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LOCAL SOLVABILITY FOR A QUASILINEAR WAVE EQUATION
WITH THE FAR FIELD DEGENERACY: 1D CASE∗

YUUSUKE SUGIYAMA†

Abstract. We study the Cauchy problem for the quasilinear wave equation utt=(u2a∂xu)x+
F (u)ux with a≥0 and show a result for the local-in-time existence under new conditions. In the
previous results, it is assumed that u(0,x)≥ c0>0 for some constant c0 to prove the existence and the
uniqueness. This assumption ensures that the equation does not degenerate. In this paper, we allow
the equation to degenerate at spatial infinity. Namely we consider the local well-posedness under the
assumption that u(0,x)>0 and u(0,x)→0 as |x|→∞. Furthermore, to prove the local well-posedness,
we find that the so-called Levi condition appears. Our proof is based on the method of characteristics
and the contraction mapping principle via weighted L∞ estimates.
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1. Introduction
In this paper, we consider the following Cauchy problem of the model quasilinear

wave equation in R: utt=(u2aux)x+F (u)ux, (t,x)∈ (0,T ]×R,
u(0,x)=u0(x), x∈R,
∂tu(0,x)=u1(x), x∈R,

(1.1)

where F is a given function and a≥0 . The purpose of this paper is to show the local
existence and the uniqueness under new conditions. The existence of solutions to the
more general quasi-linear wave equations has been widely known since the 1970s. Kato
[12] and Hughes, Kato and Marsden [9] have shown an abstract theorem about the well-
posedness of the system of general quasi-linear wave equations in L2 Sobolev space. In
one-dimensional case, the well-posedness in C1

b class for first-order hyperbolic equations
has been studied by Douglis [5] and Hartman and Winter [7] (see also Majda [14] and
Courant and Lax [3]), where C1

b is a set of continuous and bounded functions whose
derivatives are also bounded. In order to apply these results to the existence problem
of (1.1), the following assumption is required:

u0(x)≥ c0>0 (1.2)

for a constant c0. This condition ensures that the equation in (1.1) is the strictly hyper-
bolic type near t=0. This paper relaxes this condition. We show the local existence and
the uniqueness of solutions of (1.1) under the assumption that the equation degenerates
at spatial infinity. Namely we weaken (1.2) by u(0,x)>0 and allow that u(0,x) can
decay to 0 as |x|→∞ (more precise assumptions are given later). To the best of my
knowledge, the well-posedness has never been studied under these types of assumptions.

1.1. Known results. Let us review some results on the solvability for degen-
erate wave equations (weakly hyperbolic equations). The existence, nonexistence and
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regularity of solutions to the following type of linear weakly hyperbolic equations have
been studied by many authors (e.g. Oleinik [18], Colombini and Spagnolo [2], Ivrii and
Petkov [11] and Taniguchi and Tozaki [22]),

∂2
t u−

n∑
i,j=1

ai,j(t,x)uxixj
+

n∑
j=1

bj(t,x)uxj
=0, (1.3)

where ai,j and bj are smooth functions and
∑n

i,j=1ai,j(t,x)ξiξj ≥0 is assumed for

(ξ1,. ..,ξn)∈Rn. We note that
∑n

i,j=1ai,j(t,x)ξiξj =0 corresponds to the degeneracy.
In Oleinik [18], (1.3) have been solved under the so-called Levi condition:

C1

 n∑
j=1

bjξj

2

≤C2

 n∑
i,j=1

ai,jξiξj+∂tai,jξiξj

 . (1.4)

Even if the Levi condition is assumed, we can only obtain the following energy estimate
with the regularity loss for weakly hyperbolic equations:

∥u∥Hs +∥ut∥Hs−1 ≤C(∥u0∥Hs+r1 +∥u1∥Hs−1+r2 ), (1.5)

where s is an arbitrary real number and r1 and r2 are non-negative numbers. It is
known that this estimate is optimal in the sense of the regularity by observing some
explicit solution to some special linear weakly hyperbolic equations. Ivrii and Petkov
in [11] have treated the following model of the 1D weakly hyperbolic equation:

utt− t2luxx+ tkux=0.

They have shown that the Levi condition (k≥ l−1) is necessary for the Cauchy problem
of this equation to be C∞ well-posed. Colombini and Spagnolo in [2] have given an
example of a C∞ function a(t)≥0 such that

utt−a(t)uxx=0

is not well-posed in C∞. Roughly speaking, highly oscillatory behaviors of a(t) near
the point where a(t)=0 causes the ill-posedness. In [10], Han has derived an energy
inequality with a regularity loss for the linear weakly hyperbolic equation:

utt−a(t,x)uxx=0,

where a(t,x)= tm+a1(x)t
m−1+a2(x)t

m−2+ ·· ·+am−1(x)t+am(x).
Manfrin in [17] has established the local existence and the uniqueness for following

1D degenerate quasilinear wave equations with u0,u1∈C∞
0 (Rn):

utt=a(u)∆u,

where a(u) is an analytic function satisfying a(0)=0. This result can be extended to
more general degenerate wave equations (see also Manfrin [15, 16]). In Dreher’s paper
[6], he also has shown the local solvability for ∂2

t u=∂x(|∂xu|p−2∂xu) with p>5 and
under the initial condition that u0,u1∈Ck

0 (Rn) for a large natural number k. Since
their proof is based on the Nash-Moser implicit function theorem and the argument in
Oleinik’s paper [18], the compactness of the support of initial data is essentially used.
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Hence it does not seem difficult to extend Manfrin’s method to the case that initial data
are not compactly supported.

In [8], Hu and Wang have shown the local existence and uniqueness of solutions to
the following variational wave equation:

utt= c(u,x)(c(u,x)ux)x (1.6)

with initial data and the function c(u,x) satisfying

c(u(0,x),x)=0,

ut(0,x)≥ c0>0,

cu(u,x)≥ c1>0

for some constants c0 and c1. The choice of initial data implies that the equation
degenerates at t=0 and that c(u,x) becomes positive uniformly and immediately after
t=0. The method in [8] is inspired by Zhang and Zheng’s paper [24] which studies the
existence of solutions to Euler type equation in gas dynamics. In [24] and [8], they use
method of characteristics for a new dependent variable and the fixed-point theorem in
a special metric space.

1.2. Assumptions and main theorem. Before stating the main theorem
of this paper, we introduce assumptions on initial data and the function F . We set
γ=γ(a,α) as below:

γ=

{
0, a≥1,
(1−a)α, otherwise.

For initial data u0∈C2(R) and u1∈C1
b (R), we assume that

c1 ⟨x⟩−α≤u0(x)≤ c2, (1.7)

|u1(x)±ua
0u

′
0(x)|≤ c3 ⟨x⟩−β

, (1.8)∣∣∣∣ ddx (u1(x)±ua
0u

′
0(x))

∣∣∣∣≤ c4 ⟨x⟩−γ
(1.9)

with conditions on α,β,a≥0 that

α≤β, (1.10)

α(a+1)≤2β, (1.11)

where u′
0=du0/dx and ⟨x⟩ is defined by ⟨x⟩=(1+x2)1/2 and c1,c2,c3,c4 are positive

constants. The Assumption (1.7) indicates that the equation in (1.1) can degenerate at
spatial infinity. For the function F ∈C([0,∞))∩C1((0,∞)), we assume that

|F (θ)|≤CKθa, (1.12)

|F ′(θ)|≤CKθa−1 (1.13)

for θ∈ (0,K] and CK is a positive constant. Typical example of F is F (θ)=θb with
b≥a. This condition, appearing in the study of weakly hyperbolic equations, is called
a sufficient Levi condition (e.g. Manfrin’s paper [17]). The main theorem of this paper
is as follows.
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Theorem 1.1. Let u0∈C2(R) and u1∈C1
b (R). Suppose that the conditions (1.7)-

(1.13) hold. Then there exists a number T >0 depending on the constants in (1.7)-
(1.13) such that the Cauchy problem (1.1) has a unique local solution u∈C2([0,T ]×R)
satisfying that for all (t,x)∈ [0,T ]×R

C1 ⟨x⟩−α≤u(t,x)≤C2, (1.14)

|(ut±uaux)(t,x)|≤C3 ⟨x⟩−β
, (1.15)

|(ut±uaux)t(t,x)|+ |(ut±uaux)x(t,x)|≤C4 ⟨x⟩−γ
, (1.16)

where C1,C2,C3,C4 are positive constants.

Theorem 1.1 asserts the local existence and uniqueness of solutions of (1.1) under
the Levi type condition without the regularity loss. In our problem, the equation in
(1.1) is strictly hyperbolic locally for space. Thus, for arbitrarily fixed x∈R, by applying
previous results, we can solve the problem (1.1) in a triangle region with (T,x) as the
vertex, if T is small. However, the smallness of T depends on x from the loss of strict
hyperbolicity at spatial infinity. To show the existence of solution of (1.1) in R, we
need to show some nonlocal estimates for space. Our proof is based on the method of
characteristics and the contraction mapping principle via weighted L∞ estimates. In
contrast to previous results on the existence for strictly hyperbolic equations, 1/u and
ux are not bounded (see (2.2) and the definitions of N1 and N2). To avoid this crux,
we use the spatial decay of ut±uaux. In particular, this property helps to show the
boundedness of the derivative of characteristic curves x±(t) with initial position (see
Lemma 2.2). We also remark that our approach is applicable to various types of 1D
quasilinear wave equations (e.g. the equation like (1.6) under suitable condition on
c(u,x)).

Remark 1.1. Suppose that initial data is (u0(x),u1(x))=(⟨x⟩−α1 ,⟨x⟩−α2) with
α1,α2≥0. If α1≤α2 and α1(a+1)≤2α2 are satisfied, then all assumptions (1.7)-(1.11)
on initial data are satisfied. We also remark that the condition (1.11) is not necessary in
the case that a≤1, since (1.10) implies (1.11). While if a≥1, (1.10) is not necessary.

1.3. Notation and plan of the paper. For a domain Ω⊂Rn, we define Cm
b (Ω)

with m∈N as follows

Cm
b (Ω)={f ∈Cm(Ω) |

∑
|α|≤m

sup
x∈Ω

|∂α
x f(x)|<∞}.

We write Cb(Ω)=C0
b (Ω) and denote the Lebesgue space for 1≤p≤∞ on Rn by Lp with

the norm ∥·∥Lp . For a Banach space X, 1≤p≤∞ and T >0, we denote the set of
all X-valued Lp functions with t∈ [0,T ] by Lp([0,T ];X). For convenience, we denote
Lp([0,T ];X) by Lp

TX. The norm of Lp
TX is denoted by ∥f∥Lp

TX . Various constants are

simply denoted by C or Cj for j∈N. We denote that ⟨x⟩=(1+x2)1/2.

The remainder of the present paper is organized as follows. In Section 2, we review
several formulas for the unknown variable R=ut+uaux and S=ut−uaux, which are
called Riemann invariants in the study of the 1D hyperbolic conservation law, and give
some estimates for characteristic curves. In Section 3, we show Theorem 1.1 by using
the method of characteristics, weighted L∞ estimates and the contraction mapping
principle. Concluding remarks are given in Section 4.
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2. Preliminaries

2.1. Basic formulation for unknown variables R and S. We set R(t,x)
and S(t,x) as follows {

R=ut+uaux,
S=ut−uaux.

(2.1)

By (1.1), R and S are solutions to the system of the following first-order equations:
Rt−uaRx=N1(u,R,S)+L(u,R,S),

ux=
1

2ua
(R−S),

St+uaSx=N2(u,R,S)+L(u,R,S),

(2.2)

where we set

L(u,R,S)=
F (u)(R−S)

2ua
,

N1(u,R,S)=
a

2u
(R2−RS)

and

N2(u,R,S)=
a

2u
(S2−RS).

Let x±(t) be characteristic curves on the first and third equations of (2.2) respectively.
That is, x+(t) and x−(t) are solutions to the following differential equations respectively:

d

dt
x±(t)=±ua(t,x±(t)). (2.3)

When we emphasize the characteristic curves go through (s,y), we denote x±(t) by
x±(t;s,y). That is, x±(t;s,y) satisfies that

x±(t;s,y)=y±
∫ t

s

ua(τ,x±(τ ;s,y))dτ. (2.4)

On the characteristic curves, R and S satisfy that
d

dt
R(t,x−(t))=N1(u,R,S)(t,x−(t))+L(u,R,S)(t,x−(t)),

d

dt
S(t,x+(t))=N2(u,R,S)(t,x+(t))+L(u,R,S)(t,x+(t)).

(2.5)

2.2. Some estimates of characteristic curves. We prepare some estimates
for characteristic curves for u∈C1([0,T ]×R) satisfying for α≥0

A0 ⟨x⟩−α≤u(t,x)≤A1, (2.6)

where A0 and A1 are positive constants. In addition, we assume that

0≤ua|ux(t,x)|≤A2 ⟨x⟩−α
(2.7)
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for a constant A2. The boundedness of u and (2.4) implies the following estimate with
s,t∈ [0,T ]:

x−Aa
1 |t−s|≤x±(s;t,x)≤x+Aa

1 |t−s|. (2.8)

Next we show a lemma ensures uniform Lipschitz continuity of x±(t;s,y). This lemma
helps to show that a sequence of characteristic curves satisfies an assumption of the
Arzelá-Ascoli theorem.

Lemma 2.1. Let u∈C1([0,T ]×R). Suppose that (2.6) and (2.7) hold. Then the
characteristic curves fulfill that for x1,x2∈R and t1,t2,t3,t4∈ [0,T ]

|x±(t3;t1,x1)−x±(t4;t2,x2)|≤3(1+Aa
1)(|x1−x2|+ |t1− t2|+ |t3− t4|), (2.9)

if T >0 is sufficiently small.

Proof. First we show the case that t3= t4= t∈ [0,T ] and t≥ t1,t2. From (2.4), we
can easily compute that

|x±(t;t1,x1)−x±(t;t2,x2)|

≤|x1−x2|+
∣∣∣∣∫ t

t1

ua(τ,x±(τ ;t1,x1))dτ−
∫ t

t2

ua(τ,x±(τ ;t2,x2))dτ

∣∣∣∣
≤|x1−x2|+

∣∣∣∣∫ t1

t2

ua(τ,x±(τ ;t2,x2))dτ

∣∣∣∣
+

∫ t

0

|ua(τ,x±(τ ;t1,x1))−ua(τ,x±(τ ;t2,x2))|dτ. (2.10)

From (2.6) and (2.7), we have that ua−1ux is bounded. Thus we have for the third term
of the right-hand side in (2.10) that

|ua(τ,x±(τ ;t1,x1))−ua(τ,x±(τ ;t2,x2))|≤

∣∣∣∣∣
∫ x±(τ ;t1,x1)

x±(τ ;t2,x2)

ua−1ux(τ,y)dy

∣∣∣∣∣
≤C |x±(τ ;t1,x1)−x±(τ ;t2,x2)| .

Hence we have

|x±(t;t1,x1)−x±(t;t2,x2)|

≤|x1−x2|+Aα
1 |t1− t2|+C

∫ t

0

|x±(τ ;t1,x1)−x±(τ ;t2,x2)|dτ.

≤(1+Aa
1)(|x1−x2|+ |t1− t2|)+C

∫ t

0

|x±(τ ;t1,x1)−x±(τ ;t2,x2)|dτ.

Thus we have from the Gronwall inequality

|x±(t;t1,x1)−x±(t;t2,x2)|≤ (1+Aa
1)(|x1−x2|+ |t1− t2|)eCt.

Hence if T is small, then we have that with t1≥ t2

|x±(t;t1,x1)−x±(t;t2,x2)|≤2(1+Aa
1)(|x1−x2|+ |t1− t2|). (2.11)
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In the same way as above, we can show (2.11) with the case that t<t1 or t<t2. We
omit the proof of this case. Next we show (2.9). The left-hand side of (2.9) is written
by

|x±(t3;t1,x1)−x±(t4;t2,x2)|≤|x±(t3;t1,x1)−x±(t3;t2,x2)|+ |x±(t3;t2,x2)−x±(t4;t2,x2)|

From (2.11), the first term of the right-hand side is estimated by 2(1+Aa
1)(|x1−x2|+

|t1− t2|). From (2.4) and (2.6), the second term is estimated by Aa
1 |t3− t4|. Therefore,

we have the desired inequality.

Following lemma is used to show the boundedness of the derivatives of R and S.

Lemma 2.2. Let u∈C1([0,T ]×R). Suppose that (2.6) and (2.7) hold. Then the
characteristic curves x±(t;s,x) are differentiable with x and ∂xx±(t;s,x) satisfies that
with (t,x)∈ [0,T ]×R and s∈ [0,T ] for small T >0

d

ds
∂xx±(s;t,x)=±aua−1ux(t,x±(s;t,x))∂xx±(s;t,x),

∂xx±(t;t,x)=1
(2.12)

and

|∂xx±(s;t,x)|≤eC|t−s|, (2.13)

where the positive constant C depends on A0,A1 and A2.

Proof. The differentiability of x±(s;t,x) and (2.12) are well-known as a basic fact
(e.g., see textbook of Sideris [19]). We estimate ∂xx±(s;t,x). We only show (2.13) with
the case that t≥s. From (2.6) and the boundedness of ⟨x⟩αuaux, we obtain that

|∂xx±(s;t,x)|≤1+a

∫ t

s

|ua−1ux||∂xx±(τ ;t,x)|dτ

≤1+C

∫ t

s

|∂xx±(τ ;t,x)|dτ.

Hence, from the Gronwall inequality, we obtain (2.13) for small T .

3. Proof of the main theorem
As in the Introduction, we set

γ=

{
0, a≥1,
(1−a)α, otherwise.

We treat functions satisfying the following conditions for α,β≥0 with α≤β such that

A0 ⟨x⟩−α≤f(t,x)≤A1 (3.1)

and

fa(t,x)|fx(t,x)|≤A2 ⟨x⟩−β
, (3.2)

|ft(t,x)|≤A3 ⟨x⟩−β
(3.3)

or

|f(t,x)|≤A3 ⟨x⟩−β
, (3.4)
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and

|fx(t,x)|≤A4 ⟨x⟩−γ
, (3.5)

|ft(t,x)|≤A5 ⟨x⟩−γ
, (3.6)

where Aj are positive constants with j=1, ·· · ,5. We define sets of C1 functions Xα,
Yβ,1, Yβ,2 as follows:

Xα={f ∈C1
b | f(0,x)=u0(x) and (3.1), (3.2) and (3.3) hold.},

Yβ,1={f ∈C1
b | f(0,x)=R0(x) and (3.4), (3.5) and (3.6) hold.},

Yβ,2={f ∈C1
b | f(0,x)=S0(x) and (3.4), (3.5) and (3.6) hold.},

where given functions (u0,R0,S0) belong to C
1
b ×C1

b ×C1
b . For given functions (v,R̄,S̄)∈

Xα×Yβ,1×Yβ,2, we consider the first-order linear hyperbolic equation:{
Rt−vaRx=N1(v,R̄,S̄)+L(v,R̄,S̄),

St+vaSx=N2(v,R̄,S̄)+L(v,R̄,S̄)
(3.7)

with initial condition (R(0,x),S(0,x))=(R0,S0)∈C1
b ×C1

b . We set

u=u0(x)+

∫ t

0

R+S

2
(s,x)ds. (3.8)

We find that (3.7) with C1 initial data has unique and time-global solutions such that
R,S∈C1([0,T ]×R) with arbitrary fixed T >0 from the method of characteristics. From
(3.8), it holds that u∈C1. Namely we can define the map

Φ :Xα×Yβ,1×Yβ,2→C1×C1×C1

such that Φ(v,R̄,S̄)=(u,R,S). We take four positive numbers A0,A1,A3,A4 satisfying
that

2A0 ⟨x⟩−α≤u0(x)≤
A1

2
, (3.9)

∥⟨x⟩βR0∥L∞ +∥⟨x⟩βS0∥L∞ ≤ A3

4
, (3.10)

∥⟨x⟩γR′
0∥+∥⟨x⟩γS′

0∥≤
A4

8
. (3.11)

The constants A2 and A5 in (3.6) will be taken later. Moreover, we assume that

∥⟨x⟩βua
0u

′
0∥L∞ ≤B1 (3.12)

for a positive constant B1. In the following, we show that (u,R,S)∈Xα×Yβ,1×Yβ,2

and Φ is a contraction mapping in the topology of L∞ for sufficiently small T . Xα and
Yβ,j with j=1,2 are not a closed set of L∞ space. Nevertheless it is possible to show
that the fixed point belongs to Xα×Yβ,1×Yβ,2. Furthermore we will show that the
regularity is improved as u∈C2. First we show the following proposition.

Proposition 3.1. Let (u0,R0,S0)∈ C1×C1×C1 satisfying (3.9)-(3.11) and (3.12).
Suppose that v,R̄,S̄∈Xα×Yβ,1×Yβ,2. Then Φ(v,R̄,S̄)=(u,R,S)∈Xα×Yβ,1×Yβ,2 for
sufficiently small T >0.
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Proof. From the method of characteristics, we can see that the solution of (3.7)
can be written by{

R(t,x)=R(0,x−(0))+
∫ t

0
N1(v,R̄,S̄)(s,x−(s))+L(v,R̄,S̄)(s,x−(s))ds,

S(t,x)=S(0,x+(0))+
∫ t

0
N2(v,R̄,S̄)(s,x+(s))+L(v,R̄,S̄)(s,x+(s))ds,

(3.13)

where the characteristic curves for the linear equation (3.7) are defined as follows:

d

dt
x±(t)=±va(t,x±(t))

with initial data x±(t)=x. From this expression, we have that (u,R,S)∈C1×C1×C1.

Now we estimate ∥⟨x⟩βR∥L∞
T L∞ . From (2.8), if T is small, we have

⟨x⟩β

2
≤⟨x−(s;t,x)⟩β ≤2⟨x⟩β . (3.14)

From (3.13), (3.14) and (3.1), we have that if T is small

|⟨x⟩βR(t,x)|≤2∥⟨x⟩βR(0,·)∥L∞ +

∫ t

0

⟨x−(s)⟩β

v
|R̄2−R̄S̄|+⟨x−(s)⟩β

F (v)

va
|R̄− S̄|ds

≤A3

2
+

∫ t

0

C ⟨x−(s)⟩α+β |R̄2−R̄S̄|+C ⟨x−(s)⟩β |R̄− S̄|ds.

Noting that ⟨x−(s)⟩α≤⟨x−(s)⟩β from α≤β, by using (3.4) and (1.12), we have that∫ t

0

∫ t

0

C ⟨x−(s)⟩α+β |R̄2−R̄S̄|+C ⟨x−(s)⟩β |R̄− S̄|ds

≤CT
(
∥⟨x⟩β R̄∥2L∞

T L∞ +∥⟨x⟩β R̄∥L∞
T L∞∥⟨x⟩β S̄(s)∥L∞

T L∞

)
+CT (∥⟨x⟩β R̄∥L∞

T L∞ +∥⟨x⟩β S̄∥L∞
T L∞)

≤CT,

where C is a positive constant depending on A0,A1,A3. Hence we obtain that for
sufficiently small T

∥⟨x⟩βR∥L∞
T L∞ ≤A3. (3.15)

Similarly for S, we have that

∥⟨x⟩βS∥L∞
T L∞ ≤A3. (3.16)

Next we estimate ∥⟨x⟩γRx∥L∞
T L∞ and ∥⟨x⟩γSx∥L∞

T L∞ . Differentiating both sides of
equations (3.7) with x, we can obtain integral equations for Rx and Sx as follows:

V (t,x)=V0(x−(0;t,x))∂xx−(0;t,x)

+

∫ t

0

∂xx−(s;t,x)
(
N1uvx+N1RV̄ +N1SW̄

)
(t,x−(s;t,x))ds

+

∫ t

0

∂xx−(s;t,x)
(
Luvx+LRV̄ +LSW̄

)
(t,x−(s;t,x))ds (3.17)
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and

W (t,x)=W0(x+(0;t,x))∂xx+(0;t,x)

+

∫ t

0

∂xx+(s;t,x)
(
N2uvx+N2RW̄ +N2S V̄

)
(t,x+(s;t,x))ds

+

∫ t

0

∂xx+(s;t,x)
(
Luvx+LRV̄ +LSW̄

)
(t,x+(s;t,x))ds, (3.18)

where we denote V̄ = R̄x and W̄ = S̄x and (V0,W0)=(R′
0(·),S′

0(·)) and Nju,NjS ,NjR

(j=1,2) are partial derivatives of Nj =Nj(u,R,S) with u,S,R respectively (the same
manners are also used for L). From Lemma 2.2, we obtain that |∂xx+(0;t,x)| is bounded
by 2, if T is small (note that smallness of T depends on A0,A1 and A2). Hence we have
that

|V (t,x)|≤A4 ⟨x⟩−γ

2
+2

∫ t

0

∣∣N1uvx+N1RV̄ +N1SW̄
∣∣(t,x−(s;t,x))ds

+2

∫ t

0

|Luvx+LRV̄ +LSW̄ |(t,x−(s;t,x))ds. (3.19)

From (3.1)-(3.6), (1.10) and (1.11), |N1RV̄ | and |N1SW̄ | are trivially estimated as

|N1RV̄ |+ |N1SW̄ |≤C

v
(|R̄|+ |S̄|)(|V̄ |+ |W̄ |)

≤C ⟨x⟩α−β−γ

≤C ⟨x⟩−γ
.

Noting that (2+a)α−3β=(1+a)α−2β+α−β≤−γ from (1.10) and (1.11), we also
have that for |N1uvx|

|N1uvx|≤
Cva|vx|
v2+a

(|R̄|2+ |S̄|2)

≤ C

v2+a
(|R̄|3+ |S̄|3)

≤C ⟨x⟩(2+a)α−3β

≤C ⟨x⟩−γ
.

From (1.12) and (1.13), we estimate Luvx as

|Luvx|≤C

(
|F (v)|
va+1

+
|F ′(v)|
va

)
(|R̄|+ |S̄|)|vx|

≤C(|R|2+ |S|2)
va+1

≤C ⟨x⟩α(a+1)−2β

≤C ⟨x⟩−γ
.

Similarly we have that

|LRV̄ |+ |LSW̄ |≤C ⟨x⟩−γ
.
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Applying these estimates to (3.19), we obtain that with small T

∥⟨x⟩γ V ∥L∞
T L∞ ≤A4. (3.20)

Similarly

∥⟨x⟩γW∥L∞
T L∞ ≤A4. (3.21)

Estimates of Rt and St are obtained from (3.7). In fact, we have that

|Rt(t,x)|+ |St(t,x)|≤|vaRx|+ |vaSx|+ |N1(v,R̄,S̄)|+ |N2(v,R̄,S̄)|+2|L(v,R̄,S̄)|

≤C ⟨x⟩−γ
+C ⟨x⟩−β

≤CA ⟨x⟩−γ
, (3.22)

where CA is a positive constant depending on A1, A3 and A4 (independent of A5). Here
we choose A5 as A5=CA. From the above estimates, we have that (R,S)∈Yβ,1×Yβ,2.
Next we show that u∈Xα. From (3.8), (3.15) and (3.16), it follows for sufficiently small
T that

⟨x⟩αu(t)≥⟨x⟩αu0(x)−
∫ t

0

⟨x⟩α (|R|+ |S|)
2

ds

≥2A0−
∫ t

0

⟨x⟩β (|R|+ |S|)
2

ds

≥2A0−TA3

≥A0. (3.23)

Similarly we can easily check that ∥u∥L∞
T L∞ ≤A1, if T is small. Next we show that

∥⟨x⟩βuaux∥L∞
T L∞ ≤A2. (3.24)

(3.8) directly implies that

uaux=

(
u0+

∫ t

0

R+S

2
ds

)a

u′
0+

(
u0+

∫ t

0

R+S

2
ds

)a∫ t

0

Rx+Sx

2
ds. (3.25)

From (3.9) and the boundedness of ⟨x⟩βua
0 |u′

0|, the first term of (3.25) is estimated as(
u0+

∫ t

0

R+S

2
ds

)a

|u′
0|≤2a(ua

0+CT a ⟨x⟩−aβ
)|u′

0|

≤C(1+T a)ua
0 |u′

0|

≤C1,A ⟨x⟩−β
,

where we note that the positive constant C1,A does not depend on A2. Deducing Rx+Sx

via (3.7), we also obtain(
u0+

∫ t

0

R+S

2
ds

)a ∣∣∣∣∫ t

0

Rx+Sx

2
ds

∣∣∣∣
=

(
u0+

∫ t

0

R+S

2
ds

)a ∣∣∣∣∫ t

0

1

2va
(Rt−St+N2−N1)ds

∣∣∣∣
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≤2a(ua
0+T a ⟨x⟩−aβ

)

∣∣∣∣∫ t

0

1

2va
(Rt−St+N2−N1)ds

∣∣∣∣ .
Since the spatial decay of Rt and St is not enough to show (3.24), we need to change
this term. From the integration by parts and the property of Xα that v0=u0, we obtain
that ∫ t

0

Rt−St

2va
ds=

R−S

2va
− R0−S0

2ua
0

+

∫ t

0

a(R−S)vt
2va+1

ds. (3.26)

While, from (3.3), we have that

u0−A3T ⟨x⟩−β ≤v≤u0+A3T ⟨x⟩−β
.

Hence, with the help of (3.1), it holds that

1

2
≤1−A3A0T ≤ v

u0
≤1+A3A0T ≤2 (3.27)

for small T . The third term of the right-hand side in (3.26) is estimated as∫ t

0

a|R−S||vt|
2va+1

ds≤C

∫ t

0

⟨x⟩α |R−S||vt|
va

ds

≤C ⟨x⟩−β
∫ t

0

v−ads. (3.28)

Applying (3.27) and (3.28) to (3.26), we have

2a(ua
0+T a ⟨x⟩−aβ

)

∣∣∣∣∫ t

0

1

2va
(Rt−St)ds

∣∣∣∣≤C2,A ⟨x⟩−β

and similarly

2a(ua
0+T a ⟨x⟩−aβ

)

∣∣∣∣∫ t

0

1

2va
(N2−N1)ds

∣∣∣∣≤C3,A ⟨x⟩−β
,

where positive constants C2,A and C3,A are independent of A2. Thus we have

∥⟨x⟩βuaux∥L∞
T L∞ ≤C1,A+C2,A+C3,A.

Taking A2=C1,A+C2,A+C3,A, we obtain (3.24). (3.8) and (3.4) directly yield that

∥⟨x⟩βut∥L∞
T L∞ ≤

∥∥∥∥∥ ⟨x⟩β (R+S)

2

∥∥∥∥∥
L∞

T L∞

≤A3.

Therefore we have that (u,R,S)∈Xα×Yβ,1×Yβ,2. In the end of the proof, we addi-
tionally show that (u,R,S) is (locally) Lipschitz continuous. From (3.20), (3.21) and
(3.22), we can obviously check that R and S satisfies the following uniform Lipschitz
estimate:

|R(t,x)−R(s,y)|+ |S(t,x)−S(s,y)|≤2(A4+A5)(|t−s|+ |x−y|). (3.29)
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Next we check that u is locally Lipschitz continuous. From the boundedness of ua
0u

′
0

and (3.1), we estimate |u0(x)−u0(y)| with x,y∈ [−K,K] as

|u0(x)−u0(y)|≤
∣∣∣∣∫ x

y

|ux(t,z)|dz
∣∣∣∣

≤C

∣∣∣∣∫ x

y

⟨z⟩aαua|ux|(t,z)dz
∣∣∣∣

≤C ⟨K⟩aα |x−y|.

Since R and S are uniformly Lipschitz continuous, we have from (3.8) that u is locally
Lipschitz continuous such that for any t1,t2∈ [0,T ], x1,x2∈ [−K,K] with K≥1

|u(t1,x1)−u(t2,x2)|≤C(|t1− t2|+⟨K⟩aα |x1−x2|), (3.30)

where C is a positive constant depending on A0,A3,A4 and A5. These additional prop-
erties are used to show that the fixed point of Φ satisfies integral equations.

Proposition 3.2. Under the same assumptions on (3.1), Φ is a contraction mapping
in the topology of L∞-norm with small T >0. Namely, if T >0 is small, then there
exists a constant c∈ (0,1) such that Φ satisfies that

∥u1−u2∥L∞
T L∞ +∥R1−R2∥L∞

T L∞ +∥S1−S2∥L∞
T L∞

≤ c
(
∥v1−v2∥L∞

T L∞ +∥R̄1−R̄2∥L∞
T L∞ +∥S̄1− S̄2∥L∞

T L∞
)
,

where (uj ,Rj ,Sj)=Φ(vj ,R̄j ,S̄j) with j=1,2.

Proof. Put ũ=u1−u2, R̃=R1−R2, S̃=S1−S2. From (3.7), we have

R̃t−va1 R̃x=N1(v1,R̄1,S̄1)−N1(v2,R̄2,S̄2)

+L(v1,R̄1,S̄1)−L(v2,R̄2,S̄2)

+(va1 −va2 )R2x.

From the method of characteristics, we have that

R̃(t,x)=

∫ t

0

(N1(v1,R̄1,S̄1)−N1(v2,R̄2,S̄2))ds

+

∫ t

0

(L(v1,R̄1,S̄1)−L(v2,R̄2,S̄2))ds

+

∫ t

0

(va1 −va2 )R2xds. (3.31)

The second term of the right-hand side in (3.31) can be written as∫ t

0

(L(v1,R̄1,S̄1)−L(v2,R̄2,S̄2))ds=

∫ t

0

(G(v1)−G(v2))(R̄1− S̄1)ds

+

∫ t

0

G(v2)(R̄1− S̄1−R̄2+ S̄2)ds, (3.32)

where we set G(θ)=F (θ)/2θa. Using (1.12), (1.13), we obtain that

|G(v1)−G(v2)|≤
∫ 1

0

|G′(θv1+(1−θ)v2)|dθ|v1−v2|≤
∫ 1

0

Cdθ

θv1+(1−θ)v2
|v1−v2|.



232 LOCAL SOLVABILITY FOR A QUASILINEAR WAVE EQUATION

Applying (3.1) to the last term, we estimate that∫ 1

0

Cdθ

θv1+(1−θ)v2
|v1−v2|≤

∫ 1/2

0

Cdθ

(1−θ)v2
|v1−v2|+

∫ 1

1/2

Cdθ

θv1
|v1−v2|

≤C ⟨x⟩α |v1−v2|,

which implies that the first term of the right-hand side in (3.32) is estimated as∫ t

0

|G(v1)−G(v2)||R̄1− S̄1|ds≤CTA3∥v1−v2∥L∞
T L∞ .

From (1.12), the second term is estimated by∫ t

0

|G(v2)||R̄1− S̄1−R̄2+ S̄2|ds≤CT (∥R̄1−R̄2∥L∞
T L∞ +∥S̄1− S̄2∥L∞

T L∞).

Setting N1(v,R̄,S̄)= a
2vQ(R̄,S̄) and Q(R̄,S̄)=(R̄2−R̄S̄), we change the first term of

the right-hand side in (3.32) to∫ t

0

(N1(v1,R̄1,S̄1)−N1(v2,R̄2,S̄2))ds

=

∫ t

0

a

(
v2−v1
2v1v2

)
Q(R̄1,S̄1)ds+

∫ t

0

a

2v2

(
Q(R̄1,S̄1)−Q(R̄2,S̄2)

)
ds. (3.33)

The first term of the right-hand side in (3.33) is estimated as∣∣∣∣∫ t

0

a

(
v2−v1
2v1v2

)
Q(R̄1,S̄1)ds

∣∣∣∣
≤
∫ t

0

a
|v1−v2|

2⟨x⟩2α |v1v2|
⟨x⟩2α |Q(R̄1,S̄1)|ds

≤
∫ t

0

a
2|v1−v2|

A2
0

⟨x⟩2β |Q(R̄1,S̄1)|ds

≤CT∥v1−v2∥L∞
T L∞ .

The second term can be estimated as∣∣∣∣∫ t

0

(
a

2v2

)(
Q(R̄1,S̄1)−Q(R̄2,S̄2)

)
ds

∣∣∣∣
≤
∫ t

0

a

2A0
⟨x⟩α

∣∣Q(R̄1,S̄1)−Q(R̄2,S̄2)
∣∣ds

≤
∫ t

0

a

A0
⟨x⟩β

∣∣Q(R̄1,S̄1)−Q(R̄2,S̄2)
∣∣ds

≤CT
(
∥R̄1−R̄2∥L∞

T L∞ +∥S̄1− S̄2∥L∞
T L∞

)
.

Next we estimate the third term of the right-hand side in (3.31). When a≥1, from the
mean-value theorem for |va1 −va2 | and the boundedness of Rx, we obtain that

|(va1 −va2 )R2x|≤C∥v1−v2∥L∞
T L∞ .
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While, a<1, by using the boundedness of ⟨x⟩γRx, we have that

|(va1 −va2 )R2x|≤a

∫ 1

0

(θv1+(1−θ)v2)
a−1|v1−v2||R2x|dθ

≤C ⟨x⟩γ |v1−v2||R2x|
≤C∥v1−v2∥L∞

T L∞ .

Therefore, we obtain that for sufficiently small T

∥R̃∥L∞
T L∞ ≤ 1

6

(
∥v1−v2∥L∞

T L∞ +∥R̄1−R̄2∥L∞
T L∞ +∥S̄1− S̄2∥L∞

T L∞
)
.

In the same way as in the estimate of R̃, we have that

∥S̃∥L∞
T L∞ ≤ 1

6

(
∥v1−v2∥L∞

T L∞ +∥R̄1−R̄2∥L∞
T L∞ +∥S̄1− S̄2∥L∞

T L∞
)
.

From (3.8), the above two estimates on R̃ and S̃ imply that for sufficiently small T

∥ũ∥L∞
T L∞ ≤T

2

(
∥R̃∥L∞

T L∞ +∥S̃∥L∞
T L∞

)
≤1

6

(
∥v1−v2∥L∞

T L∞ +∥R̄1−R̄2∥L∞
T L∞ +∥S̄1− S̄2∥L∞

T L∞
)
.

Therefore, we find that Φ is a contraction mapping for sufficiently small T >0.

Next we construct a unique solution (u,R,S) of the nonlinear problem and the
characteristic curves x±(·;t,x).

Proposition 3.3. Under the same assumptions as in Proposition 3.2, if T is small,
then there uniquely exist (u,R,S)∈Xα×Yβ,1×Yβ,2 and x±(s)=x±(s;t,x) satisfying
that {

R(t,x)=R(0,x−(0))+
∫ t

0
N1(u,R,S)(s,x−(s))+L(u,R,S)(s,x−(s))ds,

S(t,x)=S(0,x+(0))+
∫ t

0
N2(v,R,S)(s,x+(s))+L(u,R,S)(s,x+(s))ds

(3.34)

and

u(t,x)=u0(x)+

∫ t

0

R+S

2
ds (3.35)

and

x±(s;t,x)=x±
∫ s

t

ua(τ,x±(τ ;t,x))dτ. (3.36)

Proof. We fix K≥1 arbitrarily. From Proposition 3.1, we can define a sequence
{un,Rn,Sn}n∈N in Xα×Yβ,1×Yβ,2 such that

(un+1,Rn+1,Sn+1)=Φ(un,Rn,Sn)

with initial term (u0,S0,R0). By Proposition 3.2, (un,Rn,Sn) converges to the fixed
point (u,R,S) in the topology of L∞. While we can define a sequence of the charac-
teristic curves {x±,n(·;t,x)}n∈N, we note that the characteristic curves can be defined
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uniquely on [0,T ] with arbitrarily fixed (t,x) by the local Lipschitz continuity and the
boundedness of ua

n. For arbitrarily fixed K≥1, we see that {x±,n(·;t,x)}n∈N is uni-
form equicontinuous and uniform bounded on [0,T ]× [0,T ]× [−K,K] from Lemma 2.1
and (2.8). Thus the Arzelá-Ascoli theorem implies that there exists a subsequence of
{x±,n(·;t,x)}n∈N (we use the same suffix as in the original sequence) such that x±,n(·)
converges x±(·) uniformly on [0,T ]× [0,T ]× [−K,K] as n→∞. Note that this choice
of the subsequence depends on K. However, from Cantor’s diagonal argument, we
can reselect a subsequence independently of K such that the convergence holds on
[0,T ]× [0,T ]× [−K ′,K ′] with any K ′≥1. From (3.29) and (3.30), we see that as n→∞

(un(t,x±,n(t)),Rn(t,x±,n(t)),Sn(t,x±,n(t)))→ (u(t,x±(t)),R(t,x±(t)),S(t,x±(t))).

Hence (3.34) and (3.36) are satisfied. Now we check that (u,R,S)∈Xα×Yβ,1×Yβ,2.
It is obvious that the properties (3.1) and (3.4) are satisfied. From the local Lipschitz
continuity, u,R,S are differentiable almost everywhere. In the same way as in the proof
of Proposition 3.1, we can obtain the boundedness of ⟨x⟩βuaux and ⟨x⟩βut, since the
constant A2 is taken independently of A4 and A5. Thus we have u∈Xα. To show
the boundedness of ⟨x⟩γRx and ⟨x⟩γSx, differentiating both sides of (3.34) with x, we
obtain that

V (t,x)=V0(x−(0;t,x))∂xx−(0;t,x)

+

∫ t

0

∂xx−(s;t,x)(N1uux+N1RV +N1SW )(t,x−(s;t,x))ds

+

∫ t

0

∂xx−(s;t,x)(Luux+LRV +LSW )(t,x−(s;t,x))ds (3.37)

and

W (t,x)=W0(x+(0;t,x))∂xx+(0;t,x)

+

∫ t

0

∂xx+(s;t,x)(N2uux+N2RW +N2SV )(t,x+(s;t,x))ds

+

∫ t

0

∂xx+(s;t,x)(Luux+LRV +LSW )(t,x+(s;t,x))ds. (3.38)

In the same way as in the proof of (3.20) and (3.21), we achieve the boundedness of
⟨x⟩γW and ⟨x⟩γ V . The estimates of ⟨x⟩γRt and ⟨x⟩γSt can be shown similarly as those
in (3.22). Thus we have (R,S)∈Yβ,1×Yβ,2. The uniqueness can be shown in the same
way as in the proof of Proposition 3.2.

In the discussions so far, we do not assume any relations between u0 and R0,S0.
To show u in (3.35) is a solution of (1.1), we assume that{

u′
0=

R0−S0

2ua
0

,

u1=
R0+S0

2 .
(3.39)

Moreover, we improve the regularity of the solution if (u0,u1)∈C2×C1. The following
proposition completes the proof of Theorem 1.1.

Proposition 3.4. In addition to the assumption of Proposition 3.3, we assume for
(u0,u1)∈C2×C1

b that (3.39) is satisfied. Then the function u defined in (3.35) is C2

on [0,T ]×R and is the classical solution of (1.1).
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Proof. From the Lipschitz continuity of R,S, these are differentiable almost every-
where and satisfy that {

Rt−uaRx=N1(u,R,S)+L(u,R,S),

St+uaSx=N2(u,R,S)+L(u,R,S).
(3.40)

Since u is also differentiable almost everywhere, differentiating (3.35), we have that

ux=u′
0(x)+

∫ t

0

Rx+Sx

2
ds. (3.41)

From the first and second equations of (3.40), we have that∫ t

0

Rx+Sxds=

∫ t

0

1

ua
(N2(u,R,S)−N1(u,R,S)+Rt−St)ds

=

∫ t

0

1

ua

( a

2u
(S2−R2)+Rt−St

)
ds. (3.42)

From the integration by parts, ut=
R+S
2 and (3.39), it follows that∫ t

0

1

ua
(Rt−St)ds=−2u′

0(x)+
R−S

ua
+

∫ t

0

aut

ua+1
(R−S)ds

=−2u′
0(x)+

R−S

ua
+

∫ t

0

a

2ua+1

(
R2−S2

)
ds. (3.43)

From (3.41), (3.42) and (3.43), we have that

ux=
R−S

2ua
. (3.44)

Combining (3.40), (3.35) and (3.44), we have that the function u satisfies (1.1). Lastly,
applying Theorem 4 in Douglis [5], we obtain the continuity of the W =Rx and V =Sx.
From the equations of R,S, we see that Rt and St are also continuous. Hence we have
the continuity of uxx,utx,utt. Therefore we have that u∈C2([0,T ]×R).

4. Concluding remarks

4.1. Physical background. We set a function G as a primitive function of F
such that G(0)=0. Integrating with x over [−∞,x], we formally obtain that∫ x

−∞
uttdx=

(
ua+1

a+1

)
x

+G(u).

Setting v=
∫ x

−∞utdx and σ(u)=ua+1/a+1, we have the following first-order hyperbolic
equation: {

ut−vx=0,
vt−σ(u)x=G(u).

(4.1)

These equations govern the motion for one-dimensional elastic waves with the case
that the density of material is equal to 1. Unknown functions u and v describe the
differentiations of the displacement X with x and t respectively. Namely u=Xx(t,x)
and v=Xt(t,x). The first equation means the relation ut=Xxt=Xtx=vx. The second
equation is Newton’s second law since vt is the acceleration. From the definition of u, u
is the strain (more precisely, (1,1) component of the stain matrix) and σ(u) is so-called
stress-strain relation. G is a external force term depending only on the strain. The
detailed derivation with G≡0 is given in Cristescu’s book [4].
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4.2. On the generalization of the main theorem. Our existence theorem is
also applicable to utt=(c(u)2ux)x+F (u)ux under the following assumptions on c(·)∈
C([0,∞))∩C2((0,∞)) and F ∈C([0,∞))∩C1((0,∞))

C1.Kθa≤ c(θ)≤C2,K , (4.2)

|c′(θ)|≤C3,Kθa−1, (4.3)

|c′′(θ)|≤C4,Kθa−2, (4.4)

and

|F (θ)|≤C5,Kθa, (4.5)

|F ′(θ)|≤C6,Kθa−1, (4.6)

where a≥0, θ∈ [0,K] for K>0 and Cj,K are positive constants depending on K for
j=1,. ..,6. For this equation, the unknown valuable R and S are defined by

R=ut+c(u)ux,

S=ut−c(u)ux

and R and S satisfy that{
Rt−uaRx=

c′

2c (RS−S2)+F (u)R−S
2c ,

St+uaSx=
c′

2c (RS−R2)+F (u)R−S
2c .

(4.7)

Since we have that |c′(u)|
c(u) ≤C ⟨x⟩α from the assumption on c and initial data, we can

obtain weighted L∞ estimates for R and S. The Assumption (4.4) is used in the proof
of the construction of the contraction mapping.

4.3. Finite time blow-up or degeneracy. We define T ∗ as the maximal
existence time of the solution constructed by Theorem 1.1. When T ∗<∞, we have the
following criterion of the break-down:

limsup
t→T∗

∥⟨x⟩βut∥L∞ +∥⟨x⟩βux∥L∞ =∞ (4.8)

or

liminf
t→T∗

inf
R
⟨x⟩αu(t,x)=0. (4.9)

We call (4.8) and (4.9) the blow-up and the degeneracy respectively. In the case that
F ≡0, we can obtain that the non-trivial solutions blow up in finite time, if R(0,x) and
S(0,x) are non-negative. In fact, we can show that the non-negativity of R(0,x) and
S(0,x) preserves as time goes by, from which we have ut(t,x)≥0. Thus we find that
(4.9) does not occur in finite time. Therefore, using the method of Lax [13] or [23] (see
also Chen [1]), we have the conclusion. While, in the case that F ≡0, we can apply
main theorems to the equation in (1.1) and find that (4.9) can occur in finite time for
non-trivial solutions, if R(0,x) and S(0,x) are non-positive. Sufficient conditions for the
occurrence of (4.9) have been studied in the author’s papers [20, 21].
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4.4. Multi-dimensional case. The multi-dimensional version of the equation
in (1.1) is

∂2
t u=u2a∆u+F (u) ·∇u=0.

The method of characteristics (and Riemann invariants) does not work, even with radial
initial data. In the forthcoming paper, we deal this problem via a local-energy argument.
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