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A GLOBALLY CONVERGENT DAI-LIAO CONJUGATE GRADIENT
METHOD USING QUASI-NEWTON UPDATE FOR

UNCONSTRAINED OPTIMIZATION∗

YUTING CHEN†

Abstract. Using quasi-Newton update and acceleration scheme, a new Dai-Liao conjugate gradient
method that does not need computing or storing any approximate Hessian matrix of the objective
function is developed for unconstrained optimization. It is shown that the search direction derived
from a modified Perry matrix not only possesses sufficient descent condition but also fulfills Dai-Liao
conjugacy condition at each iteration. Under certain assumptions, we establish the global convergence of
the proposed method for uniformly convex function and general function, respectively. The numerical
results illustrate that the presented method can effectively improve the numerical performance and
successfully solve the test problems with a maximum dimension of 100000.
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1. Introduction

Due to simple computation, low memory requirement and strong convergence prop-
erty, conjugate gradient methods are widely used to solve unconstrained optimization
with the following form:

minf(x), x∈Rn, (1.1)

where f : Rn→R is a continuously differentiable function, bounded below and its gra-
dient is denoted by g(x)=∇f(x).

Starting from an initial guess x0∈Rn, the conjugate gradient methods generate a
sequence {xk} as

xk+1=xk+αkdk, k≥0, (1.2)

where the step-length αk>0 satisfies some line search and the search direction dk is
determined by

d0=−g0, dk+1=−gk+1+βkdk, k≥0, (1.3)

where gk+1=g(xk+1) and the scalar βk is called the conjugate gradient parameter.
Different choices for βk result in different conjugate gradient methods.

One of the conjugate gradient methods’ advantages is conjugacy, i.e., the generated
search direction satisfies dTk+1yk=0, where yk=gk+1−gk. Since practical numerical
methods adopt inexact line search instead of exact ones, Dai and Liao [10] extended the
classical conjugacy condition to

dTk+1yk=−tgTk+1sk, (1.4)
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where t≥0 is a scalar. Based on Dai-Liao conjugacy condition (1.4), Dai and Liao
obtained βDL

k (t) as follows:

βDL
k (t)=

gTk+1yk

dTk yk
− t

gTk+1sk

dTk yk
. (1.5)

Many researchers have paid much attention to design the manners of computing the
parameter t, which can greatly affect the numerical performance of Dai-Liao conjugate

gradient methods. By letting the parameter t=2
∥yk∥2

sTk yk
and t=

∥yk∥2

sTk yk
, Hager and Zhang

[14] and Dai and Kou [9] obtained CG DESCENT method and DK method, respec-
tively.

On the other hand, combining quasi-Newton update with conjugate gradient
method, some researchers considered conjugate gradient method as a special type of
quasi-Newton method. Based on this relation, Perry [17] introduced the following pa-
rameter βk in (1.3)

βP
k =

gTk+1yk

dTk yk
−

gTk+1sk

dTk yk
. (1.6)

By simple derivation, the Perry’s search direction defined by (1.3) and (1.6) can be
written as

dPk+1=−QP
k+1gk+1, (1.7)

where

QP
k+1= I− sky

T
k

sTk yk
+

sks
T
k

sTk yk
. (1.8)

It is obvious that Perry conjugate gradient method can be considered as a special type
of quasi-Newton method in which QP

k+1 is used to approximate the inverse Hessian of

the objective function. Since QP
k+1 is nonsymmetric and does not satisfy the secant

condition, (1.7) cannot be regarded as quasi-Newton direction from a strict point of
view.

To overcome the above shortcomings, together with Dai-Liao conjugacy condition
(1.4), Andrei [3,5] suggested the following matrix QN

k+1 to replace QP
k+1 given in (1.8)

QN
k+1= I− sky

T
k −yks

T
k

sTk yk
+ t

sks
T
k

sTk yk
. (1.9)

Yao et al. [18] introduced a three-term Dai-Liao conjugate gradient method, in
which the following modified symmetric Perry matrix was used to approximate the
inverse Hessian

QMP
k+1= I−ωk

sky
T
k −yks

T
k

sTk yk
+

sks
T
k

sTk yk
, (1.10)

where ωk was a positive parameter to be determined based on Dai-Liao conjugacy
condition (1.4). The generated search directions in the above methods satisfy both the
descent condition and Dai-Liao conjugacy condition. For relevant research see [2, 4, 6–
8,11,19,20].
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Inspired by the above, we are interested in developing a new Dai-Liao conjugate
gradient method based on the fact that conjugacy condition and quasi-Newton technique
can improve the classical conjugate gradient method. The proper modification of Perry
matrix can ensure the generated search direction possesses sufficient descent condition
and Dai-Liao conjugacy condition. Meanwhile, there is no computation or storage of
any approximate Hessian matrix of the objective function during the execution of the
obtained method. For general function, we establish the global convergence of the
proposed method under appropriate conditions, while most of the methods mentioned
above (such as [2, 3, 5–8,11]) are only convergent for uniformly convex function.

The rest of this paper is organized as follows. In next section, we describe the
framework of the new Dai-Liao conjugate gradient method using quasi-Newton update
for unconstrained optimization. Global convergence results for uniformly convex func-
tion and general function will be established respectively under appropriate conditions
in Section 3. Section 4 is devoted to numerical experiments and comparisons with some
effective conjugate gradient algorithms. Conclusions are drawn in Section 5.

2. A new Dai-Liao conjugate gradient method
For the update matrices QN

k+1 and QMP
k+1 suggested in [3,5] and [18], it is reasonable

to believe that the iterative update matrix can be expressed as

Qk+1= I+ t1Q
k+1
2 + t2Q

k+1
1 ,

where Qk+1
2 and Qk+1

1 are given rank 2 and rank 1 adjusted matrices, respectively. The
search direction of the methods in [3,5,18] can satisfy the descent condition and Dai-Liao
conjugacy condition. Nevertheless, the global convergence of the methods in [3, 5] are
established just for uniformly convex function. In order to obtain the global convergence
for general function and simplify the computation appropriately, we let t1= t2=1 and
propose the following simplified symmetric Perry matrix:

QNP
k+1= I+Qk+1

2 +Qk+1
1 , (2.1)

where

Qk+1
2 =−sky

T
k −yks

T
k

sTk yk
, Qk+1

1 =
sks

T
k

sTk yk
. (2.2)

The obtained method can be regarded as a special Dai-Liao conjugate gradient method,
in which the search direction is generated by

dk+1=−QNP
k+1gk+1, k≥0. (2.3)

Substituting (2.2) into (2.3), the generated search direction can be rewritten as a typical
three-term conjugate gradient direction as follows:

dk+1=−gk+1+akdk+bkyk, (2.4)

where

ak=
gTk+1yk

dTk yk
−

gTk+1sk

dTk yk
, (2.5)

bk=−
gTk+1sk

sTk yk
. (2.6)
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Note that if the exact line search is employed, then (2.5) and (2.6) yield ak=
gTk+1yk

dTk yk
,

bk=0, i.e.,

dk+1=−gk+1+
gTk+1yk

dTk yk
dk=−gk+1+βHS

k dk,

which is exactly the classical HS conjugate gradient method [15].

Taking into consideration the acceleration scheme [1], the detailed steps of the new
Dai-Liao conjugate gradient algorithm (NDLCG) can be formally stated as follows.

Algorithm 2.1 (NDLCG)

Step 0. Choose an initial point x0 ∈Rn, ε>0, and compute f0=f(x0), g0=∇f(x0).
Set d0 :=−g0 and k :=0.

Step 1. If ∥gk∥<ε, stop, else go to Step 2.

Step 2. Compute a step-length αk by the Wolfe line search:

f(xk+αkdk)−f(xk)≤ραkg
T
k dk, (2.7)

and

gTk+1dk≥σgTk dk, (2.8)

where 0<ρ<σ<1.

Step 3. Compute xk+1 by the acceleration scheme,

3.1. Compute z=xk+αkdk, gz =∇f(z) and yz =gk−gz;

3.2. Compute āk=αkg
T
k dk and b̄k=−αkd

T
k yk;

3.3. Acceleration scheme. If b̄k>0, then compute ξk=−āk/b̄k and update the
variables as xk+1=xk+ξkαkdk, otherwise update the variables as xk+1=xk+αkdk.

Step 4. Compute fk+1=f(xk+1), gk+1=g(xk+1), sk=xk+1−xk and yk=gk+1−gk.

Step 5. Compute gTk+1sk, g
T
k+1yk and dTk yk, respectively.

Step 6. Compute dk+1 by (2.4), in which ak and bk are determined by (2.5) and
(2.6), respectively.

Step 7. Set k :=k+1 and go to Step 1.

Remark 2.1. Step 3 corresponds to the acceleration scheme which is proposed by
Andrei [1]. Specifically, the main idea is to modify the step-length αk by means of a
positive parameter ξk in a multiplicative manner. Numerical results in Section 4 show
that the behavior of accelerated computational scheme outperforms the corresponding
conjugate gradient method in such a way.

Remark 2.2. The main computational cost lies in gTk+1sk, g
T
k+1yk and dTk yk in Step 5.

For the objective function f(x), where x∈Rn, they cost O(3n) operations to compute
the values of ak and bk. Therefore, no additional computations or storage costs are
required in the process.
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3. Convergence analysis
We use the basic assumption on the objective function in the following.

Assumption A
(i) The level set Ω={x∈Rn : f(x)≤f(x0)} is bounded, i.e., there exists a constant
B>0 such that ∥x∥≤B, ∀x∈Ω.

(ii) The function f :Rn→R is continuously differentiable and its gradient is Lipschitz
continuous in a neighborhood N of Ω, i.e., there exists a constant L>0 such that

∥g(x)−g(y)∥≤L∥x−y∥, ∀x,y∈N. (3.1)

Under the above assumptions, there exists a constant Γ>0 such that

∥g(x)∥≤Γ, ∀x∈Ω. (3.2)

The descent and the conjugacy conditions of a proposed search direction are crucial
in the convergence analysis for conjugate gradient methods. The search direction gen-
erated by NDLCG can possess both the sufficient descent condition and the Dai-Liao
conjugacy condition, a concept to be discussed below. Since the line search satisfies the
Wolfe line search (2.7) and (2.8), it follows that sTk yk>0.

Lemma 3.1. Suppose that the search direction dk+1 is generated by NDLCG. Then
the sufficient descent condition holds for all k≥0, i.e., there exists a positive constant
c, such that

gTk+1dk+1≤−c∥gk+1∥2. (3.3)

Proof. Since gT0 d0=−∥g0∥2, the sufficient descent condition holds for k=0.
By direct computation, we get

gTk+1dk+1 = −∥gk+1∥2+akg
T
k+1dk+bkg

T
k+1yk

= −∥gk+1∥2+
gTk+1ykg

T
k+1sk

sTk yk
−

(gTk+1sk)
2

sTk yk
−

gTk+1skg
T
k+1yk

sTk yk

= −∥gk+1∥2−
(gTk+1sk)

2

sTk yk
≤ −∥gk+1∥2,

which means that the sufficient descent condition holds for c=1, since sTk yk>0.

Lemma 3.2. Suppose that the search direction dk+1 is generated by NDLCG. Then
dk+1 given by (2.4)-(2.6) satisfies the Dai-Liao conjugacy condition (1.4), i.e.,

dTk+1yk=−tgTk+1sk,

where the scalar t>0 for all k.

Proof. By direct computation, we have

yTk dk+1=−(1+
∥yk∥2

sTk yk
)sTk gk+1≡−t(sTk gk+1),

where t=(1+
∥yk∥2

sTk yk
)>0, since sTk yk>0.
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Although the search direction dk is always a descent direction, in order to get the
convergence of NDLCG, we need to derive a lower bound for the step-length αk.

Lemma 3.3. Suppose that Assumption A holds. Consider the conjugate gradient
method (1.2) and (2.4)-(2.6), where the step-length αk is determined by the Wolfe line
search (2.7) and (2.8). Then αk satisfies

αk≥
(σ−1)gTk dk
L∥dk∥2

, (3.4)

where σ and L are positive constants in (2.8) and (3.1), respectively.

Proof. Subtracting gTk dk from both sides of (2.8) and using (3.1), we have

(σ−1)gTk dk≤ (gk+1−gk)
Tdk=yTk dk≤∥yk∥∥sk∥≤αkL∥dk∥2.

Since dk is a descent direction and σ<1, (3.4) follows immediately.

The following lemma called Zoutendijk condition [21] plays an important role in the
analysis of global convergence for conjugate gradient method.

Lemma 3.4. Suppose that Assumption A holds. Consider the conjugate gradient
method (1.2) and (2.4)-(2.6), where the step-length αk is determined by the Wolfe line
search (2.7) and (2.8). Then

∞∑
k=0

(gTk dk)
2

∥dk∥2
<∞. (3.5)

Proof. Combining (2.7) with (3.4), we have

f(xk)−f(xk+αkdk)≥
ρ(1−σ)(gTk dk)

2

L∥dk∥2
.

By summing up both sides of the above inequality, and using the condition (i) of As-
sumption A, Zoutendijk condition (3.5) holds immediately.

In what follows, we establish the global convergence theorem of NDLCG for uni-
formly convex function. If f is a uniformly convex function on Ω, then there exists a
constant µ>0 such that

(∇f(x)−∇f(y))T(x−y)≥µ∥x−y∥2, ∀x,y∈N. (3.6)

Lemma 3.5. Suppose that Assumption A holds. Let {xk} and {dk} be generated by
NDLCG. For given uniformly convex function f , the norms of the sequence {dk} is
bounded above, i.e., there exists a constant M>0 such that

∥dk∥≤M, ∀k≥0. (3.7)

Proof. From (3.1), we have

∥yk∥≤L∥sk∥. (3.8)

From (3.6), we obtain

yTk sk≥µ∥sk∥2. (3.9)
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From Cauchy inequality and (3.9), it follows that µ∥sk∥2≤yTk sk≤∥yk∥∥sk∥, i.e.,

µ∥sk∥≤∥yk∥. (3.10)

By using (3.2) and (3.8)-(3.10) with (2.5) and (2.6) in (2.4), we get

∥dk+1∥=∥−gk+1+akdk+bkyk∥

=∥−gk+1+
gTk+1yk−gTk+1sk

sTk yk
sk−

gTk+1sk

sTk yk
yk∥

≤∥gk+1∥+
∥gk+1∥∥yk∥+∥gk+1∥∥sk∥

sTk yk
∥sk∥+

∥gk+1∥∥sk∥
sTk yk

∥yk∥

≤Γ+
ΓL∥sk∥+Γ∥sk∥

µ∥sk∥2
∥sk∥+

Γ∥sk∥
µ∥sk∥2

L∥sk∥

=Γ+
ΓL+Γ

µ
+

ΓL

µ
≡M.

The proof is completed.

Theorem 3.1. Suppose that Assumption A holds. Let {xk} and {dk} be generated by
NDLCG. For uniformly convex function, we have

lim
k→∞

∥gk∥=0. (3.11)

Proof. According to Lemmas 3.1, 3.4 and 3.5, we have

∞>
∑
k≥0

(gTk dk)
2

∥dk∥2
≥ c2

M2

∑
k≥0

∥gk∥4,

which deduces (3.11).

Furthermore, in order to obtain the global convergence of NDLCG for general func-
tion, we need to make some modifications as follows:

(i) We make a nonnegative restriction on ak as:

a+k =max{ak, 0}, (3.12)

where ak is defined by (2.5). Then the search direction is generated by

dk+1=−gk+1+a+k dk+bkyk, (3.13)

where a+k and bk are computed as (3.12) and (2.6), respectively.

(ii) In determination of the step-length αk, we employ strong Wolfe line search
instead of the Wolfe line search, which is given by (2.7) and

|gTk+1dk|≤−σgTk dk. (3.14)

For a general function f , we establish a weaker convergence result in the sense that

liminf
k→∞

∥gk∥=0. (3.15)
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Suppose that (3.15) does not hold, i.e., there is a positive constant γ such that

∥gk∥>γ, ∀k≥0. (3.16)

Lemma 3.6. Suppose that Assumption A holds. Let dk+1 be generated by (3.13),
where a+k and bk are computed as (3.12) and (2.6) respectively, and the step-length αk

is determined by strong Wolfe line search (2.7) and (3.14). If (3.16) holds, then∑
k≥0

∥uk+1−uk∥2<∞, (3.17)

where uk=
dk
∥dk∥

.

Proof. The definition of uk is well-defined, since the search direction fulfills the
sufficient descent condition, dk=0 implies gk=0 which contradicts (3.16). It follows
from (3.13) that

dk+1

∥dk+1∥
=

−gk+1

∥dk+1∥
+a+k

dk
∥dk+1∥

+bk
yk

∥dk+1∥

=
−gk+1+bkyk

∥dk+1∥
+a+k

∥dk∥
∥dk+1∥

dk
∥dk∥

, (3.18)

which means

uk+1=ωk+νkuk, (3.19)

where

ωk=
−gk+1+bkyk

∥dk+1∥
, (3.20)

νk=a+k
∥dk∥

∥dk+1∥
≥0. (3.21)

Combining the identity ∥uk+1∥=∥uk∥=1 with (3.19), we have

∥ωk∥=∥uk+1−νkuk∥=∥νkuk+1−uk∥. (3.22)

Using triangle inequality, (3.22) and νk≥0, we get

∥uk+1−uk∥≤∥(1+νk)uk+1−(1+νk)uk∥
≤∥uk+1−νkuk∥+∥νkuk+1−uk∥
=2∥ωk∥. (3.23)

From strong Wolfe line search (3.14), we obtain∣∣∣∣∣gTk+1dk

dTk yk

∣∣∣∣∣≤ σ

1−σ
. (3.24)
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By using the definition of (3.20) and (3.21) with (3.24), we have

∥ωk∥ ≤ ∥−gk+1+bkyk∥
∥dk+1∥

≤ ∥gk+1∥+ |bk|∥yk∥
∥dk+1∥

≤
∥gk+1∥+ σ

1−σ

(
∥gk+1∥+∥gk+1∥ ∥gk∥

∥gk+1∥

)
∥dk+1∥

.

It follows from (3.2) and (3.16) that

∥ωk∥≤
∥gk+1∥
∥dk+1∥

[
1+

σ

1−σ
(1+

Γ

γ
)

]
≡M1

∥gk+1∥
∥dk+1∥

. (3.25)

From Lemmas 3.1 and 3.4, we obtain that

∞≥
∑
k≥0

(gTk+1dk+1)
2

∥dk+1∥2
≥
∑
k≥0

c2∥gk+1∥4

∥dk+1∥2
≥
∑
k≥0

c2γ2∥gk+1∥2

∥dk+1∥2
, (3.26)

which, together with (3.23) and (3.25), yields (3.17). The proof is completed.

Lemma 3.6 indicates that the generated unit direction uk changes slowly and asymp-
totically. In the global convergence of conjugate gradient method for general functions,
the following Property (∗) proposed by Gilbert and Nocedal [13] has been widely ap-
plied. Motivated by [13], we prove that Property (∗) holds for the Dai-Liao conjugate
gradient method formed by (1.2) and (3.13), where a+k and bk are computed as (3.12)
and (2.6) respectively, and the step-length αk is determined by strong Wolfe line search
(2.7) and (3.14).

Property (∗) Consider the conjugate gradient method (1.2) and (3.13), and suppose
that

0<γ≤∥gk∥≤ γ̄, ∀k≥0. (3.27)

Under this assumption, we say that the method has Property (∗) if there are constants
b>1 and λ>0 such that for all k

|ak|≤ b, (3.28)

and

∥sk∥≤λ⇒|ak|≤
1

2b
. (3.29)

Lemma 3.7. Suppose that Assumption A holds. Let dk+1 be generated by (3.13),
where a+k and bk are computed as (3.12) and (2.6) respectively, and the step-length αk

is determined by strong Wolfe line search (2.7) and (3.14). Then Property (∗) holds.

Proof. From the strong Wolfe line search (3.14) and the sufficient descent condition
(3.3), we get

dTk yk≥ (σ−1)gTk dk≥ c(1−σ)∥gk∥2. (3.30)
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It follows from (3.27), (3.30) and the definition of ak given by (2.5) that

|ak|=

∣∣∣∣∣gTk+1yk

dTk yk
−

gTk+1sk

dTk yk

∣∣∣∣∣
≤∥gk+1∥∥yk∥+∥gk+1∥∥sk∥

dTk yk

≤∥gk+1∥(∥gk+1∥+∥gk∥)+∥gk+1∥(∥xk+1∥+∥xk∥)
c(1−σ)∥gk∥2

=
2γ̄2+2Bγ̄

c(1−σ)γ2
≡ b. (3.31)

It is worth mentioning that the value range of b exactly satisfies Property (∗), i.e., b>1.
We know from the previous discussion that 0<σ<1, γ̄ >γ >0, B>0 and c=1. Then

2γ̄2+2Bγ̄

c(1−σ)γ2
>

2γ2+2Bγ

2γ2
=1+

B

γ
>1.

Define

λ=
c2(1−σ)2γ4

4γ̄2(γ̄+B)(L+1)
. (3.32)

If ∥sk∥≤λ, from the first inequality of (3.31), we obtain

|ak|≤
γ̄L∥sk∥+ γ̄∥sk∥
c(1−σ)∥gk∥2

≤ γ̄L+ γ̄

c(1−σ)γ2
∥sk∥

≤ γ̄L+ γ̄

c(1−σ)γ2
λ=

1

2b
. (3.33)

The proof is completed.

In next lemma, we will state that if the sequence {∥gk+1∥} is bounded away from
zero, then a fraction of the steps cannot be too small. Let N denote the set of positive
integers, for λ>0, define

Kλ :={i∈N : i≥1, ∥si∥≥λ}, (3.34)

that is, the set of integers corresponding to steps that are larger than λ. We will need
to discuss groups of ∆ consecutive iterates. For this purpose, let

Kλ
k,∆ :={i∈N : k≤ i≤k+∆−1, ∥si∥≥λ}. (3.35)

Let
∣∣∣Kλ

k,∆

∣∣∣ denote the number of elements in Kλ
k,∆.

Lemma 3.8. Suppose that Assumption A holds. Let dk+1 be generated by (3.13),
where a+k and bk are computed as (3.12) and (2.6) respectively, and the step-length αk

is determined by strong Wolfe line search (2.7) and (3.14). If (3.16) holds, then there is
a constant λ>0 such that for any ∆∈N and any index k0, there exists a greater index
k≥k0 such that ∣∣Kλ

k,∆

∣∣> ∆

2
. (3.36)



Y. CHEN 291

Proof. Suppose by contradiction that for any λ>0, there exists ∆∈N and k0
such that for any k≥k0, we have ∣∣Kλ

k,∆

∣∣≤ ∆

2
. (3.37)

It follows from the definition of bk given by (2.6) with (3.2), (3.16), (3.24) and (3.37)
that

∥bkyk∥=

∣∣∣∣∣gTk+1sk

sTk yk

∣∣∣∣∣∥yk∥
≤ σ

1−σ

(
∥gk+1∥+

∥gk∥
∥gk+1∥

∥gk+1∥
)

≤ σ

1−σ

(
1+

Γ

γ

)
∥gk+1∥≡M2∥gk+1∥. (3.38)

Since the method fulfills Property (∗), which leads to the existence of λ>0 and b>1
such that (3.28) and (3.29) hold for all k. For this λ, let ∆ and k0 be given by (3.37),
for any given index l≥k0+1, we have

∥dk+1∥2≤(ak∥dk∥+∥−gk+1+bkyk∥)2

≤2a2k∥dk∥2+2∥−gk+1+bkyk∥2

≤2a2k∥dk∥2+2(2∥gk+1∥2+2∥bkyk∥2). (3.39)

By use of (3.38) and (3.39), we deduce that

∥dk+1∥2≤2a2k∥dk∥2+4(1+M2
2 )∥gk+1∥2

≤2a2k∥dk∥2+4(1+M2
2 )γ̄

2≡2a2k∥dk∥2+M3. (3.40)

The remaining proof is the same as Lemma 4.2 in [13], and hence the details are omitted.
The proof is then completed.

Based on Lemmas 3.6-3.8, we establish the global convergence of the proposed Dai-
Liao conjugate gradient method for general function.

Theorem 3.2. Suppose that Assumption A holds. Let dk+1 be generated by (3.13),
where a+k and bk are computed as (3.12) and (2.6) respectively, and the step-length αk

is determined by strong Wolfe line search (2.7) and (3.14). Then (3.15) holds.

Proof. We proceed by contradiction. Assume that (3.15) does not hold, which
means that the condition (3.16) holds and the Lemmas 3.6-3.8 further hold. Together
with Assumption A, we obtain a contradiction similarly to the proof of Theorem 4.3
in [13] and omit the details here. The proof is then completed.

4. Numerical experiments
In this section, we report some numerical results. All codes are written in Matlab

R2013a and ran on PC with 1.80 GHz CPU processor and 8.00 GB RAM memory. The
iteration is terminated by the following condition

∥gk∥≤ε or |f(xk+1)−f(xk)|≤εmax{1.0, |f(xk)|}. (4.1)

The relevant parameters are specified as follows. In (4.1), ε=10−6. In the Wolfe line
search, ρ=0.0001, σ=0.8. The other parameters are set as default.
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We select a number of 10 unconstrained optimization test problems from [16]. For
each problem, we report 15 numerical experiments with different dimensions from 5000
to 100000. That is, we need to consider a set of 150 large-scale test problems, see Table
4.1 for details. All algorithms share the same stopping criteria and initial point.

No. Prob dim
1. Allgower function 5000,6000,...,9000,10000, 20000,...,90000,100000
2. Penalty function I 5000,6000,...,9000,10000, 20000,...,90000,100000
3. Boundary value function 5000,6000,...,9000,10000, 20000,...,90000,100000
4. Schittkowski function 302 5000,6000,...,9000,10000, 20000,...,90000,100000
5. Yang tridiagonal function 5000,6000,...,9000,10000, 20000,...,90000,100000
6. Variable dimension function 5000,6000,...,9000,10000, 20000,...,90000,100000
7. Broyden tridiagonal function 5000,6000,...,9000,10000, 20000,...,90000,100000
8. Extended Rosenbrock function 5000,6000,...,9000,10000, 20000,...,90000,100000
9. Generalized Rosenbrock function 5000,6000,...,9000,10000, 20000,...,90000,100000
10. Extended Powell singular function 5000,6000,...,9000,10000, 20000,...,90000,100000

Table 4.1. The test problems and their dimensions.

The following numerical experiments mainly include two parts.

Part 1. The comparisons between NDLCG and NDLCG without the acceleration
scheme that is called NDLCG− for simplicity.

To compare the performance of different methods more clearly, we employ the pro-
files introduced by Dolan and Moré [12]. The left axis gives the percentage of the test
problems for which a method is the fastest (efficiency), while the right side gives the
percentage of the test problems that are successfully solved by each of the methods
(robustness). In a performance profile plot, the top curve corresponds to the method
that solves the most problems in a time that is within a factor of the best time.

Figures 4.1-4.4 plot the performance profiles for the number of iterations (k), the
CPU time (t), the number of function evaluations (nf) and the number of gradient
evaluations (ng), respectively. For example, when comparing NDLCG with NDLCG−
subject to the number of iterations (i.e., Figure 4.1), we see that NDLCG is the top
performer. NDLCG is better in 33 problems (i.e., it acheived the minimum number
of iterations in 33 problems), NDLCG− is better in only 2 problems, and they have
the same number of iterations in 115 problems. The data with the same meaning are
shown in the bottom right of Figures 4.2-4.4. Having that in view, we claim that
the acceleration strategy can improve the numerical performance of conjugate gradient
method in a way.

Part 2. The comparisons between NDLCG, CD DESCENT [14], DK [9],
THREECG [3] and TTCG [5].

CD DESCENT and DK are recognized as two of the most popular conjugate gradi-
ent methods that have good numerical performance. THREECG and TTCG are both
three-term conjugate gradient methods which have similar structure with NDLCG. For
the sake of fairness, combining with acceleration scheme and by means of the Wolfe line
search, we study the numerical comparisons of the five conjugate gradient methods in
the form

dk+1=−gk+1+akdk+bkyk.

· NDLCG: ak and bk are determined by (2.5) and (2.6), respectively.

· CD DESCENT:

ak=
gTk+1yk

dTk yk
−2

∥yk∥2

sTk yk

gTk+1sk

dTk yk
, bk=0.
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Fig. 4.1. The number of iterations (k).
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Fig. 4.2. The CPU time (t).
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Fig. 4.3. The number of function evaluations (nf).
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Fig. 4.4. The number of gradient evaluations (ng).

· DK:

ak=
gTk+1yk

dTk yk
− ∥yk∥2

sTk yk

gTk+1sk

dTk yk
, bk=0.

· THREECG:

ak=
gTk+1yk

dTk yk
−
(
1+

∥yk∥2

sTk yk

)
gTk+1sk

dTk yk
, bk=−
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sTk yk
.

· TTCG:
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)
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dTk yk
, bk=−
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Fig. 4.5. The number of iterations (k).
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From Figure 4.5, subject to the number of iterations, NDLCG outperforms in 97
problems, THREECG outperforms in 19 problems, CG DESCENT and DK have similar
performance that outperforms in 14 problems and 13 problems respectively, while TTCG
only outperforms in 7 problems. The data shown in the bottom right of Figures 4.6-4.8
have the same meaning.

As shown in Figure 4.6, with respect to the CPU time, CG DESCENT, DK and
TTCG have similar performance and all worse than NDLCG and THREECG slightly.
It is obvious that the curve “NDLCG” is the top performer.

Similar with the results of Figures 4.5-4.6, Figures 4.7-4.8 give the profiles with
respect to the number of function evaluations and gradient evaluations respectively, from
which we can find NDLCG is slightly better than the other four methods. Although
the four methods compared with NDLCG perform slightly different, their performances
are quite close in general.

The numerical results demonstrate that NDLCG not only dominates THREECG
and TTCG, but also CG DESCENT and DK with acceleration scheme, which were
regarded as some of the most effective conjugate gradient methods. Moreover, NDLCG
also has high efficiency and robust numerical performance even if τ is small (see τ ∈ [1,3]).
To conclude, the proposed NDLCG in this paper is competitive and suitable for solving
large-scale problems.

5. Conclusions

Conjugate gradient method represents an important class of optimization algo-
rithms characterized by strong convergence and nice numerical performance. In this
paper, we focus on combining the conjugate gradient method with quasi-Newton tech-
nology and Dai-Liao conjugacy condition, and suggest a new Dai-Liao conjugate gra-
dient method with acceleration scheme for solving unconstrained optimization. The
generated search direction is a linear combination of −gk+1, dk and yk with the form
dk+1=−gk+1+akdk+bkyk, where the choices of two parameters ak and bk ensure that
dk+1 satisfies sufficient descent and Dai-Liao conjugacy conditions. Under suitable as-
sumptions, the global convergence of the obtained method for uniformly convex func-
tion and general function are established, respectively. Furthermore, we compare the
numerical performance of the presented method against four other conjugate gradient
methods, the numerical results indicate that the proposed method is always efficient as
the dimension of problem increases.

Future research includes developing better choices of parameters to improve the nu-
merical performance of the conjugate gradient methods, and extending the convergence
results to other nonlinear conjugate gradient methods in a very economical fashion.
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