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THE EXISTENCE AND LIMIT BEHAVIOR OF THE SHOCK LAYER
FOR 1D STATIONARY COMPRESSIBLE NON-NEWTONIAN FLUIDS∗

ZHENHUA GUO† , YIFAN SU‡ , AND JINJING LIU§

Abstract. In this paper, we first define the shock layer to a class of stationary compressible non-
Newtonian fluids in one dimension. Then the existence and uniqueness of the shock layer are established.
In addition, the limit behavior of the shock layer is analyzed. It is shown that, as the viscosity coefficient
and the heat conductivity coefficient vanish, the shock layer to the non-Newtonian fluids tends to a
shock wave of the corresponding Euler equations. It is also shown that, as the viscosity coefficient
tends to zero, the shock layer goes to a non-viscous shock layer to the non-Newtonian fluids, while as
heat-conductivity coefficient tends to zero, the shock layer converges to a thermally non-conducting
shock layer to the non-Newtonian fluids.

Keywords. Non-Newtonian fluids; Navier-Stokes equations; Euler equations; Shock layer; Shock
wave.
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1. Introduction

The one-dimensional stationary compressible non-Newtonian fluids are described
by the principle of conservations of mass, momentum and energy, which read as

ρu= c1,

ρu2+p−µ(ux)ux= c2,

ρu
(1
2
u2+e+

p

ρ

)
−µ(ux)uux−λθx= c3,

(1.1)

where ρ, u, θ, p=p(τ,θ), e=e(τ,θ) and τ =1/ρ represent the density, velocity, tem-
perature, pressure, internal energy and specific volume, respectively, µ=µ(ux)>0 and
λ=λ(τ,θ)>0 are the viscosity coefficient and the heat conductivity coefficient, respec-
tively, c1, c2, c3 are constants. In this paper, the viscosity coefficient is taken to be

µ(ux)=µ0|ux|q−2, q >1 and q ̸=2, (1.2)

where µ0=µ0(τ,θ)>0. We also assume that λ, µ0, p and e are sufficiently smooth
functions of τ and θ.

In many fields, such as chemistry, study of biological fluids like blood, geology and
glaciology, a large number of problems may arise with non-Newtonian fluids, which has
sparked the increasing interest in the study of non-Newtonian fluids, see [2,19,20,23,25,
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29,30], etc. Especially, Ladyzhenskaya [19] proposed a special model for incompressible
fluids 

ρt+div(ρu)=0,

(ρu)t+div(ρu⊗u)−div(Γ)+∇p=ρf,

divu=0

(1.3)

where f is an external force, Γ denotes the viscous stress tensor and

Γij =(µ1+µ2|E(∇u)|q−2)Eij(∇u), (1.4)

Eij(∇u)= ∂ui

∂xj
+

∂uj

∂xi
is the rate of strain. For µ1=0 and µ2>0, if q<2, it is a pseudo-

plastic fluid, and if q>2, then it is a dilatant fluid [2]. In the view of physics, the
model captures the shear thinning fluid for the case of 1<q<2, and captures the shear
thickening fluid for the case of q>2. Mamontov [22] established the global existence
of sufficiently regular solutions to two-dimensional and three-dimensional equations of
compressible non-Newtonian fluids. Yuan and his collaborators [29,30] obtained the ex-
istence and uniqueness of local and global solutions for one-dimensional initial boundary
value problem. Fang and Guo [4] gave the blow-up criterion for local strong solutions,
constructed analytical solutions to a class of compressible non-Newtonian fluids with
free boundaries in [5], and considered the existence and uniqueness of global classical
solution for the initial boundary problem [7]. For weak solutions to the non-Newtonian
fluids, Zhikov and Pastukhova [32] obtained the existence of weak solutions of initial
boundary value problem for multidimensional cases. Guo and Zhu [11] investigated
the partial regularity of the suitable weak solutions. Feireisl, Liao and Málek [9] stud-
ied mathematical properties of unsteady problem for three dimensional compressible
non-Newtonian fluids in bounded domains and have shown the long-time and large-
data existence result of weak solutions with strictly positive density. Fang, Kong and
Liu [8] obtained the existence of weak solutions to one-dimensional full compressible
non-Newtonian fluids. Besides, recently, Shi, Wang and Zhang [23], Fang and Guo [6],
Guo, Dong and Liu [12] investigated the stability of rarefaction waves and boundary
layer solutions for the compressible non-Newtonian fluids, respectively.

In the theory of compressible fluids, the asymptotic behavior of the compressible
Navier-Stokes equations in the vanishing viscosity limit is one of the important, long-
standing problems. Formally, as the viscosity coefficient and the heat conductivity
coefficient vanish, i.e., λ,µ0→0 in (1.1), the limit system of (1.1) becomes the Euler
equations. It is expected that the solution to (1.1) should converge strongly to the
solution to the corresponding Euler equations as dissipation vanishes. The first rigorous
convergence analysis of vanishing physical viscosity from the Navier-Stokes equations to
the Euler equations was made by Gilbarg [10], in which he established the mathematical
existence and vanishing viscosity limit of the shock layer for the system (1.1), (1.2) with
q=2 under the following thermodynamical assumptions proposed by Weyl [24]:

(I) dτ/dp|S=const.<0, S=entropy.

(Ia) Sp(τ,p)>0, θp(τ,p)>0.

(II) d2τ/dp2|S=const.>0.

(III) In the continuous process of adiabatic compression one can raise pressure arbi-
trarily high.

(IV) The thermodynamic state Z is uniquely specified by pressure p and specific
volume τ , and the points (τ,p) representing the possible states Z in a (τ,p)
diagram form a convex region.
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(V) The thermodynamic relation should be satisfied: de=θdS−pdτ .

In the past decades, many important results have been obtained for the problem of
zero dissipation limit for the compressible Naiver-Stokes equations. For the compressible
isentropic Naiver-Stokes equations, in the case of the basic wave patterns involving
shock waves and rarefaction waves, we refer to Hoff and Liu [13], Huang et al. [17]
and Zhang et al. [31] for shock waves, and [16, 27] for rarefaction waves. When the
far field of the initial values of the isentropic Euler system has no vacuums, Chen
and Perepelitsa [3] proved the vanishing viscosity limit of the isentropic Naiver-Stokes
equations by compensated compactness method. For the compressible nonisentropic
Naiver-Stokes equations, we refer to Jiang, Ni and Sun [18], Xin and Zeng [28] for the
rarefaction wave, Wang [26] for the shock wave, Ma [21] for the contact discontinuity,
and Huang, Wang and Yang [14,15] for the superposition of two rarefaction waves and
a contact discontinuity and the superposition of a shock wave and a rarefaction wave.

The shock phenomena can be identified in the non-Newtonian fluids, for instance,
the strong pressure pulses with steep wave fronts in blood vessels [1]. However, because
of the nonlinear constitutive relation between viscous stress tensor and rate of strain in
the non-Newtonian fluids, the nonlinear waves may exhibit some properties which are
different from those in the Newtonian fluids. In this paper, we establish the existence
and uniqueness of the shock layer of the non-Newtonian fluids (1.1) which follow the
thermodynamical assumptions (I)-(V) and investigate the limit behavior of the shock
layer as the viscosity coefficient and the heat conductivity coefficient vanish.

Firstly, we give the definition of the shock layer for the system (1.1). Eliminating
u from system (1.1), we have 

λ
dθ

dx
=L(τ,θ),

µ
dτ

dx
=M(τ,θ),

(1.5)

where M = 1
b

(
p(τ,θ)+b2(τ−a)

)
, L= b

(
e(τ,θ)− 1

2b
2(τ−a)2−c

)
, and the constants a=

c2/c
2
1, b= c1, c= c3/c1−c22/(2c

2
1). Furthermore, by the thermodynamical equation de=

θdS−pdτ , one can check that c1>0.

Since µ=µ0|ux|q−2=µ0c
q−2
1 |τx|q−2, from (1.5)2, we have

µ0|τx|q−2τx=
1

cq−2
1

M(τ,θ). (1.6)

It is noticed from (1.6) that τx and M(τ,θ) have the same sign. Thus, if M(τ,θ)⩾

0, (1.6) has the form µ
1

q−1

0 τx= c
− q−2

q−1

1

(
M(τ,θ)

) 1
q−1 , and if M(τ,θ)<0, (1.6) becomes

µ
1

q−1

0 τx=−c
− q−2

q−1

1

(
−M(τ,θ)

) 1
q−1 . Setting

µ̃0 :=µ
1

q−1

0 , (1.7)

and

M̃(τ,θ) :=


c
− q−2

q−1

1

(
M(τ,θ)

) 1
q−1 , M(τ,θ)⩾0,

−c
− q−2

q−1

1

(
−M(τ,θ)

) 1
q−1 , M(τ,θ)<0,

(1.8)
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we thus can deduce from (1.5) that
λ
dθ

dx
=L(τ,θ),

µ̃0
dτ

dx
=M̃(τ,θ).

(1.9)

In the Z-plane consisting of a set of points Z=(τ,θ) in the first quadrant (Figure
1.1), we enumerate four conditions on the functions L(τ,θ) and M̃(τ,θ):

(A) Lθ>0, Mθ>0. M̃(τ,θ) is a sufficiently smooth (e.g. twice differentiable) func-
tion of τ and θ in the neighbourhood of Z0 and Z1, and M̃θ(Z0)>0,M̃θ(Z1)>0.

(B) Two curves L and M̃ determined by equation L(τ,θ)=0 and M̃(τ,θ)=0, re-
spectively, intersect in two points Z0=(τ0,θ0) and Z1=(τ1,θ1), (τ0>τ1). Z0

and Z1 are the only simultaneous solutions of L(τ,θ)=0 and M̃(τ,θ)=0.

(C) On curve L, Lτ >0, for τ1≤ τ ≤ τ0.

(D) Lτ/Lθ<M̃τ/M̃θ at Z0; Lτ/Lθ>M̃τ/M̃θ at Z1.

τ

θ

O

Z1

Z0

Ŝ

L∗

M̃∗

S R

Fig. 1.1.

We can get from (A) that L and M̃ can be represented as single-valued functions
of τ , namely, θ= l(τ), θ=m(τ), respectively. And from (C), we can see that l(τ) is
monotonically decreasing in the interval τ1⩽ τ ⩽ τ0, and thus θ1>θ0. By (B) and (D),
one has m(τ)>l(τ) for τ1<τ <τ0.

We denote the arcs of L and M̃ between the two points Z0(τ0,θ0) and Z1(τ1,θ1)
by L∗ and M̃∗, respectively. The closed curve formed by L∗ and M̃∗ bounds a simply
connected region R of the Z-plane (Figure 1.1). And by virtue of (A) and (B), one can
check that L(τ,θ)>0 and M̃(τ,θ)<0 in R.

For the points Z0(τ0,θ0) and Z1(τ1,θ1), since the shock conditions

p0+b2τ0=p1+b2τ1= b2a, (1.10)

e0−
1

2
b2(τ0−a)2=e1−

1

2
b2(τ1−a)2= c, (1.11)

hold, Z0 and Z1 represent possible initial and final states, respectively, of a normal
shock wave of an ideal fluid which has the same equations of state as the given fluid.



ZHENHUA GUO, YIFAN SU, AND JINJING LIU 243

Now, we can give the definition of the shock layer for the non-Newtonian fluids
(1.1).

Definition 1.1. For given λ(τ,θ) and µ0(τ,θ), a solution S(x)=(τ(x),θ(x)),x∈R,
of Equations (1.9) is called a shock layer if

lim
x→−∞

S(x)=Z0, lim
x→+∞

S(x)=Z1.

In the Z-plane, the corresponding shock layer curve is the integral curve represented by
the set of equivalent shock layers, S(x+k)(k= constant).

It is pointed out that a shock layer is called parametrized if a particular represen-
tative of this class is designated, and equivalent shock layers are considered identical.

Moreover, we can get two degenerate systems from the system (1.9):µ̃0
dτ

dx
=M̃(τ,θ),

0=L(τ,θ),
(1.12)

and λ
dθ

dx
=L(τ,θ),

0=M̃(τ,θ).

(1.13)

We call any solution of (1.12), for τ ∈ [τ1,τ0] and for all x∈ (−∞,+∞), a thermally non-
conducting shock layer to the non-Newtonian flow (1.1), and any solution of (1.13), for
τ ∈ [τ1,τ0] and for all x∈ (−∞,+∞), a non-viscous shock layer to the non-Newtonian
flow (1.1).

Secondly, we prove that under the conditions (A)-(D), there exists a unique shock
layer joining Z0 and Z1 to the system (1.1).

Finally, we study the limit behavior of shock layer when the viscosity coefficient
and the heat conductivity coefficient vanish. Note that µ0→0 is equivalent to µ̃0→0.
It is shown that, as λ,µ̃0→0, the shock layer of (1.1) converges to the shock wave of
the corresponding Euler equations. It is also shown that, as µ̃0→0 (with λ fixed), the
shock layer goes to a non-viscous shock layer; while for λ→0 (with µ0 fixed), the shock
layer converges to a thermally non-conducting shock layer.

We state our main result as follows.

Theorem 1.1 (Existence and uniqueness). Let Z0(τ0,θ0) and Z1(τ1,θ1) be initial and
final states of a fluid which satisfy the shock conditions (1.10) and (1.11). Then, for
any µ̃0 and λ, there exists a unique shock layer S(x;λ,µ̃0) joining Z0 to Z1 of (1.1)
subject to the conditions (A)-(D).

Theorem 1.2 (Limit behavior). Let Z0(τ0,θ0) and Z1(τ1,θ1) be initial and final states
of the shock wave, Z=Z0, −∞<x<ξ, Z=Z1, ξ <x<+∞. Then, the shock layer
S(x;λ,µ̃0) can be parameterized such that

lim
λ→0
µ̃0→0

S(x;λ,µ̃0)= lim
λ→0

( lim
µ̃0→0

S(x;λ,µ̃0))= lim
µ̃0→0

( lim
λ→0

S(x;λ,µ̃0))=

{
Z0, −∞<x<ξ,

Z1, ξ <x<+∞.
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Remark 1.1. It can be proved that conditions (A)-(D) are satisfied for the fluids
which follow the thermodynamical assumptions (I)-(V). The arguments are almost same
as in [10], so, we omit the details. In particular, one can check from Section 2 that the
prototypical pressure function, p(τ,θ)=βθ/τ , can not be taken in the non-Newtonian
flow (1.1).

Remark 1.2. Based on this work, it is interesting to study the zero dissipation limit
of shock wave for the non-stationary compressible non-Newtonian fluids. This is left to
the forthcoming paper.

The rest of the paper is organized as follows. In Section 2, we investigate the
existence and uniqueness of the shock layer. Section 3 studies the limit behavior of the
shock layer.

2. Existence and uniqueness of the shock layer
In this section, we consider the existence and uniqueness of the shock layer to the

system (1.1) for arbitrary µ̃0= µ̃0(τ,θ), λ=λ(τ,θ) and give the proof for Theorem 1.1.
According to condition (B), Z0 and Z1 are the only exclusive singular points of the

system (1.9). Using Taylor’s formula for the functions L(τ,θ) and M̃(τ,θ) at Z0 and
Z1, we can obtain the characteristic equation of the system (1.9)

0=

∣∣∣∣Lθ/λ−κ Lτ/λ

M̃θ/µ̃0 M̃τ/µ̃0−κ

∣∣∣∣
=κ2−

(M̃τ

µ̃0
+

Lθ

λ

)
κ+

(M̃θLθ

λµ̃0

)(M̃τ

M̃θ

− Lτ

Lθ

)
, (2.1)

where the values λ, µ̃0, Lτ , Lθ, M̃τ and M̃θ are to be taken at Z0 and Z1, κ is the
characteristic root. Here, we notice that

M̃θ=
c
− q−2

q−1

1

q−1

∣∣M(τ,θ)
∣∣ 2−q
q−1Mθ(τ,θ).

In the case 1<q<2, at the points Z0 and Z1, since M(Z0)=M(Z1)=0, we require
Mθ(Z0)→+∞ and Mθ(Z1)→+∞ such that M̃θ(Z0) and M̃θ(Z1) are given positive

constants. For example, if q= 4
3 , then M(τ,θ) can be taken as M(τ,θ)=(θ−m(τ))

1
3 ,

where m(τ) is a smooth function of τ . In the case q>2, the arguments are similar, for

instance, if q= 8
3 , then we can take M(τ,θ)=(θ−m(τ))

5
3 . A similar analysis applies to

M̃τ .
Thus, the discriminant of this equation is

∆|Z=Z0,Z1 =
(M̃τ

µ̃0
+

Lθ

λ

)2

−4
M̃θLθ

λµ̃0

(M̃τ

M̃θ

− Lτ

Lθ

)
=
(M̃τ

µ̃0

)2

+
(Lθ

λ

)2

+2
M̃τLθ

λµ̃0
−4

M̃τLθ

λµ̃0
+4

M̃θLτ

λµ̃0

=

((M̃τ

µ̃0
− Lθ

λ

)2

+4
M̃θLτ

λµ̃0

)
Z=Z0,Z1

. (2.2)

Note that M̃θ>0 and Lτ >0 from conditions (A) and (C). We thus have ∆|Z=Z0,Z1 >0
and the roots of (2.1) are real. By conditions (A) and (D), the constant terms of (2.1)
are positive at Z0, and negative at Z1. Then we can conclude that Z0 is a node and Z1

is a saddle point. Moreover, since M̃τ >0 and Lθ>0, Z0 is an unstable node.
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Thus, according to the property of saddle point, there are two integral curves of the
system (1.9) which approach the saddle point Z1 as x→+∞, and two which approach
it as x→−∞, these pairs correspond to the negative and positive roots, respectively, of
the characteristic Equation (2.1). The two members of each pair have the same slope
at Z1, but approach it from opposite directions. The slopes are given by

− Lτ

Lθ−κλ
=−M̃τ −κµ̃0

M̃θ

.

Especially, when κ<0 at Z1, it is negative.
Furthermore, we notice from (1.9) that, in the region R, the slopes of all the integral

curves are

dθ

dτ
=

µ̃0

λ

L(τ,θ)

M̃(τ,θ)
. (2.3)

Since L(τ,θ)/M̃(τ,θ)<0 in the region R, all the integral curves have negative slopes.
Therefore, one can get that one of the solutions tending to Z1 as x→+∞ approaches
it from the region R, in which the ratio is negative. We denote this solution by S(x).
Now, we can prove Theorem 1.1.

Proof. (Proof of Theorem 1.1.) We prove that S(x) is a shock layer. Consider
those integral curves of (1.9) passing through the points of M̃∗ and L∗ in the Z-plane
(Figure 1.1). On M̃∗, M̃(τ,θ)=0, L(τ,θ)>0, thus by (2.3), we find that all integral
curves have vertical tangent vectors directing outwards from R for increasing x. On L∗,
a similar consideration shows that all integral curves have zero slope and are directed
outwards from R for increasing x. Thus, one can get that, for decreasing x, all integral
curves of (1.9) which pass through L∗ and M̃∗ are directed into R for decreasing x.
Since all the integral curves have negative slopes and these integral curves are traversed
for decreasing x in the direction of increasing τ and decreasing θ in the region R, thus
S(x) can not intersect with M̃∗ and L∗ between Z0 and Z1. In addition, the system
(1.9) has no other singular points and S(x) is monotonic in the region R. Therefore,
integral curves can not terminate in R and will go to the unstable node Z0 as x→−∞.
This proves the existence of the shock layer S(x)=(τ(x),θ(x)).

Next, we prove the uniqueness of the corresponding shock layer curve S. Assume
Ŝ is other shock layer curve which joins Z0 and Z1, and enters Z1 as x→+∞, Z0 as
x→−∞. Then the arcs S and Ŝ form a closed curve bounding a simply connected
region F in the Z-plane. Since Z1 is a saddle point, one of the two integral curves of
(1.9), which approach Z1 as x→−∞, enters this region. This integral curve can neither
terminate in F , nor can it approach asymptotically a limit cycle in F . And Z0 is an
unstable node, the integral curves of (1.9) tend to Z0 only when x→−∞. Thus, the

only possibility remaining is that the curve intersects S or Ŝ. However, this contradicts
the uniqueness of the integral curves of (1.9), thus Ŝ can not be a shock layer curve.
This completes the proof of the uniqueness for the shock layer.

3. Limit behavior of the shock layer
In this section, we investigate the limit behavior of the shock layer in the Z-plane

and prove Theorem 1.2. For given λ(Z), µ̃0(Z), we assume that these coefficients
depend on parameters but are independent of τ and θ, in such a way that λ and µ̃0 can
independently be made arbitrarily small in R. We also assume that the shock layers
can be so parameterized that the appropriate limits exist under this parametrization.
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In the following, we designate the shock layer by S(x;λ,µ̃0)=(τ(x;λ,µ̃0),θ(x;λ,µ̃0))
and the associated curve by S(λ,µ̃0) and study three limits of the shock layer: (1)
λ,µ̃0→0; (2) λ→0, then µ̃0→0; (3) µ̃0→0, then λ→0.

3.1. Double limit of the shock layer. We first consider the double limit of
the shock layer as λ,µ̃0→0.

Lemma 3.1. Assume Z0 and Z1 are initial and final states of the shock wave,

Z=Z0,−∞<x<ξ; Z=Z1,ξ <x<+∞.

Then the corresponding family of shock layers which is parameterized suitably converges
to the shock wave as λ,µ̃0→0 independently, that is,

lim
λ→0
µ̃0→0

S(x;λ,µ̃0)=

{
Z0, −∞<x<ξ,

Z1, ξ <x<+∞,
(3.1)

and the convergence is uniform in every closed interval not containing x= ξ.

Proof. For any ϵ>0, let R(ϵ) be the subregion of R outside the circles of radius ϵ
about Z0, Z1. In the region R, using (1.9), we can take the difference

d(θ−τ)

dx
=

1

λ
L(τ,θ)− 1

µ̃0
M̃(τ,θ)=

L(τ,θ)

λ
+

|M̃(τ,θ)|
µ̃0

.

Since L(τ,θ)>0, |M̃(τ,θ)|>0 in R(ϵ), there exists C(ϵ)>0 such that

L(τ,θ)+ |M̃(τ,θ)|⩾C(ϵ)>0, (τ,θ)∈R(ϵ). (3.2)

Thus, for any integral curve in region R(ϵ), we have

d(θ−τ)

dx
>

C(ϵ)

η
>0, (3.3)

where η=Max(λ,µ̃0).

For the shock layer S(x;λ,µ̃0), let (τM ,θM ) designate the value that S(x;λ,µ̃0)
intersects the ϵ circle about Z1, and (τm,θm) the value of S(x;λ,µ̃0) where it intersects
the ϵ circle about Z0, with S(x1;λ,µ̃0)=(τM ,θM ) and S(x0;λ,µ̃0)=(τm,θm). Thus, for
x0⩽x⩽x1, we have

τ0>τm⩾ τ(x;λ,µ̃0)⩾ τM >τ1,

θ0<θm⩽θ(x;λ,µ̃0)⩽θM <θ1.

Then, for the shock layer S(x;λ,µ̃0), one can get from (3.3) that

x1−x0⩽
η

C(ϵ)

(
θM −τM −(θm−τm)

)
<

η

C(ϵ)

(
θ1−θ0+τ0−τ1

)
. (3.4)

Therefore, given ϵ, δ and S(x;λ,µ̃0) for which

η=Max(λ,µ̃0)⩽
δC(ϵ)

θ1−θ0+τ0−τ1
,
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we can obtain that the simultaneous inequalities{
|τ(x;λ,µ̃0)−τ0,1|>ϵ,

|θ(x;λ,µ̃0)−θ0,1|>ϵ,
(3.5)

hold if and only if the values of S(x;λ,µ̃0) lie in R(ϵ), and thus in the interval of length
less that x1−x0<δ. This indicates that (3.1) holds as λ,µ̃0→0. In addition, it is
noticed that the solutions S(x;λ,µ̃0) can be parameterized such that the point x= ξ
is in the interval (x0,x1), then the convergence of the S(x;λ,µ̃0) to the shock wave is
uniform outside of every open interval containing x= ξ.

3.2. Iterated limit of the shock layer. In this subsection, we study the
iterated limit of the shock layer for Case (2) λ→0, then µ̃0→0; and Case (3) µ̃0→0,
then λ→0.

3.2.1. Limit of the shock layer as λ→0. Fixing µ0 in (1.1), we analyze the
single limit of the shock layer as λ→0.

Lemma 3.2. Let G be any open neighborhood of the closed arc L∗. Then for λ/µ̃0

small enough, all shock layer curves S(λ,µ̃0) lie entirely in G.

Proof. As shown in Figure 3.1, assume that L̄ is an arc of bounded negative slope
with endpoints on M̃∗, and lies so close to L∗. Then we can obtain a subregion G of R
contained between L∗ and L̄. Noting the monotonicity of L∗ between Z0 and Z1, one
can check that such a curve L̄ exists. Let D be the subregion of R bounded by L̄ and
M̃∗, which contains the complement of G in R.

On L̄, L(τ,θ)⩾k1>0, |M̃(τ,θ)|⩽k2 and |slope L̄|⩽N , where k1,k2, and N are
suitable positive constants. Without loss of generality, let µ̃0/λ> (k2/k1)N . Thus, on
L̄, the slopes of the corresponding integral curves of (1.9) satisfy

−dθ

dτ
=− µ̃0

λ

L(τ,θ)

M̃(τ,θ)
⩾

µ̃0k1
λk2

>N,

from which we can conclude that these integral curves must be directed into D for
increasing x. Therefore, under the condition µ̃0/λ> (k2/k1)N , any integral curve of
(1.9) which contains a point of D can not intersect L̄ beyond this point for increasing
x, and hence can not pass through Z1. Consequently, if λ/µ̃0<k1/(k2N), S(λ,µ) must
lie entirely in the region G.

For fixed µ0 in (1.1), recalling that any solution of the reduced system (1.12), for
τ ∈ [τ1,τ0] and for all x∈ (−∞,+∞), is a thermally non-conducting shock layer, we have,

Lemma 3.3. Let S̄(x; ˜̄µ0) be a thermally non-conducting shock layer with viscosity µ̄=

µ̄0|ux|q−2, (q>1, q ̸=2) and ˜̄µ0 := (µ̄0)
1

q−1 . Then, the family of shock layers S(x;λ, ˜̄µ0),
if suitably parameterized, approaches S̄(x; ˜̄µ0) as λ→0, that is,

lim
λ→0

S(x;λ, ˜̄µ0)= S̄(x; ˜̄µ0),

the convergence being uniform in x in every finite interval.

Proof. Let ζ= S̄(x̄; ˜̄µ0)=(τ̄(x̄, ˜̄µ0), θ̄(x̄, ˜̄µ0)) be a point on L∗, and take xλ such that
xλ→ x̄ as λ→0. By virtue of Lemma 3.2, we can parameterize shock layers S(x;λ, ˜̄µ0)=
(τ(x;λ, ˜̄µ0),θ(x;λ, ˜̄µ0)) such that lim

λ→0
S(xλ;λ, ˜̄µ0)= ζ. Also from Lemma 3.2, we have for

every shock layer,

θ= l(τ)+ϵ(τ,λ), (3.6)
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τ

θ

O

Z1

Z0

L∗

M̃∗

S

D
G

L̄

Fig. 3.1.

where lim
λ→0

ϵ(τ,λ)=0 uniformly in τ1⩽ τ ⩽ τ0, and therefore in −∞<x<+∞. Thus,

˜̄µ0
dτ(x;λ, ˜̄µ0)

dx
=M̃

(
τ,l(τ)+ϵ(τ,λ)

)
. (3.7)

Because of the choice for τ(x;λ, ˜̄µ0), it follows from (3.7) that lim
λ→0

τ(x;λ, ˜̄µ0) exists

uniformly in every finite interval of x and satisfies

˜̄µ0
dτ

dx
=M̃(τ,l(τ)),

which means that lim
λ→0

τ(x;λ, ˜̄µ0) satisfies the reduced system (1.12). Since there is a

unique solution of (1.12) passing through the point ζ at x= x̄, we have lim
λ→0

τ(x;λ, ˜̄µ0)=

τ̄(x; ˜̄µ0), and from (3.6), lim
λ→0

θ(x;λ, ˜̄µ0)= θ̄(x; ˜̄µ0).

Remark 3.1. The above analysis shows that if the shock layers are so parameterized
that lim

λ→0
S(x;λ, ˜̄µ0) exists for a single value of x, then it exists for all x∈ (−∞,+∞) and

defines a thermally non-conducting shock layer.

3.2.2. Limit of the shock layer as µ̃0→0. In this subsection, fixing λ in
(1.1), we turn to the single limit of the shock layer as µ̃0→0.

Consider the case when µ̃0/λ is small. At this moment, one should pay attention
to the possibility that the arc M̃∗ is not monotonic between Z0 and Z1. If the arc M̃∗

is monotonic, a similar argument as Lemma 3.2 applies. However, if the arc M̃∗ is not
monotonic, we consider the arc ¯̄M∗ defined by the monotonic function

θ= ¯̄m(τ)= Min
τ1⩽t⩽τ

m(t), τ1⩽ τ ⩽ τ0. (3.8)

This arc joining Z0 and Z1 encloses between it and L∗ a subregion of R, one can check
that all shock layer curves lie in this subregion (Figure 3.2). In fact, if θ=h(τ) is the
equation of any shock layer, we can get

h(τ)⩽h(t)⩽m(t)= ¯̄m(τ), τ ∈ [τ1,τ0], t∈ [τ1,τ ],

from which we have h(τ)< ¯̄m(τ), τ ̸= τ0,τ1. Therefore, all shock layer curves must lie

below ¯̄M∗ in R.
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Replacing M̃∗ by ¯̄M∗, similar to the case when M̃∗ is monotonic, we can get that
for sufficiently small µ̃0/λ, all shock layer curves S(λ,µ̃0) lie entirely in any preassigned

neighborhood of ¯̄M∗. Thus we directly obtain the following,

Lemma 3.4. Let G be any open neighborhood of the closed arc ¯̄M∗ which is defined in
(3.8). Then for µ̃0/λ small enough, all shock layer curves S(λ,µ) lie entirely in G.

τ

θ

O

Z1(τ1, θ1)

Z0(τ0, θ0)

L∗

M̃∗

S R
t+1 t−1

θ(1)

θ(2)

t−2

¯̄M
∗

Fig. 3.2.

For λ fixed and µ̃0→0, similar to the case of Newtonian fluids shown in [10], the
limit solution of the reduced system (1.13) is no longer continuous in general. Then,
we should enlarge the notion of solution of the reduced system (1.13) by admitting
discontinuous solutions, that is, functions τ̄(x), θ̄(x) satisfying (1.13) for τ̄ ∈ [τ1,τ0],
except at points x=xi, i=1, ·· · ,n, where τ̄(xi−0)= t−i , τ̄(xi+0)= t+i ; these solutions
are uniquely determined in −∞<x<+∞ up to an x-translation. Thus, any solution of
(1.13), for τ ∈ [τ1,τ0] and for all x∈ (−∞,+∞), whether continuous, or discontinuous in
the above sense, is a non-viscous shock layer.

To simplify considerations, we assume that n is a finite number, which means that
M̃∗ has only a finite number of minima, so that the arc ¯̄M∗ contains at most a finite
number of intervals on which θ is constant. We also note that Z0 can not lie in such
an interval, while Z1 may or may not. As pictured in Figure 3.2, let the function θ=
¯̄m(τ), τ1⩽ τ ⩽ τ0, be constant on the intervals [t+i ,t

−
i ], (i=1, ·· · ,n), which are ordered

so that t−i >t+i >t−i+1. Now, we can get the following result.

Lemma 3.5. Let S̄(x;λ̄) be a non-viscous shock layer with heat conductivity λ̄. Then,
the family of shock layers S(x;λ̄,µ̃0), if suitably parameterized, approaches S̄(x;λ̄) as
µ̃0→0, that is,

lim
µ̃0→0

S(x;λ̄,µ̃0)= S̄(x;λ̄),

the convergence being uniform in x in any closed interval not containing a point of
discontinuity of S̄(x;λ̄).

Proof. If M̃∗ is strictly monotonic, the proof is similar to that of Lemma 3.3.
However, if M̃∗ is not monotonic, denoting S̄(x;λ̄)=(τ̄(x;λ̄), θ̄(x;λ̄)) and assuming that
x̄1 is the first point of discontinuity of τ̄(x;λ̄), we proceed as follows.

Step 1. We first prove the convergence for x<x̄1. Let ζ=(τ̄(x̄;λ̄), θ̄(x̄;λ̄)), x̄<
x̄1, be a point on M̃∗. For any set xµ satisfying xµ→ x̄ as µ̃0→0, parameterize the
shock layers S(x;λ̄,µ̃0)=(τ(x;λ̄,µ̃0),θ(x;λ̄,µ̃0)) such that lim

µ̃0→0
S(xµ;λ̄,µ̃0)= ζ. Then,

applying Lemma 3.4 yields

τ =m−1(θ)+ϵ(θ,µ̃0), (3.9)
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where m−1(θ) is the inverse of m(τ) for t−1 ⩽ τ ⩽ τ0, θ0⩽θ⩽θ(1)=m(t−1 ), and
lim
µ̃0→0

ϵ(θ,µ̃0)=0 uniformly in every closed interval of θ0⩽θ<θ(1). Thus, we can ob-

tain

λ̄
dθ(x;λ̄,µ̃0)

dx
=L

(
m−1(θ)+ϵ(θ,µ̃0),θ

)
. (3.10)

Since θ(xµ;λ̄,µ̃0)→ θ̄(x̄;λ̄) and xµ→ x̄ as µ̃0→0, and τ̄ =m−1(θ̄) for θ0⩽θ<θ(1), we
can deduce that lim

µ̃0→0
θ(x;λ̄,µ̃0)= θ̄(x;λ̄),−∞<x<x̄1, and from (3.9), lim

µ̃0→0
τ(x;λ̄,µ̃0)=

τ̄(x;λ̄). Furthermore, the convergence in both cases is uniform in every closed interval

to the left of x= x̄1. By the preceding, there exists value x
(1)
µ <x̄1 such that x

(1)
µ →

x̄1,τ(x
(1)
µ ;λ̄,µ̃0)→ t−1 , and θ(x

(1)
µ ;λ̄,µ̃0)→θ(1), as µ̃0→0.

Step 2. Then we consider the convergence for x>x̄1. Assume τ1 ̸= t+1 . In an
analogous way as that in Step 1 and with the same parametrization for the S(x;λ̄,µ̃0),
let ξµ,(ξµ>x̄1), be values satisfying θ(ξµ;λ̄,µ̃0)=θ(1). Then by Lemma 3.4, we have
τ(ξµ;λ̄,µ̃0)→ t+1 as µ̃0→0.

Next, we prove that |ξµ−x
(1)
µ |→0 as µ̃0→0. In the neighborhood of the segment

θ=θ(1) of ¯̄M∗, there exists a constant d such that L(τ,θ)>d>0 in such a neighborhood.

Then, by Lemma 3.4, if µ̃0 is small enough, the arcs of S(x;λ̄,µ̃0) for x
(1)
µ ⩽x⩽ ξµ lie in

this neighborhood. Thus, integrating Equation (1.9)1 yields

|ξµ−x(1)
µ |⩽ λ̄

d

(
θ(ξµ;λ̄,µ̃0)−θ(x(1)

µ ;λ̄,µ̃0)
)
=

λ̄

d

(
θ(1)−θ(x(1)

µ ;λ̄,µ̃0)
)
, (3.11)

which tends to zero as µ̃0→0. Hence, we conclude that ξµ→ x̄1 as µ̃0→0.

Step 3. We turn back to Equations (3.9) and (3.10), where now m−1(θ) is the
inverse of θ=m(τ) for t−2 ⩽ τ ⩽ t+1 , (θ

(1)⩽θ⩽θ(2)=m(t−2 )), and lim
µ̃0→0

ϵ(θ,µ̃0)=0 uni-

formly in every closed interval of θ(1)⩽θ<θ(2). Since θ(ξµ;λ̄,µ̃0)→θ(1)= θ̄(x̄1;λ̄) as
ξµ→ x̄1, and τ̄ =m−1(θ̄) for θ(1)⩽ θ̄⩽θ(2), and the solution of

λ̄
dθ

dx
=L(m−1(θ),θ)

is unique for θ(x̄1;λ̄)=θ(1), (θ(1)⩽θ⩽θ(2)), we have lim
µ̃0→0

θ(x;λ̄,µ̃0)= θ̄(x;λ̄) and

lim
µ̃0→0

τ(x;λ̄,µ̃0)= τ̄(x;λ̄) for x̄1⩽x<x̄2, which are uniform convergence in the closed

interval of (x̄1,x̄2).

We repeat the above procedure until the arc of ¯̄M∗ including Z1 is reached. If Z1

is not contained in one of the intervals of ¯̄M∗, by the analysis as above, we can obtain
the convergence of S(x;λ̄,µ̃0) to S̄(x;λ̄) in every closed subintervals of the half line

x̄n<x<+∞. If Z1 is contained in one of the intervals of ¯̄M∗, that is, θ=θ1, then it
indicates that τ1= t+n and Z1=(τ1,θ1)=(τ̄(x;λ̄), θ̄(x;λ̄)),x̄n<x<+∞. At this moment,
for any small δ>0, let R(δ) be the subregion of R outside the circle of radius δ about Z1.

Assume that L(τ,θ)⩾k(δ)>0 in a neighborhood of θ=θ1 in R(δ). We take x
(n)
µ <x̄n

such that x
(n)
µ → x̄n, τ(x

(n)
µ ;λ̄,µ̃0)→ t−n , and θ(x

(n)
µ ;λ̄,µ̃0)→θ(n)=θ1, as µ̃0→0. Then,

for any ξµ>x
(n)
µ such that S(ξµ;λ̄,µ̃0)∈R(δ), we can deduce from (1.9)1 that as µ̃0→0,

|ξµ−x(n)
µ |⩽ λ̄

k(δ)

(
θ1−θ(x(n)

µ ;λ̄,µ̃0)
)
→0,
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which means that those x>x̄n for which τ(x;λ̄,µ̃0)−τ1>δ lie in an interval about x̄n

which grows arbitrarily small as µ̃0→0. Since δ is arbitrary, we can find that as µ̃0→0,
the limits τ(x;λ̄,µ̃0)→ τ1 and θ(x;λ̄,µ̃0)→θ1 are uniform convergence in any closed half
line of x̄n<x<∞. This completes the proof of Lemma 3.5.

Remark 3.2. The above analysis indicates that if the shock layers are so parameter-
ized that lim

µ̃0→0
S(x;λ̄,µ̃0) exists for a single value of x, then it exists for all x and defines

a non-viscous shock layer.

Now, we are in the position to establish the existence of the iterated limits, and
then show that the iterated limits are equal to the double limit for the shock layer of
(1.1). It suffices to parameterize the shock layer such that both the double limit and the
two iterated limits exist simultaneously. To do this, we take a circle of sufficiently small
radius ϵ about Z0. This circle intersects shock layer curve S(λ,µ̃0) at exactly one point
ζλµ, and let ζλ,ζµ represent the point of intersection with M̃∗ and L∗, respectively. By
Lemma 3.2 and Lemma 3.4, one can get that lim

λ→0
ζλµ= ζµ and lim

µ̃0→0
ζλµ= ζλ . For fixed

ξ, let

xλµ= ξ− 1

2
δλµ, x̄µ= ξ− 1

2
δµ, x̄λ= ξ− 1

2
δλ,

where

δλµ=(η/C(ϵ))(θ1−θ0+τ0−τ1), η=Max(λ,µ̃0),

δµ=(Maxµ̃0/C(ϵ))(θ1−θ0+τ0−τ1),

δλ=(Maxλ/C(ϵ))(θ1−θ0+τ0−τ1),

C(ϵ) is defined in inequality (3.2) of Lemma 3.1. Then, the desired parametrization of
the shock layer can be obtained by making the assignment S(xλµ;λ,µ̃0)= ζλµ. Under
this parametrization, since ξ is contained in the interval (xλµ,xλµ+δλµ) as η→0, one
can check from the proof of Lemma 3.1 that

lim
λ→0
µ̃0→0

S(x;λ,µ̃0)=

{
Z0, −∞<x<ξ,

Z1, ξ <x<+∞.

For fixed µ̃0, since

lim
λ→0

δλµ=
(
Maxµ̃0/C(ϵ)

)(
θ1−θ0+τ0−τ1

)
= δµ,

we have lim
λ→0

xλµ= ξ− 1
2δµ= x̄µ and lim

λ→0
S(xλµ;λ,µ̃0)= ζµ. Therefore, as in the proof

of Lemma 3.3, we obtain lim
λ→0

S(x;λ,µ̃0)=(τ̄(x;µ̃0), θ̄(x;µ̃0)), where (τ̄(x;µ̃0), θ̄(x;µ̃0))

is the solution of (1.12) which satisfies (τ̄(x̄µ;µ̃0), θ̄(x̄µ;µ̃0))= ζµ. Combining this
with the existence of the double limit, we can establish the existence of the iterated
limit lim

µ̃0→0
( lim
λ→0

S(x;λ,µ̃0)), and its equality with the double limit. We can investigate

lim
λ→0

( lim
µ̃0→0

S(x;λ,µ̃0)) in a similar consideration. Thus, we can give the proof of Theorem

1.2.

Proof. (Proof of Theorem 1.2.) Combining Lemma 3.1, Lemma 3.3 with Lemma
3.5, we can obtain Theorem 1.2.
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