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RELAXATION IN A KELLER-SEGEL-CONSUMPTION SYSTEM
INVOLVING SIGNAL-DEPENDENT MOTILITIES∗

GENGLIN LI† AND MICHAEL WINKLER‡

Abstract. Two relaxation features of the migration-consumption chemotaxis system involving
signal-dependent motilities, {

ut = ∆
(
uϕ(v)

)
,

vt = ∆v−uv,
(⋆)

are studied in smoothly bounded domains Ω⊂Rn, n≥1: It is shown that if ϕ∈C0([0,∞)) is positive
on [0,∞), then for any initial data (u0,v0) belonging to the space (C0(Ω))⋆×L∞(Ω) an associated
no-flux type initial-boundary value problem admits a global very weak solution. Beyond this initial
relaxation property, it is seen that under the additional hypotheses that ϕ∈C1([0,∞)) and n≤3, each
of these solutions stabilizes toward a semi-trivial spatially homogeneous steady state in the large time
limit.

By thus applying to irregular and partially even measure-type initial data of arbitrary size, this firstly
extends previous results on global solvability in (⋆) which have been restricted to initial data not
only considerably more regular but also suitably small. Secondly, this reveals a significant difference
between the large time behavior in (⋆) and that in related degenerate counterparts involving functions
ϕ with ϕ(0)= 0, about which, namely, it is known that some solutions may asymptotically approach
nonhomogeneous states.
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1. Introduction
Chemotaxis systems accounting for local sensing mechanisms have attracted in-

creased interest in the recent literature. When viewed in the context of general Keller-
Segel type systems ([23]) of the form{

ut=∇·
(
D(u,v)∇u−χ(u,v)u∇v

)
,

vt=∆v+K(u,v),
(1.1)

setting a corresponding focus amounts to assuming the diffusivity D and the cross-
diffusion rate χ to be linked through the relations

D(u,v)=ϕ(v) and χ(u,v)=ϕ′(v), (1.2)

with some nonnegative function ϕ exhibiting suitable decay at large values of the sig-
nal concentration v in order to reflect the local character of sensing ([10, 26]); typical
examples thus include

ϕ(ξ)=
1

(ξ+a)α
or also ϕ(ξ)=e−βξ (1.3)
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for ξ≥0, with α>0,a≥0 and β>0. For accordingly obtained versions of (1.1) that
address situations in which the considered signal is produced by cells, remarkably com-
prehensive knowledge has been achieved in several respects. Namely, in the case when
K(u,v)=u−v, throughout considerably large classes of the key ingredient ϕ to (1.1)-
(1.2), the literature meanwhile provides not only far-reaching results on global solvability
([1,5,7,13,14,37]; cf. also [18,19,21,27–29,38,45] and [30] for corresponding studies on
some close relatives), but also on large time asymptotics, and especially on the iden-
tification of situations in which either stabilization toward equilibria can be observed,
or, alternatively, infinite-time blow-up occurs ([8, 11, 12, 14, 20, 37]). In particular, it
has been found that within this class of chemotaxis-production systems, appropriate
choices of the form in (1.3) lead to a substantial support of spatial structures in the
sense either of large-time singularity formation ([12,14,20]), or at least of heterogeneous
long-term aymptotics trivially exhibited by non-constant steady state solutions ([8]).
These observations are quite in line with numerous findings on emergence and stabiliza-
tion of singular structures ([4, 6, 17, 31, 33, 34]), and supplementary also of more subtle
destabilization of spatial homogeneity ( [40]), in various further examples among the
chemotaxis-production versions of (1.1) with constituents more general than in (1.2).

In contrast to this, the present study now focuses on contexts in which chemotactic
motion based on local sensing is directed by a cue that is consumed by individuals,
rather than produced. By describing signal absorption in the apparently most standard
functional form, a resulting chemotaxis-consumption version of (1.1)-(1.2) becomes{

ut=∆
(
uϕ(v)

)
,

vt=∆v−uv, (1.4)

and in stark difference to the situations discussed above, questions related to the evo-
lution of structures in the above sense seem to have remained widely unaddressed in
such frameworks. Indeed, the only result concerned with global solutions to a prob-
lem of this form in high-dimensional settings, as recently achieved in [24], relies on a
smallness restriction on the initial data to assert global classical solvability and large
time convergence to homogeneous states in non-degenerate cases in which ϕ is strictly
positive throughout [0,∞). Large-data solutions appear to have been constructed only
in spatially one- and two-dimensional domains in [44], where a focus has been on a de-
generate version in which ϕ>0 on (0,∞) but ϕ(0)=0; in such cases, for suitably regular
initial data some global smooth solutions are found to exist and to approach a steady
state (u∞,0) in the large time limit, with u∞ known to be nonconstant whenever v|t=0

is appropriately small ([44]).

Main results. One purpose of the present study is to make sure that this lat-
ter observation, paralleling similar findings on the existence of non-constant large-time
patterns in related taxis-consumption systems of the form (1.1) with signal-dependent
motility degeneracies ( [43]), cannot be made in any non-degenerate version of (1.4). Be-
yond asserting this absence of structure support on large time scales, however, a second
goal will consist in identifying a second pattern-counteracting feature of (1.4) which will
become manifest in a result on instantaneous relaxation of solutions emanating from
considerably irregular initial data.

More precisely, in a smoothly bounded domain Ω⊂Rn, n≥1, let us consider the initial-
boundary value problem

ut=∆
(
uϕ(v)

)
, x∈Ω, t>0,

vt=∆v−uv, x∈Ω, t>0,
∇
(
uϕ(v)

)
·ν=∇v ·ν=0, x∈∂Ω, t>0,

u(x,0)=u0(x), v(x,0)=v0(x), x∈Ω,

(1.5)
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and first concentrate on the latter question on initial relaxation by deriving a result
on global solvability under mild requirements on data regularity which inter alia even
allow for measure-valued first components of the initial distributions. In formulating
this and throughout the sequel, we let C0

w−⋆([0,∞);(C0(Ω))⋆) and C0
w−⋆([0,∞);L∞(Ω))

denote the spaces of functions which are continuous on [0,∞) with respect to the weak-⋆
topology in (C0(Ω))⋆ and L∞(Ω), respectively.

Specifically, the first of our main results indeed reveals that even such singular initial
settings undergo an immediate relaxation into globally existing solutions to (1.5) which
belong to L2(Ω)×W 2,2(Ω) at a.e. positive time, under the mere assumption that ϕ be
continuous and positive:

Theorem 1.1. Let n≥1 and Ω⊂Rn be a bounded domain with smooth boundary,
and suppose that

ϕ∈C0([0,∞)) is such that ϕ(ξ)>0 for all ξ≥0, (1.6)

and that

u0∈ (C0(Ω))⋆ as well as v0∈L∞(Ω) are nonnegative. (1.7)

Then there exist nonnegative functions
u∈C0

w−⋆([0,∞);(C0(Ω))⋆)∩L∞((0,∞);L1(Ω))∩L2
loc(Ω×(0,∞)) and

v∈C0
w−⋆([0,∞;L∞(Ω))∩L∞(Ω×(0,∞))

∩L2
loc((0,∞);W 2,2(Ω))∩L4

loc((0,∞);W 1,4(Ω))∩L∞
loc((0,∞);W 1,2(Ω))

(1.8)

which are such that (u,v) forms a global very weak solution of (1.5) in the sense of
Definition 2.1.

Remark 1.1.
(i) In Keller-Segel-production systems of the form (1.1) with D≡1 and χ≡1 as

well as K(u,v)=u−v, available existence results including measure-type initial data
seem restricted to one-dimensional and certain subcritical-mass two-dimensional settings
([3,32,42]; cf. also [16]). Only under the influence of certain additional superlinear zero
order degradation mechanisms of logistic type, results on instantaneous smoothing of
comparably strong singularities seem to have been established in the literature ([22,41]).

(ii) Even for the classical chemotaxis-consumption version of (1.1) given by{
ut=∆u−∇·(u∇v),
vt=∆v−uv,

(1.9)

the apparently only existence result covering large measures as initial population dis-
tributions is limited to planar and radially symmetric frameworks ([39]).

(iii) Upon imposing further restrictions on the regularity of ϕ and the initial data,
higher regularity features of the obtained solutions can be derived. Pursuing this in
detail would go beyond the scope of the present study, however, and will be addressed
in [25].

Now in the presence of slightly more regular coefficient functions ϕ, a second re-
laxation effect, unconditional with respect to the initial data from the above class and
especially independent of their size, can be observed on large time scales. In address-
ing this second main objective of this study, we let A denote the realization of −∆
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under homogeneous Neumann boundary conditions in L2
⊥(Ω) :={φ∈L2(Ω) |

∫
Ω
φ=0},

with its domain given by W 2,2
N (Ω)∩L2

⊥(Ω), where for p∈ [1,∞] we set W 2,p
N (Ω) :={φ∈

W 2,p(Ω) | ∂φ∂ν =0 on ∂Ω}; furthermore, with regard to spatial averages we will refer to

the notation φ := 1
|Ω|φ(1Ω) for φ∈ (C0(Ω))⋆, which reduces to the identity φ= 1

|Ω|
∫
Ω
φ

whenever φ∈L1(Ω).

The second of our main results can thereby be formulated as a statement on long-
term stabilization toward homogeneous states in an appropriate topological setting:

Theorem 1.2. Let n∈{1,2,3} and Ω⊂Rn be a smoothly bounded domain, and assume
that

ϕ∈C1([0,∞)) is such that ϕ(ξ)>0 for all ξ≥0, (1.10)

and that (1.7) holds. Then one can find a global very weak solution (u,v) of (1.5) which

satisfies (1.8) and for which there exists a null set N ⊂ (0,∞) such that A− 1
2

(
u(·,t)−

u0
)
∈L2(Ω) for all t∈ (0,∞)\N , and that

A− 1
2

(
u(·,t)−u0

)
→0 in L2(Ω) as (0,∞)\N ∋ t→∞ (1.11)

and

v(·,t)→0 in L∞(Ω) as (0,∞)\N ∋ t→∞. (1.12)

Remark 1.2.

(i) While marking a sharp contrast to the mentioned findings on persistently non-
homogeneous behavior in corresponding chemotaxis-production versions of (1.1)-(1.2)
([8, 12, 14])), the outcome of Theorem 1.2 rather parallels known results on large time
convergence to constant equilibria in the Keller-Segel consumption system (1.9) ([35]).
How far asymptotic homogenization properties of this style indeed constitute a common
feature of taxis-absorption interaction involving non-degenerate diffusion, however, is to
be addressed in forthcoming studies.

Main ideas. In line with the particular structure distinguishing (1.4) from (1.9),
at the core of our reasoning will be a duality-based argument related to the behavior of∫

Ω

∣∣∣A− 1
2

(
u−u0

)∣∣∣2 (1.13)

along trajectories in suitably regularized variants of (1.5) (cf. (2.6)). Here, in a funda-
mental inequality describing the evolution thereof (Lemma 3.3), in the general setting
of Theorem 1.1 a fairly rough estimation of a corresponding exciting contribution is
sufficient to turn this into a quasi-energy inequality (Lemma 3.4). Again thanks to the
favorable structure of (1.4), the a priori information thereby obtained in time inter-
vals of the form (τ,∞) for arbitrary τ >0 can be combined with a time-independent
(W 2,∞

N (Ω))⋆-valued boundedness feature of both time derivatives in (1.5) (Lemma 3.5),
allowing for suitable control of the solution behavior near t=0, to establish Theorem
1.1 in Section 3.

Section 4 will thereafter reveal that in the low-dimensional and slightly more regular
context of Theorem 1.2, the forcing contribution to the evolution of the functional in
(1.13) can actually even be controlled in terms of suitably dissipated quantities (Lem-
mata 4.1 and 4.2). An accordingly discovered energy feature will hence form the basis
for our derivation of both stabilization statements from Theorem 1.2 (Lemmata 4.3 and
4.4).
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2. Preliminaries
To begin with, let us specify the concept of solvability to be pursued in this paper.

Definition 2.1. Let ϕ∈C0([0,∞)) be nonnegative, and assume that u0∈ (C0(Ω))⋆

and v0∈L∞(Ω) are nonnegative. Then a pair (u,v) of nonnegative functions{
u∈C0

w−⋆([0,∞);(C0(Ω))⋆)∩L1
loc(Ω×(0,∞)) and

v∈C0
w−⋆([0,∞);L∞(Ω))

(2.1)

will be called a global very weak solution of (1.5) if u(·,0)=u0 in (C0(Ω))⋆ and v(·,0)=
v0 in L∞(Ω), and if for each φ∈C∞

0 (Ω×(0,∞)) fulfilling ∂φ
∂ν =0 on ∂Ω×(0,∞) we

have

−
∫ ∞

0

∫
Ω

uφt=

∫ ∞

0

∫
Ω

uϕ(v)∆φ (2.2)

and

−
∫ ∞

0

∫
Ω

vφt=

∫ ∞

0

∫
Ω

v∆φ−
∫ ∞

0

∫
Ω

uvφ. (2.3)

In order to construct such solutions to (1.5) as limits of solutions to suitably regularized
problems, we approximate the motility function ϕ as well as initial data (u0,v0) in (1.5)
by introducing families of functions (ϕε)ε∈(0,1), (u0ε)ε∈(0,1) and (v0ε)ε∈(0,1) with the
properties that 

(ϕε)ε∈(0,1)⊂C3([0,∞)) is such that

ϕε≥ϕ on [0,∞) for all ε∈ (0,1), and that

ϕε→ϕ in C0
loc([0,∞)) as ε↘0,

(2.4)

and that moreover
(u0ε)ε∈(0,1)⊂W 1,∞(Ω) and (v0ε)ε∈(0,1)⊂W 1,∞(Ω) are such that

u0ε≥0 and v0ε>0 in Ω for all ε∈ (0,1), that∫
Ω
u0ε=u0|Ω| and ∥v0ε∥L∞(Ω)≤∥v0∥L∞(Ω)+1 for all ε∈ (0,1), and that

u0ε
⋆
⇀u0 in (C0(Ω))⋆ and v0ε

⋆
⇀v0 in L∞(Ω) as ε↘0.

(2.5)
For ε∈ (0,1), we then consider the regularized variant of (1.5) given by

uεt=∆
(
uεϕε(vε)

)
, x∈Ω, t>0,

vεt=∆vε− uεvε
1+εuε

, x∈Ω, t>0,
∂uε

∂ν = ∂vε
∂ν =0, x∈∂Ω, t>0,

uε(x,0)=u0ε(x), vε(x,0)=v0ε(x), x∈Ω,

(2.6)

which is globally solved in the classical sense:

Lemma 2.1. For each ε∈ (0,1) there exist{
uε∈C0(Ω× [0,∞))∩C2,1(Ω×(0,∞)) and

vε∈
⋂
q>2C

0([0,∞);W 1,q(Ω))∩C2,1(Ω×(0,∞))
(2.7)
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such that uε≥0 and vε>0 in Ω× [0,∞), and that (uε,vε) solves (2.6) in the classical
sense. Furthermore, the solution satisfies∫

Ω

uε(·,t)=
∫
Ω

u0 for all t>0 and ε∈ (0,1), (2.8)

and

∥vε(·,t)∥L∞(Ω)≤∥vε(·,t0)∥L∞(Ω) for all t0≥0, t>t0 and ε∈ (0,1). (2.9)

Proof. We start by asserting the local classical solvability for (2.6) by means of the
well-established parabolic theory from [2]. To this end, we fix δ0>0, and for ε∈ (0,1)
introducing D0 := (0,∞)×(−δ0,∞) as well as

Aε

( η
ξ

)
:=

(
1 0

ξϕ′ε(η) ϕε(η)

)
and fε

( η
ξ

)
:=

(
− ξη

1+εξ

0

)
for

( η
ξ

)
∈D0,

we may recast (2.6) as the quasilinear problem
Zεt = ∇·

(
Aε(Zε)∇Zε

)
+fε(Zε), x∈Ω, t>0,

∂Zε

∂ν =0, x∈∂Ω, t>0,

Zε(x,0)=

(
v0ε(x)
u0ε(x)

)
, x∈Ω,

(2.10)

where Zε=(vε,uε). Using (1.6) and (2.4), we observe that for each U ∈D0, Aε(U) is a
positive definite matrix of lower triangular form, so that from [2, Theorem 1], in line
with (2.5) we deduce that there exists Tmax,ε∈ (0,∞] such that (2.6) possesses a classical
solution (uε,vε) which is such that vε>0 in Ω× [0,Tmax,ε), and that

if Tmax,ε<∞, then limsup
t↗Tmax,ε

∥uε(·,t)∥L∞(Ω)=∞. (2.11)

Moreover, taking into account u0ε≥0 in (2.5), we obtain uε≥0 in Ω× [0,Tmax,ε) through
a simple comparison argument. Next after an integration performed in the first equation
in (2.6), we find that∫

Ω

uε(·,t)=
∫
Ω

u0 for all t∈ (0,Tmax,ε) and ε∈ (0,1), (2.12)

whereas an application of the maximum principle to the second equation therein shows
that

∥vε(·,t)∥L∞(Ω)≤∥vε(·,t0)∥L∞(Ω) (2.13)

for all t0∈ [0,Tmax,ε), t∈ (t0,Tmax,ε) and ε∈ (0,1). To finally prove that Tmax,ε=∞,
assuming on the contrary that Tmax,ε<∞ for some ε∈ (0,1), we use (2.13) to see that∥∥∥uε(·,t)vε(·,t)

1+εuε(·,t)

∥∥∥
L∞(Ω)

≤ ∥v0ε∥L∞(Ω)

ε for all t∈ (0,Tmax,ε), and can then rely on standard

parabolic regularity theory applied to the second equation in (2.6) to find c1(ε)>0 such
that

∥∇vε(·,t)∥L∞(Ω)≤ c1(ε) for all t∈ (0,Tmax,ε). (2.14)
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In addition, again thanks to (2.13), (1.6) and (2.4) warrant the existence of positive
constants c2 and c3(ε) fulfilling

ϕε(vε)≥ c2 and
(ϕ′ε(vε))

2

ϕε(vε)
≤ c3(ε) in Ω×(0,Tmax,ε). (2.15)

Therefore, integrating by parts in the first equation from (2.6) and using the Cauchy-
Schwarz inequality and (2.14), we see that whenever p>1,

d

dt

∫
Ω

upε = −p(p−1)

∫
Ω

ϕε(vε)u
p−2
ε |∇uε|2−p(p−1)

∫
Ω

ϕ′ε(vε)u
p−1
ε ∇uε ·∇vε

≤ −p(p−1)

2

∫
Ω

ϕε(vε)u
p−2
ε |∇uε|2+

p(p−1)

2

∫
Ω

(ϕ′ε(vε))
2

ϕε(vε)
upε |∇vε|2

≤ −2c2(p−1)

p

∫
Ω

|∇u
p
2
ε |2+

c21(ε)c3(ε)p(p−1)

2

∫
Ω

upε (2.16)

for all t∈ (0,Tmax,ε). According to an Ehrling type inequality associated with the com-
pactness of the embedding W 1,2(Ω) ↪→L2(Ω), from (2.12) it follows that for any such p,
with some c4(p,ε)>0 we have

c21(ε)c3(ε)p(p−1)

2

∫
Ω

upε =
c21(ε)c3(ε)p(p−1)

2
∥u

p
2
ε ∥2L2(Ω)

≤ 2c2(p−1)

p
∥∇u

p
2
ε ∥2L2(Ω)+c4(p,ε)∥u

p
2
ε ∥2

L
2
p (Ω)

=
2c2(p−1)

p
∥∇u

p
2
ε ∥2L2(Ω)+c4(p,ε)

{∫
Ω

u0

}p
for all t∈ (0,Tmax,ε), which, when substituted back into (2.16), upon an integration in
time entails that∫

Ω

upε ≤ c4(p,ε)
{∫

Ω

u0

}p
Tmax,ε+

∫
Ω

up0ε

≤ c4(p,ε)
{∫

Ω

u0

}p
Tmax,ε+∥u0ε∥pW 1,∞(Ω)|Ω| for all t∈ (0,Tmax,ε).

Since p>1 was arbitrary here, in view of a standard Moser-type iteration ([36]) we may
find c5(ε)>0 such that

∥uε(·,t)∥L∞(Ω)≤ c5(ε) for all t∈ (0,Tmax,ε),

which contradicts (2.11) and thus confirms that, indeed, Tmax,ε=∞.

3. Instantaneous relaxation. Proof of Theorem 1.1
The following basic properties of solutions to (2.6) can be established in a straight-

forward manner.

Lemma 3.1. Let n≥1, and assume (2.5) and (2.4). Then∫ ∞

0

∫
Ω

uεvε
1+εuε

≤|Ω| ·
(
∥v0∥L∞(Ω)+1

)
for all ε∈ (0,1) (3.1)

and ∫ ∞

0

∫
Ω

|∇vε|2≤
1

2
|Ω| ·

(
∥v0∥L∞(Ω)+1

)2
for all ε∈ (0,1). (3.2)
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Proof. For p≥1, we integrate using the second equation in (2.6) to see that

1

p

d

dt

∫
Ω

vpε+(p−1)

∫
Ω

vp−2
ε |∇vε|2+

∫
Ω

uεv
p
ε

1+εuε
=0 for all t>0 and ε∈ (0,1). (3.3)

When specified to the case p=1, upon a time integration this implies that due to (2.5),∫ T

0

∫
Ω

uεvε
1+εuε

=−
∫
Ω

vε(·,T )+
∫
Ω

v0ε≤|Ω| ·
(
∥v0∥L∞(Ω)+1

)
for all T >0 and ε∈ (0,1),

and that thus (3.1) holds. Secondly, in the case when p=2, an integration of (3.3) shows
that for all T >0 and ε∈ (0,1),∫ T

0

∫
Ω

|∇vε|2 = −
∫ T

0

∫
Ω

uεv
2
ε

1+εuε
− 1

2

∫
Ω

v2ε(·,T )+
1

2

∫
Ω

v20ε≤
1

2
|Ω|

(
∥v0∥L∞(Ω)+1

)2
,

and thereby establishes (3.2).

The following outcome of an essentially straightforward testing procedure is for-
mulated in such a way that it can not only serve as an ingredient in our derivation
of boundedness features in the general setting of Theorem 1.1, but also be used in
the course of our asymptotic analysis in the low-dimensional situations addressed by
Theorem 1.2.

Lemma 3.2. If n≥1, and if (2.5) and (2.4) hold, then one can find Γ1>0 such that
for all t>0 and ε∈ (0,1),

d

dt

∫
Ω

|∇vε|2+
1

2

∫
Ω

|∆vε|2+
1

Γ1

∫
Ω

|∇vε|4≤Γ1

∫
Ω

(uε−u0)2. (3.4)

Proof. Let Fε(ξ) :=
ξ

1+εξ for ξ≥0 and ε∈ (0,1). Then since 0≤F ′
ε≤1 for all

ε∈ (0,1), from the mean value theorem it follows that∣∣∣ uε
1+εuε

− u0
1+εu0

∣∣∣= ∣∣Fε(uε)−Fε(u0)∣∣≤|uε−u0| in Ω×(0,∞) for all ε∈ (0,1).

Therefore, if we multiply the second equation in (2.6) by −∆vε and integrate by parts
and using Young’s inequality, (2.9) and (2.5), we see that

1

2

d

dt

∫
Ω

|∇vε|2+
∫
Ω

|∆vε|2 =

∫
Ω

uεvε
1+εuε

∆vε

≤ 1

2

∫
Ω

|∆vε|2+
1

2

∫
Ω

( uε
1+εuε

− u0
1+εu0

)2

v2ε

≤ 1

2

∫
Ω

|∆vε|2+
1

2
·
(
∥v0∥L∞(Ω)+1

)2∫
Ω

(uε−u0)2 (3.5)

for all t>0 and ε∈ (0,1), because∫
Ω

vε∆vε=−
∫
Ω

|∇vε|2≤0 for all t>0 and ε∈ (0,1).

Now from elliptic regularity theory we obtain that with some c1>0 we have∫
Ω

|D2φ|2≤ c1
∫
Ω

|∆φ|2 for all φ∈C2(Ω) fulfilling ∂φ
∂ν =0 on ∂Ω,
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so that another integration by parts together with the Cauchy-Schwarz inequality shows
that∫

Ω

|∇vε|4 = −
∫
Ω

vε ·
{
2∇vε ·(D2vε ·∇vε)+ |∇vε|2∆vε

}
≤ 2

∫
Ω

vε|∇vε|2|D2vε|+
∫
Ω

vε|∇vε|2|∆vε|

≤ ∥vε∥L∞(Ω) ·
{∫

Ω

|∇vε|4
} 1

2

·

{
2 ·

{∫
Ω

|D2vε|2
} 1

2

+

{∫
Ω

|∆vε|2
} 1

2

}

≤ ∥vε∥L∞(Ω) ·
{∫

Ω

|∇vε|4
} 1

2

·(2
√
c1+1) ·

{∫
Ω

|∆vε|2
} 1

2

for all t>0 and ε∈ (0,1),

and thus, by (2.9) and (2.5),∫
Ω

|∇vε|4≤∥vε∥2L∞(Ω)(2
√
c1+1)2

∫
Ω

|∆vε|2≤ c2
∫
Ω

|∆vε|2 for all t>0 and ε∈ (0,1)

with c2 := (2
√
c1+1)2(∥v0∥L∞(Ω)+1)2. Therefore, (3.5) entails that

1

2

d

dt

∫
Ω

|∇vε|2+
1

4

∫
Ω

|∆vε|2+
1

4c2

∫
Ω

|∇vε|4 ≤ 1

2

d

dt

∫
Ω

|∇vε|2+
1

2

∫
Ω

|∆vε|2

≤ 1

2

(
∥v0∥L∞(Ω)+1

)2∫
Ω

(uε−u0)2

for all t>0 and ε∈ (0,1), and that hence (3.4) holds with Γ1 :=max{2c2 , (∥v0∥L∞(Ω)+
1)2}.

Also our first information on an evolution property of the first solution components,
acting in an H−1 framework reminiscent of that already resorted to in [37], is at this
stage kept general enough so as to remain compatible with our analysis of both Theorem
1.1 and Theorem 1.2.

Lemma 3.3. Suppose that n≥1, and that (2.5) and (2.4) are satisfied. Then there
exists Γ2>0 with the property that

d

dt

∫
Ω

∣∣∣A− 1
2 (uε−u0)

∣∣∣2+ 1

Γ2

∫
Ω

(uε−u0)2≤Γ2

∫
Ω

∣∣∣u0ϕε(vε)−uε(·,t)ϕε(vε(·,t))∣∣∣2 (3.6)

for all t>0 and ε∈ (0,1).

Proof. According to (2.6), we have

∂t(uε−u0)=−A
(
uεϕε(vε)−uεϕε(vε)

)
in Ω×(0,∞) for all ε∈ (0,1),

which when tested against A−1(uε−u0) implies that since both A− 1
2 and A−1 are self-

adjoint,

1

2

d

dt

∫
Ω

∣∣∣A− 1
2 (uε−u0)

∣∣∣2 = −
∫
Ω

(
uεϕε(vε)−uεϕε(vε)

)
·(uε−u0)

= −
∫
Ω

(
uεϕε(vε)−u0ϕε(vε)+u0ϕε(vε)−uεϕε(vε)

)
·(uε−u0)

= −
∫
Ω

(uε−u0)2ϕε(vε)−
∫
Ω

(
u0ϕε(vε)−uεϕε(vε)

)
·(uε−u0)



308 RELAXATION IN A KELLER-SEGEL-CONSUMPTION SYSTEM

for all t>0 and ε∈ (0,1). Since (2.4) together with (1.6), (2.9) and (2.5) entails the
existence of c1>0 such that ϕε(vε)≥ c1 in Ω×(0,∞) for all ε∈ (0,1), and since

−
∫
Ω

(
u0ϕε(vε)−uεϕε(vε)

)
·(uε−u0)≤

c1
2

∫
Ω

(uε−u0)2+
1

2c1

∫
Ω

∣∣∣u0ϕε(vε)−uεϕε(vε)∣∣∣2
for all t>0 and ε∈ (0,1) thanks to Young’s inequality, this already leads to (3.6) if we
let Γ2 :=

1
c1
, for instance.

In our first application of Lemma 3.2 and Lemma 3.3, we may estimate the expres-
sion on the right of (3.6) in a fairly rough manner. Actually focusing especially on initial
relaxation features here, we can thereby, after all, make sure that a functional of the
form in (1.13) satisfies an ODI containing a superlinear absorptive term, an appropriate
exploitation of which yields a priori information within time intervals of the form (τ,∞)
for arbitrary τ >0:

Lemma 3.4. Let n≥1, and assume (2.5) and (2.4). Then for all τ >0 there exists
C(τ)>0 such that∫

Ω

∣∣∣A− 1
2

(
uε(·,t)−u0

)∣∣∣2≤C(τ) for all t>τ and ε∈ (0,1), (3.7)

that ∫
Ω

∣∣∇vε(·,t)∣∣2≤C(τ) for all t>τ and ε∈ (0,1), (3.8)

that ∫ t+1

t

∫
Ω

u2ε≤C(τ) for all t>τ and ε∈ (0,1), (3.9)

that ∫ t+1

t

∫
Ω

|∆vε|2≤C(τ) for all t>τ and ε∈ (0,1), (3.10)

and that ∫ t+1

t

∫
Ω

|∇vε|4≤C(τ) for all t>τ and ε∈ (0,1). (3.11)

Proof. As a consequence of (2.4), (1.6), (2.9) and (2.5), we can find c1>0 such
that ϕε(vε)≤ c1 in Ω×(0,∞) for all ε∈ (0,1). Since thus especially

uεϕε(vε)=
1

|Ω|

∫
Ω

uεϕε(vε)≤
c1
|Ω|

∫
Ω

uε= c1u0 for all t>0 and ε∈ (0,1)

by (2.8), on the right-hand side of (3.6) we can estimate

Γ2

∫
Ω

∣∣∣u0ϕε(vε)−uε(·,t)ϕε(vε(·,t))∣∣∣2 ≤ Γ2

∫
Ω

|c1u0+c1u0|2= c2 :=4c21Γ2u
2
0|Ω| (3.12)

for all t>0 and ε∈ (0,1). From Lemma 3.3 and Lemma 3.2 we therefore obtain that if
we let a := 1

4Γ1Γ2
, with Γ1 taken from Lemma 3.2, and define

yε(t) :=

∫
Ω

∣∣∣A− 1
2

(
uε(·,t)−u0

)∣∣∣2+a∫
Ω

∣∣∇vε(·,t)∣∣2, t>0, ε∈ (0,1), (3.13)
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as well as

gε(t) :=
1

2Γ2

∫
Ω

(
uε(·,t)−u0

)2
+
a

2

∫
Ω

∣∣∆vε(·,t)∣∣2+ a

2Γ1

∫
Ω

∣∣∇vε(·,t)∣∣4, t>0, ε∈ (0,1),

(3.14)
then

y′ε(t)+gε(t)+
1

4Γ2

∫
Ω

(uε−u0)2+
a

2Γ1

∫
Ω

|∇vε|4

≤
{
− 1

4Γ2

∫
Ω

(uε−u0)2+c2
}
+a ·Γ1

∫
Ω

(uε−u0)2

= c2 for all t>0 and ε∈ (0,1). (3.15)

In order to turn this into a superlinearly damped ODI for (yε)ε∈(0,1), we pick any β> 1
2

such that β> n
4 and note that then the inequalities 0< 1

2 <β enable us to invoke a
standard interpolation inequality ([9, Theorem 14.1]) to find c3>0 fulfilling

∥A− 1
2φ∥L2(Ω)≤ c3∥φ∥θL2(Ω)∥A

−βφ∥1−θL2(Ω) for all φ∈L2
⊥(Ω)

with θ := 2β−1
2β ∈ (0,1). Since the restriction β> n

4 warrants that for the corresponding

domains of definition we have D(Aβ) ↪→L∞(Ω) and hence L1(Ω) ↪→D(A−β) ([15]), we
may combine this with (2.8) to see that with some c4>0 we have{∫

Ω

∣∣∣A− 1
2 (uε−u0)

∣∣∣2} 1
θ

≤ c4
∫
Ω

(uε−u0)2 for all t>0 and ε∈ (0,1).

Writing κ :=min{ 1
θ , 2}>1 and

c5 :=min

{
1

2κ+1c4Γ2
,

1

2κΓ1aκ−1|Ω|

}
, (3.16)

we thus infer that in line with (3.13) and thanks to the Cauchy-Schwarz inequality,

c5y
κ
ε (t) ≤ 2κ−1c5 ·

{∫
Ω

∣∣∣A− 1
2 (uε−u0)

∣∣∣2}κ+2κ−1aκc5 ·
{∫

Ω

|∇vε|2
}κ

≤ 2κ−1c5 ·

{{∫
Ω

∣∣∣A− 1
2 (uε−u0)

∣∣∣2} 1
θ

+1

}
+2κ−1aκc5 ·

{{∫
Ω

|∇vε|2
}2

+1

}

≤ 2κ−1c5 ·
{
c4

∫
Ω

(uε−u0)2+1

}
+2κ−1aκc5 ·

{
|Ω|

∫
Ω

|∇vε|4+1

}
≤ 1

4Γ2

∫
Ω

(uε−u0)2+
a

2Γ1

∫
Ω

|∇vε|4+2κ−1(1+aκ)c5 for all t>0 and ε∈ (0,1),

because 2κ−1c5c4≤ 1
4Γ2

and 2κ−1aκc5|Ω|≤ a
2Γ1

due to (3.16). Consequently, (3.15) im-

plies that with c6 := c2+2κ−1(1+aκ)c5 we have

y′ε(t)+c5y
κ
ε (t)+gε(t)≤ c6 for all t>0 and ε∈ (0,1), (3.17)

so that since for fixed τ >0,

y(t) := c7 ·
(
t− τ

2

)− 1
κ−1

+c7, t>
τ

2
,
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with

c7 :=max

{(
(κ−1)c5

)− 1
κ−1 ,

(c6
c5

) 1
κ

}
,

satisfies y(t)↗+∞ as t↘ τ
2 and

y′(t)+c5y
κ(t)+gε(t)−c6 ≥ y′(t)+c5y

κ(t)−c6

= − c7
κ−1

(
t− τ

2

)− 1
κ−1−1

+c5c
κ
7 ·

{(
t− τ

2

)− 1
κ−1

+1

}κ
−c6

≥ − c7
κ−1

(
t− τ

2

)− 1
κ−1−1

+c5c
κ
7

(
t− τ

2

)− κ
κ−1

+c5c
κ
7 −c6

= c5c7 ·
{
cκ−1
7 − 1

(κ−1)c5

}
·
(
t− τ

2

)− κ
κ−1

+c5 ·
{
cκ7 −

c6
c5

}
≥ 0 for all t>

τ

2
,

an ODE comparison argument applied to (3.17) shows that yε(t)≤y(t) for all t> τ
2 and

ε∈ (0,1), and that hence, in particular,

yε(t)≤ c8(τ) := c7 ·
(τ
2

)− 1
κ−1

+c7 for all t>τ and ε∈ (0,1). (3.18)

Thereupon, by direct integration in (3.17) we obtain that∫ t+1

t

gε(s)ds≤yε(t)+
∫ t+1

t

c6ds≤ c8(τ)+c6 for all t>τ and ε∈ (0,1), (3.19)

so that in view of (3.13) and (3.14) we infer (3.7) and (3.8) from (3.18) and (3.9)-(3.11)
from (3.19) if we choose C(τ) appropriately large.

A straightforward estimation of corresponding time derivatives does not only pave
the way toward an Aubin-Lions type compactness argument, but beyond this also pre-
pares our analysis of the solution behavior near the initial instant.

Lemma 3.5. Suppose that n≥1, and that (2.5) and (2.4) hold. Then one can find
C>0 such that ∥∥uεt(·,t)∥∥(W 2,∞

N (Ω))⋆
≤C for all t>0 and ε∈ (0,1) (3.20)

and ∥∥vεt(·,t)∥∥(W 2,∞
N (Ω))⋆

≤C for all t>0 and ε∈ (0,1). (3.21)

Proof. We fix φ∈W 2,∞
N (Ω) and use (2.6) to see that∣∣∣∣∫

Ω

uεtφ

∣∣∣∣ = ∣∣∣∣∫
Ω

∆
(
uεϕε(vε)

)
φ

∣∣∣∣
=

∣∣∣∣∫
Ω

uεϕε(vε)∆φ

∣∣∣∣
≤ ∥uε∥L1(Ω)

∥∥ϕε(vε)∥∥L∞(Ω)
∥∆φ∥L∞(Ω) for all t>0 and ε∈ (0,1) (3.22)
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as well as ∣∣∣∣∫
Ω

vεtφ

∣∣∣∣ = ∣∣∣∣∫
Ω

∆vεφ−
∫
Ω

uεvε
1+εuε

φ

∣∣∣∣
=

∣∣∣∣∫
Ω

vε∆φ−
∫
Ω

uεvε
1+εuε

φ

∣∣∣∣
≤ ∥vε∥L1(Ω)∥∆φ∥L∞(Ω)+∥uε∥L1(Ω)∥vε∥L∞(Ω)∥φ∥L∞(Ω), (3.23)

because 0≤ uε

1+εuε
≤uε in Ω×(0,∞) for all ε∈ (0,1). Since (2.8), (2.9), (2.5), (2.4) and

(1.6) guarantee boundedness of (uε)ε∈(0,1) and (vε)ε∈(0,1) in L
∞((0,∞);L1(Ω)), and of

(vε)ε∈(0,1) and (ϕε(vε))ε∈(0,1) in L
∞(Ω×(0,∞)), from (3.22) and (3.23) we immediately

obtain (3.20) and (3.21) with some suitably large C>0.

As a preparation for our argument related to the continuity features claimed in
Theorem 1.1, let us briefly record the following density property of the space appearing
in the boundedness statements from Lemma 3.5.

Lemma 3.6. The set W 2,∞
N (Ω) is dense in C0(Ω).

Proof. This immediately follows from standard parabolic theory, which namely
asserts that if we let (et∆)t≥0 denote the Neumann heat semigroup on Ω, then given

any φ∈C0(Ω) we have et∆φ∈W 2,∞
N (Ω) for all t>0 and et∆φ→φ in C0(Ω) as t↘0.

As a consequence of the above a priori estimates, based on a standard extraction
procedure we can now construct a global solution in the sense of (2.1).

Lemma 3.7. Let n≥1, and let (2.5) and (2.4) hold. Then there exist (εj)j∈N⊂ (0,1)
as well as nonnegative functions u and v on Ω×(0,∞) such that εj↘0 as j→∞, that
(1.8) holds, and that as ε=εj↘0 we have

uε⇀u in L2
loc(Ω×(0,∞)), (3.24)

vε→v and ∇vε→∇v a.e. in Ω×(0,∞), (3.25)

vε→v in L2
loc((0,∞);W 1,q(Ω)) for all q∈ [1, 2n

(n−2)+
), (3.26)

vε(·,t)→v(·,t) in W 1,q(Ω) for a.e. t>0 for each q∈ [1, 2n
(n−2)+

), (3.27)

∇vε
⋆
⇀∇v in L∞

loc((0,∞);L2(Ω)) and (3.28)
uεvε

1+εuε
⇀uv in L1

loc(Ω×(0,∞)). (3.29)

In the sense of Definition 2.1, (u,v) forms a global very weak solution of (1.5) which
satisfies ∫

Ω

u(·,t)=u0|Ω| for a.e. t>0. (3.30)

Moreover, for all τ >0 there exists C(τ)>0 such that∫
Ω

∣∣∣A− 1
2

(
u(·,t)−u0

)∣∣∣2≤C(τ) for a.e. t>τ (3.31)

and ∫ t+1

t

∫
Ω

u2+

∫ t+1

t

∫
Ω

|∆v|2+
∫ t+1

t

∫
Ω

|∇v|4≤C(τ) for all t>τ, (3.32)
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and we have

A− 1
2 (uε−u0)

⋆
⇀A− 1

2 (u−u0) in L∞
loc((0,∞);L2(Ω)) (3.33)

as ε=εj↘0.

Proof. From (3.9) it follows that

(uε)ε∈(0,1) is bounded in L2(Ω×(τ,T )) for all τ >0 and T >τ ,

while (3.10), (3.11), (3.8) and (3.21) guarantee that

(vε)ε∈(0,1) is bounded in L2((τ,T );W 2,2(Ω)), in L4((τ,T );W 1,4(Ω))

and in L∞((τ,T );W 1,2(Ω)) for all τ >0 and T >τ ,

and that

(vεt)ε∈(0,1) is bounded in L∞(
(0,∞);(W 2,∞

N (Ω))⋆
)
. (3.34)

A standard extraction argument based on an Aubin-Lions lemma, and relying on
the compactness of the embedding W 2,2(Ω) ↪→W 1,q(Ω) for all q∈ [1, 2n

(n−2)+
), thus

provides (εj)j∈N⊂ (0,1) as well as nonnegative functions u∈L2
loc(Ω×(0,∞)) and v∈

L2
loc((0,∞);W 2,2(Ω))∩L4

loc((0,∞));W 1,4(Ω))∩L∞
loc((0,∞);W 1,2(Ω)) such that εj↘0 as

j→∞, and that (3.24), (3.25), (3.26), (3.27) and (3.28) hold as ε=εj↘0, where recall-
ing (2.8), (2.9), (2.5), (3.7) and (3.8), and again using (3.9)-(3.11), we readily obtain
that also

u∈L∞((0,∞);L1(Ω)) and v∈L∞(Ω×(0,∞)), (3.35)

and that (3.32), (3.31) and (3.33) as well as (3.30) hold. Furthermore, since 0≤ ξ
1+εξ ↗ ξ

as ε↘0 for all ξ≥0, and since thus the L1 convergence feature trivially contained in
(3.9) ensures that also uε

1+εuε
⇀u in L1

loc(Ω×(0,∞)) as ε=εj↘0 thanks to Lemma A.1,

it also follows that (3.29) holds, because ( uεvε
1+εuε

)ε∈(0,1) is bounded in L2(Ω×(τ,T )) and

hence relatively compact in with respect to the weak topology in L1(Ω×(τ,T )) for all
τ >0 and T >τ due to (3.9) and (2.9), and because whenever (εjk)k∈N is a subsequence
of (εj)j∈N such that uεvε

1+εuε
⇀z in L1

loc(Ω×(0,∞)) with some z∈L1
loc(Ω×(0,∞)) as

ε=εjk ↘0, due to the pointwise approximation property in (3.26) a well-known result
([46, Lemma A.1]) becomes applicable so as to identify z=uv.

To derive the identities in (2.2) and (2.3) from this, we only need to observe that
for each φ∈C∞

0 (Ω×(0,∞)) fulfilling ∂φ
∂ν =0 on ∂Ω×(0,∞), according to (2.6) we have

−
∫ ∞

0

∫
Ω

uεφt=

∫ ∞

0

∫
Ω

uεϕε(vε)∆φ for all ε∈ (0,1)

and

−
∫ ∞

0

∫
Ω

vεφt=

∫ ∞

0

∫
Ω

vε∆φ−
∫ ∞

0

∫
Ω

uεvε
1+εuε

φ for all ε∈ (0,1),

that (3.24) and (3.26) clearly entail that∫ ∞

0

∫
Ω

uεφt→
∫ ∞

0

∫
Ω

uφt,

∫ ∞

0

∫
Ω

vεφt→
∫ ∞

0

∫
Ω

vφt and

∫ ∞

0

∫
Ω

vε∆φ→
∫ ∞

0

∫
Ω

v∆φ
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as ε=εj↘0, that due to (3.29) we have∫ ∞

0

∫
Ω

uεvε
1+εuε

φ→
∫ ∞

0

∫
Ω

uvφ

as ε=εj↘0, and that (3.26) together with (2.9), (2.5), (2.4), (1.6) and the dominated
convergence theorem ensure that ϕε(vε)→ϕ(v) in L2

loc(Ω×(0,∞)) and hence, again by
(3.24), ∫ ∞

0

∫
Ω

uεϕε(vε)∆φ→
∫ ∞

0

∫
Ω

uϕ(v)∆φ

as ε=εj↘0.

It remains to note that in addition to (3.34) we know from Lemma 3.5 that also

(uεt)ε∈(0,1) is bounded in L∞(
(0,∞);(W 2,∞

N (Ω))⋆
)
,

so that since both L1(Ω) and L∞(Ω) are compactly embedded into (W 2,∞
N (Ω))⋆, in view

of (2.8), (2.9) and (2.5) we may twice employ the Arzelà-Ascoli theorem to infer that

uε→u and vε→v in C0
loc

(
[0,∞);(W 2,∞

N (Ω))⋆
)

(3.36)

as ε=εj↘0, and that

u(·,t)→u0 and v(·,t)→v0 in (W 2,∞
N (Ω))⋆ as t↘0. (3.37)

Indeed, since W 2,∞
N (Ω) is dense in C0(Ω) by Lemma 3.6, and since the inclu-

sion C∞
0 (Ω)⊂W 2,∞

N (Ω) entails density of W 2,∞
N (Ω) also in L1(Ω), from (3.36),

(3.35) and (3.37) it follows by means of a standard argument that actually u∈
C0
w−⋆([0,∞);(C0(Ω))⋆) and v∈C0

w−⋆([0,∞);L∞(Ω)) with u(·,t) ⋆
⇀u0 in (C0(Ω))⋆ and

v(·,t) ⋆
⇀v0 in L∞(Ω) as t↘0.

Our main result on global solvability in the considered general framework thus
becomes an evident consequence:

Proof. (Proof of Theorem 1.1.) Since due to (1.6) and (1.7) we can clearly
choose (ϕε)ε∈(0,1) as well as (u0ε)ε∈(0,1) and (v0ε)ε∈(0,1) such that (2.4) and (2.5) hold,
the statement actually is part of what has been asserted by Lemma 3.7.

4. Large time relaxation Proof of Theorem 1.2
This section is devoted to the investigation of the large time relaxation feature of

(1.5) described in Theorem 1.2. For this purpose, throughout this section we shall
assume that ϕ satisfies (1.10), so that in addition to (2.4), (ϕε)ε∈(0,1) can be chosen in
such a way that

sup
ε∈(0,1)

∥ϕ′ε∥L∞((0,M))<∞ for all M>0. (4.1)

In fact, we shall see that under this assumption, unlike in the general setting from
Section 3 we can control the integral on the right-hand side of (3.6) in terms of suitably
decaying quantities, based on the following observation.

Lemma 4.1. Let n≥1, and assume that (2.5), (2.4) and (4.1) hold. Then given any
q>n, one can find Γ3(q)>0 such that

d

dt

∫
Ω

∣∣∣A− 1
2 (uε−u0)

∣∣∣2+ 1

Γ3(q)

∫
Ω

(uε−u0)2≤Γ3(q)∥∇vε∥2Lq(Ω) (4.2)
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for all t>0 and ε∈ (0,1).

Proof. We abbreviate c1 :=∥v0∥L∞(Ω)+1 and may then rely on (4.1) to fix c1>0
such that ∣∣ϕ′ε(ξ)∣∣≤ c2 for all ξ∈ [0,c1] and any ε∈ (0,1). (4.3)

We moreover employ a Morrey-type estimate to see that thanks to our assumption q>n
we can find c3= c3(q)>0 fulfilling∣∣φ(x)−φ(y)∣∣≤ c3∥∇φ∥Lq(Ω) for all φ∈C1(Ω) and each x,y∈Ω. (4.4)

On the right-hand side of (3.6), recalling (2.8), (2.9) and (2.5) we can therefore estimate
the integrand according to∣∣∣u0ϕε(vε(x,t))−uε(·,t)ϕε(vε(·,t))∣∣∣

=

∣∣∣∣∣ 1

|Ω|
·
{∫

Ω

uε(y,t)dy

}
·ϕε

(
vε(x,t)

)
− 1

|Ω|

∫
Ω

uε(y,t)ϕε
(
vε(y,t)

)
dy

∣∣∣∣
=

1

|Ω|

∫
Ω

uε(y,t) ·
∣∣∣ϕε(vε(x,t))−ϕε(vε(y,t))∣∣∣dy

≤ 1

|Ω|
·
{∫

Ω

uε(y,t)dy

}
· sup
y∈Ω

∣∣∣ϕε(vε(x,t))−ϕε(vε(y,t))∣∣∣
≤ u0c2 · sup

y∈Ω

∣∣vε(x,t)−vε(y,t)∣∣
≤ u0c2c3∥∇vε(·,t)∥Lq(Ω) for all x∈Ω,t>0 and ε∈ (0,1).

From (3.6) we hence obtain (4.2) if we let Γ3(q) :=max{Γ2 ,Γ2u
2
0c

2
2c

2
3|Ω|}.

Indeed, in low-dimensional cases the right-hand side of (4.2) is, up to an expression
already known to decay integrably fast in time, essentially dominated by the dissipation
rate encountered in Lemma 3.2. More precisely, taking suitable linear combinations
leads to the following.

Lemma 4.2. Let n≤3, and assume (2.5), (2.4) and (4.1). Then there exist b>0 and
Γ4>0 such that

Fε(t) :=
∫
Ω

∣∣∣A− 1
2

(
uε(·,t)−u0

)∣∣∣2+b∫
Ω

∣∣∇vε(·,t)∣∣2, t≥0, ε∈ (0,1), (4.5)

satisfies

F ′
ε(t)+

1

Γ4

∫
Ω

(uε−u0)2+
1

Γ4

∫
Ω

|∇vε|4≤Γ4

∫
Ω

|∇vε|2 for all t>0 and ε∈ (0,1).

(4.6)

Proof. Using that max{n,2}< 2n
(n−2)+

due to our assumption that n≤3, we can

pick q>max{n,2} such that q< 2n
(n−2)+

. We then let Γ3=Γ3(q) be as accordingly pro-

vided by Lemma 4.1, and taking Γ1 from Lemma 3.2 and letting

b :=
1

2Γ1Γ3
, (4.7)



GENGLIN LI AND MICHAEL WINKLER 315

we can draw on the compactness of the first among the two continuous embeddings
W 2,2(Ω) ↪→W 1,q(Ω) ↪→W 1,2(Ω) to infer from an associated Ehrling inequality and stan-
dard elliptic regularity theory that there exists c1>0 fulfilling

Γ3∥∇φ∥2Lq(Ω)≤
b

2
∥∆φ∥2L2(Ω)+c1∥∇φ∥

2
L2(Ω) (4.8)

for all φ∈C2(Ω) such that ∂φ
∂ν =0 on ∂Ω. Then from (4.2) we obtain that for all t>0

and ε∈ (0,1),

d

dt

∫
Ω

∣∣A− 1
2 (uε−u0)

∣∣2+ 1

Γ3

∫
Ω

(uε−u0)2 ≤ Γ3∥∇vε∥2Lq(Ω)

≤ b

2

∫
Ω

|∆vε|2+c1
∫
Ω

|∇vε|2,

which when added to (3.4) shows that with (Fε)ε∈(0,1) as in (4.5) we have

F ′
ε(t)+

1

Γ3

∫
Ω

(uε−u0)2+
b

2

∫
Ω

|∆vε|2+
b

Γ1

∫
Ω

|∇vε|4

≤ b

2

∫
Ω

|∆vε|2+c1
∫
Ω

|∇vε|2

+bΓ1

∫
Ω

(uε−u0)2 for all t>0 and ε∈ (0,1).

In view of (4.7), this yields (4.6) if we choose Γ4 :=max{2Γ3 ,
Γ1

b , c1}.

According to the decay feature of t 7→
∫
Ω
|∇vε|2 included in (3.2), an analysis of the

damped linear ODI in (4.6) already entails the stabilization property of u claimed in
Theorem 1.2, and beyond this also provides some further information on decay of the
signal gradient.

Lemma 4.3. Let n≤3, and suppose that (2.5), (2.4) and (4.1) hold. Then there exists

a null set N⋆⊂ (0,∞) such that A− 1
2

(
u(·,t)−u0

)
∈L2(Ω) for all t∈ (0,∞)\N⋆ with

A− 1
2

(
u(·,t)−u0

)
→0 in L2(Ω) as (1,∞)\N⋆∋ t→∞, (4.9)

and one can find C>0 such that∫ ∞

1

∫
Ω

|∇vε|4≤C for all ε∈ (0,1). (4.10)

Proof. Since A− 1
2 is continuous on L2

⊥(Ω), we can fix c1>0 in such a way that

∥A− 1
2φ∥2L2(Ω)≤ c1∥φ∥

2
L2(Ω) for all φ∈L2

⊥(Ω),

whence if we take Γ4 from Lemma 4.2 and let c2 :=
1

c1Γ4
, then from (4.6) we infer that

for the functions in (4.5) we have

F ′
ε(t)+c2Fε(t)+

1

Γ4

∫
Ω

|∇vε|4≤hε(t) :=(Γ4+bc2)

∫
Ω

|∇vε|2 (4.11)

for all t>0 and ε∈ (0,1). If here we first neglect the nonnegative third summand on
the left, then by means of a comparison argument we obtain that

Fε(t) ≤ Fε(1)e−c2(t−1)+

∫ t

1

e−c2(t−s)hε(s)ds
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≤ c3e
−c2(t−1)+

∫ t

1

e−c2(t−s)hε(s)ds for all t>1 and ε∈ (0,1), (4.12)

with c3 := supε∈(0,1)Fε(1) being finite due to (3.7) and (3.8).

In order to make appropriate use of this in the framework of the sparse topological
information on the approximation properties of (vε)ε∈(0,1), and especially of (uε)ε∈(0,1),
provided by Lemma 3.7, we note that (3.8) and (3.7) particularly ensure that for all

t0>1, with (εj)j∈N as found there we have ∇vε
⋆
⇀∇v and A− 1

2 (uε−u0)
⋆
⇀A− 1

2 (u−u0)
in L∞((t0,t0+1);L2(Ω)) as ε=εj↘0, and that thus, according to lower semicontinuity
of the norms in these spaces with respect to the considered convergence type, for

F(t) :=

∫
Ω

∣∣∣A− 1
2

(
u(·,t)−u0

)∣∣∣2+b∫
Ω

∣∣∇v(·,t)∣∣2, t>0, (4.13)

we have

∥F∥L∞((t0,t0+1))≤ liminf
ε=εj↘0

∥Fε∥L∞((t0,t0+1)) for all t0>1. (4.14)

Here the right-hand side can be controlled by combining (4.12) with (3.26) and (3.2):
Indeed, for t0>1 and t∈ (t0,t0+1), in (4.12) we can estimate∫ t

1

e−c2(t−s)hε(s)ds=e
−c2t

∫ t

1

ec2shε(s)ds≤e−c2t0
∫ t0+1

1

ec2shε(s)ds for all ε∈ (0,1),

where we may use that (3.26) warrants that

hε→h in L1
loc((0,∞)) as ε=εj↘0 (4.15)

with h(t) :=(Γ4+bc2)
∫
Ω

∣∣∇v(·,t)∣∣2, t>0. Therefore, (4.14) along with (4.12) shows that

∥F∥L∞((t0,t0+1)) ≤ c3e
−c2(t0−1)+e−c2t0

∫ t0+1

1

ec2sh(s)ds

= c3e
−c2(t0−1)+ec2

∫ t0+1

1

e−c2(t0+1−s)h(s)ds for all t0>1,

so that since
∫∞
1
h(s)ds is finite by (3.2) and (4.15), and since thus∫ t0+1

1

e−c2(t0+1−s)h(s)ds=

∫ ∞

1

1(1,t0+1)(s)e
−c2(t0+1−s)h(s)ds→0 as t0→∞

according to the dominated convergence theorem, it follows that

∥F∥L∞((t0,t0+1))→0 as t0→∞.

With some suitably chosen null set N⋆⊂ (0,∞), this readily establishes the claimed
conclusion together with (4.9), whereas (4.10) can be seen by going back to (4.11) and
integrating over t∈ (1,T ) for T >1, which namely reveals that in view of our definition
of c3,

1

Γ4

∫ T

1

∫
Ω

|∇vε|4 ≤ Fε(1)+(Γ4+bc2)

∫ T

1

∫
Ω

|∇vε|2
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≤ c3+(Γ4+bc2) ·
1

2
|Ω| ·

(
∥v0∥L∞(Ω)+1

)2
for all T >1 and ε∈ (0,1),

again thanks to (3.2).

Finally, we only need to observe that thanks to the fact that the exponent 4 appear-
ing in (4.10) exceeds the currently considered spatial dimension, through a Morrey-type
inequality the latter can be combined with (3.1) and (2.8) so as to yield decay of v in
the intended flavor.

Lemma 4.4. If n≤3 and (2.5), (2.4) as well as (4.1) hold, then there exists a null set
N⋆⋆⊂ (0,∞) such that

v(·,t)→0 in L∞(Ω) as (1,∞)\N⋆⋆∋ t→∞. (4.16)

Proof. Once more making explicit use of our restriction on n, we again employ a
Morrey estimate to find c1>0 such that∥∥∥φ−∥φ∥L∞(Ω)

∥∥∥
L∞(Ω)

≤ c1∥∇φ∥L4(Ω) for all φ∈W 1,4(Ω). (4.17)

Moreover, combining (3.29) with (3.1) and (3.25) with (4.10) we obtain that∫ ∞

1

∫
Ω

uv<∞ and

∫ ∞

1

∫
Ω

|∇v|4<∞,

whence given η>0 we can choose tη>2 suitably large fulfilling∫ tη

tη−1

∫
Ω

uv≤mη

2
and

∫ tη

tη−1

∥∥∇v(·,t)∥∥
L4(Ω)

dt≤ η

2c1
, (4.18)

where m := |Ω|u0 is positive according to (1.7). To see that, in fact, with some null set
N⋆⋆⊂ (0,∞) we have

∥v(·,t)∥L∞(Ω)≤η for all t∈ (tη,∞)\N⋆⋆, (4.19)

we note that in view of the continuity of the embedding W 1,4(Ω) ↪→L∞(Ω) we know
from (3.27) that vε(·,t)→v(·,t) in L∞(Ω) for a.e. t>0 as ε=εj↘0, with (εj)j∈N as
provided there. As a consequence of this, namely, we may rely on (2.9) to see that with
some null set N⋆⋆⊂ (0,∞),

∥v(·,t)∥L∞(Ω)≤∥v(·,t0)∥L∞(Ω) for all t0∈ (0,∞)\N⋆⋆ and each t∈ (t0,∞)\N⋆⋆,
(4.20)

while thanks to (3.30), upon enlarging N⋆⋆ if necessary we may assume that moreover∫
Ω

u(·,t)=m for all t∈ (0,∞)\N⋆⋆. (4.21)

In particular, using (4.17) and (4.18) we can estimate∫ tη

tη−1

∥v(·,t)∥L∞(Ω) ·mdt

=

∫ tη

tη−1

∫
Ω

u(x,t)v(x,t)dxdt−
∫ tη

tη−1

∫
Ω

u(x,t) ·
{
v(x,t)−∥v(·,t)∥L∞(Ω)

}
dxdt
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≤ mη

2
+

∫ tη

tη−1

{∫
Ω

u(x,t)dx

}
·
∥∥∥v(·,t)−∥v(·,t)∥L∞(Ω)

∥∥∥
L∞(Ω)

dt

≤ mη

2
+c1m

∫ tη

tη−1

∥∥∇v(·,t)∥∥
L4(Ω)

dt

≤ mη

2
+c1m · η

2c1
,

so that since, on the other hand,∫ tη

tη−1

∥v(·,t)∥L∞(Ω) ·mdt≥m ·essinf
t∈(tη−1,tη)

∥v(·,t)∥L∞(Ω)

by (4.20) and (4.21), it follows that

essinf
t∈(tη−1,tη)

∥v(·,t)∥L∞(Ω)≤η.

Again thanks to (4.20), this entails (4.19) and thereby implies (4.16).

Our main result on large time stabilization has thereby been achieved already.

Proof. (Proof of Theorem 1.2.) Noting that our assumptions in (1.10) enable us
to choose (ϕε)ε∈(0,1) in such a way that both (2.4) and (4.1) hold, we may take (u,v)
as accordingly provided by Lemma 3.7, and then conclude as intended by combining
Lemma 4.3 with Lemma 4.4 and letting N :=N⋆∪N⋆⋆, with the null sets N⋆ and N⋆⋆
introduced there.
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Appendix. As we could not find an appropriate reference for this in the litera-
ture, let us finally include a derivation of the following general statement on weak L1

convergence that has been used in Lemma 3.7.

Lemma A.1. Let N ≥1 and G⊂RN be measurable with |G|<∞, and suppose that
(ρj)j∈N⊂C0([0,∞)) and (wj)j∈N⊂L1(G;[0,∞)) are such that as j→∞ we have

sup
ξ∈[0,M ]

∣∣ρj(ξ)−ξ∣∣→0 for all M>0 (A.1)

and

wj⇀w in L1(G), (A.2)

and that there exists K>0 such that∣∣ρj(ξ)∣∣≤Kξ for all ξ≥1 and j∈N. (A.3)

Then

ρj(wj)⇀w in L1(G) as j→∞. (A.4)

In particular, this conlcusion holds whenever (ρj)j∈N⊂C0([0,∞)) is such that

0≤ρj(ξ)↗ ξ as j→∞ for all ξ≥0. (A.5)
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Proof. Since (wj)j∈N is relatively compact with respect to the weak topology in
L1(G) by (A.2), from the De la Vallée-Poussin theorem we obtain c1>0 and a function

ψ : [0,∞)→ (0,∞) such that ψ(ξ)
ξ →+∞ as ξ→∞, and that∫
G

ψ(wj)≤ c1 for all j∈N. (A.6)

Now given 0 ̸≡φ∈L∞(G) and η>0, we abbreviate c2 :=∥φ∥L∞(G) and first pick δ>0
small enough fulfilling

δ≤ η

4c1c2 ·(K+1)
, (A.7)

then choose M ≥1 such that

ψ(ξ)

ξ
≥ 1

δ
for all ξ >M, (A.8)

and taking c3>0 large enough such that in accordance with (A.2) we have∫
G

wj≤ c3 for all j∈N, (A.9)

we use (A.1) and again (A.2) to fix jη ∈N in such a way that∣∣ρj(ξ)−ξ∣∣≤ η

4c2|G|
for all j≥ jη and ξ∈ [0,M ] (A.10)

as well as ∣∣∣∣∫
G

wjφ−
∫
G

wφ

∣∣∣∣≤ η

2
for all j≥ jη. (A.11)

Then for any j≥ jη, in the identity∫
G

ρj(wj)φ−
∫
G

wφ=

∫
G

{
ρj(wj)−wj

}
·φ+

{∫
G

wjφ−
∫
G

wφ

}
, j∈N, (A.12)

we can use our definition of c2 to estimate∣∣∣∣∫
G

{
ρj(wj)−wj

}
·φ

∣∣∣∣ ≤ c2

∫
G

∣∣ρj(wj)−wj∣∣
= c2

∫
{wj≤M}

∣∣ρj(wj)−wj∣∣+c2∫
{wj>M}

∣∣ρj(wj)−wj∣∣ (A.13)

for all j∈N, where according to (A.10),

c2

∫
{wj≤M}

∣∣ρj(wj)−wj∣∣≤ c2∫
{wj≤M}

η

4c2|G|
=
η

4
· |{wj≤M}|

|G|
≤ η

4
for all j≥ jη.

(A.14)
Moreover, recalling that M ≥1 we may rely on (A.3) to see that thanks to (A.8), (A.6)
and (A.7),

c2

∫
{wj>M}

∣∣ρj(wj)−wj∣∣ ≤ c2

∫
{wj>M}

∣∣ρj(wj)∣∣+c2∫
{wj>M}

wj
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≤ c2 ·(K+1)

∫
{wj>M}

wj

= c2 ·(K+1)

∫
{wj>M}

wj
ψ(wj)

·ψ(wj)

≤ c2 ·(K+1)δ

∫
{wj>M}

ψ(wj)

≤ c2 ·(K+1)δ ·c1
≤ η

4
for all j∈N.

Together with (A.14) inserted into (A.13), this shows that (A.12) along with (A.11)
implies the inequality∣∣∣∣∫

G

ρj(wj)φ−
∫
G

wφ

∣∣∣∣≤ η

4
+
η

4
+

∣∣∣∣∫
G

wjφ−
∫
G

wφ

∣∣∣∣≤η for all j≥ jη,

from which (A.4) follows for such (ρj)j∈N due to the fact that η>0 and φ∈L∞(G)∼=
(L1(G))⋆ were arbitrary.

The additional claim concerning sequences (ρj)j∈N fulfilling (A.5) results from this upon
observing that in this case (A.3) is trivially satisfied, whereas (A.1) is a consequence of
Dini’s theorem.
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