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DISSIPATION ENHANCEMENT FOR A DEGENERATED
PARABOLIC EQUATION∗

YU FENG† , BINGYANG HU‡ , AND XIAOQIAN XU§

Abstract. In this paper, we quantitatively consider the enhanced-dissipation effect of the advection
term to the parabolic p-Laplacian equations. More precisely, we show the mixing property of flow for
the passive scalar enhances the dissipation process of the p-Laplacian in the sense of L2 decay, that
is, the L2 decay can be arbitrarily fast. The main ingredient of our argument is to understand the
underlying iteration structure inherited from the parabolic p-Laplacian equations. This extends the
dissipation enhancement result of the advection diffusion equation by Yuanyuan Feng and Gautam Iyer
to a non-linear setting.
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1. Introduction
In the study of incompressible fluids, one fundamental phenomenon that arises in a

wide variety of applications is dissipation enhancement, whose mechanism, in general,
comes from the following two primary sources: mixing, which induces filamentation and
facilitates the formation of small scales (namely, high frequencies); and diffusion, which
efficiently damps small scales and accelerates the dissipation process.

Without diffusion, the behavior of passive scalar advected by incompressible mixing
flows has been extensively studied in recent decades. In particular, some researchers
developed multi-scale norms to quantify mixing (see [1,2]) and analyzed the decay rate
of such norms for incompressible flows (see, e.g., [3–7]). On the other hand, an apriori
limit to the resolution via mixing is inaccessible in this regime.

In the presence of diffusion, the effects of mixing may be enhanced, balanced, or
even suppressed by diffusion (see, e.g., [8]). One of the most famous models used to
study the interaction between these two sources is the advection-diffusion equation∂tϑ+u ·∇ϑ−ν∆ϑ=0

ϑ(0,x)=ϑ0∈L2
0,

(1.1)

where u stands for a time-dependent or time-independent incompressible velocity field,
ν >0 presents the strength of diffusion, proportional to the inverse Péclet number and
L2
0 refers the collection of all L2(Td) functions with mean zero.

The study of the dissipation enhancement for the linear advection equations is a
popular topic in recent years. It dates back to the celebrated work [9] by Constantin,
Kiselev, Ryzhik and Zlatoš in 2008, in which, they first found an equivalent condition
for the time-independent u to enhance the dissipation effect, in the sense of the L2 norm
faster decay of the solution, on a compact manifold like torus. Later, there have been
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many other extensions along this direction (see [10, 11]). In particular, in [8, 12], the
authors studied the dissipation enhancement of (1.1) under various mixing conditions,
and notably their methods lead to an explicit quantitative bound when the mixing flow
u is assumed to be polynomial and exponential.

As a byproduct, understanding dissipation enhancement can help us study stabi-
lization phenomena of the singularity. We refer the interested reader to [13–21] and the
references therein for more details.

The goal of this paper is to study the effect of mixing on dissipation enhancement
for a non-linear diffusion model. One natural nonlinear model which resembles (1.1) is
the p-Laplacian dissipation. More precisely, we consider the following system: for p>2,
u an incompressible flow on Td and ν >0,

∂tθ+u(t) ·∇θ−ν∇·
(
|∇θ|p−2∇θ

)
=0;

θ(x,0)=θ0(x)∈L2
0.

(1.2)

Here p measures the level of diffusion, and it is clear that when p=2, (1.2) reduces to
the regular Laplacian dissipation.

The interest in considering such an equation is motivated by the study of following
advective thin-film type equation:

ht+u ·∇h+A1∆h+A2∆
2h+A3∇·(|∇h|p−2∇h)=g, p>2, (1.3)

where h(t,x) denotes the height of a film in epitaxial growth with g(t,x) being the
deposition flux and A1,A2,A3∈R. The spatial derivatives in the above equation have
the following physical interpretations:

(1) u ·∇h: transportation under a velocity field u.

(2) A1∆h: diffusion due to evaporation-condensation [22,23];

(3) A2∆
2h: capillarity-driven surface diffusion [23,24];

(4) A3∇·(|∇h|p−2∇h): (upward) hopping of atoms [25].

The dissipation enhancement phenomenon for the linear diffusion such as A1∆h and
A2∆

2h have been well studied in [8,12]. However, as far as we know, the study of dissipa-
tion enhancement for the nonlinear diffusion A3∇·(|∇h|p−2∇h) is still less understood.
Therefore, we separate it from the thin film Equation (1.3) and consider Equation (1.2)
for simplicity. It is worth mentioning that the case where A3 takes negative values in
(1.3) has also been investigated recently in [20,26].

Further more, (1.2) itself has wide applications in the mathematical modeling of var-
ious real-world processes, such as the flows of electro-rheological or thermo-rheological
fluids [27–29], the problem of thermistors [30], and processing of digital images [31].

In this paper, we consider how the advection terms can help the p-Laplacian term
to dissipate the solution’s L2 norm. The novelty of this paper is two fold.

• The main difference between (1.2) and the linear model (1.1) is that its solution
becomes degenerate or singular at the points where |∇θ|=0, preventing one
from expecting classical solutions. We overcome this difficulty by showing the
weak solutions satisfy specific regularity properties (see Section 3), and then
we can pick up test functions to obtain desired energy identities (see, e.g., (3.2)
and (4.5));
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• The solution operator of (1.2) is non-linear, which suggests that the semigroup
approach inherited under the linear model (1.1) might fail in our case. Instead
of using the semigroup structure, we explore a new iteration structure (see
Lemma 4.3) underlying the Equation (1.2), which essentially plays the same
role as the semigroup structure in the linear model case.

The plan of this paper is as follows. We begin by defining mixing rates, introduce
the non-linear dissipation time, and state our main results, as well as some applications
in Section 2. Section 3 is devoted to exploring several properties for the weak solution
of the Equation (1.2). As a consequence, we give a prior estimate for the non-linear
dissipation time. Finally, in Section 4, we prove the quantitative dissipation time bound
for the p-Laplacian dissipation. The proof involves a study of the underlying iteration
structure of the Equation (1.2).

2. Main results
Let Td := [0,1]d be d-dimensional torus, and u be a smooth, time-dependent,

divergence-free vector field on Td. Let further,

0<λ1≤λ2≤ .. .

be the eigenvalues of −∆ on Td. Moreover, we denote Lp :=Lp(Td) with norm denoted
as ∥·∥p. And for any α∈R, recall the homogeneous Sobolev space of order α is given by

Ḣα= Ḣα(Td) :=

{
f =

∑
i

aiei :∥f∥2Ḣα :=
∑
i

λα
i |ai|2<∞

}
,

where in the above definition, ei is the normalized eigenvector corresponding to the
eigenvalue λi, i≥1. Note that under this formulation, ∥∇(·)∥2=∥·∥Ḣ1 .

The goal of this paper is to introduce and study the dissipation enhancement of
advection for a nonlinear diffusivity. Let ν >0 be the strength of the diffusion. Now
for p>2 and each time s≥0, we consider following non-linear parabolic equation with
gradient nonlinearity on the d-dimensional torus with advection of an incompressible
vector field u(t): 

∂tθs+u(t) ·∇θs−ν∆pθs=0;

θs(t)=θs,0, t=s.

(2.1)

for t>s, with initial data θs,0=θ0(s). Here,

(1) ∇ is the covariant derivative;

(2) ∆pθs :=∇·
(
|∇θs|p−2∇θs

)
is the p-Laplacian;

(3) θs,0=θ0(s), where θ0(·) is the solution of (2.1) with s=0 and initial data θ0,0∈
L2
0(Td), which is the space of L2 integrable functions on Td with mean zero.

Remark 2.1. We make a remark that the solution of (2.1) should be understood
in weak sense. Moreover, all these solutions have certain regularity (see Theorem 3.1),
which, in particular, guarantees that θs,0 is a measurable function and hence (2.1) is
well-defined. Furthermore, we can actually see that θs,0 also belongs to L2

0(Td) (see
Corollary 3.1).

We are interested in the behavior of solutions of (2.1) for ν≪1 and a fixed initial
data θ0,0. The prototype of our model is the linear diffusion equation. One typical
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example would be 
∂tϑs+u(t) ·∇ϑs−ν (−∆)

α
ϑs=0;

ϑs(t)=ϑs,0, t=s,

α>0, (2.2)

for t>s, with initial data ϑs,0∈L2
0(Td), where ∆ is the Laplace-Beltrami operator on

Td. Observe that when α=1, (2.2) becomes the advection diffusion equation (see,
e.g., [9]); when α=2, (2.2) refers to the advective hyperdiffusion equation. In the sequel,
our interest will lie in the case when α=1, as this is exactly our main Equation (2.1)
with p=2, which can be viewed as the “endpoint case” for the non-linear model. The
dissipation enhancement in the advection diffusion equation (when α=1) has been
studied a lot in the recent years (see [8, 9, 12]), and the results therein can be easily
adapted to the case when α≥1. For linear fractional diffusions on the torus i.e. 0<α<1,
the dissipation enhancement phenomenon has also been characterized in the Appendix
B of [32].

One crucial concept to describe the behavior of the linear model (2.2) when ν≪1
is the linear dissipation time of the flow u for the linear models (i.e. the time required
for the system to dissipate a constant fraction of its initial energy) is given by

τd := sup
s∈R

{
inf

{
t−s

∣∣∣∣t≥s, and ∥ϑs(t)∥2≤
∥ϑs,0∥2

e
for all θs,0∈L2

0(Td)

}}
. (2.3)

Note that, for example (say, α=1), since the solution of (2.2) is strong, we are able to
multiply ϑs on both sides of the equation in (2.2) and integrate over Td to see

1

2
∂t∥ϑs(t)∥22+ν∥ϑs∥2Ḣ1 =0, (2.4)

and hence

∥ϑs(t)∥2≤e−νλ1(t−s)∥ϑs,0∥2. (2.5)

This implies

τd≤
1

νλ1
, (2.6)

where we recall that λ1 is the principal eigvenvalue of −∆ on Td. Moreover, it turns out
this is the best one can hope, that if u is only assumed to be incompressible (see [9]).

An important feature for τd is that when the flow u is assumed to be mixing, one
can improve the estimate (2.6) into, heuristically,

τd≤
C

νλN
, (2.7)

where C is a universal constant and N is a constant which only depends on the equation
and the mixing condition (see, e.g. [8, 12] for a more comprehensive treatment). It’s
worth to mention that the upper bound of τd obtained in [8] is not as sharp as the ones
obtained from [12], the reason for this will be discussed in detail in Remark 4.1. Now,
let us first recall the mixing condition.

Definition 2.1. Let h : [0,∞)→ (0,∞) be a strictly decreasing function that vanishes
at infinity, and 0≤α<∞,β≥0. Let further, φs,t :Td→Td be the flow map of u defined
by

∂t(φs,t)=−u(φs,t) and φs,s= Id.
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(1) We say that the flow u is strongly α,β mixing with rate function h if for all f ∈
Ḣα,g∈ Ḣβ, we have

|⟨f ◦φs,t,g⟩|≤h(t−s)∥f∥Ḣα∥g∥Ḣβ . (2.8)

Or equivalently, for all f ∈ Ḣα, there holds

∥f ◦φs,t∥Ḣ−β ≤h(t−s)∥f∥Ḣα ;

(2) We say that φ is weakly α,β mixing with rate function h if for all f ∈ Ḣα,g∈ Ḣβ,
we have (

1

t−s

∫ t

s

|⟨f ◦φs,r,g⟩|2dr
) 1

2

≤h(t−s)∥f∥Ḣα∥g∥Ḣβ . (2.9)

Remark 2.2.
(1) The decay estimates (2.8) and (2.9) arise from the literature of dynamical systems,

and the traditional choice therein is to use Hölder norms. However, for convenience
of our purposes, we follow the research by Fannjiang et al. in [33–35] and use
Sobolev norms instead.

(2) The analog of Definition 2.1 in discrete time was considered in [8] as well, which
has been investigated more deeply than the continuous case (See Section 4 and
Appendix A of [8] for a more detailed discussion).

The phenomenon of improving from (2.6) to (2.7) under the mixing condition is
referred as dissipation enhancement. The purpose of this paper is to explore such a
phenomenon for the advection equation with p-Laplacian evolution (2.1). To state the
main results, we first extend the definition of the linear dissipation time to its non-linear
counterpart.

Definition 2.2. Let θ0,0∈L2
0(Td). The non-linear dissipation time associated to the

advection equation with p-Laplacian diffusion (2.1) is given by

κd := sup
s∈R

inf

t−s

∣∣∣∣∣t≥s, and ∥θs(t)∥2≤
∥θs,0∥2[

(p−2)∥θs,0∥p−2
2 +1

] 1
p−2


 ,

where θs(t) is the weak solution of (2.1) with initial data θs,0.

We make several remarks before we proceed.

Remark 2.3.

(1) One can find that due to the scaling of the p-Laplacian equation, we can not expect
the exponential decay for L2 norm of the solution. This is why we can only consider
such non-linear dissipation time.

(2) The study of κd is a little bit subtle compared to τd. More precisely, the solutions of
the linear advection Equation (2.2) possess strong or even classical solution, if initial
data is provided smooth enough; while, to our best knowledge, one cannot expect
the existence of classical solution to (2.1), due to the degeneration or singularity at
the points where |∇θ|=0, and hence the solutions of (2.1) are interpreted only in
the weak sense (see, e.g., [36, 37]). We will overcome this difficulty and study the
corresponding dissipation enhancement phenomenon to (2.1) by arguing that such
weak solutions (see Definition 3.1) have certain regularity (see Section 3);
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(3) The definition of κd is indeed consistent with τd. For example, by a standard non-
linear Gronwall type estimate, one can see that if u is assumed to be incompressible,
then

κd≤
1

νλ
p
2
1

(2.10)

(see Corollary 3.1). Moreover, if u is assumed to be mixing, then our main results
(see Theorem 2.1 and Theorem 2.2) suggest that

κd≤
C

νλ
p
2

N

for some C and N only depending on (2.1) and the mixing condition. These facts
clearly resemble and generalize both (2.6) and (2.7);

(4) It is not hard to see that the term ∥θs(t)∥2 obeys a polynomial decay with the

magnitude (t−s)−
1

p−2 when t is sufficiently large (see, e.g., replace t′k by t in (4.31)).
Heuristically, the non-linear dissipation time κd describes quantitatively how large

the coefficient of (t−s)
1

p−2 is in such a decay, under various assumptions on u, this
is of the same flavor when we consider the linear dissipation time τd, which is used
to study how large the coefficient of the term t−s is in the exponential decay (see
(2.5)).

We are ready to state our main results.

Theorem 2.1. Let 0<α≤1, β>0, p>2, θ0,0∈L2
0(Td) and h : [0,∞)→ (0,∞) be a

strictly decreasing function that vanishes at infinity. If u is strongly α,β mixing with
rate function h, then

κd≤
C

νH1(ν)
p
2H1,ν,h

, (2.11)

where C is an absolute constant that only depends on h, ∥∇u∥∞, p, ∥θ0,0∥2, the strongly
mixing condition, any dimension constants and any constants that depends on Td,

H1,ν,h :=min

1, 2−p−1 ·h−1

(
H1(ν)

−α+β
2

21−
α+β

2

) p−2
2

, (2.12)

and H1 : (0,∞)→ (0,∞) is defined by

H1(ν) :=sup

λ

∣∣∣∣∣ λ
p
2 d

p−2
2 Dp∥θ0,0∥p−2

2

h−1
(

1
2λ

−α+β
2

) ·e
4∥∇u∥∞h−1

(
1
2λ

−α+β
2

)
≤ ∥∇u∥2∞

4ν

, (2.13)

Here

Dp :=48p−1pp2p(p−1). (2.14)

and h−1 is the inverse function of h.

Corollary 2.1. Let α,β,u,h,p and θ0,0 be as in Theorem 2.1. Let further, ν≪1.
Then
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(1) If the mixing rate function h : (0,∞)→ (0,∞) is the power law

h(t)=
c

tq
(2.15)

for some q>0, then the nonlinear dissipation time is bounded by

κd≤
C

ν|lnν|δ
, where δ :=

pq

α+β
(2.16)

and C=C(α,β,c,q,p,d,∥∇u∥∞,∥θ0,0∥2) is a finite constant;

(2) If the mixing rate function h : [0,∞)→ (0,∞) is the exponential function

h(t)= c1 exp(−c2t), (2.17)

for some constant c1,c2>0, then the nonlinear dissipation time is bounded by

κd≤
C

νδ
, where δ :=

4∥∇u∥∞(α+β)

pc2+4∥∇u∥∞(α+β)
, (2.18)

C=C(α,β,c1,c2,p,d,∥∇u∥∞,∥θ0,0∥2) is a finite constant.

Remark 2.4. The strong mixing estimate (2.8) has been used by many authors in
their research (see [1–3, 12, 38]). As an example, an exponential universal mixer with
regularity L∞(0,∞;W 1,r(Td)) for some r>2 is constructed by Elgindi and Zlatoš in [5]
(see Section 4 of [12] for a more detailed discussion). Some of such flows can be taken
to be smooth locally in time (e.g., the flow in [4]). That means for any T <∞, one
could find such a flow in the space L∞(0,T ;W 1,∞(Td)). However, the velocity field
u∈L∞(0,∞;W 1,∞(Td)) that mixes arbitrary smooth initial data f exponentially fast
remains an open problem. There are two kinds of flows in L∞(0,∞;W 1,∞(Td)) with
such mixing property, one is from [4], with the flow depending on the solution, another
one is the so-called relaxation enhancing flow, defined in [9], which is time-independent
but without explicit rate h(t), one may find more concrete examples in it. And in [39],
the authors construct smooth flows that can mix some specific initial data exponentially
fast. However, it cannot be applied to our main theorem, which requires exponential
mixing flow for arbitrary initial data.

Theorem 2.2. Let 0<α≤1, β>0, p>2, θ0,0∈L2
0(Td) and h : [0,∞)→ (0,∞) be a

strictly decreasing function that vanishes at infinity. If u is weakly α,β mixing with rate
function h, then

κd≤
C

νH2(ν)
p
2H2,ν,h

, (2.19)

where C is an absolute constant that only depends on h, ∥∇u∥∞, p, ∥θ0,0∥2, the weakly
mixing condition, any dimension constants and any constants that depend on Td,

H2,ν,h :=min

1, 2−p−1 ·h−1

(
H2(ν)

− d+2α+2β
4

21−
d+2α+2β

4

) p−2
2

. (2.20)

Here H2 : (0,∞)→ (0,∞) is defined by

H2(µ) :=sup

λ

∣∣∣∣ λ p
2 d

p−2
2 Dp∥θ0,0∥p−2

2

h−1

(
λ− d+2α+2β

4

2
√
c

) ·e
4∥∇u∥∞h−1

(
λ
− d+2α+2β

4

2
√

c

)
≤ ∥∇u∥2∞

4µ

, (2.21)
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where Dp is defined as in (2.14) and c= c(Td) is a finite constant that only depends on
Td.

Corollary 2.2. Let α,β,u,h,p and θ0,0 be as in Theorem 2.1. Let further, ν≪1.
Then

(1) If the mixing rate function h : (0,∞)→ (0,∞) is the power law (2.15), then the
nonlinear dissipation time is bounded by

κd≤
C

ν|lnν|δ
, where δ :=

2pq

2α+2β+d
(2.22)

and C=C(α,β,c,p,q,d,∥∇u∥∞,∥θ0,0∥2) is a finite constant;

(2) If the mixing rate function h : [0,∞)→ (0,∞) is the exponential (2.17), then the
nonlinear dissipation time is bounded by

κd≤
C

νδ
, where δ :=

2∥∇u∥∞(d+2α+2β)

pc2+2∥∇u∥∞(d+2α+2β)
(2.23)

and C=C(α,β,c1,c2,p,d,∥∇u∥∞,∥θ0,0∥2) is a finite constant.

Remark 2.5. We will see in the proof of Theorem 2.2 that the constant c can be
determined by Weyl’s formula, which states

λj ≃
4πΓ

(
d
2 +1

) 2
d

Vol(Td)
2
d

j
2
d (2.24)

asymptotically as j→∞ (see, e.g., [40]). Then, for example, we can take

c := (1+ε) lim
j→∞

j

λ
d
2
j

=
(1+ε)Vol(Td)

(4π)
d
2 Γ
(
d
2 +1

) , (2.25)

for some fixed ε which is sufficiently small.

Remark 2.6.

(1) One crucial fact to prove the dissipation enhancement results for the linear advection
equation is to make use of the iteration structure for the exponential functions.
While for the proof of Theorem 2.1 and Theorem 2.2, one novelty is that we will
adapt new iteration structure given by certain rational functions (see Lemma 4.2);

(2) Note that if we let p=2 in both Theorem 2.1 and Theorem 2.2,

H1,v,h=H2,v,h=
1

8

and our main improvements (2.11) and (2.19), respectively will “partially recover”
the improved dissipation time τd for the linear model (2.2) with α=1 under both
strongly mixing condition and weakly mixing condition, respectively (see, e.g., [8,
Theorem 2.16 and Theorem 2.19]). So are both Corollary 2.1 and Corollary 2.2
(see, e.g., [8, Corollary 2.17 and Corollary 2.20]).

(3) Observe that when ν is sufficiently small, H1,ν,h=H2,ν,h≡1. Therefore, for ν suf-
ficiently small, the estimates (2.11) and (2.19) can be simplified as

κd≤
C

νHi(ν)
p
2

, i=1,2.
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3. Preliminaries
This section aims to introduce the regularity of the weak solutions to Equation (2.1).

As a classical degenerate second-order parabolic equation (see [37] for the guidance of the
theory), there is extensive literature devoted to (2.1). We limit ourselves by referring to
the review paper [41] for providing profound insights to (2.1) and the paper [42], whose
setting is relatively close to ours. In [42], the authors studied the Dirichlet problem to
(2.1) under a more general setting. To be self-contained, we will adapt their results to
ours. Consequently, we show that the weak solution θs satisfies specific energy inequality
associated with (2.1), which further implies the trivial estimate (2.10) for κd.

We start with recalling several basic definitions. Following the notations in [42], let
V(Td) be the Banach space given by

V
(
Td
)
:=
{
g(x) :g∈L2(Td)∩W 1,p(Td)

}
,

and for any T >0, we define the Banach space W
(
Td× [0,T ]

)
as

W
(
Td× [0,T ]

)
:=

{
f : [0,T ] 7→V(Td) :f ∈L2

(
Td× [0,T ]

)
|Dif |p∈L1

(
Td× [0,T ]

)}
,

with the norm

∥f∥W(Td×[0,T ]) :=∥f∥L2(Td×(0,T ))+

d∑
i=1

∥Dif∥Lp(Td×(0,T )),

here p>2 is associated with (2.1).

Finally, we let W′(Td× [0,T ]
)
be the dual space of W

(
Td× [0,T ]

)
, that is, the

space of all linear functionals over W
(
Td× [0,T ]

)
. Note that w∈W′(Td× [0,T ]

)
if and

only if 
w=w0+

d∑
i=1

Diwi, w0∈L2
(
Td× [0,T ]

)
, wi∈Lp′ (Td× [0,T ]

)
;

∀ϕ∈W
(
Td× [0,T ]

)
, ⟨w,ϕ⟩W :=

∫ T

0

∫
Td

(
w0ϕ+

d∑
i=1

wiDiϕ

)
dxdt.

Definition 3.1. Given T >0, a function θ(x,t)∈W
(
Td× [0,T ]

)
∩L∞(0,T ;L2(Td)

)
is called a weak solution of (2.1) if for every test function

ζ ∈Z :=
{
η(z) :η∈W

(
Td× [0,T ]

)
∩L∞(0,T ;L2(Td)

)
, ηt∈W′(Td× [0,T ]

)}
,

and every t1,t2∈ [0,T ], the following identity holds∫ t2

t1

∫
Td

d∑
i=1

[
θζt−

(
ν|Diθ|p−2Diθ−ui(t) ·θ

)
Diζ

]
dxdt=

∫
Td

θζdx

∣∣∣∣t2
t1

. (3.1)

Theorem 3.1 ([42, Theorem 3.1]). For every s≥0 and θ0,0∈L2
0(Td), the problem

(2.1) has at least one weak solution θs∈W
(
Td× [s,T ]

)
satisfying the estimate

∥θs∥2L∞(s,T ;L2(Td))+ν

∫ T

s

∫
Td

d∑
i=1

|Diθs|pdxdt≤C
(
∥θ0,0∥2L2(Td)+1

)
, (3.2)

where C is an absolute constant independent of θs. Moreover, d
dtθs∈W′(Td× [s,T ]

)
.
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Remark 3.1. From Section 5 of [42] or Chapter 6 of [37], one also has the uniqueness
of the weak solution in Theorem 3.1. For simplicity we omit the regularity proofs here.

Note that Theorem 3.1 and Remark 3.1 suggest (2.1) admits a unique weak solution,
which belongs to the test function space Z. As some byproducts, we collect several useful
facts about (2.1).

Corollary 3.1.

(1) If θ0,0∈L2
0(Td), then so does θs,0 :=θ0(s);

(2) For any ζ ∈Z, there holds that∫
Td

d∑
i=1

[
∂θs
∂t

·ζ+
(
ν|Diθs|p−2Diθs−ui(t) ·θs

)
·Diζ

]
dx=0; (3.3)

(3) The following estimate holds

κd≤
1

νλ
p
2
1

.

Proof.

(1) Recall that θs,0 :=θ0(s). Therefore, it suffices to note that the constant function
ζ≡1∈Z. The desired claim follows from letting t1=0 and t2=s in (3.1).

(2) This follows by taking the t derivative on both sides of (3.1) with t1=s and t2= t,
respectively. Then by Fundamental Theorem of Calculus, one has∫

Td

d∑
i=1

[
θζt−

(
ν|Diθ|p−2Diθ−ui(t) ·θ

)
Diζ

]
dxdt=

∫
Td

∂

∂t
(θζ)dx,

since θ,ζ ∈W and ∂ζ
∂t ,

∂θ
∂t ∈W′, one can get (3.3) simply by product rule.

(3) Since θs∈Z, we can therefore let ζ=θs in (3.3). This together with the fact that u
is divergence-free yields the energy estimate for (2.1):

1

2
∂t∥θs(t)∥22+ν∥∇θs(t)∥pp=0, (3.4)

which implies

∂t∥θs(t)∥22≤−2ν∥∇θs(t)∥p2≤−2νλ
p
2
1 ∥θs(t)∥

p
2.

Therefore, an easy application of the (non-linear) Gronwall inequality yields

∥θs(t)∥2≤
∥θs,0∥2[

νλ
p
2
1 (p−2)(t−s)∥θs,0∥p−2

2 +1
] 1

p−2

, (3.5)

which implies the desired claim.

4. Dissipation enhancement for evolution p-Laplacian advection equa-
tions

In this section we prove Theorems 2.1 and 2.2. The main idea behind the proof

is to split the analysis into two different cases. In the first case, we assume
∥∇θs(t)∥p

∥θs(t)∥2

is large, and obtain decay of ∥θs∥2 using the energy inequality (3.4); in the second

case,
∥∇θs(t)∥p

∥θs(t)∥2
is small, and hence the dynamics are well approximated by that of the

underlying inviscid dynamics. The mixing assumption now forces the generation of high
frequencies, and the rapid dissipation of these gives an enhanced decay of ∥θs∥2.
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4.1. The strongly mixing case. Let s≥0 be any time. We first consider the
case when

∥∇θs(t)∥p
∥θs(t)∥2

(4.1)

is large. More precisely, if for some c0>0, we have

∥∇θs(t)∥p≥ c
1
2
0 ∥θs(t)∥2, for all s≤ t≤ t0,

then by the energy inequality (3.4), we have

∂t∥θs(t)∥22≤−2νc
p
2
0 ∥θs(t)∥

p
2,

which implies

∥θs(t)∥2≤
∥θs,0∥2[

νc
p
2
0 (p−2)(t−s)∥θs,0∥p−2

2 +1
] 1

p−2

, for all s≤ t≤ t0. (4.2)

We now turn to the second case, in which, the ratio (4.1) is relatively “small”. The
idea is to use the strongly mixing assumption of u to show that there exists a moment
t0>s, such that (4.2) still holds. We now turn to the details.

We start with understanding the relation between our non-linear model (2.1) and
the transport equation. More precisely, we have the following result.

Lemma 4.1. Let ϕs be the solution of the following transport equation{
∂tϕs+u ·∇ϕs=0;

ϕs(t)=θs,0, t=s.
(4.3)

Then for all t≥s,

∥θs(t)−ϕs(t)∥22≤
d

p−2
2 Dpν

∥∇u∥∞
·e2∥∇u∥∞(t−s) ·∥∇θs,0∥pp,

where Dp is defined in (2.14).

Remark 4.1. Lemma 4.1 is parallel to Lemma 5.2 in [8], which shows the distance
between the viscous and inviscid problems grows at most exponentially in time. For
the study of the linear problem (1.1), the authors of [12] developed nice tricks, by

estimating
∫ T

0
∥∆ϑ∥22dt from above, to capture the polynomial growing of that distance

(see Equation (2.12) in [12]). They, therefore, obtained a faster dissipation rate than
[8] (see Remark 2.18 in [8] for a more detailed discussion). After checking, we find
the tricks developed in [12] can be formally apply to (1.2). However, in this paper,
we only consider the weak solution to (1.2), by the Definition 3.1, we do not have
enough regularity to carry out that method rigorously. More precisely, the expression∫ T

0
∥∇·

(
|∇θ|p−2∇θ

)
∥22dt is not well defined for (1.2). Considering this issue, we use

weak formulation to recover the estimate in [8].

Proof. Let ω(t)=θs(t)−ϕs(t). Note that ω(s)=0. Since the solution for the
transport Equation (4.3) exists in strong sense, this means∫

Td

[
∂ϕs

∂t
·ζ−

d∑
i=1

ui(t) ·ϕs ·Diζ

]
dx=0
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for any ζ ∈Z. We now subtract the above equation with (3.3) (with the same choice of
ζ in both equations) to get

∫
Td

∂ω

∂t
·ζ+

d∑
i=1

(
ν|Diω|p−2Diω−ui(t) ·ω(t)

)
·Diζdx

=ν

∫
Td

d∑
i=1

|Diω|p−2Diω ·Diζdx−ν

∫
Td

d∑
i=1

|Diθ|p−2Diθ ·Diζdx, (4.4)

for any ζ ∈Z. Observe that ω∈Z. Indeed, it suffices to show that ϕs∈Z, which can be
easily verified by Gronwall’s inequality. Therefore, we are able to take ζ=ω in (4.4),
which further gives

1

2ν
∂t∥ω∥22+∥∇ω∥pp

=
〈
|∇ω|p−2∇ω−|∇θs|p−2∇θs,∇ω

〉
=
〈
|∇ω|p−2∇ω−|∇(ω+ϕs)|p−2∇(ω+ϕs) ,∇ω

〉
= I1+I2, (4.5)

where

I1 :=−
〈
|∇ω|p−2∇ϕs,∇ω

〉
and

I2 :=
〈(

|∇ω|p−2−|∇(ω+ϕs)|p−2
)
∇(ω+ϕs),∇ω

〉
.

Estimate of I1.

I1≤
∫
Td

|∇ω|p−1 |∇ϕs|dx≤∥∇ω∥p−1
p ∥∇ϕs∥p. (4.6)

Estimate of I2. Note that

I2≤
∫
Td

∣∣∣|∇ω|p−2−|∇(ω+ϕs)|p−2
∣∣∣ · |∇(ω+ϕs)||∇ω|dx

=(p−2)

∫
Td

(αt,x|∇ω|+(1−αt,x)|∇(ω+ϕs)|)p−3∣∣ |∇ω|−|∇(ω+ϕs)|
∣∣ · |∇(ω+ϕs)||∇ω|dx

≤ (p−2)

∫
Td

(αt,x|∇ω|+(1−αt,x)|∇(ω+ϕs)|)p−3 |∇ϕs| · |∇(ω+ϕs)||∇ω|dx, (4.7)

where in the second equation above, we use the mean value theorem and αt,x∈ [0,1]
which depends on the values of t and x∈Td. We now consider two different cases for
the value of p.

Case I: p≥3. Recall for any ℓ≥0 and a,b>0, we have

(a+b)ℓ≤Cℓ(a
ℓ+bℓ), (4.8)
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where

Cℓ=

{
1, 0≤ ℓ≤1;

2ℓ−1, ℓ>1.

Therefore, by (4.8),

(4.7)≤ (p−2)Cp−3 ·
∫
Td

|∇ω|p−2 |∇ϕs||∇(ω+ϕs)|dx

+(p−2)Cp−3 ·
∫
Td

|∇(ω+ϕs)|p−2 |∇ϕs||∇ω|dx. (4.9)

It is easy to check that

2(p−2)Cp−3+2(p−2)Cp−3Cp−2≤p2p,

and hence, we have

RHS of (4.9)

≤p2p ·
[∫

Td

|∇ω|p−1 |∇ϕs|dx+
∫
Td

|∇ω|p−2 |∇ϕs|2dx+
∫
Td

|∇ϕs|p−1 |∇ω|dx
]

≤p2p ·
(
∥∇ω∥p−1

p ∥∇ϕs∥p+∥∇ϕs∥p−1
p ∥∇ω∥p+∥∇ω∥p−2

p ∥∇ϕs∥2p
)
. (4.10)

Case II: 2<p<3. The second case is similar to the first one. The only difference
is how we estimate the term

(αt,x|∇ω|+(1−αt,x)|∇(ω+ϕs)|)p−3
. (4.11)

Note that since p−3<0, it follows that

(4.11)≤min
{
(αt,x|∇ω|)p−3

,((1−αt,x) |∇(ω+ϕs)|)p−3
}
.

An easy pigeonholing yields for each t and x, at least one of αt,x and 1−αt,x belongs
to
[
1
2 ,1
]
, this allows us to bound (4.11) further by

23−p
(
|∇ω|p−3

+ |∇(ω+θs)|p−3
)
≤8
(
|∇ω|p−3

+ |∇(ω+θs)|p−3
)
.

This implies when 2<p<3, we have

(4.7)≤8(p−2)

[∫
Td

|∇ω|p−2 |∇ϕs||∇(ω+ϕs)|dx+
∫
Td

|∇ω|p−2 |∇ϕs||∇(ω+ϕs)|dx
]

≤16 ·
(
∥∇ω∥p−1

p ∥∇ϕs∥p+∥∇ϕs∥p−1
p ∥∇ω∥p+∥∇ω∥p−2

p ∥∇ϕs∥2p
)
. (4.12)

Therefore, combining both cases, namely (4.10) and (4.12), we have

I2≤16p2p ·
(
∥∇ω∥p−1

p ∥∇ϕs∥p+∥∇ϕs∥p−1
p ∥∇ω∥p+∥∇ω∥p−2

p ∥∇ϕs∥2p
)
. (4.13)

By (4.6), (4.13) and a standard calculation by using Young’s inequality, there holds

1

2ν
∂t∥ω∥22+∥∇ω∥pp≤ I1+I2≤∥∇ω∥pp+Dp∥∇ϕs∥pp,
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where Dp is defined in (2.14). Hence, we have

∂t∥ω∥22≤2Dpν∥∇ϕs∥pp. (4.14)

Since ϕs solves the transport Equation (4.3), an easy application of Gronwall’s inequality
yields

∥∇ϕs∥pp≤d
p−2
2 ·e2∥∇u∥∞(t−s)∥∇θs,0∥pp. (4.15)

The desired result then follows by integrating (4.14) from s to t and using the
inequality (4.15).

The next lemma deals with the case when the initial data has a relatively “small”
W 1,p energy.

Lemma 4.2. Choose λN to be the largest eigenvalue satisfying λ≤H1(ν) where H1(ν)
is defined as in (2.13). If

∥∇θs,0∥p<λ
1
2

N∥θs,0∥2, (4.16)

then we have

∥θs(t0)∥2≤
∥θs,0∥2(

νH1(ν)
p
2

2
3p
2

+1
h−1

(
H1(ν)

−α+β
2

21−
α+β

2

) p−2
2

(p−2)(t0−s)∥θs,0∥p−2
2 +1

) 1
p−2

(4.17)

at a time t0 given by

t0 :=s+2h−1

λ
−α+β

2

N

2

.

Proof. Integrating the energy inequality (3.4), we have

∥θs(t)∥22=∥θs,0∥22−2ν

∫ t

s

∥∇θs(r)∥ppdr (4.18)

for any t>s.
We claim that the choice of λN and t0 will guarantee∫ t0

s

∥∇θs(r)∥ppdr≥
(
λN (t0−s)

8

) p
2

·∥θs,0∥p2. (4.19)

Since p>2, Hölder’s inequality yields∫ t0

s

∥∇θs(r)∥ppdr≥
(∫ t0

s

∥∇θs(r)∥22dr
) p

2

.

We now establish a lower bound of the term∫ t0

s

∥∇θs(r)∥22dr
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by following the argument in [8, Lemma 5.1]. More precisely,∫ t0

s

∥∇θs(r)∥22dr≥λN

∫ t0

t0+s
2

∥(I−PN )θs(r)∥22dr

≥ λN

2

∫ t0

t0+s
2

∥(I−PN )ϕs(r)∥22dr−λN

∫ t0

t0+s
2

∥(I−PN )(θs(r)−ϕs(r))∥22dr

≥ λN (t0−s)

4
∥θs,0∥22−

λN

2

∫ t0

t0+s
2

∥PNϕs(r)∥22dr−λN

∫ t0

t0+s
2

∥θs(r)−ϕs(r)∥22dr, (4.20)

where PN is the projection operator from L2 to the subspaces spanned by the first N
eigvenvectors. Therefore, it suffices to bound the last two terms in (4.20). For the
second term, using the strongly mixing condition (2.8) and (4.16), we see that∫ t0

t0+s
2

∥PNϕs(r)∥22dr≤λβ
N

∫ t0

t0+s
2

∥ϕs(r)∥2Ḣ−βdr≤λβ
N

∫ t0

t0+s
2

h(r−s)2∥θs,0∥2Ḣαdr

≤
λβ
N (t0−s)

2
h

(
t0−s

2

)2

∥θs,0∥2Ḣα

≤
λβ
N (t0−s)

2
h

(
t0−s

2

)2

∥θs,0∥2−2α
2 ∥∇θs,0∥2α2

≤
λβ
N (t0−s)

2
h

(
t0−s

2

)2

∥θs,0∥2−2α
2 ∥∇θs,0∥2αp

≤
λα+β
N (t0−s)

2
h

(
t0−s

2

)2

∥θs,0∥22. (4.21)

Finally, we bound the last term (4.20). By Lemma 4.1, we have∫ t0

t0+s
2

∥θs(r)−ϕs(r)∥22dr≤
d

p−2
2 Dpν

2∥∇u∥2∞
·e2∥∇u∥∞(t0−s)∥∇θs,0∥pp

≤
λ

p
2

N ·d
p−2
2 Dpν

2∥∇u∥2∞
e2∥∇u∥∞(t0−s)∥θs,0∥p2

≤
λ

p
2

N ·d
p−2
2 Dpν∥θ0,0∥p−2

2

2∥∇u∥2∞
·e2∥∇u∥∞(t0−s)∥θs,0∥22. (4.22)

Therefore, combining (4.20) with (4.21) and (4.22), we have∫ t0

s

∥∇θs(r)∥22dr≥λN (t0−s)∥θs,0∥22 ·
(
1

4
−

λα+β
N

4
h

(
t0−s

2

)2

−
λ

p
2

N ·d
p−2
2 Dpν∥θ0,0∥p−2

2

2∥∇u∥2∞(t0−s)
·e2∥∇u∥∞(t0−s)

)
. (4.23)

By our choice of λN and t0, we have

λα+β
N

4
h

(
t0−s

2

)2

≤ 1

16
, and

λ
p
2

N ·d
p−2
2 Dpν∥θ0,0∥p−2

2

2∥∇u∥2∞(t0−s)
·e2∥∇u∥∞(t0−s)≤ 1

16
.
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Hence, (4.23) reduces to ∫ t0

s

∥∇θs(r)∥22dr≥
λN (t0−s)∥θs,0∥22

8
, (4.24)

which further implies (4.19).

We now turn to the proof of (4.17). To begin with, we collect several facts:

(1) Recall that we are only interested in the case when ν is small, this together with the
definition of H1(ν) asserts that for ν sufficiently small, H1(ν) is increasing when ν
tends to 0;

(2) From the definition of H1(ν), together with the fact that h−1 is strictly decreasing
(since h is assumed to be strictly deceasing), one can check that

lim
ν→0

νλ
p
2

Nh−1

λ
−α+β

2

N

2


p
2

=0.

Moreover, this together with the definition of t0, suggests that

lim
ν→0

νλ
p
2

Nh−1

λ
−α+β

2

N

2


p−2
2

(t0−s)=0; (4.25)

(3) When ν is sufficiently small, there holds that

1

2
H1(ν)≤λN ≤H1(ν). (4.26)

This is due to Fact 1 above and the Weyl’s lemma (2.24).

Combining both (4.18) and (4.19), we have

∥θs(t0)∥22≤∥θs,0∥22−2ν

(
λN (t0−s)

8

) p
2

·∥θs,0∥p2

=∥θs,0∥22 ·

[
1−2ν

(
λN (t0−s)

8

) p
2

·∥θs,0∥p−2
2

]

=∥θs,0∥22 ·

[
1−2ν ·

λ
p
2

N

8
p
2

·(t0−s)
p−2
2 ·(t0−s) ·∥θs,0∥p−2

2

]

=∥θs,0∥22 ·

1−ν ·
λ

p
2

N

4
p
2

·h−1

λ
−α+β

2

N

2


p−2
2

·(t0−s) ·∥θs,0∥p−2
2

. (4.27)

Note that ∥θs,0∥2≤∥θ0,0∥2, by (4.25), we may assume that when ν is sufficiently small,

0<ν ·
λ

p
2

N

4
p
2

·h−1

λ
−α+β

2

N

2


p−2
2

·(t0−s) ·∥θs,0∥p−2
2 <

1

2
.
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On the other hand, by Taylor expansion, for 0<x<1 and p>2 we have

1− 2x

p−2
≤ 1

(1+x)
2

p−2

.

Applying the above fact we further get

(4.27)≤ ∥θs,0∥22 νλ
p
2
N

2p+1h−1

(
λ
−α+β

2
N

2

) p−2
2

(p−2)(t0−s)∥θs,0∥p−2
2 +1


2

p−2

,

which, together with (4.26), implies (4.17). The proof is complete.

The following lemma is the key ingredient to run the iteration argument when we
prove Theorem 2.1.

Lemma 4.3. For a>0 and p>2, then the function

Fa(x) :=
x

(axp−2+1)
1

p−2

(4.28)

is increasing for x≥0. Further, if

x1≤Fb(t′1−t′0)
(x0), (4.29)

and

x2≤Fc(t′2−t′1)
(x1), (4.30)

where b,c>0, x0,x1,x2>0, and t′2>t′1>t′0. Then we have,

x2≤Fd(t′2−t′0)
(x0),

where d=min{b,c}.

Proof. It is easy to check that F ′
a(x)=

1

(axp−2+1)
p−1
p−2

>0, which clearly yields the

first claim. And by a direct computation we have

x2≤Fc(t′2−t′1)
(Fb(t′1−t′0)

(x0))

=
x0(

c(t′2− t′1)x
p−2
0 +b(t′1− t′0)x

p−2
0 +1

)1/p−2

≤ x0(
d(t′2− t′0)x

p−2
0 +1

)1/p−2
=Fd(t′2−t′0)

(x0).

Finally, let us turn to prove the main result Theorem 2.1.

Proof. (Proof of Theorem 2.1.) Repeatedly applying (4.2) with c0=λN and
Lemma 4.2, together with the fact (4.26) and Lemma 4.3, we obtain an increasing
sequence of times (t′k), such that for each k≥1, there holds

∥θs(t′k)∥2≤
∥θs,0∥2(

νH1(ν)
p
2 H1,ν,h

2
p
2

·(p−2)(t′k−s)∥θs,0∥p−2
2 +1

) 1
p−2

, (4.31)
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where H1,ν,h is defined in (2.12), that is

H1,ν,h :=min

1, 2−p−1 ·h−1

(
H1(ν)

−α+β
2

21−
α+β

2

) p−2
2


and

t′k+1− t′k≤ t0.

Let us include more details for the iteration argument above. Indeed, although our
estimates (4.2) and (4.17) are no longer linear, the iteration structure still works. For
example, let t′0 :=s and suppose

∥θs(t′1)∥2≤
∥θs,0∥2(

νH1(ν)
p
2

2
p
2

(p−2)(t′1−s)∥θs,0∥p−2
2 +1

) 1
p−2

(4.32)

and

∥θs(t′2)∥2≤
∥θs(t′1)∥2(

νH1(ν)
p
2

2
3p
2

+1
h−1

(
H1(ν)

−α+β
2

21−
α+β

2

) p−2
2

(p−2)(t′2− t′1)∥θs(t′1)∥
p−2
2 +1

) 1
p−2

. (4.33)

Applying Lemma 4.3 with (4.29) being replaced by (4.32), and (4.30) being replaced by
(4.33), respectively, we have

∥θs(t′2)∥2≤
∥θs,0∥2(

νH1(ν)
p
2 H1,ν,h

2
p
2

·(p−2)(t′2−s)∥θs,0∥p−2
2 +1

) 1
p−2

. (4.34)

It is then clear that (4.31) follows by applying the above procedure k times.

Finally, note that from (4.31), we can immediately conclude that

κd≤
2

p
2

νH1(ν)
p
2H1,ν,h

+(t0−s). (4.35)

By the definition of H1(ν) and the choice of λN and t0, there exists some constant
C ′>0, which only depends on h, ∥∇u∥∞, p, ∥θ0,0∥2, the strongly mixing condition and
any dimension constants, such that

t0−s≤ C ′

νH1(ν)
p
2

≤ C ′

νH1(ν)
p
2H1,ν,h

, (4.36)

where in the second estimate above, we have used the fact that H1,ν,h≤1. The desired
estimate (2.11) then clearly follows from (4.35) and (4.36).

To prove Corollary 2.1, it suffices to compute the function H1 explicitly for the
specific rate functions of interest.

Proof. (Proof of Corollary 2.1.) We first note that when ν≪1, H1,ν,h≡1.
When the mixing rate function h is given by the power law (2.15), we compute

H1(ν)=C0|lnν|
2q

α+β , (4.37)
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where C0=C0(α,β,c,p,d,∥∇u∥∞,∥θ0,0∥2). The desired estimate (2.16) then follows by
substituting (4.37) into (2.11).

When the mixing rate function h is given by the exponential law (2.17), we have

H1(ν)=ν
− 2c2

pC2+4∥∇u∥∞(α+β) .

This together with (2.11) yields the desired estimate (2.18).

4.2. The weakly mixing case. We now turn to the proof of Theorem 2.2. The
proof is similar to the proof of Theorem 2.1. The main difference is that the analog of
Lemma 4.2 for the weakly mixing case is weaker. More precisely,we have the following
result.

Lemma 4.4. Choose λN to be the largest eigenvalue satisfying λ≤H2(ν) where H2(ν)
is defined as in (2.21). If

∥∇θs,0∥p<λ
1
2

N∥θs,0∥2 (4.38)

then we have

∥θs(t)∥2≤
∥θs,0∥2(

νH2(ν)
p
2

2
3p
2

+1
h−1

(
H2(ν)

− d+2α+2β
4

21−
d+2α+2β

4

) p−2
2

(p−2)(t0−s)∥θs,0∥p−2
2 +1

) 1
p−2

(4.39)

at a time t0 given by

t0 :=s+2h−1

λ
− d+2α+2β

4

N

2
√
c

,

where c is defined in (2.25).

Proof. (Proof of Theorem 2.2.) Given Lemma 4.4, the proof of Theorem 2.2 is
the same as the proof of Theorem 2.1.

Moreover, as in the proof of Corollary 2.1, the proof of Corollary 2.2 only involves
computing H2 explicitly when h is assumed to be power law or exponential, and hence
we would like to leave the details to the interested reader. Finally, we prove Lemma
4.4.

Proof. (Proof of Lemma 4.4.) The only difference between the proof of Lemma
4.4 and Lemma 4.2 is that when we estimate the term∫ t0

t0+s
2

∥PNϕs(r)∥22dr,

instead of using the strongly mixing assumption, we need to bound it via the weakly
mixing assumption (2.9). More precisely, we have∫ t0

t0+s
2

∥PNϕs(r)∥22dr≤
∫ t0

t0+s
2

N∑
ℓ=1

|⟨ϕs(r),eℓ⟩|2dr

≤
N∑
ℓ=1

t0−s

2
h

(
t0−s

2

)2

∥ϕs(0)∥2Ḣαλ
β
ℓ
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≤ N(t0−s)

2
h

(
t0−s

2

)2

λβ
N∥θs,0∥2Ḣα

≤ N(t0−s)

2
h

(
t0−s

2

)2

·λα+β
N ∥θs,0∥22

≤ c(t0−s)

2
h

(
t0−s

2

)2

·λ
d+2α+2β

2

N ∥θs,0∥22. (4.40)

In the last estimate above, we have used the Weyl’s formula (2.24) and Remark 2.5.
Therefore, as in the proof of Lemma 4.2, we substitute (4.40) and (4.22) into (4.20), we
see that ∫ t0

s

∥∇θs(r)∥22dr≥λN (t0−s)∥θs,0∥22 ·
(
1

4
−

cλ
d+2α+2β

2

N

4
h

(
t0−s

2

)2

−
λ

p
2

N ·d
p−2
2 Dpν∥θ0,0∥p−2

2

2∥∇u∥2∞(t0−s)
·e2∥∇u∥∞(t0−s)

)
. (4.41)

Finally, by the choice of λN and t0, we have

cλ
d+2α+2β

2

N

4
h

(
t0−s

2

)2

≤ 1

16
, and

λ
p
2

N ·d
p−2
2 Dpν∥θ0,0∥p−2

2

2∥∇u∥2∞(t0−s)
·e2∥∇u∥∞(t0−s)≤ 1

16
,

hence (4.24) is still true in this case. The rest of the proof is then the same as that of
Lemma 4.2.
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