aim, one rewrites the Maxwell system as a 12×12
initial boundary value system on the positive half-space by reflecting the coefficients
from the negative one. In this procedure extra signs arise due to the reflection and spoil
the structure of the pure Maxwell system appearing in [30], see e.g. (3.6) and (4.4).
However, the core parts of the proof concerning normal regularity heavily depend on
cancellation properties of the arising (linear) Maxwell system. Similarly the structure
of the new 12×12 Maxwell system is crucial in order to obtain constant coefficients Aco

3

and BΣ in the localization procedure. These and several other arguments are closely
tied to the structure of the interface problem. They are thus worked out in detail,
though they lead to lengthy and intricate calculations.
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In the next section we introduce our basic notation and some auxiliary results.
The localization procedure is discussed in Section 3. The core a priori estimates and
regularity results for the linear problem are shown in Sections 4 and 5, respectively. The
basic fixed-point argument is included in Section 6, and the main local wellposedness
theorem in Section 7.

2. Function spaces and linear compatibility conditions
Standing notation: Let m∈N0 and set m̃=max{m,3}. We work with domains

G, G+, and G− in R3 such that G is the disjoint union of G+, G−, and Σ :=∂G−.
Moreover it is assumed that Σ and ∂G have a positive distance and are tame uniform
Cm̃+2–boundaries, see Definitions 2.24 and 5.4 of [28]. This means that they are uniform
Cm̃+2-boundaries (see e.g. [1]) and that there exist a smooth partition of unity (θi)i∈N0

of G− respectively G subordinate to the locally finite covering (Ui)i∈N0
(where U0=G−

respectively U0=G), as well as test functions σi with σi=1 on suppθi and ωi with
ωi=1 on φi(suppσi), which are all uniformly bounded in Cm̃+2. Of course, compact
boundaries of class Cm̃+2 or halfspaces satisfy these assumptions.

Our solutions take values in domains U+ and U− in R6. We further write
L(A0,. ..,A3,D) or L(Aj ,D) for the differential operator

∑3
j=0Aj∂j+D with the co-

efficients Aj and D, where ∂0=∂t. By J we mean an open time interval and we set
Ω=J×R3

+. The image of a function v is designated by imv. For a function w in H1(G),
we denote by ∂jw the L2(G)-function whose restriction to G± coincides with ∂jw±. In
the localization procedure we employ the matrices

Aco
j =

(
Aco

j 0
0 Aco

j

)
for j∈{1,2,3} and Ãco

3 =

(
Aco

3 0
0 −Aco

3

)
. (2.1)

To introduce the necessary trace operators, take coefficients Aj ∈W1,∞(J×G), i.e.,
the restrictions Aj,± belong to W 1,∞(J×G±). Let v+ be an element of L2(J×G+)

such that
∑3

j=0Aj,+∂jv+ is contained in L2(J×G+). Then the product A+(ν)v+=

(
∑3

j=0Aj,+νj)v+ has a trace on J×∂G+ belonging to H−1/2(J×∂G+), cf. [28,30], for
instance. Here ν denotes the unit outer normal of J×G+. We may restrict this trace to
J×Σ and to J×∂G, respectively. Moreover, the corresponding trace operators TrJ×Σ,+

and TrJ×∂G are given by the standard ones trΣ,+ and tr∂G,+, respectively, if v+ takes
values in H1(G+). Here we can replace the subscript + by −. We further set

TrJ×Σ,±(A(ν)u)=(TrJ×Σ,+(A+(ν)u+),TrJ×Σ,−(A−(ν)u−))

if u∈L2(J×G) satisfies
∑3

j=0Aj,±∂ju±∈L2(J×G±), respectively

trΣ,±u=(trΣ,+u+,trΣ,−u−)

if u∈H1(G). We define the trace TrJ×Σ,+(MA(ν)u) by MTrJ×Σ,+(A(ν)u) for matrix-
functionsM ∈W1,∞(J×G), and correspondingly for the other trace operators. Finally,
trΣ is the usual trace at Σ for functions in H1(G) or C(G). On R3

+={x∈R3 :x3>0}
we use the trace operator TrJ×∂R3

+
as introduced in [30].

We will employ the same function spaces as in [30], but we have to add variants
allowing discontinuities across the interface. For reasons of clarity, we introduce all
the spaces here. Take a subdomain G̃ of R3. We have already encountered the spaces
Gm(J×G) and Hm(G) in (1.8). Their norms are given by

∥v∥Gm(J×G)= max
j∈{0,...,m}

∥∂jt v∥L∞(J,Hm−j(G)),
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∥v∥2Hm(G)=∥v+∥2Hm(G+)+∥v−∥2Hm(G−).

We also need the simpler version

Gm(J×G̃)=
⋂m

j=0
Cj(J,Hm−j(G̃)).

Set e−γ(t)=e
−γt for γ≥0 and t∈R. We use the time-weighted norms

∥v∥Gm,γ(J×G̃)= max
j∈{0,...,m}

∥e−γ∂
j
t v∥L∞(J,Hm−j(G̃))

for all γ≥0. If γ=0, we also write ∥·∥Gm(J×G̃) instead of ∥·∥Gm,0(J×G̃). Other function

spaces on J×G̃ or J×G are treated analogously. We further set

G̃m(J×G̃)={v∈L∞(J,L2(G̃)) : ∂αv∈L∞(J,L2(G̃)) for all α∈N4
0 with |α|≤m},

and define G̃m(J×G̃) in a similar way. These spaces are endowed with the same norms
as Gm(J×G̃) respectively Gm(J×G).

The coefficients of the linear problem will be contained in

Fm,k(J×G̃)={A∈W 1,∞(J×G̃)k×k : ∂αA∈L∞(J,L2(G̃)) for all α∈N4
0

with 1≤|α|≤m},
∥A∥Fm(J×G̃)=max{∥A∥W 1,∞(J×G̃), max

1≤|α|≤m
∥∂αA∥L∞(J,L2(G̃))};

Fm,k(J×G)={A∈W1,∞(J×G) : A+∈Fm,k(J×G+),A−∈Fm,k(J×G−)},
∥A∥Fm(J×G)=max{∥A+∥Fm(J×G+),∥A−∥Fm(J×G−)}.

The regularity of time-evaluations is measured in the spaces

F 0
m,k(G̃)={A∈L∞(G̃)k×k : ∂αA∈L2(G̃)k×k for all α∈N3

0 with 1≤|α|≤m},
∥A∥F 0

m(G̃)=max{∥A∥L∞(G̃), max
1≤|α|≤m

∥∂αA∥L2(G̃)};

F0
m,k(G)={A∈L∞(G)k×k : A+∈F 0

m,k(G+),A−∈F 0
m,k(G−)},

∥A∥F0
m(G)=max{∥A+∥F 0

m(G+),∥A−∥F 0
m(G−)}.

The subscript η always designates the subspace of matrix-valued maps A with AT =A≥
η>0. By Fcp

m,k(J×G) we mean those A∈Fm,k(J×G) which are constant outside of a

compact subset of J×G, and by Fcv
m,k(J×G) those which have a limit as |(t,x)|→∞.

The variants for F instead of F are defined analogously. We will only use the parameters
k∈{1,6,12}. As it will be clear from the context which parameter we consider, we
usually drop it from our notation.

After the localization procedure below, the coefficients in front of the spatial deriva-
tives belong to the space

F cp
m,coeff(R

3
+)={A∈F cp

m,12(Ω): ∃µ1,µ2,µ3∈F cp
m,1(Ω) independent of time,

such that A=
∑3

j=1
Aco

j µj}. (2.2)

Finally, we introduce the space for the data on the interface, namely

Em(J×Σ)=
⋂m

j=0
Hj(J,Hm+ 1

2−j(Σ)).
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We next state several bilinear estimates, which will be ubiquitous in the following.
One proves this result by applying Lemma 2.1 from [30] on G− and on G+.

Lemma 2.1. Take m1,m2∈N with m1≥m2 and m1≥2 and a parameter γ≥0.

(1) Let k∈{0,. ..,m1}, f ∈G̃m1−k(J×G), and g∈G̃k(J×G). Then

fg∈G̃0(J×G) and ∥fg∥G0,γ(J×G)≤C∥f∥Gm1−k(J×G)∥g∥Gk,γ(J×G).

(2) Let f ∈G̃m1(J×G) and g∈G̃m2(J×G). Then fg∈G̃m2(J×G) and

∥fg∥Gm2,γ(J×G)≤Cmin{∥f∥Gm1
(J×G)∥g∥Gm2,γ(J×G),

∥f∥Gm1,γ(J×G)∥g∥Gm2
(J×G)}.

The result remains true if we replace G̃m1
(J×G) by Fm1

(J×G) and if we replace
both G̃m1(J×G) and G̃m2(J×G) by Fm1(J×G) and Fm2(J×G).

(3) Let k∈{0,. ..,m1}, f ∈Hm1−k(G), and g∈Hk(G). Then fg∈L2(G) and

∥fg∥L2(G)≤C∥f∥Hm1−k(G)∥g∥Hk(G).

(4) Let f ∈Hm1(G) and g∈Hm2(G). Then fg∈Hm2(G) and

∥fg∥Hm2 (G)≤C∥f∥Hm1 (G)∥g∥Hm2 (G).

The result is also valid with Hm1(G) replaced by F0
m1

(G).
In Assertions 1 and 2 one can also remove the tildes.

In Section 5 we develop a regularization procedure which needs the next approx-
imation result for the coefficients, taken from Lemma 2.2 of [30] (there it is stated
for k∈{1,6}, but the proof works componentwise and thus for all k∈N, cf. [28,
Lemma 2.21]).

Lemma 2.2. Let m∈N. Choose A∈Fm(Ω). Then there exists a family {Aε}ε>0 in
C∞(Ω) satisfying

(1) ∂αAε∈Fm(Ω) for all α∈N4
0 and ε>0,

(2) ∥Aε∥W 1,∞(Ω)≤C∥A∥W 1,∞(Ω) and ∥∂αAε∥L∞(J,L2(R3
+))≤C∥A∥Fm(Ω) for all multi-

indices 1≤|α|≤m and ε>0,

(3) Aε→A in L∞(Ω) as ε→0,

(4) Aε(0)→A(0) in L∞(R3
+), and ∂αA and ∂αAε have a representative in the space

C(J,L2(R3
+)) with ∂αAε(0)→∂αA(0) in L2(R3

+) as ε→0 for all α∈N4
0 with 0<

|α|≤m−1.

If A is independent of time, the same is true for Aε for all ε>0. If A additionally
belongs to F cp

m (Ω), F cv
m (Ω), Fm,η(Ω) for a number η>0, or the intersection of two of

these spaces, then the same is true for Aε for all ε>0.

In order to discuss the compatibility conditions both for the linear Maxwell sys-
tem (1.9) and its localized variants, we look at (1.9) with variable, time-indepen-
dent coefficients A1,A2,A3∈Fm(J×G) for a moment. We further fix coefficients
A0∈Fm,η(J×G) and D∈Fm(J×G), as well as data f ∈Hm(J×G), g∈Em(J×Σ),
and u0∈Hm(G). Given a solution u in Gm(J×G) of (1.9), we can differentiate the dif-
ferential equation in (1.9) up to (m−1)-times in time by means of Lemma 2.1, obtaining
the identity

∂pt u(t)=SG,m,p(t,A0,A1,A2,A3,D,f,u(t)), (2.3)
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for all t∈J and p∈{0,. ..,m−1}. Here we inductively define the maps SG,m,p=
SG,m,p(t0,Aj ,D,f,u0)=SG,m,p(t0,A0,A1,A2,A3,D,f,u0) by

SG,m,0,±=u0,±,

SG,m,p,±=A0,±(t0)
−1
(
∂p−1
t f±(t0)−

3∑
j=1

Aj,±∂jSG,m,p−1,±

−
p−1∑
l=1

(
p−1

l

)
∂ltA0,±(t0)SG,m,p−l,±−

p−1∑
l=0

(
p−1

l

)
∂ltD±(t0)SG,m,p−1−l,±

)
, (2.4)

for 1≤p≤m. On the other hand, we can differentiate the boundary condition in (1.9)
up to (m−1)-times in time and insert t. It follows the equation

BΣ trΣ,±(∂
p
t u(t))=∂

p
t g(t) (2.5)

on Σ for all 0≤p≤m−1 and t∈J . We proceed on ∂G in the same way. For t= t0
equations (2.3) and (2.5) yield the compatibility conditions of order m

BΣ trΣ,±SG,m,p(t0,A0,. ..,A3,D,f,u0)=∂
p
t g(t0) on Σ for 0≤p≤m−1,

B∂G tr∂GSG,m,p(t0,A0,. ..,A3,D,f,u0)=0 on ∂G for 0≤p≤m−1 (2.6)

for the coefficients and data. These conditions are thus necessary for the existence of a
solution in Gm(J×G). In Section 5 their sufficiency will be shown. We will also need
them to treat the half-space problem arising from the localization procedure, where
G=R3

+, k=12, and Aj , D, and BΣ are replaced by Aj , D, and B. We often suppress
G in the notation.

As the maps SG,m,p appear frequently, the following estimates are indispensable.
They follow from Lemma 2.3 of [30] applied on G+ and on G−.

Lemma 2.3. Let η>0, m∈N, and m̃=max{m,3}. Pick r0>0. Choose A0∈Fm̃,η(J×
G), time-independent A1,A2,A3∈Fm̃(J×G), and D∈Fm̃(J×G) with

∥Ai(t0)∥F0
m̃−1(G)≤ r0, ∥D(t0)∥F0

m̃−1(G)≤ r0,

max
1≤j≤m−1

∥∂jtA0(t0)∥Hm̃−1−j(G)≤ r0, max
1≤j≤m−1

∥∂jtD(t0)∥Hm̃−1−j(G)≤ r0

for all i∈{0,. ..,3}. Take f ∈Hm(J×G) and u0∈Hm(G). Let 0≤p≤m. Then the
function SG,m,p(t0,A0,. ..,A3,D,f,u0) is contained in Hm−p(G). Moreover, there exist
constants Cm,p=Cm,p(η,r0)>0 such that

∥SG,m,p∥Hm−p(G)≤Cm,p

(p−1∑
j=0

∥∂jt f(t0)∥Hm−1−j(G)+∥u0∥Hm(G)

)
.

3. Localization

We first discuss the localization procedure. In fact, in the logical order of our
reasoning this section should be placed after the linear part as in [28], but we decided to
start with it as it determines the linear problems we have to study. The next theorem
thus assumes that we can solve the arising linear problems on the half space, which will
be shown in Sections 4 and 5.



R. SCHNAUBELT AND M. SPITZ 2273

Theorem 3.1. Let η>0, m∈N0, and m̃=max{m,3}. Fix r≥ r0>0. Take a domain
G as described at the beginning of Section 2. Choose t0∈R, T ′>0, T ∈ (0,T ′), and set
J =(t0,t0+T ). Take coefficients A0∈Fcv

m̃,6,η(J×G) and D∈Fcv
m̃,6(J×G) satisfying

∥A0∥Fm̃(J×G)≤ r, ∥D∥Fm̃(J×G)≤ r,
max{∥A0(t0)∥F0

m̃−1(G), max
1≤j≤m̃−1

∥∂jtA0(t0)∥Hm̃−j−1(G)}≤ r0,

max{∥D(t0)∥F0
m̃−1(G), max

1≤j≤m̃−1
∥∂jtD(t0)∥Hm̃−j−1(G)}≤ r0.

Choose data f ∈Hm(J×G), g∈Em(J×Σ), and u0∈Hm(G) such that the tuple
(t0,A0,A

co
1 ,A

co
2 ,A

co
3 ,D,BΓ,f,g,u0) fulfills the compatibility conditions (2.6) of order m

on Γ=Σ and on Γ=∂G.
Then the linear initial boundary value problem (1.9) has a unique solution u in

Gm(J×G). Moreover, there is a number γm=γm(η,r,T ′)≥1 such that

∥u∥2Gm,γ(J×G)≤ (Cm,0+TCm)emC1T
(m−1∑

j=0

∥∂jt f(t0)∥2Hm−1−j(G)+∥g∥2Em,γ(J×Σ)

+∥u0∥2Hm(G)

)
+
Cm

γ
∥f∥2Hm

γ (J×G) (3.1)

for all γ≥γm, where Ci=Ci(η,r,T
′)≥1 and Ci,0=Ci,0(η,r0)≥1 for i∈{1,m}.

Proof. Set N−1={−1,0}∪N. Fix a covering (Ui)i∈N−1
of G, a sequence of sets

(Vi)i∈N−1
, and sequences of functions (φi)i∈N−1

, (θi)i∈N−1
, (σi)i∈N−1

, and (ωi)i∈N−1
as in

Definition 5.4 in [28] for the tame uniform Cm̃+2-boundary Σ of G− (complemented by
a domain U−1 covering G\G− and corresponding functions). We further take φi=id for
i∈{−1,0}. Here, φi :Ui→Vi is a chart, (Ui)i∈N is a cover of Σ with positive distance
to ∂G, the set U0 covers G− \

⋃∞
i=1Ui, while G+ \

⋃∞
i=1Ui is contained in U−1. In

particular, (θi)i∈N−1
is a smooth partition of unity on G. We recall that the maps ωi

equal 1 on the sets Ki=φi(suppσi) and that σi=1 on suppθi for all i∈N−1. Moreover,
φi(Ui∩G+)={y∈Vi : y3>0} and φi(Ui∩G−)={y∈Vi : y3<0} for i∈N. We use the
same symbol for a function and its zero extensions.

(I) In the first step we determine the coefficients of the localized problem on R3
+.

To this aim, we write ψi=φ
−1
i : Vi→Ui, and define the composition operators

Φi : L
2(Ui)→L2(Vi), v 7→v◦ψi; Φ−1

i : L2(Vi)→L2(Ui), v 7→v◦φi;

for all i∈N−1. Observe that φi, and thus Φi, are the identity for i∈{−1,0}. The
operators Φi and Φ−1

i act componentwise on vector-valued functions. With a slight
abuse of notation we also denote the composition with ψi on L

2(J×Vi) and H−1(J×Vi)
by Φi, and analogously for Φ−1

i .
For v∈L2(J×Vi) we introduce the differential operator

Ai
±v± :=Φi

(
A0,±∂t+

3∑
j=1

Aco
j ∂j+D±

)
Φ−1

i v±

=ΦiA0,±∂tv±+

3∑
l=1

( 3∑
j=1

Aco
j Φi∂jφi,l

)
∂lv±+ΦiD±v±, (3.2)
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where φi,l is the l-th component of φi for all i∈N. Throughout, for a function v defined
on Vi respectively R3 we write v± for the restrictions to Vi∩R3

± respectively to R3
±,

where R3
−={x∈R3 :x3<0}. We define

Ãi
0=ΦiA0, Ãi

l =Φi

(∑3

j=1
Aco

j ∂jφi,l

)
, D̃i=ΦiD (3.3)

on Vi for all i∈N and l∈{1,2,3}, as well as Ã0
0=Φ0A0=A0 and D̃0=Φ0D=D on

U0, and Ã
−1
0 =Φ−1A0=A0 and D̃−1=Φ−1D=D on U−1 (this notation is only used if

confusion with a matrix inverse is not possible).
Lemma 5.1 in [28] yields numbers z(i)∈{1,2,3} and τ ∈ (0,1) with

|∂z(i)φi,3|≥ τ on Ui (3.4)

for all i∈N. We pick a point yi∈Vi for each i∈N and set

Ai
0=ωiÃ

i
0+(1−ωi)η for i∈N−1,

Ai
j =ωiÃ

i
j+(1−ωi)

∂z(i)φi,3

|∂z(i)φi,3|
(ψi(yi))A

co
z(i) for i∈N, j∈{1,2,3}, (3.5)

Di=ωiD̃
i for i∈N−1.

These coefficients will only be multiplied with functions supported in the set where
ωi=1, but we need the above extensions in our reasoning. The differential operator Ai

can thus be extended to a differential operator on R3 by setting

Ai
±v±=Ai

0,±∂tv±+
∑3

j=1
Ai

j,±∂jv±+Di
±v±

for all v∈L2(J×R3) and i∈N. To rewrite the interface problem on R3 as a boundary
value problem on R3

+, we set

Ăi
j,−(·,x3)=Ai

j,−(·,−x3), Ăi
3,−(·,x3)=−Ai

3,−(·,−x3), D̆i
−(·,x3)=Di

−(·,−x3)

for j∈{0,1,2}, and introduce the (12×12)-matrices

Ai
j =

(
Ai

j,+ 0

0 Ăi
j,−

)
and Di=

(
Di

+ 0

0 D̆i
−

)
(3.6)

for all j∈{0,. ..,3} on J×R3
+. Here the part of the equation on R3

− is reflected to R3
+

and written in the new 6 lines. The minus in front of Ai
3,− is needed to compensate the

inner derivative when applying ∂3.
We turn our attention to the interface condition. By Remark 5.2 in [28], the vector

field ∇φi,3 is normal to Σ, and hence there is a number κi(x)∈R with

∇φi,3(x)=κi(x)ν(x)

for all x∈Σ∩Ui and i∈N. In particular, κi=∇φi,3 ·ν belongs to Cm+1(Σ∩Ui,R) for
all i∈N. Moreover, we can extend the product κiν smoothly from Ui∩Σ to Ui by ∇φi,3.
Let i∈N. We now introduce the interface matrices

B̂i=ωiΦi(κiBΣ)+(1−ωi)
∂z(i)φi,3

|∂z(i)φi,3|
(ψi(yi))B

co
z(i), Bco

j :=BΣ(ej), (3.7)
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on R3 for j∈{1,2,3}, where ej denotes the j-th unit vector in R3 and BΣ(ej) is given
by the second line in (1.6) with ν=ej . Define the function bz(i) : R3→R by

bz(i)=ωiΦi∂z(i)φi,3+(1−ωi)
∂z(i)φi,3

|∂z(i)φi,3|
(ψi(yi)).

Since ∂z(i)φi,3 does not change signs on Ui, estimate (3.4) implies the lower bound

|bz(i)|=ωi|Φi∂z(i)φi,3|+(1−ωi)≥ τωi+1−ωi=1−(1−τ)ωi≥ τ

on R3 as τ ∈ (0,1). Consequently, the functions bz(i) and b
−1
z(i) belong to Cm+1(R3) and

their restrictions to ∂R3
+ are elements of Cm+1(∂R3

+).

We next want to transform the coefficients Ai
3 and B̂

i to constant coefficients similar
to those in the original Maxwell system (1.9) on G. Here we only consider the case
z(i)=3 with b3≥ τ on R3. The other ones are treated analogously, cf. Section 5 of [28].
To rewrite Ai

3, we use the matrices

Âi
3=

 0 bi3 −ωiΦi∂2φi,3

−bi3 0 ωiΦi∂1φi,3

ωiΦi∂2φi,3 −ωiΦi∂1φi,3 0


on R3. Let Q be the reflection operator defined by Qv(·,x3)=v(·,−x3) for any v∈
L2
loc(J×R3). The coefficient Ai

3 can now be written as

Ai
3=

(
Ai

3,+ 0
0 −QAi

3,−

)
=


0 Âi

3 0 0

−Âi
3 0 0 0

0 0 0 −QÂi
3

0 0 QÂi
3 0

 .
Our main tool are the matrix-valued functions

Ĝi
r= b

i,−1/2
3

1 0 ωiΦi∂1φi,3

0 1 ωiΦi∂2φi,3

0 0 bi3

, Gi
r=


Ĝi

r 0 0 0

0 Ĝi
r 0 0

0 0 QĜi
r 0

0 0 0 QĜi
r

 (3.8)

on R3. Equation (2.1) then yields the first desired transformation

(Gi
r)

TAi
3Gi

r=

(
Aco

3 0
0 −Aco

3

)
= Ãco

3 . (3.9)

For the boundary condition, we note that

B̂i=

(
B̂i

3,bl 0 −B̂i
3,bl 0

0 B̂i
3,bl 0 −B̂i

3,bl

)
with B̂i

3,bl := Â
i
3.

Setting R̂i
3=(Ĝi

r)
T , we calculate

R̂i
3B̂

i
3,bl= b

i,1/2
3

 0 1 −ωiΦi(∂2φi,3)b
i,−1
3

−1 0 ωiΦi(∂1φi,3)b
i,−1
3

0 0 0

=: B̃i
bl,3
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on ∂R3
+. Consequently,

Ri
3B̂

i :=

(
R̂i

3 0

0 R̂i
3

)
·B̂i=

(
B̃i

bl,3 0 −B̃i
bl,3 0

0 B̃i
bl,3 0 −B̃i

bl,3

)
. (3.10)

Delete in B̃i
bl,3 the line of zeros and call the resulting matrix Bi

bl,3. We then introduce
the boundary matrices

Bi
3=

(
Bi

bl,3 0 −Bi
bl,3 0

0 Bi
bl,3 0 −Bi

bl,3

)
. (3.11)

We next infer that

Bi
bl,3Ĝ

i
r= b

i,1/2
3

(
0 1 −ωiΦi(∂2φi,3)b

i,−1
3

−1 0 ωiΦi(∂1φi,3)b
i,−1
3

)
b
i,−1/2
3

1 0 ωiΦi∂1φi,3

0 1 ωiΦi∂2φi,3

0 0 bi3


=

(
0 1 0
−1 0 0

)
=:Bbl.

On the boundary ∂R3
+ we thus obtain the second crucial identity

Bi
3 ·Gi

r=

(
Bbl 0 −Bbl 0
0 Bbl 0 −Bbl

)
=:Bco. (3.12)

Finally, we define the matrices

Cbl=

(
1 0 0
0 1 0

)
, Cco=

(
0 −Cbl 0 −Cbl

Cbl 0 Cbl 0

)
=:Mco.

Using (1.4), we then compute

CT
bl ·Bbl=

 0 1 0
−1 0 0
0 0 0

=−J3, BT
blCbl=(−J3)T =J3,

(Cco)TBco=


0 CT

bl

−CT
bl 0

0 CT
bl

−CT
bl 0

 ·
(
Bbl 0 −Bbl 0
0 Bbl 0 −Bbl

)

=


0 CT

blBbl 0 −CT
blBbl

−CT
blBbl 0 CT

blBbl 0
0 CT

blBbl 0 −CT
blBbl

−CT
blBbl 0 CT

blBbl 0

 ,

(Bco)TCco=


0 −BT

blCbl 0 −BT
blCbl

BT
blCbl 0 BT

blCbl 0
0 BT

blCbl 0 BT
blCbl

−BT
blCbl 0 −BT

blCbl 0

.
We can now check certain algebraic conditions needed to apply [14], namely

ℜ
(
(Cco)TBco

)
=

1

2

(
(Cco)TBco+(Bco)TCco

)
=


0 −J3 0 0
J3 0 0 0
0 0 0 J3
0 0 −J3 0


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=

(
Aco

3 0
0 −Aco

3

)
= Ãco

3 , (3.13)

McoÃco
3 =Bco.

To simplify the notation, we write Bi and Ri instead of Bi
z(i) and Ri

z(i) in the

following. Observe that the restrictions of Bi and Ri to R3
+ belong to Cm̃+1(R3

+). The

rank of Bco and Cco is 4 and Ri(x) is invertible for all x∈R3
+. The inverse of Ri is as

regular as Ri itself. Moreover, the transformed coefficients satisfy

Ãi
0 := (Gi

r)
T

(
Ai

0,+ 0
0 QAi

0,−

)
Gi
r ∈ Fcp

m̃,η(Ω),

Ãi
j := (Gi

r)
TAi

jGi
r ∈ Fcp

m̃,coeff(R
3
+) for j∈{1,2}, (3.14)

D̃i := (Gi
r)

TDiGi
r−
∑3

j=1
(Gi

r)
TAi

jGi
r∂j(Gi

r)
−1Gi

r ∈ Fcp
m̃ (Ω),

where we reduced the size of η independently of i if necessary.
We next fix a constant M1 as in Lemma 5.1 of [28] and constants M2, M3, and

M4 as in Definition 5.4 in [28] for the tame uniform Cm̃+2-boundary Σ of G−. We put
M =maxi=1,...,4Mi. The construction of our extended coefficients then shows

∥Ai
0∥Fm(Ω)≤C(M1,M4)∥A0∥Fm(J×G)≤R,

max{∥Ai
0(0)∥F 0

m̃−1(R3
+), max

1≤j≤m̃−1
∥∂jtAi

0(0)∥Hm̃−j−1(R3
+)}

≤C(M1,M4)max{∥A0(0)∥F0
m̃−1(G), max

1≤j≤m̃−1
∥∂jtA0(0)∥Hm̃−j−1(G)}≤R0,

∥Ai
j∥Fm̃(Ω)≤C(M1,M4)≤R, (3.15)

∥Di∥Fm̃(Ω)≤C(M1,M4)∥D∥Fm(J×G)≤R,

max{∥Di(0)∥F 0
m̃−1(R3

+), max
1≤j≤m̃−1

∥∂jtDi(0)∥Hm̃−j−1(R3
+)}

≤C(M1,M4)max{∥D(0)∥F0
m̃−1(G), max

1≤j≤m̃−1
∥∂jtD(0)∥Hm̃−j−1(G)}≤R,

for all i∈N and j∈{1,2,3}, and for constants R=R(M,r) and R0=R0(M,r0).

(II) After introducing some notation, we relate the compatibility conditions of the
localized problem to the given ones. Using the reflection operator Q from step (I), we
define the maps

R6 : L
2
loc(R3,R6)→L2

loc(R3
+,R12), v 7→ (v+,Qv−),

R6×6 : L
2
loc(R3,R6×6)→L2

loc(R3
+,R12×12), A 7→

(
A+ 0
0 QA−

)
,

R̂6×6 : L
2
loc(R3,R6×6)→L2

loc(R3
+,R12×12), A 7→

(
A+ 0
0 −QA−

)
.

As it will be clear from the context which operator we consider, we drop the index, and
we put Ri=id for i∈{−1,0} and Ri=R for i∈N.

In step (IV) we determine the initial (boundary) value problem solved by the
functions RiΦi(θiu) on J×G, J×R3, respectively J×R3

+. For given functions v∈
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Gm(J×G) and h∈Hm(J×G), then the transformed data

f i(h,v)=RiΦi(θih)+RiΦi

( 3∑
j=1

Aco
j ∂jθiv

)
∈ Hm(Ω),

gi=
(
(tr∂R3

+
Ri)Φ̃i(trΣ(θi)κig)

)
α(i)

∈ Em(J×∂R3
+),

ui0=RiΦi(θiu0) ∈ Hm(R3
+), (3.16)

arise for i∈N−1 respectively i∈N. Here α(i) denotes the 4-tuple obtained by removing
z(i) and z(i)+3 from (1,. ..,6) and Φ̃i the composition operator with the restriction of
ψi to Ui∩Σ.

Let v∈Gm(J×G) be a map with ∂pt v(0)=SG,m,p(0,A0,A
co
1 ,A

co
2 ,A

co
3 ,D,f,u0) for all

p∈{0,. ..,m−1}, with the operators SG,m,p from (2.4). We abbreviate

Si
m,p=SR3

+,m,p(0,Ai
0,Ai

1,Ai
2,Ai

3,Di,f i(f,v),ui0), (3.17)

Sm,p=SG,m,p(0,A0,A
co
1 ,A

co
2 ,A

co
3 ,D,f,u0)

for all p∈{0,. ..,m} and i∈N. The maps Si
m,p and Sm,p are well-defined due to the

regularity of the coefficients and the data. Fix an index i∈N. We claim that

Si
m,p=RΦi(θiSm,p) for all p∈{0,. ..,m}. (3.18)

To show this assertion, we first note that

Si
m,0=u

i
0=RΦi(θiu0)=RΦi(θiSm,0).

Next, let the claim (3.18) be true for all l∈{0,. ..,p−1} and some p∈{1,. ..,m}. The
definition of the operators SR3

+,m,p then yields

Si
m,p=Ai

0(0)
−1
[
∂p−1
t f i(f,v)(0)−

3∑
j=1

Ai
j∂jS

i
m,p−1−

p−1∑
l=1

(
p−1

l

)
∂ltAi

0(0)S
i
m,p−l

−
p−1∑
l=0

(
p−1

l

)
∂ltDi(0)Si

m,p−1−l

]
. (3.19)

The induction hypothesis implies that

suppSi
m,p−l=suppΦi(θiSm,p)⊆ suppΦiθi⊆Ki

for all l∈{1,. ..,p}. Together with (3.5) and (3.6), we thus obtain

Ai
j∂jS

i
m,p−1=R(Ai

j)∂jS
i
m,p−1=R(Ãi

j)∂jRΦi(θiSm,p−1)=R(Ãi
j∂jΦi(θiSm,p−1))

for j∈{1,2}, as ωi=1 on Ki. Similarly it follows

Ai
3∂3S

i
m,p−1= R̂(Ai

3)∂3RΦi(θiSm,p−1)=R(Ãi
3∂3Φi(θiSm,p−1)).

Using also (3.3), we next compute

∂j(Φi(θiSm,p−1))=(∇(θiSm,p−1))◦ψi∂jψi=

3∑
l=1

Φi(∂l(θiSm,p−1))∂jψi,l,
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R(Ãi
j∂jΦi(θiSm,p−1))=R

( 3∑
k=1

Aco
k Φi∂kφi,j

3∑
l=1

Φi∂l(θiSm,p−1)∂jψi,l

)
=R

( 3∑
k,l=1

Aco
k Φi∂l(θiSm,p−1)Φi∂kφi,j ∂jψi,l

)
for all j∈{1,2,3}. Applying Φi to the identity

δlk=(∇ idUi
)lk=(∇(ψi ◦φi))lk=

3∑
j=1

Φ−1
i ∂jψi,l∂kφi,j

on Ui for all k,l∈{1,2,3}, we conclude

3∑
j=1

Ai
j∂jS

i
m,p−1=R

( 3∑
j,k,l=1

Aco
k Φi∂l(θiSm,p−1)Φi∂kφi,j ∂jψi,l

)

=R
( 3∑
k,l=1

Aco
k Φi∂l(θiSm,p−1)δlk

)
=R

( 3∑
k=1

Aco
k Φi∂k(θiSm,p−1)

)
.

Note that the support of every term in the brackets on the right-hand side of (3.19) is
contained in Ki and ωi=1 on Ki. Proceeding as above, the induction hypothesis then
yields that Si

m,p is equal to

RΦiA
i
0(0)

−1
[
RΦi(θi∂

p−1
t f(0))+RΦi

[ 3∑
j=1

Aco
j ∂jθi∂

p−1
t v(0)−

3∑
j=1

Aco
j ∂j(θiSm,p−1)

]

−
p−1∑
l=1

cp,lRΦi(∂
l
tA

i
0(0))RΦi(θiSm,p−l)−

p−1∑
l=0

cp,lRΦi(∂
l
tD

i(0))RΦi(θiSm,p−1−l)
]

=RΦi

[
θiA0(0)

−1
(
∂p−1
t f(0)−

3∑
j=1

Aco
j ∂jSm,p−1−

p−1∑
l=1

cp,l∂
l
tA0(0)Sm,p−l

−
p−1∑
l=0

cp,l∂
l
tD(0)Sm,p−1−l

)]
,

=RΦi(θiSm,p),

where cp,l=
(
p−1
l

)
and we also employed that ∂p−1

t v(0)=Sm,p−1. So (3.18) is true.

(III) In this step we show that the tuple (0,Ai
0,. ..,Ai

3,Di,Bi,f i(f,v),gi,ui0) fulfills
the linear compatibility conditions (2.6) on G=R3

+ of order m, where v is any function
in Gm(J×G) with ∂pt v(0)=Sm,p for all p∈{0,. ..,m−1}.

To that purpose, we exploit our assumption (2.6), i.e., BΣ trΣ,±Sm,p=∂
p
t g(0) for all

p∈{0,. ..,m−1}. Fix a number p∈{0,. ..,m−1}. The trace operator commutes with
multiplication by test functions and the composition with diffeomorphisms, so that (2.6)
and (3.7) imply the identities

∂pt (Φ̃i(trΣ(θi)κig))(0)=Φ̃i(trΣ(θi)κi∂
p
t g(0))=Φ̃i(κiBΣ trΣ(θi)trΣ,±Sm,p)

=tr∂R3
+
B̂iΦ̃i trΣ,±(θiSm,p)=tr∂R3

+
B̂i tr∂R3

+,±(Φi(θiSm,p))
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=tr∂R3
+
B̂i tr∂R3

+
(RΦi(θiSm,p))=tr∂R3

+
(B̂iSi

m,p).

Multiplying this equation with the trace of Ri, we arrive at

tr∂R3
+
(Ri)tr∂R3

+
(B̂iSi

m,p)=∂
p
t (tr∂R3

+
(Ri)Φ̃i(trΣ(θi)κig))(0). (3.20)

The z(i)-th and the (z(i)+3)-th components on the left-hand side are zero by (3.10),
so that the same is true for the right-hand side. In view of formulas (3.10), (3.11) and
(3.16), Equation (3.20) thus yields the desired compatibility conditions

tr∂R3
+
(BiSi

m,p)=∂
p
t (tr∂R3

+
(Ri)Φ̃i(trΣ(θi)κig))α(i)(0)=∂

p
t g

i(0).

(IV) Let u be a solution in Gm(J×G) of (1.9) with data f , g, and u0. In this step
we derive a priori estimates for u by applying a priori estimates on G+ from [30], on
R3 from [28], respectively on R3

+ from Theorem 5.1 below to θ−1u, θ0u, respectively
Φi(θiu) for i∈N. To that purpose, we first note that the properties of the functions φi,
ψi, and θi imply the equivalences

u∈Gm(J×G)⇐⇒θ−1u∈Gm(J×G),θ0u∈Gm(J×R3)

and RΦi(θiu)∈Gm(J×R3
+) for all i∈N,

f ∈Hm(J×G)⇐⇒θ−1u∈Hm(J×G),θ0f ∈Hm(J×R3) (3.21)

and RΦi(θiu)∈Hm(J×R3
+) for all i∈N,

g∈Em(J×Σ)⇐⇒gi∈Em(J×∂R3
+) for all i∈N,

with corresponding bounds.
Fix an index i∈N. Since suppΦi(θiu)⊆ suppΦiθi⊆Ki, the definition of the ex-

tended coefficients in (3.6) as well as formulas (3.2) and (3.16) yield

Ai
0∂t(RΦi(θiu))+

3∑
j=1

Ai
j∂j(RΦi(θiu))+DiRΦi(θiu)

=RΦi

(
A0,±∂t(θiu±)+

3∑
j=1

Aco
j ∂j(θiu±)+D±(θiu±)

)

=RΦi(θif)+RΦi

( 3∑
j=1

Aco
j ∂jθiu

)
=f i(f,u)

on J×R3
+. Since TrJ×Σ(BΣ(u+,u−))=g on J×Σ, a similar computation as in step (III)

shows that

TrJ×∂R3
+
[B̂iRΦi(θiu)]=TrJ×∂R3

+
[Φi(θiκiBΣ(u+,u−))]= Φ̃iTrJ×Σ[θiκiBΣ(u+,u−)]

= Φ̃i(trΣ(θi)κi TrJ×Σ[BΣ(u+,u−)])=Φ̃i(trΣ(θi)κig).

Multiplying this equation with the trace of Ri and removing the z(i)-th and z(i)+3-th
component of the result, we obtain

TrJ×∂R3
+
(BiRΦi(θiu))=TrJ×∂R3

+
(RiB̂iRΦi(θiu))α(i)

=(tr∂R3
+
(Ri)Φ̃i(trΣ(θi)κig))α(i)=g

i,
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cf. (3.10), (3.11) and (3.16). We conclude that the function RΦi(θiu) is a Gm(J×R3
+)-

solution of the initial boundary value problem

Ai
0∂tv+

∑3

j=1
Ai

j∂jv+Div=f i(f,u), x∈R3
+, t∈J ;

Biv=gi, x∈∂R3
+, t∈J ; (3.22)

v(0)=ui0, x∈R3
+.

In the following we abbreviate Ui∩G by Gi for all i∈N−1. The spaces Hm(Gi), Hm(J×
Gi) and Gm(J×Gi) are defined as their analogues on G.

To apply Theorem 5.1, we have to work with a constant boundary matrix A3 and
a constant matrix B. As shown in step (I), this is achieved via the multiplication with
the matrices Gi

r. We therefore recall, respectively define, the maps

Ãi
j =(Gi

r)
TAi

jGi
r, B̃i=BiGi

r=Bco, D̃i=(Gi
r)

TDiGi
r−

3∑
j=1

(Gi
r)

TAi
jGi

r∂j(Gi
r)

−1Gi
r,

f̃ i=(Gi
r)

T f i, g̃i=gi, ũi0=(Gi
r)

−1ui0 (3.23)

for all j∈{0,. ..,3}. Recall that Ãi
3= Ãco

3 by (3.9). We claim that a function ui belongs
to Gm(Ω) and solves (3.22) if and only if the function ũi=Gi,−1

r ui belongs to Gm(Ω)
and solves the initial boundary value problem

L̃v := Ãi
0∂tv+

∑3

j=1
Ãi

j∂jv+D̃iv= f̃ i, x∈R3
+, t∈J ;

Bcov= g̃i, x∈∂R3
+, t∈J ; (3.24)

v(0)= ũi0, x∈R3
+.

To see this claim, we assume that ui is a solution of (3.22). We then compute

L̃ũi=(Gi
r)

T
[
Ai

0∂tu
i+

3∑
j=1

Ai
jGi

r∂j((Gi
r)

−1ui)+Diui−
3∑

j=1

Ai
jGi

r∂j(Gi
r)

−1ui
]

=(Gi
r)

T
[
Ai

0∂tu
i+

3∑
j=1

Ai
j∂ju

i+Diui
]
=(Gi

r)
T f i= f̃ i,

Bcoũi=Biui=gi= g̃i,

ũi(0)=(Gi
r)

−1ui(0)=(Gi
r)

−1ui0= ũ
i
0.

Analogously, one shows the other direction. We further note that the tuple (0,Ai
j ,

Di,Bi,f i,gi,ui0) fulfills the compatibility conditions of order m on ∂R3
+ if and only if

the tuple (0,Ãi
j ,D̃i,Bco, f̃ i, g̃i,ũi0) fulfills the compatibility conditions of orderm on ∂R3

+.
To that purpose it is enough to show that

S̃i
m,p=(Gi

r)
−1Si

m,p, (3.25)

for all 0≤p≤m, where we use (3.23) and set, respectively recall,

S̃i
m,p=SR3

+,m,p(0,Ãi
j ,D̃i, f̃ i,ũi0), Si

m,p=SR3
+,m,p(0,Ai

j ,Di,f i,ui0).
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For p=0 we have S̃i
m,0= ũ

i
0=(Gi

r)
−1ui0=(Gi

r)
−1Si

m,0. Next, let (3.25) be true for all
0≤ l≤p−1. Inserting (3.23), we compute

S̃i
m,p= Ãi,−1

0

(
∂p−1
t f̃ i(0)−

3∑
j=1

Ãi
j∂jS̃

i
m,p−1−

p−1∑
l=1

(
p−1

l

)
∂ltÃi

0(0)S̃
i
m,p−l

−
p−1∑
l=0

(
p−1

l

)
∂ltD̃i(0)S̃i

m,p−1−l

)
=Gi,−1

r Ai,−1
0 Gi,−T

r

(
Gi,T
r ∂pt f

i(0)−
3∑

j=1

Gi,T
r Ai

jGi
r∂j(Gi,−1

r Si
m,p−1)

−
p−1∑
l=1

(
p−1

l

)
∂lt(Gi,T

r Ai
0Gi

r)(0)Gi,−1
r Si

m,p−l

−
p−1∑
l=0

(
p−1

l

)
∂lt

(
Gi,T
r DiGi

r−
3∑

j=1

Gi,T
r Ai

jGi
r∂jGi,−1

r Gi
r

)
(0)Gi,−1

r Si
m,p−1−l

)

=Gi,−1
r Ai,−1

0

(
∂p−1
t f i(0)−

3∑
j=1

Ai
j∂jS

i
m,p−1−

p−1∑
l=1

(
p−1

l

)
∂ltAi

0(0)S
i
m,p−l

−
p−1∑
l=0

(
p−1

l

)
∂ltDi(0)Si

m,p−1−l

)
=(Gi

r)
−1Si

m,p,

omitting some parentheses. The claim (3.25) is thus valid for all 0≤p≤m.
Consequently, we can apply Theorem 5.1 to this transformed problem and then

obtain a solution of the same regularity of the original problem via the inverse transform.
Also the a priori estimates carry over to the original problem with an additional constant
C(M1). In order to simplify the notation, we suppress this transform in the following
but assume that the matrices Ai

3 and Bi are constant. Theorem 5.1, in combination
with (3.16) and (3.21), then yields

∥RΦi(θiu)∥2Gm,γ(Ω)

≤(C5.1,m,0+TC5.1,m)emC5.1,1T
(m−1∑

j=0

∥∂jt f i(f,u)(0)∥2Hm−1−j(R3
+)

+∥gi∥2Em,γ(J×∂R3
+)+∥ui0∥2Hm(R3

+)

)
+C5.1,me

mC5.1,1T
1

γ
∥f i(f,u)∥2Hm

γ (Ω)

≤C(M1)(C5.1,m,0+TC5.1,m)emC5.1,1T
[m−1∑

j=0

∥θi∂jt f(0)∥2Hm−1−j(Gi)

+

m−1∑
j=0

3∑
k=1

∥∂kθiSm,j∥2Hm−1−j(Gi)
+∥trΣ(θi)g∥2Em,γ(J×Σ)+∥θiu0∥2Hm(Gi)

]

+C(M1)
C5.1,m

γ
emC5.1,1T

(
∥θif∥2Hm

γ (J×Gi)
+

3∑
k=1

∥∂kθiu∥2Hm
γ (J×Gi)

)
(3.26)

for all γ≥γ5.1,m. Here we exploited that ∂jt u(0)=Sm,j for all j∈{0,. ..,m−1}, and
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C5.1,m=C5.1,m(η,R,T ′), C5.1,m,0=C5.1,m,0(η,R0), and γ5.1,m=γ5.1,m(η,R,T ′) are con-
stants from Theorem 5.1. The estimates for i∈{−1,0} follow in the same way from
Theorem 1.1 in [30] and Theorem 5.3 in [28] with corresponding constants C̃m,0 and

C̃m.
By Definition 2.24 of [28], at most N of the sets Ui intersect at a given point, and we

use the constantsM1 andM2 introduced there and Definition 5.4 of [28]. The monotone
convergence theorem thus implies that

∞∑
i=−1

∥θiu0∥2Hm(Gi)
=

∞∑
i=−1

[∫
G+

∑
|α|≤m

|∂α(θiu0,+)|2dx+
∫
G−

∑
|α|≤m

|∂α(θiu0,−)|2dx
]

≤C(m,M2)
∑

|α|≤m

[∫
G+

∞∑
i=−1

χUi |∂αu0,+|2dx+
∫
G−

∞∑
i=−1

χUi |∂αu0,−|2dx
]

≤C(m,M2,N)∥u0∥2Hm(G). (3.27)

Analogously, we treat the other terms on the right-hand side of (3.26). We set
C ′

m=max{C̃m,C5.1,m} and C ′
m,0=max{C̃m,0,C5.1,m,0}. Equation (3.26) then yields

the inequality

∥u∥2Gm,γ(J×G)≤C(N)

∞∑
i=−1

∥θiu∥2Gm,γ(J×Gi)
≤C(N,M1)

∞∑
i=−1

∥RiΦi(θiu)∥2Gm,γ(Ω)

≤C(m,N,M1,M2,τ)(C
′
m,0+TC

′
m)emC′

1T
(m−1∑

j=0

∥∂jt f(0)∥2Hm−1−j(G)

+

m−1∑
j=0

∥Sm,j∥2Hm−1−j(G)+∥g∥2Em,γ(J×Σ)+∥u0∥2Hm(G)

)
+C(m,N,M1,M2)

C ′
m

γ
emC′

1T
(
∥f∥2Hm

γ (J×G)+∥u∥2Hm
γ (J×G))

)
for all γ≥max{γ̃m,γ5.1,m}. Choosing γm=γm(η,τ,N,M1,M2,r,T

′) large enough and
using Lemma 2.3 we thus arrive at

∥u∥2Gm,γ(J×G)≤ (Cm,0+TCm)emC1T
(m−1∑

j=0

∥∂jt f(0)∥2Hm−1−j(G)+∥g∥2Em,γ(J×Σ)

+∥u0∥2Hm(G)

)
+Cme

mC1T
1

γ
∥f∥2Hm

γ (J×G)

for all γ≥γm. Employing that R=R(M,r) and R0=R0(M,r0), we also deduce that
the constants Cm,0 and Cm are of the claimed form (where we drop the dependence
on M as G is fixed). We have thus shown the a priori estimates (3.1), which imply
uniqueness of the Gm(J×G)-solution of (1.9).

(V) To solve (1.9), we introduce the spaces

Gm,iv(J×G)={v∈Gm(J×G) : ∂jt v(0)=Sm,j , j∈{0,. ..,m−1}},
Hm

iv,f (J×G)={f̃ ∈Hm(J×G) : ∂jt f̃(0)=∂
j
t f(0), j∈{0,. ..,m−1}}.

We point out that Gm,iv(J×G) is nonempty by Lemma 2.34 from [28] and Hm
iv,f (J×G)

is nonempty as f ∈Hm
iv,f (J×G). Because the time derivatives up to order m−1 in 0 of
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functions from Hm
iv,f (J×G) respectively Gm,iv(J×G) coincide, we obtain

SR3
+,m,p(0,Ai

j ,Di,f i(f̃ , ṽ),ui0)=SR3
+,m,p(0,Ai

j ,Di,f i(f,v),ui0)=S
i
m,p (3.28)

for all f̃ ∈Hm
iv,f (J×G), v,ṽ∈Gm,iv(J×G), p∈{0,. ..,m}, and i∈N, cf. (3.17). The

analogous equations for i∈{−1,0} are also true. Step (III) thus implies that the tuple
(0,Ai

j ,Di,Bi,f i(f̃ ,v),gi,ui0) fulfills the compatibility conditions of order m for all f̃ ∈
Hm

iv,f (J×G), v∈Gm,iv(J×G), and i∈N. As explained in step (IV), we can now apply
Theorem 5.1 which shows that the problem

Ai
0∂tw+

∑3

j=1
Ai

j∂jw+Diw=f i(f̃ ,v), x∈R3
+, t∈J ;

Biw=gi, x∈∂R3
+, t∈J ; (3.29)

w(0)=ui0, x∈R3
+;

has a unique solution U i(f̃ ,v) in Gm(Ω)12 for all f̃ ∈Hm
iv,f (J×G), v∈Gm,iv(J×G), and

i∈N. Moreover, Theorem 5.3 from [28] gives a function U0(f̃ ,v) in Gm(J×R3)6 solving
the initial value problem

A0
0∂tw+

∑3

j=1
Aco

j ∂jw+D0w=f0(f̃ ,v), x∈R3, t∈J ; (3.30)

w(0)=u00, x∈R3;

for all such f̃ and v. Finally, Theorem 1.1 and Remark 1.2 in [30] yield a solution
U−1(f̃ ,v) in Gm(J×G)6 of the initial boundary value problem

A−1
0 ∂tw+

∑3

j=1
Aco

j ∂jw+D−1w=f−1(f̃ ,v), x∈G, t∈J ;

B∂Gw=0, x∈∂G, t∈J ; (3.31)

w(0)=u−1
0 , x∈G;

for all such f̃ and v. We claim that there is a map f∗=f∗(v) in Hm
iv,f (J×G) with

f∗+

∞∑
i=−1

3∑
j=1

Aco
j ∂jσiΦ

−1
i R−1

i U i(f∗,v)=f (3.32)

for all v∈Gm,iv(J×G). To prove this claim, we define the operator

Ψv : Hm
iv,f (J×G)→Hm

iv,f (J×G), f̃ 7−→f−
∞∑

i=−1

3∑
j=1

Aco
j ∂jσiΦ

−1
i R−1

i U i(f̃ ,v)

for each v∈Gm,iv(J×G). We fix such a function v. The operator Ψv indeed takes

values in Hm(J×G) since Φ−1
i R−1 maps the Hm(Ω)-function U i(f̃ ,v) into Hm(J×Ui)

for i∈N, ∂jσi has compact support in Ui, and the covering (Ui)i∈N is locally finite. We
further compute

∂pt Ψv(f̃)(0)=∂
p
t f(0)−

∞∑
i=−1

3∑
j=1

Aco
j ∂jσiΦ

−1
i R−1

i ∂pt U i(f̃ ,v)(0)
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=∂pt f(0)−
∞∑

i=−1

3∑
j=1

Aco
j ∂jσiΦ

−1
i R−1

i RiΦi(θiSm,p)

=∂pt f(0)−
∞∑

i=−1

3∑
j=1

Aco
j ∂jσiθiSm,p=∂

p
t f(0)

for all p∈{0,. ..,m−1} and f̃ ∈Hm
iv,f (J×G), where we used (2.3), (3.28), (3.18), and

that σi equals 1 on the support of θi for all i∈N−1. Therefore Ψv indeed maps Hm
iv,f (J×

G) into itself.
We observe that the difference U i(f1,v)−U i(f2,v) solves a problem with zero initial

and boundary data. Moreover, formula (3.16) and the initial conditions in the spaces
Hm

iv,f (J×G) and Gm,iv(J×G) imply that the time derivatives of the inhomogeneities

f i(fk,v) coincide at t=0 (such facts are also used below without further notice). The-
orems 1.1 in [30], 5.3 in [28], and 5.1 then imply

∥Ψv(f1)−Ψv(f2)∥2Hm
γ (J×G)

≤C(N,M1,M3)
(
∥U−1(f1,v)−U−1(f2,v)∥2Hm

γ (J×G)

+∥U0(f1,v)−U0(f2,v)∥2Hm
γ (J×R3)+

∞∑
i=1

∥U i(f1,v)−U i(f2,v)∥2Hm
γ (Ω)

)
≤C
γ

∞∑
i=−1

∥θi(f1−f2)∥2Hm
γ (J×Gi)

≤ C

γ
∥f1−f2∥2Hm

γ (J×G) (3.33)

for all γ≥max{γ1.1,m,γ5.3,m,γ5.1,m}, proceeding as in (3.27) in the last step and putting
C=C(m,η,τ,N,M,r,T ′). We set

γ∗=max{γ1.1,m,γ5.3,m,γ5.1,m,4C3.33},

where C3.33 denotes the constant on the right-hand side of (3.33). This estimate then
leads to the bound

∥Ψv(f1)−Ψv(f2)∥Hm
γ (J×G)≤

1

2
∥f1−f2∥Hm

γ (J×G) (3.34)

for all γ≥γ∗. We conclude that Ψv is a strict contraction on Hm
iv,f (J×G), and there

thus exists a unique function f∗=f∗(v) in Hm
iv,f (J×G) satisfying Equation (3.32).

We next define the operator

S : Gm,iv(J×G)→Gm,iv(J×G), v 7−→
∞∑

i=−1

σiΦ
−1
i R−1

i U i(f∗(v),v).

Let v∈Gm,iv(J×G). We first check that S(v) indeed belongs to Gm,iv(J×G).
Since U i(f∗(v),v) is an element of Gm(Ω), the function Φ−1

i R−1U i(f∗(v),v) belongs
to Gm(J×Gi) for i∈N. Moreover, U−1(f∗(v),v) is contained in Gm(J×G) and
U0(f∗(v),v) in Gm(J×R3). Exploiting that σi has compact support in Ui, the a
priori estimates for U i, and (3.27), we infer that S(v) belongs to Gm(J×G). As
f∗(v)∈Hm

iv,f (J×G), we now combine formula (3.28) with (3.18) as well as σi=1 on
suppθi for all i∈N−1, and compute

∂pt S(v)(0)=
∞∑

i=−1

σiΦ
−1
i R−1

i ∂pt U i(f∗(v),v)(0)
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=σ−1θ−1Sm,p+σ0θ0Sm,p+

∞∑
i=1

σiΦ
−1
i R−1RΦi(θiSm,p)=

∞∑
i=−1

θiSm,p=Sm,p

for all p∈{0,. ..,m} and v∈Gm,iv(J×G). Hence, S maps into Gm,iv(J×G).
To show that S is a strict contraction, we take v1,v2∈Gm,iv(J×G). Estimate (3.34)

further yields

∥f∗(v1)−f∗(v2)∥Hm
γ (J×G)=∥Ψv1(f

∗(v1))−Ψv2(f
∗(v2))∥Hm

γ (J×G)

≤∥Ψv1(f
∗(v1))−Ψv1(f

∗(v2))∥Hm
γ (J×G)+∥Ψv1(f

∗(v2))−Ψv2(f
∗(v2))∥Hm

γ (J×G)

≤1

2
∥f∗(v1)−f∗(v2)∥Hm

γ (J×G)+∥Ψv1(f
∗(v2))−Ψv2(f

∗(v2))∥Hm
γ (J×G) (3.35)

for all γ≥γ∗. The definition of the operator Ψv, Theorems 1.1 in [30], 5.3 in [28],
and 5.1, formula (3.16) and a variant of (3.27) imply

∥Ψv1(f
∗(v2))−Ψv2

(f∗(v2))∥2Hm
γ (J×G)

≤C(N,M3)

∞∑
i=−1

∥Φ−1
i R−1

i U i(f∗(v2),v1)−Φ−1
i R−1

i U i(f∗(v2),v2)∥2Hm
γ (J×Gi)

≤C(m,η,τ,N,M,r,T ′)
1

γ

∞∑
i=−1

∥∥∥ 3∑
j=1

Aco
j ∂jθi(v1−v2)

∥∥∥2
Hm

γ (J×G)

≤C(m,η,τ,N,M,r,T ′)
1

γ
∥v1−v2∥2Hm

γ (J×G) (3.36)

for all γ≥γ∗. We set γ∗∗=max{γ∗,16C3.36} and insert (3.36) into (3.35), where C3.36

denotes the constant on the right-hand side of (3.36). We then arrive at

∥f∗(v1)−f∗(v2)∥Hm
γ (J×G)≤

1

2
∥v1−v2∥Hm

γ (J×G) for all γ≥γ∗∗.

After these preparations, we can now estimate the difference of S(v1) and S(v2).
Applying the a priori estimates from Theorem 1.1 in [30], Theorem 5.3 in [28], respec-
tively Theorem 5.1 once more and recalling that v1 and v2 belong to Gm,iv(J×G), we
infer as above

∥S(v1)−S(v2)∥2Gm,γ(J×G)

≤C(N,M1,M3)

∞∑
i=−1

∥Φ−1
i R−1

i

(
U i(f∗(v1),v1)−U i(f∗(v2),v2)

)
∥2Gm,γ(J×G)

≤C(m,η,τ,N,M,r,T
′)
1

γ

(
∥f∗(v1)−f∗(v2)∥2Hm

γ (J×G)+∥v1−v2∥2Hm
γ (J×G)

)
≤C(m,η,τ,N,M,r,T ′)

1

γ
· 5
4
∥v1−v2∥2Gm,γ(J×G) (3.37)

for all γ≥γ∗∗. We finally set γS =max{γ∗∗,5C3.37}, for the constant C3.37 on the
right-hand side of (3.37). It follows

∥S(v1)−S(v2)∥Gm,γ(J×G)≤
1

2
∥v1−v2∥Gm,γ(J×G)

for all γ≥γS . There thus exists a unique fixed point u∈Gm,iv(J×G) of S.
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(VI) We claim that the fixed point u of S is a solution of (1.9). To verify this
assertion, we first compute for u±=S(u)±

L±u± :=A0,±∂tu±+

3∑
j=1

Aco
j ∂ju±+D±u±

=

∞∑
i=−1

σi,±

(
A0,±∂t(Φ

−1
i R−1

i U i(f∗(u),u))±+

3∑
j=1

Aco
j ∂j(Φ

−1
i R−1

i U i(f∗(u),u))±

+D±(Φ
−1
i R−1

i U i(f∗(u),u))±

)
+

∞∑
i=−1

3∑
j=1

Aco
j ∂jσi,±(Φ

−1
i R−1

i U i(f∗(u),u))±

on J×G±. Recalling (3.3), (3.5), (3.6), and that ωi=1 on φi(suppσi), on G+∩suppσi
we have

3∑
j=1

Aco
j ∂j(Φ

−1
i R−1v)=

3∑
j=1

Aco
j ∂jv(1,...,6)(φi(x))

=

3∑
j,l=1

Aco
j ∂lv(1,...,6)(φi(x))∂jφi,l(x)=

3∑
l=1

Φ−1
i (Ai

l)(x)∂lv(1,...,6)(φi(x))

=Φ−1
i R−1

( 3∑
l=1

Ai
l∂lv

)
,

whereas on G−∩suppσi, we deduce

3∑
j=1

Aco
j ∂j(Φ

−1
i R−1v)=

3∑
j=1

Aco
j ∂jv(7,...,12)(φi,1(x),φi,2(x),−φi,3(x))

=

3∑
j=1

Aco
j ∇v(7,...,12)(φi,1(x),φi,2(x),−φi,3(x)) ·(∂jφi,1(x),∂jφi,2(x),−∂jφi,3(x))

=

3∑
j,l=1

Aco
j ∂lv(7,...,12)(φi,1(x),φi,2(x),−φi,3(x))∂jφi,l(x)(−1)δ3l

=

3∑
l=1

Φ−1
i (Ai

l,−(−1)δ3lQ∂lv(7,...,12))=

3∑
l=1

Φ−1
i Q(Ăi

l,−∂lv(7,...,12))

=

3∑
l=1

Φ−1
i Q(Ai

l∂lv)(7,...,12)=Φ−1
i R−1

( 3∑
l=1

Ai
l∂lv

)
for all v∈L2(Vi∩R3

+)
12. Since also A0,±=(Φ−1

i R−1Ai
0)± and Di

±=(Φ−1
i R−1Di)±

(where we put Ai
0=A0 and Di=D for i∈{−1,0}) on suppσi for all i∈N−1, the defini-

tion of the maps U i(f∗(u),u) and (3.16) imply the equality

L±u±=

∞∑
i=−1

σi,±

(
Φ−1

i R−1
i

(
Ai

0∂tU i(f∗(u),u)+

3∑
j=1

Ai
j∂jU i(f∗(u),u)

+DiU i(f∗(u),u)
))

±
+

∞∑
i=−1

3∑
j=1

Aco
j ∂jσi,±(Φ

−1
i R−1

i U i(f∗(u),u))±
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=

∞∑
i=−1

[
σi,±(Φ

−1
i R−1

i f i(f∗(u),u))±+

3∑
j=1

Aco
j ∂jσi,±(Φ

−1
i R−1U i(f∗(u),u))±

]

=

∞∑
i=−1

[
σi,±θi,±f

∗(u)±+

3∑
j=1

Aco
j

[
σi,±∂jθi,±u±+∂jσi,±(Φ

−1
i R−1

i wi)±

]]
,

where wi :=U i(f∗(u),u)). Employing that σi=1 on the support of θi, that (θi)i∈N−1 is
a partition of unity, and the defining property of f∗(u), i.e. (3.32), we deduce

L±u±=

∞∑
i=−1

[
θi,±f

∗(u)±+

3∑
j=1

Aco
j ∂jθi,±u±+

3∑
j=1

Aco
j ∂jσi,±(Φ

−1
i R−1

i U i(f∗(u),u))±

]

=f∗(u)±+

∞∑
i=−1

3∑
j=1

Aco
j ∂jσi,±(Φ

−1
i R−1

i U i(f∗(u),u))±=f±.

Since the covering (Ui)i∈N−1 is locally finite, we can compute

TrJ×Σ,±(BΣu)=TrJ×Σ(BΣ ·(S(u)+,S(u)−))=TrJ×Σ

[
BΣ

∞∑
i=1

σiΦ
−1
i U i(f∗(u),u)

]
=

∞∑
i=1

trΣσiTrJ×Σ(BΣΦ
−1
i U i(f∗(u),u))

=

∞∑
i=1

trΣ(σi)κ
−1
i TrJ×Σ

(
Φ−1

i

(
ωiΦi(κiBΣ)U i(f∗(u),u)

))
,

using Φ−1
i ωi=1 on suppσi. The identity B̂i=ωiΦi(κiB) on suppσi then yields

TrJ×Σ(BΣu)=

∞∑
i=1

trΣ(σi)κ
−1
i TrJ×Σ

(
Φ−1

i

(
B̂iU i(f∗(u),u)

))
=

∞∑
i=1

trΣ(σi)κ
−1
i Φ̃−1

i TrJ×∂R3
+
((Ri)−1RiB̂iU i(f∗(u),u)).

Because U i(f∗(u),u) solves the initial boundary value problem (3.29) with the boundary
value gi defined in (3.16) for every i∈N, we arrive at

TrJ×Σ(Bu)=

∞∑
i=1

trΣ(σi)κ
−1
i Φ̃−1

i TrJ×∂R3
+

(
(Ri)−1RiB̂iU i(f∗(u),u)

)
=

∞∑
i=1

trΣ(σi)κ
−1
i Φ̃−1

i

(
tr∂R3

+
((Ri)−1)giz(i)→0

)
=

∞∑
i=1

trΣ(σi)κ
−1
i Φ̃−1

i

(
tr∂R3

+
((Ri)−1) tr∂R3

+
(Ri)Φ̃i(trΣ(θi)κig)

)
=

∞∑
i=1

trΣ(σiθi)g=

∞∑
i=1

trΣ(θi)g=g,

where giz(i)→0 denotes the vector we get by adding a zero in the z(i)-th and z(i)+3-th

component of gi. Moreover, we get

TrJ×∂G(B∂Gu)=TrJ×∂G(B∂GS(u))=TrJ×∂G(B∂GU−1(f∗(u),u))=0
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as U−1(f∗(u),u) solves the problem (3.31). Similarly it follows

u(0)=S(u)(0)=
∞∑

i=−1

σiΦ
−1
i R−1

i U i(f∗(u),u)(0)=

∞∑
i=−1

σiΦ
−1
i R−1

i ui0

=

∞∑
i=−1

σiΦ
−1
i R−1

i RiΦi(θiu0)=

∞∑
i=−1

σiθiu0=

∞∑
i=−1

θiu0=u0.

We conclude that u is a solution of (1.9) in Gm(J×G).
4. A priori estimates for the linear problem
In the previous section we have reduced (1.9) to the system

A0∂tu+

3∑
j=1

Aj∂ju+Du=f, x∈R3
+, t∈J ;

Bu=g, x∈∂R3
+, t∈J ;

u(0)=u0, x∈R3
+;

(4.1)

on R3
+ with A3= Ãco

3 , B=Bco, and A1,A2∈F cp
m,coeff(R3

+), cf. (2.1) and (3.12). Here we
fix T ′>0 and assume that J =(0,T ) for a time T ∈ (0,T ′).

In this section we derive a priori estimates for Gm(Ω)-solutions of (4.1). A (weak)
solution of (4.1) is a function u∈C(J,L2(R3

+)) with L(A0,. ..,A3,D)u=f in the weak
sense, TrJ×∂R3

+
(Bu)=g on J×∂R3

+, and u(0)=u0.

We first state the basic wellposedness result on L2-level which directly follows from
Proposition 5.1 in [14] because of the formulas (3.13). The precise form of the constants
is a consequence of the proof in [14].

Lemma 4.1. Let η>0 and r≥ r0>0. Take A0∈F cp
0,η(Ω), A1,A2∈Fcp

0,coeff(R3
+) with

∥Ai∥W 1,∞(Ω)≤ r and ∥Ai(0)∥L∞(R3
+)≤ r0 for all i∈{0,1,2}, and A3= Ãco

3 . Let D∈
L∞(Ω) with ∥D∥L∞(Ω)≤ r and B=Bco. Choose data f ∈L2(Ω), g∈L2(J,H1/2(∂R3

+)),

and u0∈L2(R3
+). Then (4.1) has a unique solution u in C(J,L2(R3

+)), and there exists
a number γ0=γ0(η,r)≥1 such that we obtain

sup
t∈J

∥e−γtu(t)∥2L2(R3
+)+γ∥u∥

2
L2

γ(Ω)

≤C0,0∥u0∥2L2(R3
+)+C0,0∥g∥2L2

γ(J,H
1/2(∂R3

+))+
C0

γ
∥f∥2L2

γ(Ω) (4.2)

for all γ≥γ0, where C0=C0(η,r) and C0,0=C0,0(η,r0).

The a priori estimates for the α-th tangential and time derivatives of a regular
solution of (4.1) now follow in a standard way: These derivatives satisfy (4.1) with new
data fα, gα and u0,α, where fα also contains commutator terms involving A0, A1, A2,
and D. On the resulting problem one can apply the L2-estimate (4.2). The differentiated
system has the same structure as the corresponding problem (3.4) in [30], and hence
the proof of the next result is analogous to that given there. It is thus omitted. We use
the space Hm

ta (Ω) of those maps v∈L2(Ω) with ∂αv∈L2(Ω) for all α∈N4
0 with |α|≤m

and α3=0. It is equipped with its natural norm.

Lemma 4.2. Let η>0, r≥ r0>0, m∈N, and m̃=max{m,3}. Take A0∈F cp
m̃,η(Ω),

A1,A2∈F cp
m̃,coeff(R3

+), A3= Ãco
3 , D∈F cp

m̃ (Ω), and B=Bco with

∥Ai∥Fm̃(Ω)≤ r, ∥D∥Fm̃(Ω)≤ r,
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max{∥Ai(0)∥F 0
m̃−1(R3

+), max
1≤j≤m−1

∥∂jtA0(0)∥Hm̃−1−j(R3
+)}≤ r0,

max{∥D(0)∥F 0
m̃−1(R3

+), max
1≤j≤m−1

∥∂jtD(0)∥Hm̃−1−j(R3
+)}≤ r0,

for all i∈{0,1,2}. Choose data f ∈Hm
ta (Ω), g∈Em(J×∂R3

+), and u0∈Hm(R3
+). As-

sume that the solution u of (4.1) belongs to Gm(Ω). Then there exists a parameter
γm=γm(η,r)≥1 such that u satisfies

∑
|α|≤m
α3=0

∥∂αu∥2G0,γ(Ω)+γ∥u∥
2
Hm

ta,γ(Ω)≤Cm,0

[m−1∑
j=0

∥∂jt f(0)∥2Hm−1−j(R3
+)+∥g∥2Em,γ(J×∂R3

+)

+∥u0∥2Hm(R3
+)

]
+
Cm

γ

[
∥f∥2Hm

ta,γ(Ω)+∥u∥2Gm,γ(Ω)

]
,

for all γ≥γ0, where Cm=Cm(η,r,T ′), and Cm,0=Cm,0(η,r0).

The full Hm-norm of solutions u to (4.1) cannot be controlled in this way since
normal derivatives destroy the boundary condition. From the system (4.1) itself one
can read off regularity of normal derivatives of the tangential components of u because
of the structure of the boundary matrix A3= Ãco

3 . The remaining four components will
be recovered by means of cancellation properties of the Maxwell equations which imply
that the ‘generalized divergence’ Div(A1,A2,A3) of the Maxwell operator only contains
first-order derivatives.

To define this concept, take A1,A2∈F cp
0,coeff(R3

+) and A3= Ãco
3 . In particular, there

are functions µlj ∈F cp
0,1(Ω) such that

Aj =

3∑
l=1

Aco
l µlj for j∈{1,2} and µ13=µ23=0, µ33=1, (4.3)

see (2.2) and (2.1). We now set

µ=(µlj)
3
l,j=1, µ̂=

µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 −µ33

, µ̃=


µ 0 0 0
0 µ 0 0
0 0 µ̂ 0
0 0 0 µ̂

 , (4.4)

and for h∈L2(R3
+)

12 we define

Div(A1,A2,A3)h=

3∑
k=1

(
(µ̃T∇h)kk,(µ̃T∇h)(k+3)k,(µ̃

T∇h)(k+6)k,(µ̃
T∇h)(k+9)k

)
. (4.5)

In view of the iteration and regularization process below, in the next proposition we
treat solutions and data which are a bit less regular than needed in this section and we
consider the initial value problem{

L(A0,. ..,A3,D)u=f, x∈R3
+, t∈J ;

u(0)=u0, x∈R3
+.

(4.6)

A solution of (4.6) is a function u∈C(J,L2(R3
+)) with u(0)=u0 in L2(R3

+) and Lu=f
in H−1(Ω). The following result is the core step in our regularity theory.
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Proposition 4.1. Let T ′>0, η>0, γ≥1, and r≥ r0>0. Take coeffcients A0∈
F cp
0,η(Ω), A1,A2∈F cp

0,coeff(R3
+), A3= Ãco

3 , and D∈F cp
0 (Ω) with

∥Ai∥W 1,∞(Ω)≤ r, ∥D∥W 1,∞(Ω)≤ r,
∥Ai(0)∥L∞(R3

+)≤ r0, ∥D(0)∥L∞(R3
+)≤ r0

for all i∈{0,1,2}. Choose data f ∈G0(Ω) with Div(A1,A2,A3)f ∈L2(Ω) and u0∈
H1(R3

+). Let u solve (4.6) and assume that u is an element of C1(J,L2(R3
+))∩

C(J,H1
ta(R3

+))∩L∞(J,H1(R3
+)). Then u belongs to G1(Ω) and there are constants

C1,0=C1,0(η,r0)≥1 and C1=C1(η,r,T
′)≥1 such that it satisfies

∥∇u∥2G0,γ(Ω)≤e
C1T

(
(C1,0+TC1)

( 2∑
j=0

∥∂ju∥2G0,γ(Ω)+∥f∥2G0,γ(Ω)+∥u0∥2H1(R3
+)

)
+
C1

γ
∥Div(A1,A2,A3)f∥2L2

γ(Ω)

)
. (4.7)

If f is even contained in H1(Ω), we obtain

∥∇u∥2G0,γ(Ω)≤e
C1T

(
(C1,0+TC1)

( 2∑
j=0

∥∂ju∥2G0,γ(Ω)+∥f(0)∥2L2(R3
+)+∥u0∥2H1(R3

+)

)
+
C1

γ
∥f∥2H1

γ(Ω)

)
. (4.8)

Finally, if f merely belongs to L2(Ω) with Div(A1,A2,A3)f ∈L2(Ω), we still have

∥∇u∥2L2
γ(Ω)≤e

C1T
(
(C1,0+TC1)

( 2∑
j=0

∥∂ju∥2L2
γ(Ω)+∥f∥2L2

γ(Ω)+∥u0∥2H1(R3
+)

)
+
C1

γ
∥Div(A1,A2,A3)f∥2L2

γ(Ω)

)
. (4.9)

Proof. We have to show that ∂3u∈C(J,L2(R3
+)) and that inequalities (4.7) to (4.9)

are true. We employ the matrix µ̃ from (4.4). Recall that the coefficients Al are given by
(4.3) and A3= Ãco

3 , Aco
l and Ãco

3 by (2.1), as well as Aco
l and Jl by (1.4), for l∈{1,2,3}

Morever, Jl;mn=−εlmn for all l,m,n∈{1,2,3} and the Levi-Civita symbol, i.e.,

εijk=


1 if (i,j,k)∈{(1,2,3),(2,3,1),(3,1,2)},

−1 if (i,j,k)∈{(3,2,1),(2,1,3),(1,3,2)},
0 else.

Since the coefficients are Lipschitz, we can differentiate

∂t(µ̃
TA0∇u)= µ̃T∂tA0∇u+ µ̃TA0∂t∇u

= µ̃T∂tA0∇u+ µ̃TA0∇
(
A−1

0

(
f−

3∑
j=1

Aj∂ju−Du
))

= µ̃T∂tA0∇u+ µ̃TA0∇A−1
0

(
f−

3∑
j=1

Aj∂ju−Du
)
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+ µ̃T∇f− µ̃T
2∑

j=1

∇Aj∂ju− µ̃T∇Du− µ̃TD∇u− µ̃T
3∑

j=1

Aj∇∂ju

=:Λ− µ̃T
3∑

j=1

Aj∇∂ju (4.10)

in L∞(J,H−1(R3
+)). Here we use (4.6) and write ((∇A−1

0 )h)jk :=
∑12

l=1∂kA
−1
0;jlhl etc.

Note that Λ only contains first order spatial derivatives of u. We next compute

3∑
k=1

(
µ̃T

3∑
j=1

Aj∇∂ju
)
kk

=

3∑
j,k=1

12∑
l,p=1

µ̃T
klAj;lp∂k∂jup=

3∑
j,k,l=1

12∑
p=1

µlkAj;lp∂k∂jup

=

3∑
j,k,l,n,p=1

µlkA
co
n;l(p+3)µnj∂k∂jup+3=

3∑
j,k,l,n,p=1

εnlpµlkµnj∂k∂jup+3 (4.11)

=

3∑
j,k,l,n,p=1

εlnpµnjµlk∂j∂kup+3=−
3∑

j,k,l,n,p=1

εnlpµlkµnj∂k∂jup+3, (4.12)

exchanging the indices l and n as well as k and j in the penultimate step. Equa-
tions (4.11) and (4.12) yield

3∑
k=1

(
µ̃T

3∑
j=1

Aj∇∂ju
)
kk

=0. (4.13)

Analogously, it follows

3∑
k=1

(
µ̃T

3∑
j=1

Aj∇∂ju
)
(k+3)k

=0. (4.14)

In the other components we take care of the extra signs in (4.4) and (2.1), calculating

3∑
k=1

(
µ̃T

3∑
j=1

Aj∇∂ju
)
(k+6)k

=

3∑
j,k=1

12∑
l,p=1

µ̃T
(k+6)lAj;lp∂k∂jup

=

3∑
j,k,l=1

12∑
p=1

µ̂lkAj;(l+6)p∂k∂jup=

3∑
j,k,l,p=1

µ̂lkAj;(l+6)(p+9)∂k∂jup+9

=

3∑
j,k,l,n,p=1

µlk(−1)δ3lδ3kAco
n;l(p+3)µnj(−1)δ3jδ3n∂k∂jup+9

=

3∑
j,k,l,n,p=1

εnlp(−1)δ3lδ3k(−1)δ3nδ3jµlkµnj∂k∂jup+9 (4.15)

=

3∑
j,k,l,n,p=1

εlnp(−1)δ3nδ3j (−1)δ3lδ3kµnjµlk∂j∂kup+9

=−
3∑

j,k,l,n,p=1

εnlp(−1)δ3lδ3k(−1)δ3nδ3jµlkµnj∂k∂jup+9. (4.16)
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Comparing the expressions (4.15) and (4.16), we infer

3∑
k=1

(
µ̃T

3∑
j=1

Aj∇∂ju
)
(k+6)k

=0. (4.17)

Proceeding similarly, we derive

3∑
k=1

(
µ̃T

3∑
j=1

Aj∇∂ju
)
(k+9)k

=0. (4.18)

Integrating in time, the formulas (4.10), (4.13) (4.14), (4.17) and (4.18) imply the
identities

3∑
k=1

(µ̃TA0∇u)(k+i)k(t)=

3∑
k=1

(µ̃TA0∇u)(k+i)k(0)+

3∑
k=1

∫ t

0

Λ(k+i)k(s)ds

in H−1(R3
+) for all t∈J and i∈{0,3,6,9}. The function Λ is integrable with values in

L2(R3
+) so that the equality holds in L2(R3

+) for all t∈J . Let t∈J . We denote the k-th
row respectively the k-th column of a matrix N by Nk· respectively N·k, and we set

F13+l(t)=

3∑
k=1

(µ̃TA0∇u)(k+3l)k(0)+

3∑
k=1

∫ t

0

Λ(k+3l)k(s)ds−
2∑

k=1

(µ̃TA0)(k+3l)·∂ku(t),

(F1,. ..,F12)
T =f−

2∑
j=0

Aj∂ju−Du

for l∈{0,1,2,3}. The map F =(F1,. ..,F16)
T belongs to C(J,L2(R3

+)) and

µ̆∂3u=F, setting µ̆=


A3

(µ̃TA0)3·
(µ̃TA0)6·
(µ̃TA0)9·
(µ̃TA0)12·

∈F0(Ω)
16×12. (4.19)

Let ζ= µ̃TA0 and the matrix G1 be equal to

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

−ζ3,5 ζ3,4 0 ζ3,2 −ζ3,1 0 ζ3,11 −ζ3,10 0 −ζ3,8 ζ3,7 0 1 0 0 0
−ζ6,5 ζ6,4 0 ζ6,2 −ζ6,1 0 ζ6,11 −ζ6,10 0 −ζ6,8 ζ6,7 0 0 1 0 0
ζ9,5 −ζ9,4 0 −ζ9,2 ζ9,1 0 −ζ9,11 ζ9,10 0 ζ9,8 −ζ9,7 0 0 0 −1 0
ζ12,5 −ζ12,4 0 −ζ12,2 ζ12,1 0 −ζ12,11 ζ12,10 0 ζ12,8 −ζ12,7 0 0 0 0 −1



.
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We derive the crucial identity

G1µ̆=



0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 α3,3 0 0 α3,6 0 0 α3,9 0 0 α3,12

0 0 α6,3 0 0 α6,6 0 0 α6,9 0 0 α6,12

0 0 α9,3 0 0 α9,6 0 0 α9,9 0 0 α9,12

0 0 α12,3 0 0 α12,6 0 0 α12,9 0 0 α12,12



,

αkn := ζkn=

12∑
l=1

µ̃T
klA0;ln=A0;kn for k∈{3,6},

αkn :=−ζkn=−
12∑
l=1

µ̃T
klA0;ln=A0;kn for k∈{9,12},

where n∈{3,6,9,12}. Here we use µ̃lk=1 for l=k and µ̃lk=0 for l ̸=k, if k∈{3,6}, as
well as µ̃lk=−1 for l=k and µ̃lk=0 for l ̸=k, if k∈{9,12}. Since

α3,3 α3,6 α3,9 α3,12

α6,3 α6,6 α6,9 α6,12

α9,3 α9,6 α9,9 α9,12

α12,3 α12,6 α12,9 α12,12

=


A0;3,3 A0;3,6 A0;3,9 A0;3,12

A0;6,3 A0;6,6 A0;6,9 A0;6,12

A0;9,3 A0;9,6 A0;9,9 A0;9,12

A0;12,3 A0;12,6 A0;12,9 A0;12,12

≥η,

this matrix has an inverse β bounded by C(η). Setting G2=
(I12×12 0

0 β

)
, we compute

G2G1µ̆=



0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1



=:M̃. (4.20)
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Equations (4.19) and (4.20) yield

M̃∂3u=G2G1F. (4.21)

The formulas in (4.3) imply the inequality

∥G2G1∥L∞(Ω)≤C(η)(1+c0)2 with c0 :=max{ max
j=0,...,3

∥Aj∥L∞(Ω),∥D∥L∞(Ω)}.

Since the matrix M̃ has rank 12, equation (4.21) shows that ∂3u is contained in
C(J,L2(R3

+)) and bounded by

∥∂3u(t)∥L2(R3
+)≤C(η)(1+c0)2∥F (t)∥L2(R3

+). (4.22)

This estimate is analogous to (3.29) in the proof of Proposition 3.3 in [30], where a
comparable function F was involved. The remaining arguments are the same as in
[30] and therefore omitted. They mainly consist of straightforward estimates and an
application of Gronwall’s inequality.

We can now combine Lemma 4.1, Lemma 4.2 and Proposition 4.1 in an iteration
argument to establish the desired a priori estimates of arbitrary order. This is done as
in the proof of Theorem 4.4 in [30], also using the auxiliary results from Section 2. Here
the different structure in (4.1) arising from the interface condition does not play a role.
So we do not give the proof.

Theorem 4.1. Let T ′>0, η>0, r≥ r0>0, m∈N, and m̃=max{m,3}. Pick T ∈
(0,T ′] and set J =(0,T ). Take coefficients A0∈F cp

m̃,η(Ω), A1,A2∈F cp
m̃,coeff(R3

+), A3=

Ãco
3 , D∈F cp

m̃ (Ω), and B=Bco satisfying

∥Ai∥Fm̃(Ω)≤ r, ∥D∥Fm̃(Ω)≤ r,
max{∥Ai(0)∥F 0

m̃−1(R3
+), max

1≤j≤m̃−1
∥∂jtA0(0)∥Hm̃−j−1(R3

+)}≤ r0,

max{∥D(0)∥F 0
m̃−1(R3

+), max
1≤j≤m̃−1

∥∂jtD(0)∥Hm̃−j−1(R3
+)}≤ r0

for all i∈{0,1,2}. Choose data f ∈Hm(Ω), g∈Em(J×∂R3
+), and u0∈Hm(R3

+).
Assume that the solution u of (4.1) belongs to Gm(Ω). Then there is a number
γm=γm(η,r,T ′)≥1 such that u satisfies

∥u∥2Gm,γ(Ω)≤ (Cm,0+TCm)emC1T
(m−1∑

j=0

∥∂jt f(0)∥2Hm−1−j(R3
+)+∥g∥2Em,γ(J×∂R3

+)

+∥u0∥2Hm(R3
+)

)
+
Cm

γ
∥f∥2Hm

γ (Ω)

for all γ≥γm, where Cm=Cm(η,r,T ′)≥1, Cm,0=Cm,0(η,r0)≥1, and C1=C1(η,r,T
′)

is a constant independent of m.

5. Regularity of solutions to the linear problem
In this section we prove that theG0(Ω)-solution u of (4.1) actually belongs toGm(Ω)

if the data and the coefficients are accordingly smooth and compatible. To this aim,
different regularizing techniques in normal, tangential, and time directions are used.
We first show that regularity in time and in tangential directions implies regularity in
normal direction. This is the crucial step in the regularization argument, and it heavily
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relies on the structure of the Maxwell system. As in Proposition 4.1, we only look at
the linear initial value problem (4.6).

Lemma 5.1. Let η>0, m∈N, and m̃=max{m,3}. Take coefficients A0∈F cp
m̃,η(Ω),

A1,A2∈F cp
m̃,coeff(R3

+), A3= Ãco
3 , and D∈F cp

m̃ (Ω). Choose data f ∈Hm(Ω) and u0∈
Hm(R3

+). Let u be a solution of (4.6) for these coefficients and data. Assume that u

belongs to
⋂m

j=1C
j(J,Hm−j(R3

+)).

Take k∈{1,. ..,m} and a multi-index α∈N4
0 with |α|=m, α0=0, and α3=k. Sup-

pose that ∂βu is contained in G0(Ω) for all β∈N4
0 with |β|=m and β3≤k−1. Then

∂αu is an element of G0(Ω).

Proof. (I) We begin with several preparations. Let Mε, ε>0, be a standard
mollifier on R3 with kernel ρ≥0. Let δ>0. We introduce the translation operator

Tδv(x)=v(x1,x2,x3+δ) for v∈L1
loc(R3

+) and a.e. x∈R2×(−δ,∞). (5.1)

Notice that Tδ maps W l,p(R3
+) continuously into W l,p(R2×(−δ,∞)) and that ∂α̃Tδv=

Tδ∂
α̃v for all v∈W l,p(R3

+), α̃∈N4
0 with |α̃|≤ l, l∈N0, and 1≤p≤∞. If v∈L1

loc(R3),
we further define Tδv by formula (5.1) for all δ∈R.

Functions which are only defined on a subset of R3 will be identified with their
zero-extensions. Moreover, restrictions of a map v to a subset are also denoted by v.
We extend the translations Tδ to continuous operators on H−1(R3

+) by setting

⟨Tδv,ψ⟩H−1(R3
+)×H1

0 (R3
+)= ⟨v,T−δψ⟩H−1(R3

+)×H1
0 (R3

+)

for all ψ∈H1
0 (R3

+) and δ>0. It is then straighforward to check that ∂jTδv=Tδ∂jv for
all v∈L2(R3

+) and δ>0.
We want to apply Mε to functions in L1

loc(R3
+) without obtaining singularities at

the boundary in limit processes. To that purpose, we take 0<ε<δ and look at the
regularization MεTδv for v∈L1

loc(R3
+). If v and ∂jv belong to L1

loc(R3
+), then also

MεTδv has a weak derivative in R3
+ and ∂jMεTδv=MεTδ∂jv for all j∈{1,2,3}.

We set ρ̃(x)=ρ(−x) for all x∈R3 and denote the corresponding mollifier by M̃ε. A
straightforward computation shows that

⟨MεTδv,ψ⟩H−1(R3
+)×H1

0 (R3
+)= ⟨v,T−δM̃εψ⟩H−1(R3

+)×H1
0 (R3

+) (5.2)

for all v∈L2(R3
+) and ψ∈H1

0 (R3
+). As T−δM̃ε maps H1

0 (R3
+) continuously into itself,

the mapping MεTδ continuously extends to an operator on H−1(R3
+) via formula (5.2).

We deduce the identity

∂jMεTδv=Mε∂jTδv=MεTδ∂jv

by duality for all j∈{1,2,3} and v∈L2(R3
+). Finally, for A∈W 1,∞(R3

+) and v∈
H−1(R3

+) we obtain (TδA)Tδv=Tδ(Av) in H
−1(R3

+).

(II) Let 0<ε<δ. We abbreviate the differential operators L(TδAj ,TδD) by Lδ

and Div(TδA1,TδA2,TδA3) by Divδ (recall (4.5)). Let α∈N4
0 with |α|=m, α0=0, and

α3=k. We set α′=α−e3∈N4
0. The derivative ∂α

′
u belongs to G0(Ω) by assumption.

Because of the mollifier, the map MεTδ∂
α′
u is contained in C1(J,H2(R3

+)) ↪→G1(Ω),

MεTδ∂
α′
u0 in H1(R3

+), LδMεTδ∂
α′
u in G0(Ω), and DivδLδMεTδ∂

α′
u in L2(Ω). To

show convergence of ∂3MεTδ∂
α′
u as ε→0, we want to apply the a priori estimate (4.7).
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Therefore, we have to study the convergence properties of the functions LδMεTδ∂
α′
u

and DivδLδMεTδ∂
α′
u as ε→0. We focus on the latter as this is the more difficult one.

We use the maps µkl, µ̂, and µ̃ from (4.4). Exploiting step (I), we compute

(Tδµ̃)
T∇LδMεTδ∂

α′
u

=

2∑
j=0

(Tδµ̃)
T (Tδ∇Aj)∂jMεTδ∂

α′
u+(Tδµ̃)

T (Tδ∇D)MεTδ∂
α′
u

+Tδ(µ̃
TA0)∇MεTδ∂t∂

α′
u+Tδ(µ̃

TD)∇MεTδ∂
α′
u+

3∑
j=1

Tδ(µ̃
TAj)∇∂jMεTδ∂

α′
u

=:Λδ,ε+

3∑
j=1

Tδ(µ̃
TAj)∇∂jMεTδ∂

α′
u. (5.3)

The cancellation properties of Lδ established in formulas (4.13), (4.14), (4.17) and (4.18)
show that

3∑
k=1

3∑
j=1

(Tδ(µ̃
TAj)∇∂jMεTδ∂

α′
u)(k+3l)k=0

for all l∈{0,1,2,3}. Equation (5.3) thus leads to

DivδLδMεTδ∂
α′
u=

3∑
k=1

(
Λδ,ε
kk ,Λ

δ,ε
(k+3)k,Λ

δ,ε
(k+6)k,Λ

δ,ε
(k+9)k

)
. (5.4)

We rewrite Λδ,ε in the form

Λδ,ε=

2∑
j=0

[Tδ(µ̃
T∇Aj),Mε]∂jTδ∂

α′
u+[Tδ(µ̃

T∇D),Mε]Tδ∂
α′
u

+[Tδ(µ̃
TA0),Mε]∇Tδ∂t∂α

′
u+[Tδ(µ̃

TD),Mε]∇Tδ∂α
′
u

+MεTδ

( 2∑
j=0

µ̃T∇Aj∂j∂
α′
u+ µ̃T∇D∂α

′
u+ µ̃TA0∇∂t∂α

′
u+ µ̃TD∇∂α

′
u
)
.

In view of the terms with m space derivatives in the last line, we introduce the map

f̃α′ =
∑

0<β≤α′

(
α′

β

)
∂β(µ̃TA0)∇∂α

′−β∂tu+
∑

0<β≤α′

(
α′

β

)
∂β(µ̃TD)∇∂α

′−βu

+

2∑
j=0

∑
0<β≤α′

(
α′

β

)
∂β(µ̃T∇Aj)∂

α′−β∂ju+
∑

0<β≤α′

(
α′

β

)
∂β(µ̃T∇D)∂α

′−βu.

As u and ∂tu are contained in C(J,Hm−1(R3
+)), Lemma 2.1 implies that f̃α′ is an

element of L2(Ω). It follows

Λδ,ε=

2∑
j=0

[Tδ(µ̃
T∇Aj),Mε]∂jTδ∂

α′
u+[Tδ(µ̃

T∇D),Mε]Tδ∂
α′
u
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+[Tδ(µ̃
TA0),Mε]∇Tδ∂t∂α

′
u+[Tδ(µ̃

TD),Mε]∇Tδ∂α
′
u+∂α

′
MεTδ(µ̃

T∇f)

−MεTδ f̃α′ −
3∑

j=1

∂α
′
MεTδ(µ̃

TAj∇∂ju)

=: Λ̃δ,ε−
3∑

j=1

∂α
′
MεTδ(µ̃

TAj∇∂ju).

Equations (4.13), (4.14), (4.17) and (4.18) also yield that

3∑
k=1

(
Λδ,ε
kk ,Λ

δ,ε
(k+3)k,Λ

δ,ε
(k+6)k,Λ

δ,ε
(k+9)k

)
=

3∑
k=1

(
Λ̃δ,ε
kk ,Λ̃

δ,ε
(k+3)k,Λ̃

δ,ε
(k+6)k,Λ̃

δ,ε
(k+9)k

)
.

By means of (5.4), we arrive at the core identity

DivδLδMεTδ∂
α′
u=

3∑
k=1

(
Λ̃δ,ε
kk ,Λ̃

δ,ε
(k+3)k,Λ̃

δ,ε
(k+6)k,Λ̃

δ,ε
(k+9)k

)
. (5.5)

Starting from its counterpart (4.7) in [30], the rest of the reasoning is now the same as
in the proof of Lemma 4.1 in this paper. One uses thatMεTδ∂

α′
u solves the initial value

problem (4.6) with differential operator Lδ, inhomogeneity LδMεTδ∂
α′
u and initial value

MεTδu0. In these data and in (5.5), one can pass to the limit in L2 as ε→0 employing
estimates for the commutators of the mollifier and the coefficients. The estimate (4.7)
from Proposition 4.1 then allows to bound ∇Tδ∂α

′
u in G0(Ω), uniformly in δ>0, see

(4.15) in [30]. One can then let δ→0 obtaining the result. We omit the details.

Replacing estimate (4.7) from Proposition 4.1 by inequality (4.9) in the above proof,
one derives the following variant of Lemma 5.1, cf. Corollary 4.2 in [30].

Corollary 5.1. Let η>0, m∈N, and m̃=max{m,3}. Take coefficients A0∈
F cp
m̃,η(Ω), A1,A2∈F cp

m̃,coeff(R3
+), A3= Ãco

3 , and D∈F cp
m̃ (Ω). Choose data f ∈Hm(Ω)

and u0∈Hm(R3
+). Let u be a solution of the initial value problem (4.6) with these

coefficients and data. Assume that u belongs to
⋂m

j=1C
j(J,Hm−j(R3

+)).

Take k∈{1,. ..,m} and a multi-index α∈N4
0 with |α|=m, α0=0, and α3=k. Sup-

pose that ∂βu is contained in L2(Ω) for all β∈N4
0 with |β|=m and β3≤k−1. Then

∂αu is an element of L2(Ω).

Based on Lemma 5.1 and Corollary 5.1, the regularization arguments in tangential
and time directions are analogous to the proofs of Lemmas 4.4 and 4.5 in [30]. One
first studies the solution u mollified in (x1,x2). The regularized solution uε satisfies the
Maxwell system with modified data (as in (4.20) of [30]). It then crucially enters into
the bound of u in a family of weighted tangential Sobolev norms, taken from Section 1.7
and Section 2.4 in [17]. The a priori estimate from Lemma 4.1 allows us to control uε
in G0. It is then possible to take the limit ε→0. The results from [17] require smooth
coefficients so that temporarily we have to assume this extra regularity.

In the time direction one looks at the problem solved by the time derivative v of u,
cf. (4.32) in [30]. Integration with respect to time yields a function which coincides with
u, implying the required time regularity. Here the compatibility conditions are needed.
In these arguments the new features of the problem (4.1) do not play a role and one
can follow along the lines of the proofs of [30]. We thus only state the results.
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Lemma 5.2. Let η>0, m∈N, and m̃=max{m,3}. Take coefficients A0∈F cp
m̃,η(Ω),

A1,A2∈F cp
m̃,coeff(R3

+), A3= Ãco
3 , D∈F cp

m̃ (Ω) and B=Bco. We further assume that these

coefficients belong to C∞(Ω). Let u be the weak solution of (4.1) with data f ∈Hm
ta (Ω),

g∈Em(J×∂R3
+), and u0∈Hm

ta (R3
+). Suppose that u belongs to

⋂m
j=1C

j(J,Hm−j(R3
+)).

Pick a multi-index α∈N4
0 with |α|=m and α0=α3=0. Then ∂αu is an element of

C(J,L2(R3
+)).

Lemma 5.3. Let η>0. Take coefficients A0∈F cp
3,η(Ω), A1,A2∈F cp

3,coeff(R3
+),

A3= Ãco
3 , D∈F cp

3 (Ω), and B=Bco. Choose data u0∈H1(R3
+), g∈E1(J×∂R3

+), and
f ∈H1(Ω). Assume that the tuple (0,A0,. ..,A3,D,B,f,g,u0) fulfills the compatibility
conditions (2.6) on G=R3

+ of order 1. Let u∈C(J,L2(R3
+)) be the weak solution

of (4.1) with data f , g, and u0. Assume that u∈C1(J ′,L2(R3
+)) implies u∈G1(J

′×R3
+)

for every open interval J ′⊆J . Then u belongs to G1(Ω).

To iterate the previous result, we need a relation between the operators Sm,p of
different order stated in the next lemma. It follows from a straightforward computation
based on definition (2.4) of Sm,p as in Lemma 4.8 of [28].

Lemma 5.4. Let η>0, m∈N and m̃=max{m,3}. Take A0∈F cp
max{m+1,3},η(Ω)

with ∂tA0∈F cp
m̃ (Ω), A1, A2∈F cp

max{m+1,3},coeff(R
3
+), A3= Ãco

3 , D∈F cp
max{m+1,3}(Ω),

and B=Bco. Choose data t0∈J , u0∈Hm+1(R3
+), g∈Em+1(J×∂R3

+), and f ∈
Hm+1(Ω). Assume that u∈Gm(Ω) solves (4.1) with initial time t0. Set u1=
Sm+1,1(t0,A0,. ..,A3,D,f,u0) and f1=∂tf−∂tDu. Let p∈{0,. ..,m−1}. We then ob-
tain

Sm,p(t0,A0,. ..,A3,∂tA0+D,f1,u1)=Sm+1,p+1(t0,A0,. ..,A3,D,f,u0).

Combining the above results with an iteration argument, we derive the desired
regularity of the solution u provided the coefficients are smooth.

Proposition 5.1. Let η>0, m∈N, and m̃=max{m,3}. Take A0∈F cp
m̃,η(Ω) with

∂tA0∈F cp
max{m−1,3}(Ω) , A1,A2∈F cp

m̃,coeff(R3
+), A3= Ãco

3 , D∈F cp
m̃ (Ω), and B=Bco.

Assume that these coefficients are contained in C∞(Ω). Choose data f ∈Hm(Ω),
g∈Em(J×∂R3

+), and u0∈Hm(R3
+) such that the tuple (0,A0,. ..,A3,D,B,f,g,u0) sat-

isfies the compatibility conditions (2.6) on G=R3
+ of order m. Let u be the weak solution

of (4.1). Then u belongs to Gm(Ω).

Proof. Lemma 5.3, Lemma 5.2, and Lemma 5.1 show the assertion for m=1. Let
the claim be true for some m∈N and let the assumptions be fulfilled for m+1. The
weak solution u of (4.1) hence belongs to Gm(Ω), and ∂tu satisfies

L∂tv=∂tf−∂tDu=:f1, x∈R3
+, t∈J ;

Bv=∂tg, x∈∂R3
+, t∈J ;

v(0)=Sm+1,1(0,A0,. ..,A3,D,f,u0)=:u1, x∈R3
+,

where we write L∂t
for L(A0,. ..,A3,∂tA0+D). The initial field u1 belongs to Hm(R3

+)
by Lemma 2.3, the inhomogeneity f1 toH

m(Ω) by Lemma 2.1, and ∂tg to Em(J×∂R3
+).

The coefficients satisfy the conditions of Lemma 5.4 and ∂tA0+D is an element of
F cp
m̃ (Ω)∩C∞(Ω). Lemma 5.4 thus shows the compatibility conditions (2.6) of order
m for the tuple (0,A0,. ..,A3,∂tA0+D,f1,∂tg,u1). By the induction hypothesis, the
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function ∂tu is contained in Gm(Ω), so that u belongs to
⋂m+1

j=1 C
j(J,Hm+1−j(R3

+)).
Lemma 5.2 and Lemma 5.1 then imply that the solution u is an element of Gm+1(Ω).

It remains to remove the extra regularity assumptions. Lemma 2.2 provides suitable
approximations of the given coefficients. However, after this procedure the compatibility
conditions can be violated. To overcome this difficulty, we modify the initial fields
appropriately in Lemma 5.6. The proof of this result is based on the next fact which
again relies on the algebraic structure of the coefficient matrices.

Lemma 5.5. Let η>0, p∈N0, and m,k∈N with m≥3 and k≤m−1. Take
A0∈Fm,12,η(Ω) and A3= Ãco

3 . Choose r>0 such that ∥A0(0)∥F 0
m−1(R3

+)≤ r. Take an

approximating family {A0,ε}ε>0 provided by Lemma 2.2. Let v0,ε be maps in Hk(R3
+)

12

for ε>0. Then there exists a number ε0>0, a constant C=C(η,r), and a family of
functions {vp,ε}0<ε<ε0 in Hk(R3

+)
12 such that

A3(A0,ε(0)
−1A3)

pvp,ε=A3v0,ε and ∥vp,ε∥Hk(R3
+)≤C∥v0,ε∥Hk(R3

+)

for all ε∈ (0,ε0).

Proof.
(I) By Lemma 2.2 there is a number ε0>0 such that

∥A0,ε(0)∥F 0
m−1(R3

+)≤2r (5.6)

for all ε∈ (0,ε0). Let ε∈ (0,ε0). We introduce the invertible matrices

Q=


0 0 0 0 1 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

 and Q=

(
Q 0
0 −Q

)

and note that

A3Q= Ãco
3 Q=


Jbl 0 0 0
0 Jbl 0 0
0 0 Jbl 0
0 0 0 Jbl

, where Jbl=

1 0 0
0 1 0
0 0 0

 .
Since A0,ε≥η, also the matrix

Θε=


A0,ε;3,3 A0,ε;3,6 A0,ε;3,9 A0,ε;3,12

A0,ε;6,3 A0,ε;6,6 A0,ε;6,9 A0,ε;6,12

A0,ε;9,3 A0,ε;9,6 A0,ε;9,9 A0,ε;9,12

A0,ε;12,3 A0,ε;12,6 A0,ε;12,9 A0,ε;12,12

,
satisfies Θε≥η on Ω. In particular, Θε has an inverse with

∥Θ−1
ε (0)∥F 0

m−1(R3
+)≤C(η,r) for all ε∈ (0,ε0). (5.7)

(II) Let w0∈Hk(R3
+)

12. We can define scalar functions h1,ε,. ..,h4,ε by

(h1,ε,. ..,h4,ε)=−Θ−1
ε (0)(A0,ε(0)w0)(3,6,9,12),
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where we write ζ(3,6,9,12)=(ζ3,ζ6,ζ9,ζ12) for any vector ζ ∈R12. Lemma 2.1 and the
inequalities (5.6) and (5.7) imply that

∥(h1,ε,. ..,h4,ε)∥Hk(R3
+)≤C(η,r)∥w0∥Hk(R3

+). (5.8)

We next set

ŵε=Qw̃ε, w̃ε=−A0,ε(0)
(
w0+h1,εe3+h2,εe6+h3,εe9+h4,εe12

)
. (5.9)

Lemma 2.1, (5.6), and (5.8) again provide a constant C(η,r) such that

∥ŵε∥Hk(R3
+)≤C(η,r)∥w0∥Hk(R3

+). (5.10)

Observe that

(w̃ε)(3,6,9,12)=(−A0,ε(0)w0)(3,6,9,12)−Θε(0)(h1,ε,. ..,h4,ε)=0,

and hence A3Qw̃ε= w̃ε. We thus compute

A3(−A0,ε(0)
−1A3)ŵε=A3(−A0,ε(0)

−1)w̃ε=A3w0 (5.11)

using (5.9) and kerA3=span{e3,e6,e9,e12}.
(III) To show the assertion of the lemma, we proceed inductively. We claim that for

all p∈N0, ε∈ (0,ε0), and w∈Hk(R3
+)

12 there is a function wp,ε(w) in H
k(R3

+)
12 and a

constant Cp=Cp(η,r) such that

A3(−A0,ε(0)
−1A3)

pwp,ε(w)=A3w, (5.12)

∥wp,ε(w)∥Hk(R3
+)≤Cp∥w∥Hk(R3

+). (5.13)

We can simply set w0,ε(w)=w. Let the claim be true for a number p∈N0. Fix ε∈ (0,ε0)
and w∈Hk(R3

+)
12. Step (II) applied with w0=w yields a function w̃p,ε∈Hk(R3

+)
12

satisfying

A3(−A0,ε(0)
−1A3)w̃p,ε=A3w and ∥w̃p,ε∥Hk(R3

+)≤C(η,r)∥w∥Hk(R3
+). (5.14)

We now define wp+1,ε(w)=wp,ε(w̃p,ε) for each ε∈ (0,ε0). The map wp+1,ε(w) then is
contained in Hk(R3

+)
12, and we compute

A3(−A0,ε(0)
−1A3)

p+1wp+1,ε(w)=A3(−A0,ε(0)
−1)A3(−A0,ε(0)

−1A3)
pwp,ε(w̃p,ε)

=A3(−A0,ε(0)
−1)A3w̃p,ε=A3w,

where we employed the induction hypothesis (5.12) and (5.14). Combining (5.13)
with (5.10), we further obtain

∥wp+1,ε(w)∥Hk(R3
+)=∥wp,ε(w̃p,ε)∥Hk(R3

+)≤Cp∥w̃p,ε∥Hk(R3
+)≤C∥w∥Hk(R3

+),

where C=C(η,r). The claim now follows by induction.
We obtain the assertion of the lemma by setting vp,ε=wp,ε(v0,ε).

Lemma 5.6. Let η>0, m∈N, and m̃=max{m,3}. Take coefficients A0∈F cp
m̃,η(Ω),

A1,A2∈F cp
m̃,coeff(R3

+), A3= Ãco
3 , D∈F cp

m̃ (Ω), and B=Bco. Choose data f ∈Hm(Ω), g∈
Em(J×∂R3

+), and u0∈Hm(R3
+) which fulfill the compatibility conditions (2.6) on G=
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R3
+ of order m in t0∈J . Let {Ai,ε}ε>0 and {Dε}ε>0 be the families of functions provided

by Lemma 2.2 for Ai and D respectively for i∈{0,1,2}. Then there exists a number
ε0>0 and a family {u0,ε}0<ε<ε0 in Hm(R3

+) such that the compatibility conditions for
the tuple (t0,A0,ε,A1,ε,A2,ε,A3,Dε,B,f,g,u0,ε) of order m are satisfied and u0,ε tends
to u0 in Hm(R3

+) as ε→0.

Proof. Without loss of generality we assume t0=0. We set u0,ε=u0+hε and
look for functions hε∈Hm(R3

+) with hε→0 in Hm(R3
+) such that the compatibility

conditions are fulfilled. Since B=MA3 for a constant matrix M=Mco by (3.13), it
suffices to find hε with

A3Sm,p(0,A0,ε,A1,ε,A2,ε,A3,Dε,f,u0+hε)=A3Sm,p(0,A0,. ..,A3,D,f,u0)

for all 0≤p≤m−1 on ∂R3
+. Using Lemma 5.5 one can now repeat steps (I) and (II) of

the proof of Lemma 4.8 of [30] in which the structure arising from the interface problem
does not play a role. We thus omit the details.

We can now deduce the differentiability theorem by applying Proposition 5.1 to the
solutions of the approximating initial boundary value problems with coefficients and
data from Lemma 5.6. Compared to [30], again the specific structure of our problem
does not enter the reasoning, and thus we do not give a proof and refer to Theorem 4.10
of [30] for the details.

Theorem 5.1. Let η>0, m∈N, and m̃=max{m,3}. Take coefficients A0∈F cp
m̃,η(Ω),

A1,A2∈F cp
m̃,coeff(R3

+), A3= Ãco
3 , D∈F cp

m̃ (Ω), and B=Bco. Choose data f ∈Hm(Ω), g∈
Em(J×∂R3

+), and u0∈Hm(R3
+) such that the tuple (0,A0,. ..,A3,D,B,f,g,u0) satisfies

the compatibility conditions (2.6) on G=R3
+ of order m. Then the weak solution u

of (4.1) belongs to Gm(Ω).

Remark 5.1. Recall that Theorem 3.1 is valid for coefficients A0 and D which have
merely a limit as |(t,x)|→∞. Also all intermediate results extend to such coefficients.
In particular, Proposition 4.1, Theorem 4.1, and Theorem 5.1 are still true if A0 and D
only have a limit as |(t,x)|→∞, cf. the proof of Theorem 4.13 in [28].

6. Local existence and uniqueness of the nonlinear system
In this section we prove existence and uniqueness of a solution of (1.7) by a fixed-

point argument based on the a priori estimates and the regularity theory from Sections 4
and 5 for the corresponding linear problem. We define a solution of (1.7) to be a function
u belonging to

⋂m
j=0C

j(I,Hm−j(G)) with imu±⊆U± for all t∈ I and satisfying (1.7).
Here I is an interval with t0∈ I. We further allow more general functions σ than arising
from the model (1.3). The specific structure of the interface conditions does not enter
very much in the proofs from now on. For this reason we can be more brief in this part
of the paper and often refer the reader to the article [29], where the initial boundary
value problem was treated in detail. We first introduce the spaces

MLm,n(G,U±)

={θ : (G+×U+)∪(G−×U−)→Rn×n with θ±∈Cm(G±×U±,Rn×n) and

sup
(x,y)∈G±×U±,1

|∂αθ(x,y)|<∞ for all α∈N9
0 with |α|≤m and U±,1⋐U±},

MLm,n
pd (G,U±)={θ∈MLm,n(G,U±) : There exists η>0 with θ=θT ≥η

on G±×U±} (6.1)
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for our nonlinearities. Here θ+ and θ− denote the restrictions of θ to G+×U+ respec-
tively G−×U−. Moreover, by writing G±×U± we address the two sets G+×U+ and
G−×U−. Actually, we only need the dimensions n=1 or n=6.

We often have to control compositions θ(v) in higher regularity in terms of v. In
Lemma 2.1 and Corollary 2.2 of [29] the necessary formulas and estimates have been
provided for functions defined on a single domain. Our interface case can then be
treated by applying these facts to the subsets G± separately. Since the proofs below are
only sketched, we do not repeat the modified versions of these rather lengthy auxiliary
results.

As in the linear case discussed in Section 2, regular solutions of (1.7) have to satisfy
compatibility conditions. To express them, we first introduce the operators that give
the initial values of the time differentiated version of (1.7), cf. (2.4).

Definition 6.1. Let J ⊆R be an open interval, m∈N, χ∈MLm,6
pd (G,U±), and

σ∈MLm,6(G,U±). We inductively define the operators

Sχ,σ,G,m,p : J×Hmax{m,3}(J×G)×Hmax{m,2}(G,U)→Hm−p(G)

by Sχ,σ,G,m,0,±(t0,f±,u0,±)=u0,± and

Sχ,σ,G,m,p,±(t0,f±,u0,±)

=χ±(u0,±)
−1
(
∂p−1
t f±(t0)−

3∑
j=1

Aco
j ∂jSχ,σ,G,m,p−1,±(t0,f±,u0,±)

−
p−1∑
l=1

(
p−1

l

)
M l

1,±(t0,f±,u0,±)Sχ,σ,G,m,p−l,±(t0,f±,u0,±)

−
p−1∑
l=0

(
p−1

l

)
M l

2,±(t0,f±,u0,±)Sχ,σ,G,m,p−1−l,±(t0,f±,u0,±)
)
, (6.2)

Mp
k,±=

∑
1≤j≤p

∑
γ1,...,γj∈N4

0\{0}∑
γi=(p,0,0,0)

6∑
l1,...,lj=1

C((p,0,0,0),γ1,. ..,γj)

·(∂ylj
·· ·∂yl1

θk,±)(u0,±)

j∏
i=1

Sχ,σ,G,m,|γi|,±(t0,f±,u0,±)li (6.3)

for 1≤p≤m, k∈{1,2}, where θ1=χ, θ2=σ, M
0
2,±=σ±(u0,±), and C is a combina-

torical constant, cf. Lemma 2.1 and (2.8) of [29]. By Hmax{m,2}(G,U) we mean those
functions u0∈Hmax{m,2}(G) with imu0,±⊆U±.

Lemma 2.4 of [29] shows that the operators Sχ,σ,G,m,p indeed map into Hm−p(G)
and it provides corresponding estimates (one applies it to the subsets G± separately).
Using Lemma 2.1 of [29], we can differentiate (1.7) p-times and obtain

∂pt u(t0)=Sχ,σ,G,m,p(t0,f,u0) for all p∈{0,. ..,m} (6.4)

if u∈Gm(J×G) is a solution of (1.7) with data f ∈Hm(J×G), u0∈Hm(G), and g∈
Em(J×Σ). Proceeding similarly with the interface and boundary conditions, equation
(6.4) leads to the identities

BΣSχ,σ,G,m,p(t0,f,u0)=∂
p
t g(t0) on Σ, (6.5)
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B∂GSχ,σ,G,m,p(t0,f,u0)=0 on ∂G for all p∈{0,. ..,m−1},

which are necessary for the existence of a Gm(J×G)-solution of (1.7). We say that
the data tuple (χ,σ,t0,BΣ,B∂G,f,g,u0) fulfills the compatibility conditions of order m
if imu0,±⊆U± and the equations (6.5) are true.

Remark 6.1. Analogously to Remark 1.2 in [30], the linear theory allows for co-
efficients in W1,∞(J×G) whose derivatives up to order m on G± are contained in
L∞(J,L2(G±))+L

∞(J×G±). In view of Lemma 2.1 in [29], we can thus apply the
linear theory with coefficients χ(û) and σ(û) and û∈G̃m̃(J×G). However, the part
of the derivatives in L∞(J×G) is easier to treat so that we concentrated on coef-
ficients from Fm(J×G) in Sections 4 and 5. The same is true for the nonlinear
problem. In the proofs we will thus assume without loss of generality that χ and σ
from MLm,6(G,U±) have decaying space derivatives as |x|→∞. More precisely, for
all multi-indices α∈N9

0 with α4= .. .=α9=0 and 1≤|α|≤m, R>0, U1,±⋐U±, and
v∈L∞(J,L2(G)) with imv±⊆U1,± and ∥v∥L∞(J,L2(G))≤R we require

(∂αχ±)(v±),(∂
ασ±)(v±)∈L∞(J,L2(G±)),

∥(∂αχ±)(v±)∥L∞(J,L2(G±))+∥(∂ασ±)(v±)∥L∞(J,L2(G±))≤C, (6.6)

where C=C(χ,σ,m,R,U1,±). With this assumption, we obtain from Lemma 2.1 in [29]
that χ(û) and σ(û) belong to Fm(J×G).

Finally, we note that for bounded G the above considerations are unnecessary since
then L2(G±)+L

∞(G±)=L
2(G±).

The next lemma relates the maps Sχ,σ,G,m,p to their linear counterparts in (2.4).

Lemma 6.1. Let J ⊆R be an open interval, t0∈J , and m∈N with m≥3. Take χ∈
MLm,6

pd (G,U±) and σ∈MLm,6(G,U±). Choose data f ∈Hm(J×G) and u0∈Hm(G)

with imu0,±⊆U±. Let r>0. Assume that f and u0 satisfy

∥u0∥Hm(G)≤ r, max
0≤j≤m−1

∥∂jt f(t0)∥Hm−j−1(G)≤ r,

∥f∥Gm−1(J×G)≤ r, ∥f∥Hm(J×G)≤ r.

(1) Let û∈G̃m(J×G) with ∂pt û(t0)=Sχ,σ,G,m,p(t0,f,u0) for 0≤p≤m−1. Then û
fulfills the equations

SG,m,p(t0,χ(û),A
co
1 ,A

co
2 ,A

co
3 ,σ(û),f,u0)=Sχ,σ,G,m,p(t0,f,u0) (6.7)

for all p∈{0,. ..,m}.
(2) There is a constant C(χ,σ,m,r,U1,±)>0 and a function u in Gm(J×G) realizing

the initial conditions

∂pt u(t0)=Sχ,σ,G,m,p(t0,f,u0)

for all p∈{0,. ..,m} and it is bounded by

∥u∥Gm(J×G)≤C(χ,σ,m,r,U1,±)
(m−1∑

j=0

∥∂jt f(t0)∥Hm−j−1(G)+∥u0∥Hm(G)

)
.

Here U1,± denote compact subsets of U± with imu0,±⊆U1,±.
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Proof. Assertion (1) can be shown by induction using the definitions of the
operators SG,m,p in (2.4) and of Sχ,σ,G,m,p in (6.2), as well as Lemma 2.1 in [29].

Since Sχ,σ,G,m,p(t0,f,u0) belongs to Hm−p(G) for all p∈{0,. ..,m}, an extension
theorem (see e.g. Lemma 2.34 in [28] applied on G+ and G− separately) yields the
existence of a function u in Gm(J×G) with ∂pt u(t0)=Sχ,σ,G,m,p(t0,f,u0) and

∥u∥Gm(J×G)≤C
m∑

p=0

∥Sχ,σ,G,m,p(t0,f,u0)∥Hm−p(G)

for all p∈{0,. ..,m}. Lemma 2.4 of [29] then implies assertion (2).

We introduce slightly strengthened assumptions on our material laws χ and σ to
guarantee that χ(û) and σ(û) converge at infinity, as required in Theorem 3.1.

MLm,n,cv(G,U±)={θ∈MLm,n(G,U±) : ∃A∈Rn×n such that for all

(xk,yk)k ∈ (G×U)N with |xk|→∞ and yk→0 :

θ(xk,yk)→A as k→∞},
MLm,n,cv

pd (G,U±)=MLm,n
pd (G,U±)∩MLm,n,cv(G,U±).

The space MLm,n,cv(G,U±) coincides with MLm,n(G,U±) in (6.1) if G is bounded.
The next result provides the uniqueness of solutions of (1.7). Its proof is an obvious

modification of Lemma 7.1 in [29] and therefore omitted.

Lemma 6.2. Let t0∈R,T >0, J =(t0,t0+T ), and m∈N with m≥3. Take material
laws χ∈MLm,6,cv

pd (G,U±) and σ∈MLm,6,cv(G,U±). Choose data f ∈Hm(J×G), g∈
Em(J×Σ), and u0∈Hm(G). Let u1 and u2 be two solutions in Gm(J×G) of (1.7) with
initial time t0. Then u1=u2.

We now show the basic local existence theorem for (1.7) by a contraction argument.
To close the argument, one has to take great care of the constants. In particular, the
structure of the a priori estimate in Theorem 3.1 is crucial here.

Theorem 6.1. Let t0∈R, T >0, J =(t0,t0+T ), and m∈N with m≥3. Take χ∈
MLm,6,cv

pd (G,U±) and σ∈MLm,6,cv(G,U±). Let BΣ and B∂G be given by (1.6). Choose

data f ∈Hm(J×G), g∈Em(J×Σ), and u0∈Hm(G) with imu0,±⊆U± such that the tu-
ple (χ,σ,t0,BΣ,B∂G,f,g,u0) fulfills the nonlinear compatibility conditions (6.5) of order
m. Pick a radius r>0 satisfying

m−1∑
j=0

∥∂jt f(t0)∥2Hm−1−j(G)+∥g∥2Em(J×Σ)+∥u0∥2Hm(G)+∥f∥2Hm(J×G)≤ r
2. (6.8)

Take a number κ>0 with

dist({u0,±(x) : x∈G±},∂U±)>κ.

Then there exists a time τ = τ(χ,σ,m,T,r,κ)>0 such that the nonlinear initial boundary
value problem (1.7) with data f , g, and u0 has a unique solution u on [t0,t0+τ ] which
belongs to Gm(Jτ ×G), where Jτ =(t0,t0+τ).

Proof. Without loss of generality we assume t0=0 and that (6.6) holds true for χ
and σ, cf. Remark 6.1. Let τ ∈ (0,T ]. We set Jτ =(0,τ) and

Uκ,±={y∈U± : dist(y,∂U±)≥κ}∩B2CSobr(0), (6.9)
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where CSob is the norm of the Sobolev embedding H2(G) ↪→L∞(G). The sets Uκ,± are
compact and contain imu0,±.

Let R>0. As in step I of the proof of Theorem 3.3 in [29] one checks that

BR(Jτ ) :={v∈G̃m(Jτ ×G) : ∥v∥Gm(Jτ×G)≤R, ∥v−u0∥L∞(Jτ×G)≤κ/2,
∂jt v(0)=Sχ,σ,G,m,j(0,f,u0) for 0≤ j≤m−1}

is a complete metric space when endowed with d(v1,v2)=∥v1−v2∥Gm−1(Jτ×G). It is
non-empty thanks to Lemma 6.1 and the choice of R and τ below.

Let û∈BR(Jτ ). We have χ≥η for some η>0. The map χ(û) is contained
in Fcv

m,η(Jτ ×G) and σ(û) in Fcv
m (Jτ ×G) by Lemma 2.1 in [29], Remark 6.1,

and Sobolev’s embedding. Lemma 6.1 and the assumptions imply that the tu-
ple (t0,χ(û),A

co
1 ,A

co
2 ,A

co
3 ,σ(û),BΣ,B∂G,f,g,u0) fulfills the linear compatibility condi-

tions (2.6). Theorem 3.1 then yields a solution u∈Gm(Jτ ×G) of the linear sytem (1.9)
with differential operator L(χ(û),Aco

1 ,A
co
2 ,A

co
3 ,σ(û)) and data f , g, and u0. In this way

one defines a mapping Φ: û 7→u from BR(Jτ ) to Gm(Jτ ×G). We are now looking for a
radius R>0 and a (small) time τ >0 such that Φ leaves invariant BR(Jτ ).

For this purpose take numbers τ ∈ (0,T ] and R>C6.1(χ,σ,m,r,Uκ,±)(m+1)r which
will be fixed below. Let û∈BR(Jτ ). Lemma 2.4 in [29] and (6.8) imply that

∥Sχ,σ,G,m,p(0,f,u0)∥Hm−p(G)≤C2.4, [29](χ,σ,m,r,Uκ,±) (6.10)

for all p∈{0,. ..,m} and a constant C2.4, [29]. From Lemma 2.1 of [29] we infer

∥χ(û)(0)∥F0
m−1(G),∥σ(û)(0)∥F0

m−1(G)≤C2.1, [29](χ,σ,m,r,Uκ,±),

using (6.8) and χ(û)(0)=χ(u0), for instance. Note that imû± is contained in the
compact set

Ũκ,±=Uκ,±+B(0,κ/2)⊆U±

as û∈BR(Jτ ). Lemma 2.1 in [29] and estimate (6.10) lead to the bounds

∥∂ltχ(û)(0)∥Hm−l−1(G)≤C2.1, [29](χ,m,Uκ,±)(1+ max
0≤k≤l

∥∂kt û(0)∥Hm−k−1(G))
m−1

=C2.1, [29](χ,m,Uκ,±)(1+ max
0≤k≤l

∥Sχ,σ,G,m,k(0,f,u0)∥Hm−k−1(G))
m−1

≤C2.1, [29](χ,m,Uκ,±)(1+C2.4, [29](χ,σ,m,r,Uκ,±))
m−1,

∥∂ltσ(û)(0)∥Hm−l−1(G)≤C2.1, [29](σ,m,Uκ,±)(1+C2.4, [29](χ,σ,m,r,Uκ,±))
m−1

for all l∈{1,. ..,m−1}. We thus find a radius r0= r0(χ,σ,m,r,κ) such that

max{∥χ(û)(0)∥F0
m−1(G), max

1≤l≤m−1
∥∂ltχ(û)(0)∥Hm−l−1(G)}≤ r0,

max{∥σ(û)(0)∥F0
m−1(G), max

1≤l≤m−1
∥∂ltσ(û)(0)∥Hm−l−1(G)}≤ r0.

Since û belongs to BR(Jτ ), Lemma 2.1 in [29] yields the inequality

∥χ(û)∥Fm(J×G),∥σ(û)∥Fm(J×G)≤C2.1, [29](χ,σ,m,Ũκ,±)(1+R)
m.

Hence, there is a radius R1=R1(χ,σ,m,R,κ) with

∥χ(û)∥Fm(J×G)≤R1 and ∥σ(û)∥Fm(J×G)≤R1.



R. SCHNAUBELT AND M. SPITZ 2307

We next define the constant Cm,0=Cm,0(χ,σ,r,κ) by

Cm,0(χ,σ,r,κ)=C3.1,m,0(η(χ),r0(χ,σ,m,r,κ)),

where C3.1,m,0 denotes the constant Cm,0 from Theorem 3.1. The radius R=
R(χ,σ,m,r,κ) for BR(Jτ ) is now fixed as

R=max
{√

6Cm,0(χ,σ,r,κ)r, C6.1(χ,σ,m,r,Uκ,±)(m+1)r+1
}
. (6.11)

We further introduce the constants

γm=γm(χ,σ,T,r,κ) :=γ3.1,m(η(χ),R1(χ,σ,m,R(χ,σ,m,r,κ),κ),T ),

Cm=Cm(χ,σ,T,r) :=C3.1,m(η(χ),R1(χ,σ,m,R(χ,σ,m,r,κ),κ),T ),

where γ3.1,m and C3.1,m are the corresponding constants from Theorem 3.1. Let

C2.2, [29](θ,m,R,Ũκ,±) be the constant that arises when applying Corollary 2.2 of [29] to

the components of θ∈MLm,6(G,U±). We now define the parameter γ=γ(χ,σ,m,T,r,κ)
and the time step τ = τ(χ,σ,m,T,r,κ) by

γ=max
{
γm, C

−1
m,0Cm

}
,

τ =min
{
T, (2γ+mC3.1,1)

−1 log2, C−1
m Cm,0,(2CSobR)

−1κ,

[32R2Cm,0C
2
P (C

2
2.2, [29](χ,m,R,Ũκ)+C

2
2.2, [29](σ,m,R,Ũκ))]

−1
}
, (6.12)

where CP denotes the constant from Lemma 2.1.

From now on the reasoning follows along the lines of steps (III)–(V) of the proof of
Theorem 3.3 in [29]. The above choice of constants and the linear results of our paper
imply that Φ is a strict contraction on BR(Jτ ) which yields the assertion.

Remark 6.2. Using time reversion and adapting coefficients and data accordingly, we
can transfer the result of Theorem 6.1 to the negative time direction, cf. Remark 7.12
in [28].

We assume that the conditions of Theorem 6.1 are valid and that the functions f
and g belong to the spaces Hm((−T,T )×G) respectively Em((−T,T )×Σ), for all T >0.
We now define the maximal existence times by

T+(m,t0,f,g,u0)=sup{τ ≥ t0 : ∃Gm-solution of (1.7) on [t0,τ ]},
T−(m,t0,f,g,u0)= inf{τ ≤ t0 : ∃Gm-solution of (1.7) on [τ,t0]}.

(6.13)

The interval (T−(m,t0,f,g,u0),T+(m,t0,f,g,u0))=: Imax(m,t0,f,g,u0) is called the
maximal interval of existence. These notions are modified in a straightforward way
if the inhomogeneities are given on an open interval J ⊆R with t0∈J . By standard
methods we can extend the solution given by Theorem 6.1 and Remark 6.2 to a max-
imal solution u∈

⋂m
j=0C

j(Imax,Hm−j(G)) of (1.7) on Imax which cannot be extended
beyond this interval. More precisely, we obtain the following basic blow-up criterion,
cf. Lemma 4.1 of [29].

Proposition 6.1. Let t0∈R and m∈N with m≥3. Take χ∈MLm,6,cv
pd (G,U±)

and σ∈MLm,6,cv(G,U±). Choose data f ∈Hm((−T,T )×G), g∈Em((−T,T )×Σ), and
u0∈Hm(G) for all T >0 and define BΣ and B∂G as in (1.6). Assume that the tuple
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(χ,σ,t0,BΣ,B∂G,f,g,u0) fulfills the compatibility conditions (6.5) of order m. Let u be
the maximal solution of (1.7) on Imax introduced above. If T+=T+(m,t0,f,g,u0)<∞,
then one of the following blow-up properties

(1) liminft↗T+ dist({u+(t,x) : x∈G+},∂U+)=0 or correspondingly for u−,

(2) limt↗T+ ∥u(t)∥Hm(G)=∞
occurs. The analogous result is true for T−(m,t0,f,g,u0).

7. Local well-posedness
The blow-up criterion in Proposition 6.1 can be improved. By Theorem 7.1, if

T+<∞ (and the solution does not come arbitrarily close to ∂U+ or ∂U−), then the
spatial Lipschitz norm of the solution has to blow up as t→T+, see Theorem 7.1 below.
Similar blow-up criteria have been established for several quasilinear hyperbolic systems
both on the full space and on domains, see e.g. [5, 8, 21,22]. For this improvement over
the Hm(G)-norm, one has to exploit that a solution u of the nonlinear problem (1.7)
solves the linear problem (1.9) with coefficients χ(u) and σ(u), and then use Moser-type
estimates. Lemma 4.2 from [29] provides a version of these estimates suited to our
setting in which we admit space dependent nonlinearities. We can apply this lemma to
the subdomains G± separately.

The next proposition is the main step towards the improved blow-up condtion. In
its proof one differentiates (1.7) and applies the basic L2-estimate (4.2) to the derivative
of u. For the tangential and time derivatives, the Moser-type estimates allow us to treat
the arising inhomogeneities in such a way that the Gronwall lemma yields the desired
estimate. In order to bound the normal derivatives of u, we have to combine the above
approach with Proposition 4.1. Once more the reasoning is parallel to that in [29],
making use of the linear results of the present paper. For details we thus refer to the
proof of Proposition 4.4 in [29].

Proposition 7.1. Let m∈N with m≥3 and t0∈R. Take nonlinearities χ∈
MLm,6,cv

pd (G,U±) and σ∈MLm,6,cv(G,U±). Let BΣ and B∂G be defined as in (1.6).
Choose data u0∈Hm(G), g∈Em((−T,T )×Σ), and f ∈Hm((−T,T )×G) for all T >0
such that the tuple (χ,σ,t0,BΣ,B∂G,f,g,u0) fulfills the compatibility conditions (6.5) of
order m. Let u denote the maximal solution of (1.7) on (T−,T+). We introduce the
quantity

ω(T )= sup
t∈(t0,T )

∥u(t)∥W1,∞(G)

for every T ∈ (t0,T+). We further take r>0 with

m−1∑
j=0

∥∂jt f(t0)∥Hm−j−1(G)+∥g∥Em((t0,T+)×Σ)+∥u0∥Hm(G)+∥f∥Hm((t0,T+)×G)≤ r.

We set T ∗=T+ if T+<∞ and take any T ∗>t0 if T+=∞. Let ω0>0 and let U1,± be
compact subsets of U±.

Then there exists a constant C=C(χ,σ,m,r,ω0,U1,±,T
∗− t0) such that

∥u∥2Gm((t0,T )×G)≤C
(m−1∑

j=0

∥∂jt f(t0)∥2Hm−1−j(G)+∥u0∥2Hm(G)+∥g∥2Em((t0,T )×Σ)

+∥f∥2Hm((t0,T )×G)

)
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for all times T ∈ (t0,T
∗) which have the property that ω(T )≤ω0 and imu±(t)⊆U1,± for

all t∈ [t0,T ]. The analogous result is true on (T−,t0).

The main missing part of the final local wellposedness theorem is the continuous
dependence on initial data. Here a loss of derivatives occurs since the difference of
two solutions satisfies an equation with a less regular right-hand side. The next lemma
shows the core fact in this context. It improves the convergence of solutions un by
one level of regularity, assuming uniform bounds of un and convergence of the data
in the higher norm. In the proof one uses that derivatives of the solutions satisfy a
system with modified forcing terms. These problems are then splitted in one with fixed
inhomogeneities (arising from the limit data) and one with right-hand sides tending
to 0 (up to an error term treated in a Gronwall argument). Such techniques were
developed for the full space (see e.g. [5]). We combine this approach with our linear
results to prevent a loss of normal regularity at the characteristic boundary. Here again
the structure of Maxwell’s equations is crucially used. The proof is a combination of
that of Lemma 5.2 in [29] with the theorems of the previous sections. It is thus omitted.

Lemma 7.1. Let J ′⊆R be an open and bounded interval, t0∈J ′, and m∈N with
m≥3. Take functions χ∈MLm,6,cv

pd (G,U±) and σ∈MLm,6,cv(G,U±). Let BΣ and B∂G

be defined by (1.6). Choose data fn,f ∈Hm(J ′×G), gn,g∈Em(J ′×Σ), and u0,n,u0∈
Hm(G) for all n∈N with

∥u0,n−u0∥Hm(G)−→0, ∥gn−g∥Em(J′×Σ)−→0, ∥fn−f∥Hm(J′×G)−→0,

as n→∞. We further assume that the system (1.7) with data (t0,fn,gn,u0,n) and
(t0,f,g,u0) has Gm(J ′×G)-solutions un and u for all n∈N, that there are compact
subsets Ũ1,± of U± with imu±(t)⊆Ũ1,± for all t∈J ′, that (un)n is bounded in Gm(J ′×
G), and that (un)n converges to u in Gm−1(J

′×G). Then the functions un tend to u in
Gm(J ′×G).

Finally, we can prove the full local wellposedness theorem. In the following we will
write BM (x,r) for the ball of radius r around a point x from a metric space M . For
times t0<T we further define the data space

Mχ,σ,m(t0,T )={(f̃ , g̃, ũ0)∈Hm((t0,T )×G)×Em((t0,T )×Σ)×Hm(G) :

(χ,σ,t0,BΣ,B∂G, f̃ , g̃, ũ0) is compatible of order m},

and endow it with the metric

d((f̃1, g̃1,ũ0,1),(f̃2, g̃2,ũ0,2))

=max{∥f̃1− f̃2∥Hm((t0,T )×G),∥g̃1− g̃2∥Em((t0,T )×Σ),∥ũ0,1− ũ0,2∥Hm(G)}.

Theorem 7.1. Let m∈N with m≥3 and fix t0∈R. Take χ∈MLm,6,cv
pd (G,U±) and

σ∈MLm,6,cv(G,U±). Let BΣ and B∂G be defined by (1.6). Choose data u0∈Hm(G),
g∈Em((−T,T )×Σ), and f ∈Hm((−T,T )×G) for all T >0 such that imu0,±⊆U± and
the tuple (χ,σ,t0,BΣ,B∂G,f,g,u0) fulfills the compatibility conditions (6.5) of order m.

Then the maximal existence times T±=T±(m,t0,f,g,u0) from (6.13) do not depend
on k∈{3,. ..,m}. Moreover, the following assertions are true.

(1) There exists a unique maximal solution u of (1.7) which belongs to the function
space

⋂m
j=0C

j((T−,T+),Hm−j(G)).
(2) If T+<∞, then



2310 QUASILINEAR MAXWELL INTERFACE PROBLEMS

(a) the restriction u+ leaves every compact subset of U+ or u− leaves every compact
subset of U−, or

(b) limsupt↗T+
max{∥∇u+(t)∥L∞(G+),∥∇u−(t)∥L∞(G−)}=∞.

The analogous result holds for T−.

(3) Fix T ∈ (t0,T+) and take T ′∈ (T,T+). Then there is a number δ>0 such that for
all data (f̃ , g̃, ũ0)∈BMχ,σ,m(t0,T ′)((f,g,u0),δ) the maximal existence time satisfies

T+(m,t0, f̃ , g̃, ũ0)>T . We denote by u(·; f̃ , g̃, ũ0) the corresponding maximal solution
of (1.7). The flow map

Ψ: BMχ,σ,m(t0,T ′)((f,g,u0),δ)→Gm((t0,T )×G), (f̃ , g̃, ũ0) 7−→u(·; f̃ , g̃, ũ0),

is continuous, and there is a constant C=C(χ,σ,m,r,T+− t0,κ0) such that

∥Ψ(f̃1, g̃1,ũ0,1)−Ψ(f̃2, g̃2,ũ0,2)∥Gm−1((t0,T )×G)

≤C
m−1∑
j=0

∥∂jt f̃1(t0)−∂
j
t f̃2(t0)∥Hm−j−1(G)+C∥g̃1− g̃2∥Em−1((t0,T )×Σ)

+C∥ũ0,1− ũ0,2∥Hm(G)+C∥f̃1− f̃2∥Hm−1((t0,T )×G)

for all (f̃1, g̃1,ũ0,1),(f̃2, g̃2,ũ0,2)∈BMχ,σ,m(t0,T ′)((f,g,u0),δ), where the parameter κ0
is given by κ0=dist(imu0,±,∂U±). The analogous result is true for T−.

Proof. We only give a sketch of the proof. We note that in part (3) one may
extend f̃ and g̃ to the time interval R to be in the framework of the previous parts of
the theorem. Except for part (3), the assertions easily follow from Propositions 6.1 and
7.1. In the context of part (3) we set ũ=u(·; f̃ , g̃, ũ0). If this solution exists on an interval
[t0,t

′] with Gm–norm less than R′, Theorem 3.1 and the results of Section 2 in [29] allow
us to bound u− ũ in Gm−1,γ((t0,t

′)×G) by analogous norms of the differences of the
data, if γ(R′) is large enough. We next use a time step τ as in (6.12) and a radius R
as in (6.11) in the proof of Theorem 6.1, where we have fixed a sufficiently large radius
r>0 for the data. If δ>0 is small enough, this theorem then yields a solution ũ of (1.7)
in Gm((t0,t+τ)×G) with norm less or equal R, for data (f̃ , g̃, ũ0). Using the bound in
Gm−1,γ((t0,t

′)×G) just mentioned and Lemma 7.1, we obtain the continuity of the flow
map on Gm((t0,t+τ)×G). Decreasing δ>0 if necessary, one can then deduce assertion
(3) iteratively. The details are analogous to the proof of Theorem 5.3 in [29] which only
uses different linear results.

We now discuss a class of material laws arising in nonlinear optics, cf. [10].

Example 7.1. We look at material laws involving only linear dependence on the
magnetic fields, i.e.,

D±=θ1,±(x,E±)=ε±(x,E±)E±, B±=θ2,±(x,H±)=µ±(x)H±

for functions ε± :G±×U±→R3×3 and µ± :G±→R3×3 whose values are symmetric ma-
trices bounded below by some η>0. Here the maps χ± take the form diag(εd±,µ±) with

εd±,jk(x,ξ)=ε±,jk(x,ξ)+

3∑
l=1

∂ξkε±,jl(x,ξ)ξl.

For simplicity we assume that G is bounded and that ε±(x,E±)=εlin,±(x)+εnl,±(x,E±)
with µ±,εlin,±∈C3(G±) and εlin,±=ε⊤lin,±≥2η. A typical anisotropic nonlinearity is
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given by

εnl,±(x,E±)=
(∑3

j,k=1
αjkl
±,i(x)E±,jE±,k

)
il

for scalar coefficients αjkl
i,±∈C3(G±). Because of the triple sum in εnl,±(x,E±)E±, the

tensor (αjkl
±,i)i,j,k,l has to be symmetric in {j,k,l}. Our symmetry assumptions on χ±

also require symmetry in {i,l}, i.e., we can only prescribe αjkl
±,i for, say, 1≤ i≤ j≤k≤

l≤3. Note that here εd±=εlin,±+3εnl,±. We have εd±(x,E±)≥η if |E±|≤ r for some
r>0 and so U±=B(0,r). One can choose U±=R3 for instance if

εnl,±(x,E±)=diagi

(∑3

j=1
αj
±,i(x)E

2
±,j

)
for coefficients αj

±,i≥0.
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Appendix. Preservation of interface conditions. In this appendix we show
that the interface conditions for D and B are preserved. We refer to Definition 2.2 of
∇Σ and divΣ in [11].

Lemma A.1. Let t0,T ∈R with t0<T and set J =(t0,T ). Let (E,H,D,B)
in C(J,H1(G))∩C1(J,L2(G)) be a solution of the Maxwell system (1.1) with J±∈
L2(J,H(div,G±)) and JΣ∈L2(J,H(divΣ,Σ)) satisfying [E×ν]=0 and [H×ν]=JΣ

on J×Σ. Set ρΣ(t)=ρΣ,0−
∫ t

t0
(divΣJΣ− [J ·ν])(s)ds for all t∈J .

(1) If [B ·ν](t0)=0 on Σ, then [B ·ν]=0 on J×Σ.

(2) If [D ·ν](t0)=−ρΣ,0, then [D ·ν]=−ρΣ on J×Σ.

Proof.
(1) Since ∂tB± belongs to H(div,G±), these fields have a normal trace in H−1/2(Σ)

for each t∈J . Employing that also curlE±∈H(div,G±), we compute

⟨∂t[B ·ν](t),φ⟩H−1/2(Σ)×H1/2(Σ)= ⟨[∂tB ·ν](t),φ⟩H−1/2(Σ)×H1/2(Σ)

=⟨[−curlE ·ν](t),φ⟩H−1/2(Σ)×H1/2(Σ)

=⟨−curlE+(t) ·ν,φ⟩H−1/2(Σ)×H1/2(Σ)+⟨curlE−(t) ·ν,φ⟩H−1/2(Σ)×H1/2(Σ)

=−
∫
G+

divcurlE+(t)φdx−
∫
G+

curlE+(t) ·∇φdx−
∫
G−

divcurlE−(t)φdx

−
∫
G−

curlE−(t) ·∇φdx

=−
∫
G+

E+(t) ·curl∇φdx+⟨E+(t)×ν,∇φ⟩H−1/2(Σ)×H1/2(Σ)

−
∫
G−

E−(t) ·curl∇φdx+⟨E−(t)×(−ν),∇φ⟩H−1/2(Σ)×H1/2(Σ)

=⟨[E×ν](t),∇φ⟩H−1/2(Σ)×H1/2(Σ)=0

for all t∈J and φ∈C∞
c (G). Since trΣH

1
0 (G)=H

1/2(Σ), we infer that ∂t[B ·ν]=0 on
J×G. As [B ·ν](t0)=0 on Σ, we arrive at [B ·ν]=0 on J×Σ.
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(2) We proceed as in part 1. Using the assumptions on J , we compute

⟨∂t[D ·ν](t),φ⟩H−1/2(Σ)×H1/2(Σ)= ⟨[∂tD ·ν](t),φ⟩H−1/2(Σ)×H1/2(Σ)

=⟨[(curlH−J) ·ν](t),φ⟩H−1/2(Σ)×H1/2(Σ)

=−⟨[J ·ν](t),φ⟩H−1/2(Σ)×H1/2(Σ)−⟨[H×ν](t),∇φ⟩H−1/2(Σ)×H1/2(Σ)

=−⟨[J ·ν](t),φ⟩H−1/2(Σ)×H1/2(Σ)−⟨JΣ(t),∇φ⟩H−1/2(Σ)×H1/2(Σ)

for all φ∈C∞
c (G) and almost all t∈J . Since JΣ=[H×ν], the boundary current density

JΣ is tangent to Σ, i.e., JΣ=πΣJΣ, where πΣ=πΣ,x denotes the orthogonal projection
on the tangent space at x∈Σ. We infer that

⟨JΣ(t),∇φ⟩H−1/2(Σ)×H1/2(Σ)= ⟨πΣJΣ(t),πΣ∇φ⟩H−1/2(Σ)×H1/2(Σ)

=⟨JΣ(t),∇Σφ⟩H−1/2(Σ)×H1/2(Σ)=−⟨divΣJΣ(t),φ⟩H−1/2(Σ)×H1/2(Σ).

We conclude that

⟨∂t[D ·ν](t),φ⟩H−1/2(Σ)×H1/2(Σ)= ⟨divΣJΣ− [J ·ν](t),φ⟩H−1/2(Σ)×H1/2(Σ)

for all φ∈C∞
c (G) and almost all t∈J . Arguing as in (1), we derive claim (2).

REFERENCES

[1] R.A. Adams and J.J.F. Fournier, Sobolev Spaces, Academic Press, Amsterdam, Second Edition,
2009. 2

[2] H. Ammari, G. Bao, and K. Hamdache, The effect of thin coatings on second harmonic generation,
Electron. J. Differ. Equ., 36:1–13, 1999. 1

[3] H. Ammari and K. Hamdache, Global existence and regularity of solutions to a system of nonlinear
Maxwell equations, J. Math. Anal. Appl., 286(1):51–63, 2003. 1

[4] A. Babin and A. Figotin, Nonlinear Maxwell equations in inhomogeneous media, Commun. Math.
Phys., 241(2):519–581, 2003. 1

[5] H. Bahouri, J.-Y. Chemin, and R. Danchin, Fourier Analysis and Nonlinear Partial Differential
Equations, Springer, Heidelberg, 2011. 7, 7

[6] G. Bao and D.C. Dobson, Second harmonic generation in nonlinear optical films, J. Math. Phys.,
35(4):1622–1633, 1994. 1

[7] G. Bao, Y. Li, and Z. Zhou, Lp estimates of time-harmonic Maxwell’s equations in a bounded
domain, J. Differ. Equ., 245(12):3674–3686, 2008. 1

[8] S. Benzoni-Gavage and D. Serre, Multidimensional Hyperbolic Partial Differential Equations,
Clarendon Press, Oxford, 2007. 1, 7

[9] K. Busch, G. von Freymann, S. Linden, S. Mingaleev, L. Tkeshelashvili, and M. Wegener, Periodic
nanostructures for photonics, Phys. Rep., 444:101–202, 2007. 1

[10] P.N. Butcher and D. Cotter, The Elements of Nonlinear Optics, Cambridge University Press,
Cambridge, 1990. 7

[11] M. Cessenat, Mathematical Methods in Electromagnetism, World Scientific, Singapore, 1996. 7
[12] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and

Technology–Physical Origins and Classical Methods, Springer, Berlin, 1, 1990. 1, 1, 1
[13] E. Dumas and F. Sueur, Cauchy problem and quasi-stationary limit for the Maxwell-Landau-

Lifschitz and Maxwell-Bloch equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11(3):503–
543, 2012. 1

[14] M. Eller, On symmetric hyperbolic boundary problems with nonhomogeneous conservative bound-
ary conditions, SIAM J. Math. Anal., 44(3):1925–1949, 2012. 1, 3, 4

[15] M. Fabrizio and A. Morro, Electromagnetism of Continuous Media, Oxford University Press,
Oxford, 2003. 1, 1

[16] O. Gués, Problème mixte hyperbolique quasi-linéaire caractéristique, Commun. Partial Differ.
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