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GLOBAL CONVERGENCE OF TRIANGULARIZED
ORTHOGONALIZATION-FREE METHOD˚

WEIGUO GAO: , YINGZHOU LI; , AND BICHEN LU§

Abstract. This paper proves the global convergence of a triangularized orthogonalization-free
method (TriOFM). TriOFM, in general, applies a triangularization idea to the gradient of an objective
function and removes the rotation invariance in minimizers. More precisely, in this paper, the TriOFM
works as an eigensolver for sizeable sparse matrices and obtains eigenvectors without any orthogonal-
ization step. Due to the triangularization, the iteration is a discrete-time flow in a non-conservative
vector field. The global convergence relies on the stable manifold theorem, whereas the convergence to
stationary points is proved in detail in this paper. We provide two proofs inspired by the noisy power
method and the noisy optimization method, respectively.

Keywords. Eigenvalue problem; orthogonalization-free; iterative eigensolver; full configuration
interaction.
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1. Introduction
Solving low-lying eigenpairs of a symmetric matrix is the key task in computational

chemistry. However, the orthogonalization step in most classical iterative eigensolvers,
e.g., Lanczos method, Davidson method, LOBPCG, etc., is too expensive to be car-
ried out explicitly every iteration. For example, in a chemistry application named full
configuration interaction (FCI), the matrix size grows exponentially as the system size
increases. The matrix size normally ranges from 108 to 1040. Explicitly conducting
the orthogonalization step is not affordable. In other chemistry applications like linear-
scaling density functional theory (linear-scaling DFT), the explicit orthogonalization
step would scale cubically and should be avoided. Therefore, orthogonalization-free
methods (OFMs) [2, 15, 16] play an important role in these applications. One feature
for OFMs is the rotation-invariant property, i.e., multiplying an orthogonal matrix on
columns of the iteration variable preserves the underlying objective value. Such a feature
often leads to less sparse minima compared to the sparsity in the original eigenvectors.
Therefore, the triangularized orthogonalization-free method (TriOFM) is proposed to
avoid orthogonalization as well as preserving the sparsity in the original eigenvectors.
In this paper, we aim to prove the global convergence of the TriOFM for solving the
extreme eigenvalue problem.

TriOFM is a method proposed to modify the gradient to decouple former columns
from latter columns. Without using the triangularization technique, the OFM objective
function adopted in this paper is,

fpXq “
›

›A ` XXJ
›

›

2

F
, (1.1)

where A P Rnˆn is a symmetric matrix of size n by n and X P Rnˆp for p being the
number of desired eigenpairs. Several existing works [7, 14, 17] show that (1.1) has no
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spurious local minimizers, and all local minima are global minima. Hence, gradient-
based methods applied to (1.1) converge to global minima almost surely. The global
convergence proof is a direct combination of the first-order convergence to stationary
points and the stable manifold theorem [14].

When the triangularization technique is enabled, the iterative scheme is no longer a
discrete gradient flow. Instead, it still admits the form of a discrete dynamical system.
As has been analyzed in the original TriOFM paper [7], the stable fixed points are
scaled eigenvectors corresponding to the smallest p eigenvalues, and all other fixed
points are unstable. Stable manifold theorem, therefore, can still be adopted to show
the global convergence of the method as long as the convergence to fixed points is proved
for TriOFM. This paper mainly focuses on the convergence proof to fixed points and
then proves the global convergence of TriOFM via a recursive application of the stable
manifold theorem.

1.1. Related work. TriOFM as an iterative eigensolver has plenty of related
work from numerical linear algebra. We refer readers to our original TriOFM paper [7]
and references therein. In this section, we focus on reviewing work related to the global
convergence of non-convex functions.

For general non-convex functions, converging to global minima is a tough prob-
lem. Some algorithms [11] could be shown to have global convergence property but
the performance is not ideal for high dimensional problems. Viewing the eigenvalue
problem as an unconstrained optimization problem, the objective function, as in (1.1),
is non-convex but has no spurious local minima. That means all local minima of (1.1)
are global minima. Besides the eigenvalue problem, other matrix factorization or ma-
trix completion problems have been shown to admit the same property. In [9], authors
show that the matrix completion problem for symmetric matrices has no spurious local
minimum. Later, the result is extended to asymmetric low-rank problems [8], where
a unified geometric analysis is proposed and has been applied to matrix sensing, ma-
trix completion, and robust principal component analysis (PCA). Later, [3] proved that
non-negative rank-1 robust PCA has no spurious local minimum. Recently, [6] applied
the triangularized method to a similar but not identical objective function as ours in
the area of distributed PCA. A linear convergence in the sense of power method was
then proved in [5].

Given the absence of spurious local minimum, the global convergence is guaranteed
if the algorithm can converge to first-order points and escape from strict saddle points.
Second-order methods naturally avoid strict saddle points and converge to global min-
ima. First-order methods, however, avoid strict saddle points almost surely. If the
first-order methods contain additive random noise, e.g., stochastic gradient descent, the
noise could perturb the iteration variable into the decreasing sector around strict saddle
points. When the iteration is stuck around strict saddle points for a long time, the
method is guaranteed to escape from the saddle points with high probability. Hence
global convergence is achievable with high probability. When the noise is not addi-
tive, for example, in the randomized coordinate descent method, escaping from saddle
points is related to the stability analysis of Lyapunov exponent of random dynamic
system [4, 12] and the proof could be carried out with conditions on the stepsize [1].
If the first-order method is noise-free, the global convergence proof is directly related
to the classical stable manifold theorem in the dynamic system. The idea is recently
carried over to the optimization community in machine learning [13].

1.2. Our contribution. In this paper, we prove the global convergence property
of TriOFM. Since TriOFM is not a gradient-based optimization method, the global
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convergence is not in the sense of optimization. We show that TriOFM can escape from
unstable fixed points and converge to stable fixed points, which are the desired low-lying
eigenvectors directly.

The overall strategy in proving the global convergence is to iteratively apply the
stable manifold theorem to each column of the iteration variableX. The major difficulty
lies in proving the convergence to a (stable/unstable) fixed point. The reason behind the
difficulty is as follows. Given a column in X, the update across iterations is composed
of two parts: a force term driving towards the fixed point and a perturbation due to
the updates from related other columns. Hence, for the method to be convergent, the
first part must be dominant, and the second part is well-controlled. In this paper, we
propose two strategies to show this. The first strategy is inspired by the convergence
proof of the noisy power method [10]. The convergence is then decomposed into the
convergence of the angle between X and fixed points and the convergence of the column
lengths of X. The second strategy introduces different energy functions for different
columns of X. The convergence proof then is similar to that in optimization with a
careful estimation of the magnitude of the perturbation part. Two strategies have their
own unique features to be generalized for other TriOFMs. The first strategy is well-
suited for methods whose iterative schemes are analogs to a shifted and scaled power
method. The second strategy can be applied to methods whose energy functions for
different columns are known explicitly.

1.3. Organization. In the rest of the paper, Section 2 states the TriOFM
algorithm as well as properties of the stable and unstable fixed points. Section 3 gives
the global convergence for TriOFM. Two proofs for the key lemmas are provided in
Section 4. A numerical experiment is given in Section 5 in facilitating understanding
the theoretical converging behavior.

2. TriOFM Revisit
We revisit the existing results of TriOFM in this section. Notations that will be

used throughout this paper are shown in Table 2.1.
Recall the gradient of (1.1),

∇fpXq “ 4AX ` 4XXJX. (2.1)

The i-th column in the first term above is Axi which only involves xi itself and is in-
dependent of other columns of X. However, the second term above mixes all columns
of X. According to [14], we know that if X is a single column vector then the gradient
descent method applied to (1.1) converges to the eigenvector corresponding to the small-
est eigenvalue. If X has two columns, then the iteration converges to the eigenspace
spanned by the two eigenvectors corresponding to the smallest two eigenvalues. These
analytical results inspire the design of the TriOFM scheme, where the iteration obeys,

x
pt`1q

1 “ x
ptq
1 ´ α

ˆ

Ax
ptq
1 ` x

ptq
1

´

x
ptq
1

¯J

x
ptq
1

˙

, (2.2)

x
pt`1q

2 “ x
ptq
2 ´ α

ˆ

Ax
ptq
2 ` x

ptq
1

´

x
ptq
1

¯J

x
ptq
2 ` x

ptq
2

´

x
ptq
2

¯J

x
ptq
2

˙

, (2.3)

¨ ¨ ¨

x
pt`1q

i “ x
ptq
i ´ α

˜

Ax
ptq
i `

i
ÿ

j“1

x
ptq
j

´

x
ptq
j

¯J

x
ptq
i

¸

, (2.4)

for i “ 1, 2, . . . , p. Throughout this paper, the constant 4 in (2.1) is absorbed into
stepsize α.
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Notation Explanation

n The size of the matrix.
q The number of negative eigenvalues of the matrix.
p The number of desired eigenpairs and p ď q.

A The n-by-n symmetric matrix.
λi The i-th smallest eigenvalue of A.
Λ A diagonal matrix with diagonal entries being λ1, . . . , λn.
Λi The first i-by-i principal submatrix of Λ.
U An orthogonal matrix satisfying UJAU “ Λ.
ui The eigenvector of A corresponding to λi.
Ui The first i columns of U .
ρ The 2-norm of A, i.e., ρ “ }A}2.

Xptq An n-by-p matrix denoting the vectors at t-th iteration.

x
ptq
i The i-th column of Xptq.

X
ptq
i The first i columns of Xptq.

fpXq The objective function of X, (1.1).
∇fpXq The gradient of fpXq.

α The stepsize used in optimization algorithms.
ei The i-th standard basis vector, i.e., a vector of length n with

one on the i-th entry and zero elsewhere.

Table 2.1: Notations.

Iterative scheme (2.2) is a gradient descent method applied to (1.1) with a single
vector. Iterative scheme (2.3) admits the updates on the second column of a gradient
descent method applied to (1.1) with two vectors. Similar idea is applied to the re-
maining vectors. Using the iterative scheme above, we expect that: (i) the first column
converges to the eigenvector corresponding to the smallest eigenvalue; (ii) the conver-
gence of other columns can be done inductively. To simplify the notation, we define a
modified updating direction as,

gpXq “ AX ` Xtriu
`

XJX
˘

, (2.5)

where triu p¨q denotes the upper triangular part of a given matrix. Then the iterative
scheme in (2.4) can be rewritten as,

Xpt`1q “ Xptq ´ αg
´

Xptq
¯

. (2.6)

Here the stepsize α is assumed to be a constant in this paper. For other strategies for
α, refer to [7].

The modified updating direction (2.5) is not a gradient of any energy function, and
hence the vector field formed by (2.5) is not conservative. The stable and unstable
stationary points of (2.5) have been analyzed in [7]. For completeness, we include the
conclusion as in Theorem 2.1.

Theorem 2.1 (Theorem 3.1 from [7]). All fixed points of (2.6) are of form X “

Uq

a

´ΛqPS, where
?

¨ is applied entry-wise, P P Rqˆp is the first p columns of an
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arbitrary q-by-q permutation matrix, and S P Rpˆp is a diagonal matrix with diagonal
entries being 0 or ˘1. Within these points all stable fixed points are of form X “

Up

a

´ΛpD, where D P Rpˆp is a diagonal matrix with diagonal entries being ˘1. Others
are unstable fixed points.

All the stable fixed points are composed of desired eigenvectors, with its length
being the square root of the corresponding eigenvalue. All other unstable fixed points
are also composed of eigenvectors up to a scaler. Next, we will prove that under mild
conditions, the iterative scheme (2.6) converges to the stable fixed points for almost all
initializations.

3. Global convergence analysis of TriOFM
In this section, we will prove the global convergence for the fixed stepsize TriOFM.

The analysis of TriOFM is intuitively straightforward but technically challenging.
First, we will explain the intuition behind the convergence of TriOFM. Each column

of the variable in TriOFM addresses a different optimization problem. Let us consider
the convergence of the third column. Assume the first two columns have converged.
Since the third column is decoupled from later columns, the convergence of the third
column in TriOFM is fully determined by the first three columns. Intuitively, if we
assume the first two columns x1, x2 are frozen to be a stable fixed point, then the third
column in (2.6) is associated with an optimization problem,

›

›A ` x3x
J
3

›

›

2

F
` 2

›

›xJ
1 x3

›

›

2

F
` 2

›

›xJ
2 x3

›

›

2

F
“

›

›

›

rA ` x3x
J
3

›

›

›

2

F
, (3.1)

where rA “ A` x1x
J
1 ` x2x

J
2 “ A´λ1u1u

J
1 ´λ2u2u

J
2 . Hence the optimization problem

for x3 is of the same form as the single-column version of (2.6), whose global convergence
is guaranteed for almost all initializations [14]. Then, by an induction argument, the
convergence analysis can be applied to later columns one-by-one. However, there are
two niches. First, the numerical error for the converged x1 and x2 should be considered
in the convergence analysis of x3, i.e., the objective function in (3.1) has an extra error
term. The second niche is problematic. For random initialized x1, x2, and x3, the
convergence of x1 and x2 should not make x3 fall into the problematic zero-measure
initial set where x3 will converge to an unstable stationary point. A complete proof
must fulfill these two niches.

In the following, we present the rigorous global convergence analysis for TriOFM.
All lemmas and theorems for the convergence are stated under Assumption 3.1, where
we assume the iteration starts in a big domain. Within the domain, the Hessian matrices
are bounded from above.

Assumption 3.1. Let Ri “ 2i´1
?
3ρ for all 1 ď i ď p. The initial point Xp0q “

´

x
p0q

1 x
p0q

2 ¨ ¨ ¨ x
p0q
p

¯

satisfies
›

›

›
x

p0q

i

›

›

›
ď Ri for all 1 ď i ď p. The stepsize in (2.6)

satisfies α ď 1
10R2

p
.

According to Theorem 2.1, stable fixed points are of form X “ Up

a

´ΛpD and
columns are scalar multiple of the p low-lying eigenvectors of A. Global convergence aims
at showing that the iteration (2.6) converges to one of the stable fixed points. In order
to simplify the notation, we define the set of stable fixed points as X ˚ “

␣

Up

a

´ΛpD
(

,
where Up, Λp, and D are defined in Theorem 2.1. Further, the distance between a point
X and the set X ˚ is denoted as }X ´ X ˚}F “ minY PX˚ }X ´ Y }F, which means the
smallest F-norm between X and all points in X ˚. For the first i columns, we define the



200 GLOBAL CONVERGENCE OF TRIOFM

set of stable fixed points as X ˚
i “

␣

Ui

?
´ΛiDi

(

, where Ui is the first i columns of Up,
Λi and Di are the first i-by-i principal submatrices of Λp and D respectively.

Theorem 3.1 states that the iteration (2.6) converges to a global minimum almost
surely while the proof depends on the following lemmas. Lemma 3.1 guarantees that
Xptq stays within the big domain as long as the initial point is in there; Lemma 3.2
shows the global convergence of x1; Lemma 3.3 shows the convergence of xi for i ą 1.
The proof of Lemma 3.1 is in Appendix A, and the proofs of Lemma 3.2 and Lemma 3.3
are in Section 4.

Lemma 3.1. Assume Assumption 3.1 is satisfied. For any iteration t, the iterate

Xptq “ px
ptq
1 , . . . , x

ptq
n q satisfies

›

›

›
x

ptq
i

›

›

›
ď Ri for all 1 ď i ď p.

Lemma 3.2. Assume Assumption 3.1 is satisfied and x
p0q

1 is not perpendicular to u1.

Then x
ptq
1 converges to ˘

?
´λ1u1.

Lemma 3.3. Assume Assumption 3.1 is satisfied and limtÑ8

›

›

›
X

ptq
i´1 ´ X ˚

i´1

›

›

›

F
“ 0 for

any 1 ď i ď p. x
ptq
i converges to one of the points in

␣

0,˘
a

´λjuj for j “ i, . . . , p
(

.

Theorem 3.1. If Assumption 3.1 is satisfied, then the iteration (2.6) converges to
X ˚ for all initial points besides a set W of measure zero.

Proof. This theorem is proved by induction. The set of these initial points is
denoted as Xi for the first i columns. Lemma 3.1 guarantees that ι´αg maps points in
Xi to Xi, where ι denotes the identity operator and g is the operator defined in (2.5).
We further introduce a notation for unstable fixed points as A˚

i . Recall Theorem 2.1
for p “ i, we can characterize A˚

i as,

A˚
i “

!

X P Xi

ˇ

ˇ

ˇ
X “ Uq

a

´ΛqPS and X ‰ Ui

a

´ΛiD
)

. (3.2)

For the first column x
ptq
1 , Lemma 3.2 shows that limtÑ8 x

ptq
1 “ ˘

?
´λ1u1 for all x

p0q

1

not perpendicular to u1. Alternatively, it can be restated as limtÑ8

›

›

›
X

ptq
1 ´ X ˚

1

›

›

›

F
“ 0

for all initial points except those in W1 “

!

X
p0q

1

ˇ

ˇ

ˇ
uJ
1 X

p0q

1 “ 0
)

“

!

X
p0q

1

ˇ

ˇ

ˇ
limtÑ8pι ´

αgqt
´

X
p0q

1

¯

P A˚
1

)

. Obviously the set W1 has measure zero.

Now we assume that the statement of Theorem 3.1 holds for the first i´ 1 columns

for i P p1, ps, i.e., limtÑ8

›

›

›
X

ptq
i´1 ´ X ˚

i´1

›

›

›

F
“ 0 for all initial points except those in Wi´1

and the set Wi´1 has measure zero.
We first define the set Wi for i as,

Wi “

!

X
p0q

i

ˇ

ˇ

ˇ
lim
tÑ8

pι ´ αgqt
´

X
p0q

i

¯

P A˚
i

)

ď

Vi, (3.3)

for Vi “

!

X
p0q

i

ˇ

ˇ

ˇ
X

p0q

i´1 P Wi´1

)

. Since Wi´1 has measure zero, we know that the set Vi

also has measure zero. Next we focus on the points in XizVi and WizVi.
Here we apply Theorem 2 in [13] to show that WizVi has measure zero. All con-

ditions therein must be checked first. Since the first k ´ 1 columns are independent of
the k-th one, the operator ι ´ αg is smooth and maps XizVi to XizVi. According to
Theorem 2.1, points in A˚

i are unstable fixed points, so are points in A˚
i zVi. The last

thing to check is the invertibility of Dpι´αgq “ I ´αDg. As has been discussed in the
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proof of Theorem 2.1 from [7], Dg is a block upper triangular matrix and its spectrum
is determined by the spectrum of the diagonal blocks Jkk for k “ 1, . . . , i,

Jkk “ A ` XkX
J
k ` xJ

k xkI ` xkx
J
k . (3.4)

For points in Xi, the spectrum norm of XkX
J
k , x

J
k xkI, and xkx

J
k are upper bounded by

2R2
p, R

2
p, and R2

p respectively. Further we have }A} ă
R2

p

3 . Hence, combined with the
assumption on α, we have the following bound,

λpDpι ´ αgqq ą
1

2
(3.5)

for all Xi P Xi, which implies that det pDpι ´ αgqq ‰ 0 for all Xi P XizVi. Therefore,
Theorem 2 in [13] can be applied, and the set WizVi has measure zero. Further, the set
Wi has measure zero.

Then Lemma 3.3 implies that for X
p0q

i P XizWi there is

lim
tÑ8

x
ptq
i “ ˘

a

´λiui. (3.6)

Hence we have limtÑ8

›

›

›
X

ptq
i ´ X ˚

i

›

›

›

F
“ 0 for all initial points except those in Wi and

the set Wi has measure zero. By induction, the theorem is proved.

Theorem 3.1 shows the global convergence of TriOFM without rate. We do not
expect any provable rate of the global convergence since TriOFM solves a non-convex
problem and has unstable fixed points.

4. Proofs of lemmas
This section proves Lemma 3.2 and Lemma 3.3.

4.1. Proof of Lemma 3.2. The iteration of the first column is a gradient
descent method applied to the single-column version of (1.1). Lemma 3.2 states that
the iteration of the first column converges globally. Combining the energy landscape
analysis in [7,14] and the escaping saddle point analysis in [13], the global convergence
would be proved. In this section, we provide another proof of the global convergence,
where the convergence rate is given implicitly. The proof is analogous to that of the
power method. The convergence of angle is proved first and then the convergence of

vector length. In the following, θptq denotes the acute angle between x
ptq
1 and ˘u1.

Lemma 4.1. Assume Assumption 3.1 is satisfied and x
p0q

1 is not perpendicular to

u1. Then the tangent of θptq “ =px
ptq
1 , u1q linearly converges to 0, i.e., tan θpt`1q ď

1´αλ2

1´αλ1
tan θptq.

Proof. The eigenvectors of the symmetric matrix A are orthonormal. Both the

2-norm and the angle θptq “ =px
ptq
1 , u1q “ =pUJx

ptq
1 , e1q are invariant to orthogonal

transform. Without loss of generality, we assume that A is a diagonal matrix with
its diagonal entries being λ1, . . . , λn and the corresponding eigenvectors are e1, . . . , en.
Further, we drop the iteration index in the superscript and denote the following iteration
variables with r̈. The first column of Xptq iterates as,

rx1 “
`

I ´ αA ´ αxJ
1 x1I

˘

x1. (4.1)

Let x1k and rx1k denotes the k-th element of x1 and rx1 respectively. Then we have,

rx1k “
`

1 ´ αλk ´ αr21
˘

x1k, (4.2)
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where r1 denotes the norm of x1.
The tangent of rθ “ =prx1, e1q can be written in terms of elements of rx1 and be

bounded as,

tan rθ “

a

rx2
12 ` rx2

13 ` ¨ ¨ ¨ ` rx2
1n

|rx11|

“

b

p1 ´ αλ2 ´ αr21q
2
x2
12 ` ¨ ¨ ¨ ` p1 ´ αλn ´ αr21q

2
x2
1n

p1 ´ αλ1 ´ αr21q |x11|

ď
1 ´ αλ2 ´ αr21
1 ´ αλ1 ´ αr21

˜

a

x2
12 ` ¨ ¨ ¨ ` x2

1n

|x11|

¸

ď
1 ´ αλ2

1 ´ αλ1
tan θ, (4.3)

where the assumption on α guarantees the positivity of 1´αλ1 ´αr21 and 1´αλ2 ´αr22.
Applying (4.3) recursively, we prove the lemma.

Lemma 4.1 shows the linear convergence for the tangent of the angle between x
ptq
1

and u1. Next, we would focus on the convergence of the vector length.

Lemma 4.2. Assume Assumption 3.1 is satisfied and x
p0q

1 is not perpendicular to u1.

Then there exists an integer N such that
›

›

›
x

ptq
1

›

›

›
ě

?
´2λq

4 holds for all t ě N .

Proof. Without loss of generality, we assume A is diagonal as in the proof of
Lemma 4.1 and the same notations are used here. We split x1 into two vectors as

x1 “
`

yJ
1 yJ

2

˘J
where y1 “

`

x11 ¨ ¨ ¨ x1q

˘J
and y2 “

`

x1pq`1q ¨ ¨ ¨ x1n

˘J
.

The proof consists of two parts. In the first part, we show that there exists an

iteration N1, such that
›

›

›
y

pN1q

1

›

›

›
ě

?
´2λq

2 and
›

›

›
y

pN1q

2

›

›

›
ď

?
´2λq

4 . In the second part,

we show that as long as the condition in the first part is satisfied, the length of x1 will

never go below

?
´2λq

4 .
Notice that (4.2) is bounded as,

|rx1k| ď
`

1 ´ αλk ´ αpx1kq2
˘

|x1k| (4.4)

for k “ q ` 1, . . . , n. All entries |x1k| decay monotonically to zero for k ą q. Hence

there exists an integer M such that for any t ě M we have
›

›

›
y

ptq
2

›

›

›
ď

?
´2λq

4 . Further,

for t ě M , if }y1} ď

?
´2λq

2 , we have,

|rx1k| ě

ˆ

1 ´ αλk ` α
5λq

8

˙

|x1k|, (4.5)

for k “ 1, . . . , q, where the increasing factors are strictly greater than one. Also we

have x
p0q

11 “ xJ
1 u1 ‰ 0 in the assumption. Considering the choice of α, x

ptq
11 remains

nonzero throughout the iterations. Hence there exists an integer N ě M such that
›

›

›
y

pNq

1

›

›

›
ě

?
´2λq

2 and
›

›

›
y

pNq

2

›

›

›
ď

?
´2λq

4 .

Next, for any t ě N , if }y1} ě

?
´2λq

2 , then we have,

}ry1} ě p1 ´ αr21q }y1} ě

ˆ

1 ´
R2

1

5R2
p

˙

}y1} ě

a

´2λq

4
, (4.6)
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where we adopt Lemma 3.1 and the assumption on α in the second inequality. Such

a relation means that as long as }y1} ě

?
´2λq

2 , the length of the vector in the next

iteration is lower bounded by

?
´2λq

4 .

When

?
´2λq

4 ď }y1} ď

?
´2λq

2 and }y2} ď

?
´2λq

4 , we have,

}ry1} ě p1 ´ αλq ´ αr21q }y1} ě

ˆ

1 ´
3

8
αλq

˙

}y1} ě

a

´2λq

4
. (4.7)

Hence, as long as t ě N , we have
›

›

›
x

ptq
1

›

›

›
ě

›

›

›
y

ptq
1

›

›

›
ě

?
´2λq

4 .

Now we are ready to prove Lemma 3.2 due to the fact that angle always converges
and the norm is lower-bounded away from zero.

Proof. (Proof of Lemma 3.2.) Without loss of generality, we assume A is
diagonal as in the proof of Lemma 4.1 and the same notations are used here.

According to Lemma 4.1, the tangent of θ converges to zero, i.e.,

tan θ “

a

x2
12 ` x2

13 ` ¨ ¨ ¨ ` x2
1n

|x11|
Ñ 0. (4.8)

Lemma 3.1 implies the boundedness of x1, which implies the boundedness of x11. Hence
we have,

b

x2
12 ` x2

13 ` ¨ ¨ ¨ ` x2
1n Ñ 0. (4.9)

To simplify the notation, we denote η as η “
a

x2
12 ` x2

13 ` ¨ ¨ ¨ ` x2
1n. The convergence

of η can be stated as follows. For any ε ď min

ˆ?
´λq

4 ,

?
λ1λq

8R1

˙

, there exists an integer

N1 such that for any t ě N1, we have η
2 ď ε2. Also recalling Lemma 4.2, there exists an

integer N2, such that for any t ě N2, we have
›

›

›
x

ptq
1

›

›

›
ě

?
´2λq

4 . Combining the bounds

on η and
›

›

›
x

ptq
1

›

›

›
, we have,

´

x
ptq
11

¯2

“

›

›

›
x

ptq
1

›

›

›

2

´ η2 ě ´
λq

8
´ ε2 ě ´

λq

16
(4.10)

for t ě M “ maxpN1, N2q.

Since the assumption on stepsize α guarantees the positivity of p1 ´ αλ1 ´ αr21q,

rx11 “ p1 ´ αλ1 ´ αr21qx11 remains the same sign as x11 and the same as x
p0q

11 . We first

discuss the scenario x
p0q

11 ą 0.

Let δptq “ x
ptq
11 ´

?
´λ1. We have the relationship,

δpt`1q “ x
pt`1q

11 ´
a

´λ1 “

ˆ

1 ´ α

ˆ

λ1 `

´

x
ptq
11

¯2

`

´

ηptq
¯2
˙˙

x
ptq
11 ´

a

´λ1

“

´

1 ´ α
´

a

´λ1 ` x
ptq
11

¯

x
ptq
11

¯

δptq ´ α
´

ηptq
¯2

x
ptq
11 . (4.11)

Taking the absolute value of both sides, we obtain the inequality,∣∣∣δpt`1q
∣∣∣ ď

´

1 ´ α
´

a

´λ1 ` x
ptq
11

¯

x
ptq
11

¯
∣∣∣δptq

∣∣∣ ` α
´

ηptq
¯2

x
ptq
11
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ď

˜

1 ´ α

a

λ1λq

4

¸ ∣∣∣δptq
∣∣∣ ` αε2R1

ď

˜

1 ´ α

a

λ1λq

4

¸t`1´M ∣∣∣δpMq
∣∣∣ ` ε2

4R1
a

λ1λq

ď

˜

1 ´ α

a

λ1λq

4

¸t`1´M ∣∣∣δpMq
∣∣∣ `

ε

2
. (4.12)

Hence there exists an integer N ě M such that for any t ě N ,
∣∣δptq

∣∣ ď ε.

If x
p0q

11 ă 0, the iteration converges to ´
?

´λ1. The analysis is analogous to the
above one. The lemma is proved.

4.2. Proofs of Lemma 3.3. We give two proofs of Lemma 3.3 in Section 4.2.1
and Section 4.2.2 respectively. The first proof is inspired by the noisy power method and
follows closely that of Lemma 4.1. The second proof is related to the noisy optimization
method. We give the two proofs to hint at global convergence proofs for other algorithms
in TriOFM family.

4.2.1. Proof inspired by noisy power method. We now turn to the multi-
column case. When we are proving the multicolumn case, we first assume the fact that
all previous columns have converged to global minima, i.e.,

lim
tÑ8

›

›

›
X

ptq
i´1 ´ X ˚

i´1

›

›

›

F
“ 0. (4.13)

In the following, we first prove a few lemmas to support the proof of Lemma 3.3.

Lemma 4.3. Assume Assumption 3.1 is satisfied and limtÑ8

›

›

›
X

ptq
i´1 ´ X ˚

i´1

›

›

›

F
“ 0.

Then limtÑ8 uJ
k x

ptq
i “ 0 for all integers k P r1, iq

Ť

pq, ns.

Proof. First we will introduce some notations. Let E be the symmetric residual

matrix of the first i ´ 1 columns, i.e., Eptq “
ři´1

k“1

ˆ

x
ptq
k

´

x
ptq
k

¯J

` λkuku
J
k

˙

, and E
ptq
k

denote the k-th column of Eptq. The convergence of X
ptq
i´1 implies that limtÑ8

›

›Eptq
›

›

F
“

0 and hence limtÑ8

›

›

›
E

ptq
k

›

›

›
“ 0 for any k “ 1, 2, . . . , i ´ 1. Using the notation Eptq and

(2.6), the iteration for the i-th column of Xptq can be written as,

x
pt`1q

i “

ˆ

I ´ α rA ´ α
´

x
ptq
i

¯J

x
ptq
i I

˙

x
ptq
i ´ αEptqx

ptq
i , (4.14)

where rA “ A ´
ři´1

k“1 λkuku
J
k .

Without loss of generality, we assume A is diagonal. In the following, we consider

the convergence of x
ptq
ik for k P r1, iq

Ť

pq, ns. For any ε ă

b

2
α , there exists N such that

›

›

›
E

ptq
k

›

›

›
ă ε3

2Ri
holds for all t ě N . Multiplying eJ

k on both sides of (4.14), we have,

∣∣∣xpt`1q

ik

∣∣∣ “

∣∣∣∣ˆ1 ´ α
´

x
ptq
i

¯J

x
ptq
i

˙

x
ptq
ik ´ αeJ

k
rAx

ptq
i ´ α

´

E
ptq
k

¯J

x
ptq
i

∣∣∣∣
ď

ˆ

1 ´ α
´

x
ptq
ik

¯2
˙ ∣∣∣xptq

ik

∣∣∣ ` α
›

›

›
E

ptq
k

›

›

›

›

›

›
x

ptq
i

›

›

›
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ď

¨

˝1 ´ α
´

x
ptq
ik

¯2

`
αε3

2
∣∣∣xptq

ik

∣∣∣
˛

‚

∣∣∣xptq
ik

∣∣∣, (4.15)

for k P r1, iq
Ť

pq, ns, where we adopt the assumption on α and Cauchy-Schwartz in-
equality.

When
∣∣∣xptq

ik

∣∣∣ ą ε, the inequality can be bounded as
∣∣∣xpt`1q

ik

∣∣∣ ď

´

1 ´ αε2

2

¯
∣∣∣xptq

ik

∣∣∣,
which means

∣∣∣xptq
ik

∣∣∣ decays exponentially with the factor 1 ´ αε2

2 . On the other hand, if

there is a t such that
∣∣∣xptq

ik

∣∣∣ ď ε, then the quantity in the following iteration is upper

bounded by ∣∣∣xpt`1q

ik

∣∣∣ ď
`

1 ` αR2
i

˘

ε `
αε3

2
ď
`

2 ` αR2
i

˘

ε, (4.16)

where the second inequality holds due to ε ă

b

2
α .

Hence we conclude that, for any ε, there exists a constant N 1 ą N , such that∣∣∣xptq
ik

∣∣∣ ď
`

2 ` αR2
i

˘

ε holds for all t ě N 1. Thus we have limtÑ8 uJ
k x

ptq
i “ 0 for all

k P r1, iq
Ť

pq, ns.

Lemma 4.4 is the multicolumn version of Lemma 4.2.

Lemma 4.4. Assume Assumption 3.1 is satisfied and limtÑ8

›

›

›
X

ptq
i´1 ´ X ˚

i´1

›

›

›

F
“ 0. If

there exists an integer k P ri, qs such that uJ
i x

ptq
i does not converge to zero, then there

exists an integer N such that
›

›

›
x

ptq
k

›

›

›
ě

?
´2λq

4 holds for all t ą N .

Proof. Without loss of generality, we assume A is diagonal. Notations remain
the same as that in the proof of Lemma 4.3 if not redefined. We split the vector

x
ptq
i into three parts: y

ptq
1 “

´

x
ptq
i1 , . . . , x

ptq
ipi´1q

¯J

, y
ptq
2 “

´

x
ptq
ii , . . . , x

ptq
iq

¯J

, and y
ptq
3 “

´

x
ptq
ipq`1q

, . . . , x
ptq
in

¯J

.

From the assumption there exists an integer k P ri, qs such that uJ
k x

ptq
i does not

converge to zero. Hence, there exists a positive ε0 ă

?
´2λq

8 , such that for any N there

exists a t ą N and
›

›

›
y

ptq
2

›

›

›
ą ε0 holds. Further, we have the convergence of Eptq and

Lemma 4.3 guarantees the convergence of y
ptq
1 and y

ptq
3 . Thus for such ε0, there exists

an N1 such that
›

›Eptq
›

› ď

?
´2λqε0

4 ,
›

›

›
y

ptq
1

›

›

›
ă

?
´2λq

8 , and
›

›

›
y

ptq
3

›

›

›
ă

?
´2λq

8 hold for all

t ě N1, and
›

›

›
y

pN1q

2

›

›

›
ą ε0. The j-th entry of x

ptq
i for j P ri, qs satisfies,

x
pt`1q

ij “

ˆ

1 ´ αλj ´ α
›

›

›
x

ptq
i

›

›

›

2
˙

x
ptq
ij ´ αeJ

j E
ptqx

ptq
i . (4.17)

If
›

›

›
x

ptq
i

›

›

›
ď

?
´2λq

2 for t “ N1, then we can bound the norm of y
ptq
2 as,

›

›

›
y

pt`1q

2

›

›

›
ě

ˆ

1 ´ αλq ´ α
›

›

›
x

ptq
i

›

›

›

2
˙

›

›

›
y

ptq
2

›

›

›
´ α

›

›

›
Eptq

›

›

›

›

›

›
x

ptq
i

›

›

›
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ě

¨

˝1 ´
αλq

2
´ α

›

›Eptq
›

›

›

›

›
x

ptq
i

›

›

›

›

›

›
y

ptq
2

›

›

›

˛

‚

›

›

›
y

ptq
2

›

›

›
ě

ˆ

1 ´
αλq

4

˙

›

›

›
y

ptq
2

›

›

›
. (4.18)

The increasing factor is strictly greater than one. Hence
›

›

›
y

pt`1q

2

›

›

›
ą ε0 holds for t` 1 as

well. And
›

›

›
y

ptq
2

›

›

›
increases monotonically until

›

›

›
x

ptq
i

›

›

›
ą

?
´2λq

2 .

When
›

›

›
x

ptq
i

›

›

›
ą

?
´2λq

2 , the norm of the following iteration is lower bounded as,

›

›

›
x

pt`1q

i

›

›

›
ě
`

1 ´ αλn ´ αR2
i

˘

›

›

›
x

ptq
i

›

›

›
´ α

›

›

›
Eptq

›

›

›
Ri

ě
`

1 ´ αλn ´ αR2
i

˘

a

´2λq

2
´ α

a

´2λqε0

4
ě

a

´2λq

4
, (4.19)

where the last inequality is due to the assumption on α. Further, the norm of y
pt`1q

2

can be lower bounded as,

›

›

›
y

pt`1q

2

›

›

›
ě

c

›

›

›
x

pt`1q

k

›

›

›

2

´

›

›

›
y

pt`1q

1

›

›

›

2

´

›

›

›
y

pt`1q

3

›

›

›

2

ě

c

´2λq

16
` 2

2λq

64
ą ε0. (4.20)

Therefore, the norm of x
ptq
i is lower bounded by

?
´2λq

4 after the first iteration later

than N1 such that
›

›

›
x

ptq
i

›

›

›
ą

b

´2λq

2 .

Lemma 4.5 and Lemma 4.6 serve as the multicolumn versions of Lemma 4.1. More
precisely, under the assumption that x

ptq
i does not converge to zero, Lemma 4.5 and

Lemma 4.6 prove that there exists a tangent of θ
ptq
i “ =px

ptq
i , uiq or θ

ptq
j “ =px

ptq
i , ujq

for j P pi, qs converging linearly to zero, where, as before θ
ptq
j denotes the acute angle

between x
ptq
i and ˘uj for j P ri, qs.

Lemma 4.5. Assume Assumption 3.1 is satisfied and limtÑ8

›

›

›
X

ptq
i´1 ´ X ˚

i´1

›

›

›

F
“ 0. If

uJ
i x

ptq
i does not converge to zero, then the tangent of θ

piq
i “ =px

ptq
i , uiq converges to 0.

Proof. Without loss of generality, we assume A is diagonal. Notations remain the
same as that in the proof of Lemma 4.3 if not redefined. Based on the assumptions that

eJ
i x

ptq
i “ x

ptq
ii does not converge to zero, there exists a positive number δ ą 0 such that

for any N , there exists a t ą N and
∣∣∣xptq

ii

∣∣∣ ą δ. We also know that Lemma 4.4 holds

and
›

›Eptq
›

› converges to zero. Hence, for any ε sufficiently small, there exists an integer

N1 such that
›

›Eptq
›

› ď ε2 and
›

›

›
x

ptq
i

›

›

›
ě

?
´2λq

4 hold for all t ą N1. Since eJ
i x

ptq
i “ x

ptq
ii

does not converge to zero, there exists an integer N2 ą N1, such that,

cos θ
pN2q

i “

∣∣∣xpN2q

ii

∣∣∣
›

›

›
x

pN2q

i

›

›

›

ě
δ

Ri
ě

2ε2

λi`1 ´ λi
, (4.21)

Recall the definition of the tangent of θ
ptq
i ,

tan θ
pt`1q

i “

c

ř

j‰i

´

x
pt`1q

ij

¯2

∣∣∣xpt`1q

ii

∣∣∣ . (4.22)
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We derive the lower bound and the upper bound for the denominator and numerator
respectively when t “ N2.

Using the iterative relationship (4.14), we have the lower bound on the denominator,∣∣∣xpN2`1q

ii

∣∣∣ “

∣∣∣∣ˆ1 ´ αλi ´ α
›

›

›
x

pN2q

i

›

›

›

2
˙

x
pN2q

ii ´ αeJ
i E

pN2qx
pN2q

i

∣∣∣∣
ě

¨

˝1 ´ αλi ´ α
›

›

›
x

pN2q

i

›

›

›

2

´ α

›

›EpN2q
›

›

›

›

›
x

pN2q

i

›

›

›∣∣∣xpN2q

ii

∣∣∣
˛

‚

∣∣∣xpN2q

ii

∣∣∣
ě

ˆ

1 ´ α
λi ` λi`1

2
´ α

›

›

›
x

pN2q

i

›

›

›

2
˙ ∣∣∣xpN2q

ii

∣∣∣, (4.23)

where the second inequality is due to (4.21).
Regarding the numerator in (4.22), again using the iterative relationship (4.14), we

have,
d

ÿ

j‰i

´

x
pN2`1q

ij

¯2

ď

#

ÿ

j‰i

„ˆ

1 ´ αλi`1 ´ α
›

›

›
x

pN2q

i

›

›

›

2
˙2

´

x
pN2q

ij

¯2

` α2
›

›

›
EpN2q

›

›

›

2 ›
›

›
x

pN2q

i

›

›

›

2

` 2α

ˆ

1 ´ αλi`1 ´ α
›

›

›
x

pN2q

i

›

›

›

2
˙ ∣∣∣xpN2q

ij

∣∣∣ ›››EpN2q
›

›

›

›

›

›
x

pN2q

i

›

›

›

ȷ

+
1
2

ď

ˆ

1 ´ αλi`1 ´ α
›

›

›
x

pN2q

i

›

›

›

2
˙

d

ÿ

j‰i

´

x
pN2q

ij

¯2

` 3
?
αnRiε. (4.24)

The first inequality adopts the fact that, without i-th entry, λi`1 is the smallest eigen-

value of rA; the second inequality mainly uses the inequality of the square-root function;
and the last inequality holds for sufficiently small ε.

Substituting (4.23) and (4.24) into (4.22), we obtain,

tan θ
pN2`1q

i ď
1 ´ αλi`1 ´ α

›

›

›
x

pN2q

i

›

›

›

2

1 ´ αλi`λi`1

2 ´ α
›

›

›
x

pN2q

i

›

›

›

2 tan θ
pN2q

i `
3
?
αnR2

i ε

1
2

›

›

›
x

pN2q

i

›

›

›
δ

ď p1 ´ βq tan θ
pN2q

i ´ β tan θ
pN2q

i ` Cε, (4.25)

where β “ 1
2

ˆ

1 ´
1´αλi`1

1´α
λi`λi`1

2

˙

“
αpλi`1´λiq

4´2αpλi`λi`1q
P p0, 1q and C “

24
?
αnR2

i?
´2λqδ

.

Based on (4.25), if tan θ
pN2q

i ą Cε
β , then we have tan θ

pN2`1q

i ă p1 ´ βq tan θ
pN2q

i ,

which implies cos θ
pN2`1q

i ą cos θ
pN2q

i due to the fact that all angles are acute. Therefore,

(4.21) holds for t “ N2 ` 1 and tan θ
ptq
i decay monotonically until tan θ

ptq
i ď Cε

β . When

tan θ
ptq
i ď Cε

β , we obviously have tan θ
pt`1q

i ď Cε
β . The inequality condition (4.25) still

holds as long as ε is sufficiently small. Hence there exists a N such that for all t ą N ,

we have tan θ
pt`1q

i ď Cε
β , which can be arbitrarily small.

Lemma 4.6. Assume Assumption 3.1 is satisfied and limtÑ8

›

›

›
X

ptq
i´1 ´ X ˚

i´1

›

›

›

F
“ 0.

If uJ
i x

ptq
i converges to zero and there exists an integer j P pi, qs such that uJ

j x
ptq
i does
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not converge to zero, then there exists an integer k P pi, qs such that the tangent of

θ
ptq
k “ =px

ptq
i , ukq converges to 0.

Lemma 4.6 is fairly similar to Lemma 4.5. The proof can be found in Appendix B.
Now all ingredients for proving Lemma 3.3 are prepared. We then prove Lemma 3.3.

Proof. (Proof of Lemma 3.3.) Without loss of generality, we assume A is
diagonal. Notations remain the same as that in the proof of Lemma 4.3 if not redefined.

Lemma 4.3 implies that under the given assumptions, we have limtÑ8 uJ
k x

ptq
i “ 0 for

all integers k P r1, iq
Ť

pq, ns.

If uJ
k x

ptq
i converges to zero for all k P ri, qs, then x

ptq
i converges to zero vector, which

is included in the statement of Lemma 3.3.
Otherwise, there exists an integer j P ri, qs such that uJ

j x
ptq
i does not converge

to zero. Hence the condition in Lemma 4.4 is satisfied. At the same time, either of
Lemma 4.5 or Lemma 4.6 holds, which means that there exists an integer k P ri, qs such

that the tangent of θ
ptq
k converges to zero.

Now we focus on the convergence of x
ptq
ik . We denote η as η “ px2

i1 ` ¨ ¨ ¨ ` x2
ipk´1q

`

x2
ipk`1q

`¨ ¨ ¨`x2
inq

1
2 . Notice that sin θ

ptq
k “

ηptq
›

›

›
x

ptq

i

›

›

›

converges to zero due to the convergence

of the tangent and boundedness of the cosine function. Lemma 4.4 also shows the
›

›

›
x

ptq
i

›

›

›

is lower bounded by a constant for t large. Hence we conclude that ηptq converges to
zero.

Due to the convergence of ηptq and Lemma 4.4, for any ε ď min

ˆ?
´λq

4 ,

?
λiλq

8Ri

˙

,

there exists an integerM such that for any t ě M , we have ηptq ď ε,
›

›

›
x

ptq
i

›

›

›
ě

?
´2λq

4 , and

›

›Eptq
›

› ď ε2. Combining these bounds, we obtain,
´

x
ptq
ik

¯2

“

›

›

›
x

ptq
i

›

›

›

2

´ η2 ě ´
λq

8 ´ ε2 ě

´
λq

16 .

Since the stepsize α is small, the signs of x
ptq
ik and x

p0q

ik remain the same. We first

discuss the scenario x
p0q

ik ą 0. Let δptq “ x
ptq
ik ´

?
´λk. We have,∣∣∣δpt`1q

∣∣∣ ď

´

1 ´ α
´

a

´λk ` x
ptq
ik

¯

x
ptq
ik

¯
∣∣∣δptq

∣∣∣ ` α
´

ηptq
¯2

x
ptq
ik ` α

›

›

›
Eptq

›

›

›

›

›

›
x

ptq
i

›

›

›

ď

˜

1 ´ α

a

λkλq

4

¸ ∣∣∣δptq
∣∣∣ ` 2αε2Ri

ď

˜

1 ´ α

a

λkλq

4

¸t`1´M ∣∣∣δpMq
∣∣∣ `

ε

2
. (4.26)

for t ą M . Hence there exists an integer N ě M such that for any t ě N ,
∣∣δptq

∣∣ ď ε.

If x
p0q

ik ă 0, the iteration converges to ´
?

´λk. The analysis is analogous to the
above one.

4.2.2. Proof inspired by noisy optimization method. In this section, we
prove Lemma 3.3 based on an idea inspired by the noisy optimization method. As
we mentioned earlier, TriOFM is not a gradient descent method of an energy function
while we could show the convergence of TriOFM under the measurement of energy
functions. In noisy (stochastic) optimization methods, the convergence is proved with
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an adequately scaled bound on the noises. In the following, we focus on the convergence
of a given column and view the perturbation from earlier columns as the “noise” on the
energy function.

More precisely, we first derive the energy functions used in the proof. Lemma 3.3
guarantees the first i ´ 1 columns converge to one of the global minima X˚

i P X ˚
i “

tUp

?
´ΛiDu. Then for any εi´1 ă

?
ρ, there exists a step T such that

›

›

›
X

ptq
i´1 ´ X˚

i´1

›

›

›
ă

εi´1, which is referred as the error of previous columns in the rest of the paper, for any

t ě T . Further, let Eptq “ X
ptq
i´1

´

X
ptq
i´1

¯J

´ X˚
i´1

`

X˚
i´1

˘J
. We could have a simple

bound on
›

›Eptq
›

›,

›

›

›
Eptq

›

›

›
“

›

›

›

›

´

X
ptq
i´1 ´ X˚

i´1

¯

`

X˚
i´1

˘J
` X˚

i´1

´

X
ptq
i´1 ´ X˚

i´1

¯J

`

´

X
ptq
i´1 ´ X˚

i´1

¯´

X
ptq
i´1 ´ X˚

i´1

¯J
›

›

›

›

ď 2
›

›X˚
i´1

›

› εi´1 ` ε2i´1 ď 3
?
ρεi´1. (4.27)

Using notation Eptq, we could rewrite the i-th column of g
`

Xptq
˘

as,

gi

´

Xptq
¯

“ rAx
ptq
i ` x

ptq
i

´

x
ptq
i

¯J

x
ptq
i ` Eptqx

ptq
i , (4.28)

where rA “ A ` X˚
i´1

`

X˚
i´1

˘J
. Define an energy function associated with rA as,

F pxq “

›

›

›

rA ` xxJ
›

›

›

2

F
, (4.29)

where F is index i dependent since rA is i dependent. Obviously, gi
`

Xptq
˘

is the gradient

of F
´

x
ptq
i

¯

with an extra term,

gi

´

Xptq
¯

“ ∇F
´

x
ptq
i

¯

` Eptqx
ptq
i . (4.30)

The Hessian of F pxq is denoted as H, whose norm is upper bounded as,

}H pxiq} “

›

›

›
Ã ` 2xix

J
i `

`

xJ
i xi

˘

I
›

›

›
ď 4R2

i . (4.31)

Now we will pave the path to proving Lemma 3.3. First, we show that given the stepsize
is sufficiently small, xi can get close to the stationary point of F after a finite number
of iterations.

Lemma 4.7. Assume Assumption 3.1 is satisfied. If, for any small εi, the er-

ror of previous columns satisfies εi´1 ă mint
?
ρ, εi

8
?
3R2

i

u and
›

›

›
∇F

´

x
ptq
i

¯
›

›

›
ą εi, then

F
´

x
ptq
i

¯

´ F
´

x
pt`1q

i

¯

ą 1
2

›

›

›
x

ptq
i ´ x

pt`1q

i

›

›

›
εi ą 1

4αε
2
i .

Proof. In this proof, we omit the iteration index t, denote x
ptq
i as xi, and denote

x
pt`1q

i as rxi. The Taylor expansion of F pxq up to the second order admits,

F pxiq ´ F pxi ´ αgiq “ α∇F pxiq
J
gi ´

α2

2
gJ
i Hpξqgi, (4.32)
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where H is the hessian matrix of F and ξ is a point between xi and rxi. Recall the
boundness of }E}. The first-order term can be bounded as,

∇FJgi ě }gi}
2

´ }gi} }Exi} ě
1

4
}gi}

2
`

3

4
}gi} εi ´

?
3R2

i }gi} εi´1, (4.33)

where ∇F “ ∇F pxiq and the last inequality adopts the assumption ρ “ }A} ă
R2

i

3 .
Similarly, the second-order term can be bounded as

gJ
i Hpξqgi ď 4R2

i }gi}
2
. (4.34)

Combining two bounds together, we have,

F pxiq ´ F prxiq ą
3α

4
}gi} εi ´

?
3αR2

i }gi} εi´1 `
α

4
}gi}

2
´ 2α2R2

i }gi}
2

ą
1

2
}xi ´ rxi} εi ą

1

4
αε2i , (4.35)

where all inequalities adopt the assumption on εi´1 and α.

The function F is bounded from below and Lemma 4.7 shows that for any fixed
εi, the decreases of function values are also bounded from below. Hence, after a finite

number of iterations, x
ptq
i will always get close enough to one of the stationary points,

i.e.,
›

›

›
F
´

x
ptq
i

¯
›

›

›
ă εi. In the next lemma, we show that

›

›

›
F
´

x
ptq
i

¯
›

›

›
ă εi defines a small

neighbor for each stationary point of ∇F pxq. Let S denote the set of all stationary
points of ∇F pxq, i.e., ∇F pxq “ 0 for all x P S.

Lemma 4.8. Assume εi ă

´

min
!

miniďkăq λk`1´λk

2 ,
´λq

n

)¯
3
2

.

If xi satisfies }∇F pxiq} ă εi, then there exists x1
i P S such that }xi ´ x1

i} ď
?
nε

1
3
i .

Proof. Without loss of generality, we assume A is diagonal. Then, we have
S “ t0,˘

a

´λjej , i ď j ď qu and,

∇F pxiq “ rAxi ` xix
J
i xi “

“

r2xi1 ¨ ¨ ¨ r2xipi´1q pr2 ` λiqxii ¨ ¨ ¨ pr2 ` λnqxin

‰J
,

(4.36)

where r “ }xi}. Now we consider a xi such that }∇F pxiq} ă εi. If r2 ă ε
2
3
i , then the

lemma is proved since xi is close to 0 P S. Hence in the rest of the proof, we assume

r2 ě ε
2
3
i .

We know the absolute values of entries in ∇F pxiq are less than εi. For the first i´1

entries, the inequalities
∣∣r2xij

∣∣ ă εi imply that |xij | ă ε
1
3
i for all 1 ď j ă i. For other

entries, the inequalities
∣∣`r2 ` λj

˘

xij

∣∣ ă εi imply either

|xij | ă ε
1
3
i (4.37)

or ∣∣r2 ` λj

∣∣ ă ε
2
3
i . (4.38)

If (4.37) holds for all j ě i, we immediately have }xi} ă
?
nε

1
3
i .

Now, we consider the case (4.38) holds for some j ě i. If (4.38) holds for a j ą q,

then we have r2 ă
∣∣r2 ` λj

∣∣ ă ε
2
3
i and the lemma is proved. Further, the assumption
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on εi guarantees that there is at most a single j0 P ri, qs such that (4.38) holds. Under
such circumstance, we have,∣∣∣∣∣ ÿ

j‰j0

x2
ij ` x2

ij0 ` λj0

∣∣∣∣∣ ă ε
2
3
i and

ÿ

j‰j0

x2
ij ă pn ´ 1qε

2
3
i . (4.39)

Simplifying these inequalities leads to,

xij0 P

ˆ

´

b

´λj0 ` ε
2
3
i ,´

b

´λj0 ´ nε
2
3
i

˙

ď

ˆb

´λj0 ´ nε
2
3
i ,

b

´λj0 ` ε
2
3
i

˙

, (4.40)

where the assumption εi ă p
´λj0

n q
3
2 guarantees the positivity of quantities under the

radical sign. Using inequalities
?
1 ´ x ă 1 ´ 1

2x and
?
1 ´ x ą 1 ´ x for x P p0, 1q, we

further simplify the bounds on xij0 ,

a

´λj0 ´
n

a

´λj0

ε
2
3
i ă xij0 ă

a

´λj0 `
1

2
a

´λj0

ε
2
3
i ,

or

´
a

´λj0 ´
1

2
a

´λj0

ε
2
3
i ă xij0 ă ´

a

´λj0 ´
n

a

´λj0

ε
2
3
i , (4.41)

where the assumption on εi is used again. Finally, ε
2
3 is bounded by ε

1
3 and the lemma

is proved.

From Lemma 4.7 and Lemma 4.8, we know that after a finite number of iterations,

x
ptq
i will converge into a neighborhood of a stationary point s P S with radius

?
nε

1
3
i ,

Ns,εi “

!

x
ˇ

ˇ

ˇ
}∇F pxq} ă εi and }x ´ s} ă

?
nε

1
3
i

)

. (4.42)

We also define the neighborhoods of other stationary points with greater or equal energy
function values,

Ms,εi “

!

x
ˇ

ˇ

ˇ
}∇F pxq} ă εi and

›

›x ´ s1
›

› ă
?
nε

1
3
i for s1 P S, s1 ‰ s, F ps1q ě F psq

)

.

(4.43)

Now we discuss the case when x
ptq
i leaves the neighborhood.

Lemma 4.9. Assume εi ă

ˆ?
´λj

9
?
n

˙3

, εi´1 ă εi
8

?
3R2

i

. If x
ptq
i P Ns,εi for s P S, then

for any t1 ą t, x
pt1

q

i R Ms,εi .

Proof. We prove this lemma by contradiction. Without loss of generality, we
assume s “

a

´λjvj for j ě i. To simplify notations, we drop the subscripts in Ns,εi

and Ms,εi .

Let t1 ą t be the first time such that x
pt1q

i R N and t2 ą t1 be the first time

such that x
pt2q

i P M. More precisely, we assume x
pt2q

i is in the neighborhood of s1 for
F ps1q ě F psq and the norm of the difference is lower bounded as,

›

›s ´ s1
›

› ě min

"

a

´λj , min
jăkďq

a

´λj ´ λk

*

ą 9
?
nε

1
3
i . (4.44)
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We also have,

›

›

›
∇F

´

x
pt1´1q

i

¯
›

›

›
ă εi,

›

›

›
x

pt1´1q

i ´ s
›

›

›
ă

?
nε

1
3
i ,

›

›

›
∇F

´

x
pt1q

i

¯
›

›

›
ě εi,

›

›

›
∇F

´

x
pt2q

i

¯
›

›

›
ă εi,

›

›

›
x

pt2q

i ´ s1
›

›

›
ă

?
nε

1
3
i . (4.45)

In the following, we give two estimations on the energy difference F
´

x
pt1q

i

¯

´

F
´

x
pt2q

i

¯

and derive the contradiction. An upper bound on F
´

x
pt1q

i

¯

admits,

F
´

x
pt1q

i

¯

“ F
´

x
pt1´1q

i

¯

`

´

F
´

x
pt1q

i

¯

´ F
´

x
pt1´1q

i

¯¯

ď F psq `
?
nε

4
3
i ` 2ε2i ď F psq ` 2

?
nε

4
3
i , (4.46)

where the single step function difference can be upper bounded in a similar way as

that in Lemma 4.7. Combining (4.46) with the lower bound of F
´

x
pt2q

i

¯

, F
´

x
pt2q

i

¯

ě

F ps1q ´
?
nε

4
3
i , we obtain an upper bound on the function difference,

F
´

x
pt1q

i

¯

´ F
´

x
pt2q

i

¯

ď 3
?
nε

4
3
i . (4.47)

On the other hand, by Lemma 4.7, the energy function keeps decreasing for x
ptq
i , t1 ď

t ď t2.

F
´

x
pt1q

i

¯

´ F
´

x
pt2q

i

¯

“

t2´1
ÿ

t“t1

´

F
´

x
ptq
i

¯

´ F
´

x
pt`1q

i

¯¯

ą
1

2
εi

t2´1
ÿ

t“t1

´›

›

›
x

ptq
i ´ x

pt`1q

i

›

›

›

¯

ě
1

2
εi

›

›

›
x

pt1q

i ´ x
pt2q

i

›

›

›
, (4.48)

where the first inequality adopts Lemma 4.7, and the distance between x
pt1q

i and x
pt2q

i

can be lower bounded as,

›

›

›
x

pt1q

i ´ x
pt2q

i

›

›

›
ě

›

›

›
x

pt1´1q

i ´ x
pt2q

i

›

›

›
´

›

›

›
x

pt1´1q

i ´ x
pt1q

i

›

›

›

ě
›

›s ´ s1
›

› ´ 2
?
nε

1
3
i ´ αpεi ` 3

?
ρRiεi´1q ą 7

?
nε

1
3
i , (4.49)

which contradicts (4.47).

Lemma 4.10. Assume εi ă

ˆ?
´λj

6
?
n

˙3

, εi´1 ă εi
8

?
3R2

i

. For any t1, t2 with t1 ă t2,

and s P S such that x
pt1q

i P Ns,εi , and x
pt2q

i P Ns,εi , there is
›

›

›
x

ptq
i ´ s

›

›

›
ă 6

?
nε

1
3
i for all

t P rt1, t2s.

Lemma 4.9 shows that starting from a neighborhood of a stationary point, the
iteration will not converge to the neighborhoods of different stationary points with
greater or equal function values. Lemma 4.10 shows that if the iteration returns to
the same stationary point s P S, all middle iterations are within a neighborhood of s.
The proof of Lemma 4.10 adopts a similar idea as that of Lemma 4.9. Please refer to
Appendix C for the details.
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Proof. (Proof of Lemma 3.3.) First, according to Lemma 4.7 and Lemma 4.8,

for any εi, there exists a time t such that
›

›

›
∇F

´

x
ptq
i

¯
›

›

›
ă εi and hence

›

›

›
x

ptq
i ´ s

›

›

›
ď

?
nε

1
3
i

for some s P S. This means that x
ptq
i P Ns,εi .

We then have a few scenarios.

(1) The iteration stays in Ns,εi forever.

(2) The iteration leaves Ns,εi and returns to Ns,εi again. By Lemma 4.10, the iteration
stays within an εi dependent neighborhood of s.

(3) The iteration leaves Ns,εi and enters another Ns1,εi for s1 P S and s1 ‰ s. By
Lemma 4.9, we have F ps1q ă F psq.

Since F pxq only has a finite number of stationary points, the third scenario happens a

finite number of times. Hence there exists a T such that for all t ě T , x
ptq
i stays within

an εi neighborhood of a stationary point. Since εi is a free parameter and can go to
zero, we proved the lemma.

Remark 4.1. We notice that the proof given in Section 4.2.2 could be extended
to TriOFM applied to other functions. Lemma 4.7, Lemma 4.9, and Lemma 4.10 are
very much objective function independent. Hence the extensions are straightforward.
The only part which shall be treated carefully is Lemma 4.8. The idea, ‘if }∇F pxq}

is small, then x is close to a stationary point’, seems to be natural but requires some
work. Overall, we believe that our proof of convergence is transferable.

5. Numerical results

In the previous sections, we analyzed the theoretical converging behavior of Tri-
OFM. In this section, we will show a numerical result to support our analysis. A
gradient descent algorithm with a fixed stepsize is adopted, which is in accordance with
the analysis above. Though requiring plenty of iterations to converge, the numerical
results here mainly serve to depict the steady convergence behavior and validate our
analysis result. Numerical acceleration techniques are proposed and explored in our
companion paper [7].

We compute the low-lying eigenpairs of a two-dimensional Hubbard model under
the FCI framework, which is defined on a lattice of size 3ˆ3 with 8 electrons (4 spin-up
and 4 spin-down). The matrix size is n « 1.7 ˆ 103. We adopt two expressions to
moniter the convergence: one for the objective function value eobj “ fpXptqq ´ fpX‹q,
and another for the accuracy of eigenvectors,

evec “ min
X˚PX˚

}X ´ X˚}F

}X˚}F
, (5.1)

where in both expressions X ˚ denotes the set of all stable fixed points of the TriOFM.
We stop the iteration with a tolerance being tol “ 10´6. Though this is not of high
accuracy from numerical linear algebra point of view. As we have tested and proved [7],
the method would converge steadily to the global minima with a linear rate in local
neighborhoods of global minima.

As we have proved in Section 3, TriOFM avoids the saddle points and converges to
the global minima with probability one. In order to demonstrate the ability to escape
from saddle points, we initialize the iteration near a saddle point. Each time, we first
randomly choose a saddle point and randomly perturb it to be the initial point, i.e.,
›

›Xp0q ´ Xsaddle

›

› ă 10´6.
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In more than 100 experiments we have tested, Xptq always escape from saddle points
and converge to X ˚. Here we depict two typical convergence behaviors in Figure 5.1.
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Fig. 5.1: Convergence behavior of two tests, each are depicted with evec and eobj. The first few
iterations are zoomed in on their top right corners.

Since the initial points are chosen near some saddle points, in the first few iterations,
the error decays slowly, and the linear convergence rate is not guaranteed. After Xptq

escapes from the saddle point near the initial point, it may fall into the domain of local
linear convergence directly (Figure 5.1 right) or slow down several times before linear
convergence (Figure 5.1 left), which depends on the choice of initial points. According
to our analysis, the slow-down happens a finite number of times, and the iteration will
converge monotonically to the global minima. All of our experiments, including the two
in Figure 5.1 agree well with our analysis.
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Appendix A. Proof of Lemma 3.1.
Proof. It is sufficient to show that the condition holds for one iteration. In order to

simplify the notations, we denote x
ptq
i and x

pt`1q

i as xi and rxi respectively. The norms
of xi and rxi are denoted as ri and rri respectively.

The iteration in (2.6) can be written as,

rxi “ xi ´ αAxi ´ αp

i
ÿ

j“1

xjx
J
j qxi “ xi ´ α rAxi ´ αxix

J
i xi. (A.1)

where rA “ A `
ři´1

j“1 xjx
J
j . The norm square of rxi can be calculated as,

rr2i “ rxJ
i rxi “ xJ

i xi ´ 2α
´

xJ
i
rAxi ` pxJ

i xiq
2
¯

` α2
´

xJ
i
rAJ

rAxi ` pxJ
i xiq

3 ` 2xJ
i
rAxipx

J
i xiq

¯
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“ r2i ´ 2α
´

xJ
i
rAxi ` r4i

¯

` α2
´

xJ
i
rAJ

rAxi ` r6i ` 2xJ
i
rAxir

2
i

¯

. (A.2)

Given that all xi satisfy the conditions }xi} ď Ri, we have inequality for any vector x
and power k,

´

˜

ρ `

i´1
ÿ

j“1

R2
j

¸k

}x}
2

ď xJ
rAkx ď

˜

ρ `

i´1
ÿ

j“1

R2
j

¸k

}x}
2
, (A.3)

where we adopt the definition of eigenvalues for the first part in rA and Cauchy-Schwartz
inequality for the second part in rA. Due to the assumption on Rj , we can bound the
growing factor in (A.3) as,

ρ `

i´1
ÿ

j“1

R2
j ď ρ

˜

1 ` 3
i´1
ÿ

j“1

4j´1

¸

ď 4i´1ρ “
R2

i

3
. (A.4)

With these inequalities, the first-order term of α in (A.2) can be bounded as,

´2α
´

xJ
i
rAxi ` r4i

¯

ď 2αr2i

ˆ

R2
i

3
´ r2i

˙

. (A.5)

And the second-order term can be bounded as,

α2
´

xJ
i
rA2xi ` r6i ` 2xJ

i
rAxir

2
i

¯

ď α2

¨

˝

˜

ρ `

i´1
ÿ

j“1

R2
j

¸2

r2i ` r6i ` 2

˜

ρ `

i´1
ÿ

j“1

R2
j

¸

r4i

˛

‚

ď α2r2i

ˆ

R4
i

9
` r4i `

2R2
i

3
r2i

˙

. (A.6)

The rest of the proof is divided into two scenarios, i.e., ri P r
?
2Ri?
3
, Ris and ri P r0,

?
2Ri?
3

q.

In the first scenario, ri P r
?
2Ri?
3
, Ris, we have ´2α

´

xJ
i
rAxi ` r4i

¯

ď ´αr2i
2R2

i

3 for

the first-order term. Applying α ď 1
5R2

p
, we have,

rr2i ď r2i ` αr2i

ˆ

´
2R2

i

3
`

R4
i

45R2
p

`
R4

i

5R2
p

`
2R4

i

15R2
p

˙

ď r2i ´ αr2i
14R2

i

45
ă r2i ď R2

i . (A.7)

In the second scenario, ri ď

b

2
3Ri, we have

rr2i ď r2i ` 2αr2i

ˆ

R2
i

3
´ r2i

˙

` α2r2i

ˆ

R4
i

9
` r4i `

2R2
i

3
r2i

˙

ď
2R2

i

3
`

4R4
i

45R2
p

`
2R6

i

675R4
p

`
8R6

i

675R4
p

`
8R6

i

675R4
p

ă R2
i . (A.8)

This proves the lemma.

Appendix B. Proof of Lemma 4.6.
Proof. Without loss of generality, we assume A is diagonal. Notations remain the

same as that in the proof of Lemma 4.3 if not redefined. Based on the assumptions,

we denote k P pi, qs as the smallest integer such that eJ
k x

ptq
i “ x

ptq
ik does not converge to
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zero. Hence, there exists a positive number δ ą 0 such that for any N , there exists a

t ą N and
∣∣∣xptq

ik

∣∣∣ ą δ. We also know that Lemma 4.4 holds,
›

›Eptq
›

› converges to zero,

and eJ
j x

ptq
i “ x

ptq
ij converges to zero for all j P r1, iq Y pp, ns. Hence, for any ε sufficiently

small, there exists an integer N1 such that
›

›Eptq
›

› ď ε2,
›

›

›
x

ptq
i

›

›

›
ě

?
´2λq

4 , and
∣∣∣xptq

ij

∣∣∣ ď ε

hold for all t ą N1 and j P r1, iq Y pp, ns. Since eJ
j x

ptq
i “ x

ptq
ij does not converge to zero,

there exists an integer N2 ą N1, such that,∣∣∣xpN2q

ij

∣∣∣
›

›

›
x

pN2q

i

›

›

›

ě
δ

Ri
ě

2ε2

λj`1 ´ λj
. (B.1)

Using the iterative relationship (4.14), we have the lower bound on
∣∣∣xpN2`1q

ij

∣∣∣,
∣∣∣xpN2`1q

ij

∣∣∣ ě

ˆ

1 ´ α
λj ` λj`1

2
´ α

›

›

›
x

pN2q

i

›

›

›

2
˙ ∣∣∣xpN2q

ij

∣∣∣. (B.2)

Again using the iterative relationship (4.14), we provide the upper bound for

d

ÿ

j‰k

´

x
pN2`1q

ij

¯2

ď

#

ÿ

jăi

ˆ

1 ´ α
›

›

›
x

pN2q

i

›

›

›

2
˙2

´

x
pN2q

ij

¯2

`
ÿ

iďjăk

ˆ

1 ´ αλj ´ α
›

›

›
x

pN2q

i

›

›

›

2
˙2

ε2

`
ÿ

jąk

ˆ

1 ´ αλk`1 ´ α
›

›

›
x

pN2q

i

›

›

›

2
˙2

´

x
pN2q

ij

¯2
+

1
2

` 3
?
αnRiε

ď

ˆ

1 ´ αλk`1 ´ α
›

›

›
x

pN2q

i

›

›

›

2
˙

d

ÿ

j‰k

´

x
pN2q

ij

¯2

`
?
nε ` 3

?
αnRiε,

(B.3)

where the derivation is slightly different from that in (4.24), The first inequality adopts
similar derivation in (4.24) while keeping the first term unchanged; and the second
inequality mainly uses the inequality of square-root function.

Substituting (B.2) and (B.3) into the expression of tan θ
pN2`1q

k , we obtain,

tan θ
pN2`1q

k ď p1 ´ βq tan θ
pN2q

k ´ β tan θ
pN2q

k ` Cε, (B.4)

where β “
αpλi`1´λiq

4´2αpλi`λi`1q
P p0, 1q and C “

8
?
nRi`24

?
αnR2

i?
´2λqδ

.

Based on the last inequality in (B.4), if tan θ
pN2q

k ą Cε
β , then we have tan θ

pN2`1q

k ă

p1 ´ βq tan θ
pN2q

k , which implies cos θ
pN2`1q

k ą cos θ
pN2q

k due to the fact that all angles

are acute. Therefore, (B.1) holds for t “ N2 ` 1 and tan θ
ptq
k decay monotonically until

tan θ
ptq
k ď Cε

β . When tan θ
ptq
k ď Cε

β , we obviously have tan θ
pt`1q

k ď Cε
β . The inequality

condition (4.25) still holds as long as ε is sufficiently small. Hence there exists a N such

that for all t ą N , we have tan θ
pt`1q

k ď Cε
β , which can be arbitrarily small.
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Appendix C. Proof of Lemma 4.10.
Proof. This lemma is proved in a similar way as that of Lemma 4.9. If the lemma

does not hold, there is some t1 P pt1, t2q such that

›

›

›

›

x
pt1q
i ´ s

›

›

›

›

ě 6
?
nε

1
3
i . Let t

1
1 P pt1, t

1s

be the latest time such that x
pt1

1´1q
i P N and x

pt1
1q

i R N for N “ Ns,εi . Also let

t1
2 P pt1, t2s be the first time such that x

pt1
2q

i P N . Then we have,

›

›

›

›

∇F

ˆ

x
pt1

1´1q
i

˙
›

›

›

›

ă εi,

›

›

›

›

x
pt1

1´1q
i ´ s

›

›

›

›

ă
?
nε

1
3
i ,

›

›

›

›

∇F

ˆ

x
pt1

1q
i

˙
›

›

›

›

ě εi,

›

›

›

›

∇F

ˆ

x
pt1

2q
i

˙
›

›

›

›

ă εi,

›

›

›

›

x
pt1

2q
i ´ s

›

›

›

›

ă
?
nε

1
3
i . (C.1)

By the construction of t1
1 and t1

2, we know that for all t P rt1
1, t

1
2q, x

ptq
i R N . Adopting

the same derivation as in (4.47), we obtain a lower bound on the function difference,

F

ˆ

x
pt1

1q
i

˙

´ F

ˆ

x
pt1

2q
i

˙

ď 3
?
nε

4
3
i . (C.2)

On the other hand, lower bound of the energy function decrement for x
pt1

1q
i , . . . , x

pt1
2q

i

can be estimated as, according to Lemma 4.7,

F

ˆ

x
pt1

1q
i

˙

´ F

ˆ

x
pt1

2q
i

˙

ą
1

2
εi

¨

˝

t1
´1
ÿ

t“t1
1

´
›

›

›
x

ptq
i ´ x

pt`1q

i

›

›

›

¯

`

t1
2
ÿ

t“t1

´
›

›

›
x

ptq
i ´ x

pt`1q

i

›

›

›

¯

˛

‚

ě
1

2
εi

˜

›

›

›

›

x
pt1

1´1q
i ´ x

pt1q
i

›

›

›

›

`

›

›

›

›

x
pt1

2q
i ´ x

pt1q
i

›

›

›

›

´

›

›

›

›

x
pt1

1´1q
i ´ x

pt1
1q

i

›

›

›

›

¸

ą 4
?
nε

4
3
i , (C.3)

where the last inequality is based on (C.1) and

›

›

›

›

x
pt1q
i ´ s

›

›

›

›

ě 6
?
nε

1
3
i . Thus the contra-

diction is derived.
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