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ON ANISOTROPIC NON-LIPSCHITZ RESTORATION MODEL:
LOWER BOUND THEORY AND ITERATIVE ALGORITHM*

CHUNLIN WUT, XUAN LIN%, AND YUFEI ZHAOS

Abstract. For nonconvex and nonsmooth restoration models, the lower bound theory reveals
their good edge recovery ability, and related analysis can help to design convergent algorithms. Exist-
ing such discussions are focused on isotropic regularization models, or only the lower bound theory of
anisotropic model with a quadratic fidelity. In this paper, we consider a general image recovery model
with a non-Lipschitz anisotropic composite regularization term and an ¢; norm (1 <¢<+o0) data fi-
delity term. We establish the lower bound theory for the anisotropic model with an £; fidelity or an £
fidelity, which applies to impulsive noise or uniform noise (quantization error) removal problems. For
the general case with 1 <q <400, a support inclusion analysis is provided. To solve this non-Lipschitz
composite minimization model, we are then naturally motivated to extend previous works to introduce
a support shrinking strategy in the iterative algorithm and relax the support constraint to a T-support
(a thresholded version) constraint, which is more consistent with practical computation. The objec-
tive function at each iteration is also linearized to construct a strongly convex subproblem. To make
the algorithm more implementable, we compute an approximation solution to this subproblem at each
iteration, but not an exact one. The global convergence result of the proposed inexact iterative thresh-
olding and support shrinking algorithm with proximal linearization is established. The experiments
on image restoration and two-stage image segmentation demonstrate the effectiveness of the proposed
algorithm.

Keywords. Image restoration; anisotropic model; non-Lipschitz optimization; lower bound theory;
thresholding; support shrinking.
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1. Introduction
We consider the problem of image recovery, i.e., trying to find the unknown ground
truth z € R from the degraded observation b€ RM as follows

b=Az+n.

Herein, M and N are positive integers, n € RM represents the noise, and the matrix
AeRM*N ig related to the information acquisition process, e.g., an identity matrix for
the image denoising problem, a convolution matrix generated by blur kernel for image
deblurring, and a measurement matrix in the problem of compressed sensing. This
linear inverse problem is usually ill posed. To solve such a problem, we consider the
following minimization model

min Y ¢(|G x]) +Qy (), (L.1)
eJ

TERN 4
i

where

§||Ax—b||g, g€ [l,+00),

(@)= BI| Az —blloo, q=-+00.

(1.2)
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Herein, ¢ is a potential function satisfying certain properties, J is an index set,
{G;}icy CRY are the columns of matrix G € RN*#) which can be a set of sparsifying
operators (e.g., the discrete gradient operators or the atoms in a wavelet transform), and
G denotes the transform coefficient. As one can see, the ¢, norm |||, (1<g<+o0)
is adopted in the data fidelity term of model (1.1) and it can be used to handle differ-
ent additive noises by choosing different values of ¢ from a maximum likelihood (ML)
estimation. For example, people use the squared ¢5 norm to deal with the white Gaus-
sian noise [11,15,22], the ¢; norm for impulse noise removal [35,40,55, 60], and the ¢,
norm for uniform noise (or quantization error) removal [13,26,66]. It is also known
that the ¢, norm minimization is the maximum likelihood estimate of the generalized
Gaussian distribution with shape parameter ¢ (¢ >0) [21,44,59], which has served as
the statistical distribution of image wavelet coefficients in high frequency subbands [53],
or used to model the prediction errors in deep learning based speech enhancement [17].
If {G;}icy is the identity operator, (1.1) with ¢ € [1,+00] is reduced to the model in [63].
Meanwhile, the energy of the transform coefficients (like discrete derivatives) of z is
penalized in the regularization term and the potential functions ¢ considered in this
paper are general nonconvex and non-Lipschitz ones.

Nonconvex and nonsmooth regularizers have the advantages in finding sparse solu-
tions than convex ones and they can help to preserve or generate neat edges in restored
images [19, 34,56, 58]. This very useful edge property of nonconvex and nonsmooth
regularization in image restoration is due to the lower bound theory, which provides a
uniform lower bound of nonzero entries or image differences of local minimizers. One
question we are interested in about model (1.1) is whether it satisfies the lower bound
theory. The other crucial question we are concerned about is how to design efficient
and convergent algorithms for solving this model. Compared to convex minimization
models, the difficulty for solving model (1.1) arises mainly from the possible nonsmooth-
ness of the fidelity term, the nonconvex and nonsmooth property of the regularization
term, as well as the composition of ¢ and G;’s, which makes the model a composite
optimization problem. In the following two paragraphs, we review some existing works
related to these two aspects.

The lower bound theory has been studied in the literature; see, e.g., [23,25,31, 32,
36,54,56,57,70-72]. In general, the key to derive the lower bound theory is to apply the
inequality derived from the optimality condition to some carefully constructed testing
vectors. For the model with an anisotropic regularizer as given in (1.1), only the case
of a squared ¢, norm fidelity term has been considered; see the pioneering work [56],
or [23] where box constraints were added to the minimization model. The technique
in [56] and [23] uses the second order optimality condition, which cannot be applied
to model (1.1) with other fidelity terms. On the other hand, [71] established the lower
bound theory of image restoration model with non-Lipschitz isotropic regularization
and quadratic fidelity, which was extended to other restoration or decomposition models
[36,67,70] with non-Lipschitz isotropic regularization and different fidelities in the single-
or multiple-channel case. This theory for nonconvex and nonsmooth isotropic models
with box constraints was also established in [72] and [31], the latter of which focuses
on the case of £y “norm” potential function. The derivation in [31] is based on the
gradient based image representation and the property of ¢, “norm”, while [36,70-72]
mainly used the conservation of image gradient fields. The sparsifying system {G;}ics
in all these isotropic regularization cases [31, 36, 70-72] is limited to be the discrete
gradient operators (first order differences). At the same time, the discussion is restricted
to the case that the regularization quantity corresponding to each pixel is only one.
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These limitations make such techniques difficult to be generalized to an anisotropic
regularization with an arbitrary sparsifying system. Also, the existing construction
of testing vectors is either only suitable for the second order optimality condition, or
restricted to the case of the isotropic first order regularization. Indeed, the lower bound
theory of the anisotropic model (1.1) with non-quadratic fidelity terms has not been
studied in existing works. We mention that, still using the second optimality condition,
a very recent work [54] reported the lower bound theory for nonlocal nonconvex models
with quadratic fidelity solved by split Bregman iteration [39].

For nonconvex and nonsmooth composite minimization models, the other crucial
problem is how to design effective and convergent algorithms to solve them. One
straightforward approach is to utilize variable splitting and alternating direction method
of multipliers (ADMM) [37] or equivalently, split Bregman iteration [39], but their con-
vergence for nonconvex optimization problems is only guaranteed under specific as-
sumptions like surjectiveness on the linear operator [43,49, 65|, which do not hold in
2D image restoration models with gradient or higher order sparsifying systems. In the
existing studies, one popular class of approaches are smoothing approximation methods,
e.g. [7,18,20,24,42], in which smoothing functions with auxiliary parameters are utilized
to approximate the original objective function. These include the smoothing gradient
method [20], the smoothing quadratic regularization (SQR) method [7], the smoothing
trust region Newton method [24] and the R-regularized Newton scheme [42] both for
twice differentiable fidelity terms, the half-quadratic technique based method [18] for
specific potential function ¢(t)=t? with 0<p,¢<2. In such methods, it was usually
only proved that the iterative sequence converges to a stationary point of the smoothed
variational model, or satisfies the subsequence convergence result by letting the smooth-
ing parameter tend to zero. Another class of approaches is the iteratively reweighted
methods, which concentrate on the special case of ¢(t)=tP. Under the assumption
that 0 <p,q <2, the iterative reweighted norm (IRN) algorithm [61] and the generalized
Krylov subspace method for £,-¢, minimization (GKSpq, [48]) are proposed, where the
£, (or ¢,) term is approximated by a weighted ¢; norm with iteratively updated weight-
ing matrices. However, the convergence analysis of iterate sequences in [61] and [48]
only focuses on the case of 1<p,q<2, which is not applicable to the more interest-
ing case with nonconvex regularization terms. The last approach we mention here
is a support shrinking strategy derived respectively for various signal recovery prob-
lems [32,50,63] and different image restoration models with isotropic first order regular-
ization [36,69,70,73], yielding some (two-loop) iterative algorithms with either exact or
inexact inner loops, when incorporated with the iteratively reweighted ¢; [16,34] or least
squares [30,47]. During a very recent study [75] on nonconvex wavelet image restora-
tion, we got aware that a similar support shrinking strategy was also induced from a
majorization-minimization framework for non-Lipschitz synthesis wavelet model [33],
but without convergence result given in [33]. In such works with convergence results,
the proof techniques for non-Lipschitz composite optimization problems all use the con-
servation of image gradient fields, which cannot be used for composite models with the
anisotropic regularization by a general sparsifying system. To our best knowledge, ex-
isting algorithms for anisotropic composite minimization models have no proved global
sequence convergence to a stationary point of the original objective function.

As can be seen, the research on the lower bound theory and related algorithm
study for nonconvex anisotropic regularization models is very limited. Also, existing
related derivation techniques cannot be applied to analyze anisotropic regularization
models with non-quadratic fidelities, or iterative algorithms solving a general anisotropic
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model. In this paper, we aim to analyze and solve the general non-Lipschitz anisotropic
regularization model (1.1). The key technique we introduce is a new construction of the
testing vectors, based on which, the first order optimality condition can be applied to
prove a lower bound theory and to analyze the algorithm in the situation of anisotropic
regularization. The main contributions of this paper can be summarized as follows.

(1) We show a lower bound theory for the composite minimization model (1.1) with
an fq or {4, data fitting term, which is useful for impulse noise or uniform noise
(quantization error) removal. For the general case with 1<¢<o0, a support
inclusion analysis is provided. Such theoretical results apply to anisotropic reg-
ularization by a general sparsifying system. They help us not only understand
more about the model, but also to design iterative algorithms.

(2) Motivated by the support inclusion analysis, we extend previous works to pro-
pose an inexact version of an iterative thresholding and support shrinking algo-
rithm with proximal linearization to solve model (1.1). Being more consistent
with real computation, the algorithm thresholds at each iteration the trans-
form coefficients to determine the support, and constructs a strongly convex
subproblem. This makes the algorithm more practical and computationally ef-
ficient. The sequence convergence of the generated iterates is also established,
provided that the subgradient condition is satisfied.

The remainder of this paper is organized as follows. In Section 2, we investigate the lower
bound theory and support inclusion property of the non-Lipschitz anisotropic model
(1.1). Based on these conclusions, in Section 3, we introduce an iterative algorithm with
the strategy of thresholding and support shrinking. Then we consider an inexact version
of the algorithm and establish its convergence result. We present the details of algorithm
implementation in Section 4. In Section 5, the experiments on image deconvolution and
two-stage image segmentation are carried out to exhibit the usefulness of the proposed
algorithm. We conclude this paper in Section 6.

2. Lower bound theory and support inclusion analysis

We now give some notations, which will be used throughout this paper. For a set S,
let #S or |S| denote its cardinality. For a matrix B, we use B; to denote the i’th column
of B, use B' and BZT to denote the transposes of B and B;, respectively. For a vector
x €RY | 2 is the I'th entry of x, 1 <I<N. Given z € RY, the £, (quasi-)norm ||z, with

1/p
p€(0,+00) is defined by |z|,= (Zl§l§N|$l|p) and the infinity norm is defined
by ||x|\oo:1r<nlzg§v{|xl|} Sometimes, we abbreviate |- ||z as ||-|| as usual. We use Iy to

denote the N x N identity matrix. We denote the set of indices corresponding to nonzero
sparsifying coefficients G| = of z as the coefficient support (or, abbreviated as support)
S(z), i.e., S(z)={i€J:G]x#0}. The set of indices corresponding to differences G =
whose absolute values are larger than 7 (7 >0), is called the coefficient 7-support (or,
abbreviated as 7-support) of # and written as T(z)={i€J:|G] 2| >7}. Specifically, if
taking 7=0, T(x) degenerates to S(x).

For the convenience of description, we denote

Fla):= (1G] z|)+Qy(x) (2.1)

=
for our considered model (1.1), and rewrite it as

(§) min F(x). (2.2)

zeRN
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The potential function ¢ is supposed to satisfy the following assumptions.
ASSUMPTION 2.1.

(a) ¢:]0,+00)—[0,400) is a continuous concave coercive function, and ¢(0)=0.
(b) ¢ is C* on (0,400), ¢'(t)](0,400) >0 and ¢'(0+)=+oo.
(c) For any a>0, ¢ is Ly-Lipschitz continuous on [a,+00), i.e., there exists a

constant Lo, determined by o, such that for any t,s € [a,+00), |¢'(t) —¢'(s)| <
L,|t—s|.
ExXAMPLE 2.1. Two examples of potential functions satisfying Assumption 2.1 are
P1(t)=t" (0<p<1) and ¢o(t)=log(1+1t?) (0<p<1) [69, 73]

By Assumption 2.1, the subdifferential of ¢(|t|) at t is

(—00,+00), if t=0,

6¢0|-|(t):{ {ﬁQﬁ/(W)}v otherwise,

and ¢([t]) is subdifferentially regular [62] at any t € R [50].
For the fidelity term, Q,(z) is convex, subdifferentially regular at any z € R and
its subdifferential is given by

B AT - -
wq(x):{ dATOl- Az —b) g€l +00)

BATO||- oo (Az—b) g=-Fo00 (2:3)

where the subdifferential of the infinity norm is as follows [6]
Ollh]loc = {deRM[ld]s <1,hTd=||h]}-

Throughout this paper, A and G are assumed to satisfy the following basic property,
which is trivial in image restoration problems [64,68].

ASSUMPTION 2.2. ker ANkerGT ={0}.

Following the arguments in existing works, e.g., [73] and [52], one can show the
coercive property of the objective function F(z).

THEOREM 2.1.  Suppose that Assumption 2.1 and Assumption 2.2 hold true. Then
the function F(x) in (2.1) is coercive and thus (2.2) has at least one solution.

In this section, we focus on discussing the lower bound theory and related support
inclusion analysis for the model (1.1), i.e., the minimization problem (2.2). In [56], the
authors studied the lower bound theory for a special case of (2.2) with ¢=2, i.e.,

min Z¢(|ij|)+§||Ax—b||§. (2.4)
eJ

TERN 4
i

To establish such a conclusion, the second order derivative of ¢ is required. We revise
the conclusion in [56] to Theorem 2.2 below, in which the requirement on ¢ is modified
to be consistent with Assumption 2.1.

THEOREM 2.2. Let ¢ be the potential function satisfying Assumption 2.1 and the

following: ¢ is C? on (0,4+00), ¢" is increasing on (0,+00) with ¢"(t) <0 for any t >0,

¢"(0T)=—c0 and tlifrn @"(t)=0. Then there exists a constant 02 >0, such that for
—+o0

any local minimizer * of model (2.4) (i.e., the problem (2.2) with ¢=2), the difference
Glx* is either zero or satisfies |G x*| > 6s.
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Proof.  The proof is similar to that in [56]. |

We here mention that a related theorem to Theorem 2.2 was reported very recently
in [54], which is a nonlocal version of the lower bound theory in [56].

Theorem 2.2 is for the case of Gaussian measurement noise. Another common and
important situation is the impulse noise removal, and the corresponding model is as
follows,

min > _6(G )+ 8] Az —b]1, (2.5)

r€RN 4
1€

which is the g=1 case of (2.2). The key technique for proving Theorem 2.2 is the
second order necessary condition on local minimizers with the corresponding testing
vector construction [56], which cannot be applied to deal with the model (2.5). For the
model (2.5), we will instead establish a lower bound theory on the stationary points
(including local minimizers) by using the first order optimality condition with a new
construction of testing vector.

THEOREM 2.3.  There exists a constant 61 >0, such that for any stationary point x*
of (2.5) (i.e., the problem (2.2) with g=1), it satisfies

either G x* =0 or |G/ z*|>60,, Viecl.
Proof. Suppose that z* is a stationary point of (2.5). Define
S*=S(z*)={i€J: G/ 2" #0} and C(S*)={zeR": G/ z=0VieJ\S*}.

Without loss of generality, we consider the case S*#@. By a similar calculation
o [73, Theorem 2.3], we have Q(ZiEJ\S* ¢(|G2Tx*|)) :Ziej\s*(kerGiT)J- and that
Diens #(|G z|) is subdifferentially regular at x*. By Corollary 10.9 of [62], we derive

G/ x*
OF () =Bl Az —bl1)+ 3 0(1G] ") S Gard | 3 66 a*))

T %
ies* |Gy 2| i€I\S*
Gl
=BATH Ar* — (|G z* G (ker G
=LA 0|1 (Az +7;S*¢ (I I)|GT *I +g:\s* erG) )t

Since z* is a stationary point of F(z), 0€ 0F (z*) and there exists d€ || - [|1 (Az* —
b), such that for any UGC(S*),

> (6] ‘GT *‘GTU——ﬁdTAMBHdII MAllllollz<allolls,  (2.6)
1€ES*

where a= v M| A2
Define S, ={i€S*:G]z* >0} CS*. We consider a fixed j € S*, and define a closed
set

V(85,85 )=CS)N{v:Glv>0VieS,,, Glv<0VieS\Si,}n{v:|G]v|=1}

which is nonempty, since v= eV(S*,7,5%,). Let 0=0(S*,5,S% ;) be the solution

|G§r*|
to the following problem

min|lv|z subject to ve V(S*,,S% ).
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Then it implies that: @ € C(S*), and for any i € S*, G 2*-G] >0, and |GT *lGT~—1

Next, we derive a uniform upper bound of ||7||2 for any stationary point 2*. Similar
to the definition of C(S*) and V(S*,4,S% ), for any set ICJ, define

={ueR": Glu=0VieJ\I},
and for any subset I, CI and index ¢’ €1, define
V(LY )=CHn{v:GJv>0Viel,y, GJv<0Viel\l ,}n{v:|G v|=1}.

For those nonempty V(I,i', 1), let 9(I,7’,1;4) be the solution to the following con-
strained optimization problem

min|jv|2  subject to v eV (1,71 ).

Denote u(I)= max ||0(L¢,I11)|2 and let
i€l I ClI
p=max{u(l)}, (2.7)

where p is well-defined and positive. Then g is a uniform upper bound of ||7]]s, i.e.,
|0]l2=|0(S*,4,8% )|l2 < p for any stationary point z*.

By the assumption on function ¢(-) and the construction of 0, we derive from (2.6)
that

T *

(G2 =0 <|GTx*|>|GT :

T
B< Y H (G0 ) o GTo<allh <ap.
i€S* |G |

Since ¢'(0+) =400, the constant 6; =inf{t>0:¢'(t) <au} >0 is well defined and
independent of z*. Thus, we obtain that

G] x*[> 61,

which holds for any j €S* and any stationary point x*. ]

For the removal of uniformly distributed noise (or quantization error), the corre-
sponding model is as follows,

min qu |G )+ Bl Az = bl oo, (2.8)

Tz€RN
which is the ¢g=+o00 case of (2.2). For the model (2.8), a lower bound theory similar to
Theorem 2.3 holds.
THEOREM 2.4. There exists a constant 0 >0, such that for any stationary point x*
of (2.8) (i.e., the problem (2.2) with q=+00), it satisfies
either G} x* =0 or |G} 2*| >0, Vi€l

Proof. By (2.3), 0Q, is uniformly bounded when ¢=+occ. Then the remaining

proof is similar to Theorem 2.3. 0

REMARK 2.1. By Theorem 2.2, the lower bound theory holds for the local minimizers
of the objective function F(z) in (2.1), in the case of squared ¢ norm fidelity, i.e.,
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q=2. By Theorem 2.3 and Theorem 2.4, in the cases of ¢; norm and ¢, norm fidelity
terms, i.e., g=1 and ¢=+o0, the lower bound theory can hold for all stationary points
(including the local minimizers) of F(z).

By Theorem 2.2 (or Theorem 2.3, Theorem 2.4), there exists some constant 6, such
that for any local minimizer «* of F(z) with ¢=2 (or any stationary point z* of F(z)
with ¢=1,+00), it satisfies

either G 2* =0 or |G z*|>9.

Suppose that z* is very near to a given point Z, such that |G z* — G #| <||G||2||z* —
Flla<0, VieJ. Then |G]a*|<|G]2* -G E|+|G] | <0+|G] |, which implies the
support inclusion property, i.e., for i € J,

Glz*=0, when G/ z=0.

In fact, although there is so far no lower bound theory for model (2.2) with g€
[1,4+00] and ¢#1,2,400, the support inclusion property can be shown to hold for the
stationary points of model (2.2) with any ¢ € [1,4+00] as stated in Theorem 2.5.

THEOREM 2.5.  Consider (2.2) with a fived q € [1,+00]. Given T €RY, assume that a
stationary point & of (2.2) is sufficiently close to &. Then for i€ J,

Gi=0, when G]z=0.
Proof. Suppose that for some j € J, G]-Ti“:O but GJ-TaA:;éO. Define nonempty sets
S=S(2)={i€J:GT2#0} and C(S) = {xeRN: GTz=0 VieJ\S}. By Corollary 10.9

of [62], we derive

OF (&)=0Q,(2)+)_¢'(IG] )

G/ &
e |G i+o| D oG] )

- ire
€S i€J\S
SATO|[l3(A2 —b)+ X ¢/ (GT #) SHE Gt X (kerGT):, g€ 1, +oo),
_ i€S ieJ\S
BATO|| |0 (AZ D) +Z¢’(|G?A|)‘Gr Git+ X (kerG)*, g=+o0.
ieS ie\S

Since & is a stationary point of (2.2), 0€dF (&) and for any ve C(S),

BIIAZ —b]13, 5l Allzlvllz, g € (1,400)

. Gi#
> H(GT a) gz Gl o< SVAIAllvlz a=1
€8 BllAllzllvllz, g =00
Define
HALC b”2q 2 qE(l,+OO),
al(‘i): VMa (121,
1, q=-+o0.

Then there exists d >0 such that if ||& —Z||2 <4,

Gz
> (1G] & )|GTA|GTU<OZ1( )l All2[vl2- (2.9)
ieS
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By using similar notations in Theorem 2.3, we denote
S.,={ieS:G]/i>0}cS
and
V(S,7,8:4)=CO)N{v:GJv>0VieS,,, GJv<0VieS\S;,}n{v: |G]-Tv| =1}.

Since v:@%EV(S,j,SH_), V(S,5,514)#0. Let 9=10(S,5,544) denote the solution

to the following problem
min||v[s  subject to veV(S,5,5:4),
which satisfies [|9]|2 = [9(S, 7,54+ )|l2 < p with p as defined in (2.7). Then, by (2.9),
G/& .+ WGlE .
Glo<3 ¢ (G i) A‘GIUSOQ(IWHAHQHUHQ

‘ J ieS

¢'(1G] 2])=¢'(IG] 2))

< (i), (2.10)

where ay(#)=ay(#)8ul|All2. Since ¢'(0+)=-+oo, the constant §=inf{t> 0:¢/(t) <
az(Z)} is well defined. If & is sufficiently close to Z such that ||£—Z| < min{m,é},
i€J

we have |G 2| < |G & -G &|+|G] 2| <||G;l||2 — | <6 and ¢/ (1G] &|) > ax(Z), which
contradicts with (2.10). Thus, for any j € J with G;ri:O, we have G]T:zzo. d

Note that similar support inclusion analysis to Theorem 2.5 was derived for different
sparse signal recovery problems ([50,63]) and different isotropic image restoration or
decomposition models ([36,67,69,71,73]), etc.

3. Algorithms and convergence analysis

The theoretical results in the previous section not only exhibit some interesting
model properties, but also help us to design iterative algorithms and perform conver-
gence analysis for the non-Lipschitz composite minimization model (2.2).

3.1. Algorithms. We now derive an iterative algorithm to solve the composite
minimization model (2.2). In order to find a local minimizer or stationary point near
to a given point, the support inclusion analysis in Theorem 2.5 naturally motivates a
so-called support shrinking strategy at each iteration, like [50,63,69,70, 73] for various
sparse signal reconstruction and image restoration models with isotropic regularization.
Given z¥, we denote S¥ =S(2¥)={i€ J: G2 #0}, and define Cy ={z:G] 2 =0, Vie
J\S*}. Then for k=0,1,2,..., the following

T€eR ieSk

min {a(:x):: > (67 :c|>+Qq<x>},
s.t. ze€Cy,

is considered to compute z**1.

However, considering the finite word length of real-world computers and to avoid
extremely large linearization weights described later, we do not track the indices just in
S* or use the constraint € Cj,. Instead, we relax these at each iteration by a threshold-
ing operation, and propose the strategy of iterative thresholding and support shrinking
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(ITSS). Indeed, this relaxation is actually usually adopted in computer codes for support
shrinking based algorithms, but so far, has been formulated explicitly only in [32] with
incorporation into the iteratively reweighted least square (IRLS) algorithm for group
sparse signal recovery (where G =Identity). In particular, let us denote the T-support
TF=T(2*)={i€J:|G]2*|>7} and the set C] ={x:G] 2 =0, Vie J\T*} accordingly,
for some nonnegative 7. At the k’th iteration, the coefficients G, z**! with i€ J\T*,
instead of i € J\S¥, are constrained to be zero. That is, we construct the following

(3%) z€RN i€Tk
st. x€Cf.

min {J’;I(I): > ¢(|G?$I)+Qq(l’)}’

This problem is still nonconvex and difficult. We however can linearize the ¢ at |G 2*|
with 7€ T*. With a proximal term, we define a strongly convex function

Hilw) =Y {o(1G] b)) +¢/(1GT ")) (1G] 2= |G ¥ )} + Q () + Sl —at .
i€Tk
and consider the following optimization problem

min H; (z),
(9F) S =& (3.1)
s.t. zeCy,

for computing zF1. Obviously HJ(z) in (3.1) has a unique optimal solution. Thus, we
have derived the Iterative thresholding and support shrinking algorithm with proximal
linearization (ITSS-PL) as stated in Algorithm 1, which is with iteratively reweighted
¢, flavor.

Algorithm 1 Iterative thresholding and support shrinking algorithm with proximal
linearization (ITSS-PL)
Require: A, b, 3>0, p>0, 7>0, MaxIter, z° € R".
while &k <MaxlIter do
Compute ¢! by solving (97);
end while

Precisely solving the subproblem ($37) still needs infinite iteration steps, which is

not practical in real computation. Therefore, instead of finding the exact minimizer, we
solve the subproblem ($)7,) in Algorithm 1 to some given accuracy, like [4,50,63,73,74].
For any set C, recall the indicator function Z¢ as

IC(x):{() zeC,

+00 otherwise.

Then we come to the inexact iterative thresholding and support shrinking algorithm with
prozimal linearization (Inexact ITSS-PL), as given in Algorithm 2. We mention that
Inexact ITSS-PL degenerates to ITSS-PL, if e=0.
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3.2. Convergence analysis. In what follows, we prove that the sequence
generated by Algorithm 2 with the inexact inner loop does converge to a stationary point
of the original minimization model (§) in (2.2), provided that the stopping condition in
(3.2) is satisfied. The proof is based on the Kurdyka-Lojasiewicz (KL) property [46,51],
which has been extensively applied to the analysis of various optimization methods
[1-4,8,32,50,69,73,74], etc.

Algorithm 2 Inexact iterative thresholding and support shrinking algorithm with prox-
imal linearization (Inexact ITSS-PL)
Require: AcRM*N pcRM B3>0, p>0, 7>0, 0<e< 1, Maxlter, z° € RV.
while k <MaxlIter do
Compute z**! by

"l ~arg mﬂ%rjlv’}-[',g(x) +Zc; (z) with R e 0 (Hy (2 1) +Zcr (=),
xre ¢ 3
st R, < ge||mk+1—x’<||2; (3.2)

end while

Note that

> (kerG])E, zeC],
O0Lcr (x) = €NT*
0, otherwise.

By (3.2), we then have
GlaMt =0, ic\T",

which implies J\S* c J\T* c J\S*+! Cc J\T*+! and Tk c SF*1c Tk c Sk C..-CJ. Due
to the finiteness of the set J, it is also straightforward to see the finite convergence of
both support and 7-support sequences S¥ and T*, like the finite convergence of the
support sequence mentioned in the literature (e.g. [32,50,69,73]). That is to say, there
exists an integer K >0, such that

SF=Tk=8K for any k> K. (3.3)

Therefore, the sets S* and T* will be unchanged when k> K. In the following, to prove
the convergence, we only need to focus on the iterates with k> K. We denote

S=T=S"=TF={icJ:G] 2" #£0}={ic]:|G]2"|>7} for k>K, (3.4)
and

Hilw) =Y {o(1G] ")+ (1GT*)) (1G] | = 1G] a*]) } 4+ Qq @) + E o ™|

i€T

Then for k> K, the subproblem at the k’th step in Algorithm 2 becomes

{ zFtl ~arg m]%&n Hi(z)+Ze(z) with hFHL € 0 (HE (a1 + I (2F 1)) (35)
xeRN .

st |[hFHL e < §€ka+1 — k|,
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where C={z:G] =0, Vie J\T}.
The next lemma is the decreasing property of the objective function.

LEMMA 3.1 (Sufficient decrease).  The sequence {F(z*)}r>r is nonincreasing, and
more precisely, for any k> K,

(1= la* ! —o* |3 < Flak) - Flak*).

Proof.  For any k> K, by the convexity of function H}(z)+Zs(z) in (3.5), we
have

'Fl;(l‘k-‘rl)
=> {o(G ") +¢/ (1G] %)) (|Gj$k+1|_|ijk|)}+Qq(xk+1)+g”xk+1_;Ek”g
ieT
S?‘l;(xk) 7 <hk+1’l,lc 7£Ek+1>
; P :
quﬁ(lthlHQq(wkH§6||$k+1—xkllg
ieT
:]-"(xk)—kgekaH—kag.
By Assumption 2.1,
P(t)<o(t)+¢'(t)(t—1), Vt=0and>0. (3.6)
Then by (3.6),

Hp(@ ) 2 3 0(1GT ) + Q@b ) + Dllah ! ok |3 = F(a* ) + L jlah - a3,
ieT

Therefore, we obtain

F*) - FE > —e)gnx’f“ — 2|2 for any k> K.

From Lemma 3.1, we see the boundness of the sequence {z*}.

LEMMA 3.2 (Square summable and asymptotic convergence). The sequence {xk}kzo
s bounded and satisfies

oo
> b — 2k |? < 0.
k=0

Hence lim |z*+! —2%| =0.
k—o0

Proof. By Lemma 3.1, {F(2¥)};>0 is bounded and convergent. Since F(x) is
coercive (Theorem 2.1), {2¥}>¢ is bounded. Again by Lemma 3.1, for any K; > K, we
get

Ky K-1
=023 lah ! =2t P < (1= 37 et ok |4+ Fla™) ~ Fla’rH)

k=0 k=0

K-1

<=8 3 b a2+ F ).
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Letting K7 — 0o completes the proof. ]

A very useful lemma is the following uniform lower bound result of nonzero trans-
form coefficients of the iterate sequence.

LeEMMA 3.3 (Lower bound of the sequence). There exists a constant 0 >0 such that
|Gl 2% >0 VE>K,VieT.

Proof.  Without loss of generality, suppose that T#(. By (3.4), a natural and
obvious consequence is

|Gl 2*|>7>0 Vk>K,VieT.

Next, we derive a positive lower bound of nonzero transform coefficients of the iterate
sequence, even if 7=0. -
Since Z(z) is subdifferentially regular at x € C, we derive

hk+1€8(7:l7( k+1)+17( k+1))
k+1

=0Q(z* ™)+ (1G] » k|)mGi+p(x’€+lka)JraI@(ka), (3.7)
i€T
where 0Zq (251 = Y (kerG)t
i€J\T

Denote T¢ 1 ={ieT: G 2%t >0}. Consider a fixed index j € T and define the set
++
V(T,j, T8 =Cn{v:GJv>0vie T, GJv<0oVie T\TH ! N{v: \GTU| =1}.
Note that V(T,7, T541) £0, since v= ‘Gj%);%l‘ € V(T,5,TH). Take v=2v"*! to be the
solution to the following problem
min|[v)s s.t. veV(T,j,TH!)

implying that
T e

ht1 T, k+1 AT —k+1 Tok+1_
€C; forany i€ T, G, 2"t G " >0; |GT k+1|ij =1,

and [0 || < p with p as defined in (2.7). Then by (3.7), there exists 2571 € 9Q (z**1)
and 775“ € (—o00,+0) (i€ J\T) such that

Txk+1
(RFHL ghH1y — (L ey +Z¢ (1G] = ’€|)7GZT17’“Jr1

‘GT k+1|
i€T
—|—p<.’17k+1—$k,17k+1 Z nk+1GT k—&-l7
ieJ\T

indicating

<hk+1 ’Dk+1>—<zk+1 —k+1> k+1_ k —k+1>

—plz

=Y ¢'(G] =) |GT W‘GT T > (1G] 2M).

i€T
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By the boundedness of {z*}, the stopping condition (3.2) in Algorithm 2, the fact that
[0+ |2 < p, and (2.3), there exists some constant @ (independent of k) such that

(|GT k|) <hk+1 —k+1> < k+1’6k+1> k+1 k 7k+1><

—p{x"T =2 o <a
Since ¢'(0+)=-+o00, the constant &' =inf{t>0:¢'(t)<a}>0 is well defined and
consequently

IG] >0,

holds Vj € T and Yk > K. Let # =max{r,0'} >0, which completes the proof. 0

In Lemma 3.3, we have proved the existence of a uniform lower bound for nonzero
transform coefficients generated by the iterative sequence. Meanwhile, as stated in
Assumption 2.1 (¢), ¢ is L,-Lipschitz continuous on [a,+00) for any a>0. We can
then overcome the difficulties in the convergence analysis brought by the non-Lipschitz
property of ¢’ at the zero point, and a subgradient lower bound for the iteration gap is
given in the following lemma.

LEMMA 3.4 (A subgradient lower bound for the iteration gap). For each k> K, there
exists s"T1 € OF (*+1) such that

||sk+1H2 k+1 k||2

<c|z" T —x

for some constant c.
Proof. We calculate
Gkl
% G +0 Z (;5 |GT k+1|)

|GT k+1‘ et

Gi+ Z (kerGlT)l
i€\T

af( k+1) 8Q( k+1 +Z¢ |GT k+1‘)

i€T

=0Q,(z**1) +)_¢'(IGT "))

i€T

G-Tl‘k_H
v
|G ah

On the other hand, by Algorithm 2, |[RFF1||; < e||lz* ™! — z* ||, and

GT pk+1
W eQ, (" )+ ¢ (IG] » ’“|)WG i+ p(aFtt —2F) + 9T (25,
ieT
where 0Zs (21 = > (kerG])*
i€J\T

It is then easy to see
G;I'x(kJrl)

k+1 Tk T k
=h +Z (IG; 2" ) = ¢'(|G; @ D)W

i€T

Gi*p(zk+1 7xk)7

is in OF (z**1). By Assumption 2.1 (c) and Lemma 3.3, we further derive
8" 2 < HREHl2+ Y16 (IGT 2" ) = ¢/ (1IGT 2 DI Gill2 +plla™ =]
ieT
<D Lg|lGT " |Gt | Gillz +p(1+ )Hﬂ?k“—xkllz
ieT
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€
< (Lez 1G3ll” +p(1+ 2)) [ — 2.

ic€J

Taking c=Lg > ||Gil|*+p(1+5) completes the proof. O
i€l
We can now establish the global convergence of the sequence generated by Inexact
ITSS-PL (Algorithm 2).

THEOREM 3.1 (Global convergence). Suppose that F(z) is a KL function. The
sequence {x*} generated by Algorithm 2 converges to a stationary point of (F).

Proof. By Lemma 3.2, {*} is bounded. Then there exists a subsequence {x"i}
and a point x* such that

2% —2* and F(ah) = F(2*) as j— 0.

Since F(x) is a KL function, by Lemma 3.1, Lemma 3.4 and [4, Theorem 2.9], the
sequence {z¥} converges globally to z*, which is a stationary point of problem (F). O

REMARK 3.1. A proper lower semicontinous function satisfying the KL property at
all points in its domain is called a KL function. The objective functions F(x) in our
examples are KL functions. Indeed, it is known that any proper lower semicontinuous
function that is definable on an o-minimal structure is a KL function. See [9] and [3,
Theorem 4.1]. A class of o-minimal structure is the log-exp structure (27, Example 2.5]).
By this structure, the examples of potential function ¢(t)=t? and ¢(t)=log(1+¢P)
are definable, and |G, z|, as a semi-algebraic function, is also definable. Then the

composition ¢(|G z|) and the finite sum 3" ¢(|G; z|) are definable functions. Similarly,
i€J
the fidelity Q4(x) is a definable function. As the sum of regularization and fidelity

terms, the objective function F(x) is definable, therefore it is a KL function. See,
e.g., [2,3,63,69,73,74] for discussions. For more details about the KL function, one may
refer to the appendix.

4. Algorithm implementation

The subproblem ($)7,) at each iteration of Inexact ITSS-PL can be solved by many
effective convex optimization algorithms. We consider to use the alternating direction
method of multipliers (ADMM [12,37,38,41,68]) and the following are the implemen-
tation details.

In the description of ADMM, the variable x in the subproblem (£)7,) is replaced
by u to avoid confusion with the outer iterations. We first consider the general form
of (97,) with g€ [1,+00]\{2} in the fidelity. To solve such a subproblem, we introduce

the variables v € RM and {w;};crx € R'Tk‘, and reformulate the subproblem (£)]) as the
following equivalent form,

1 2
min ¢ (|G o)) Jwi| + ¥ (v) + = p||lu—2*
u7vv{wi}ieTki€ZTk ( il (v) 2 H HQ
Glu=0, VieJ\T* (4.1)
Au—b:’U,
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where

Blylle 00
o) = {qn 9. g€ Ltoo)\{2},

Bllvlles, g=-+o00.
The augmented Lagrangian function of the above constrained problem reads
E(U va{wi}iETk Ava)\w”n'u,rw)

—|—Z¢ (|G 2"|)w;| + = pHu ka2 +(Mp,Au—b—v)+ - TUHAu b— v||2

i€Tk
1
T T 2 T
+ Z (M), G u—wi)+ 51 Z |G u—w;l + > {(Mw)i G u)
1€Tk i€Tk i€J\Tk
1 T, 2
i€J\Tk

with Lagrangian multipliers A, e RM, \,, € R¥, and penalty parameters 7,,7, >0. Then
the ADMM to solve (£)7,) is given in Algorithm 3.

Algorithm 3 ADMM to solve the subproblem ($7) with g€ [1,4+00]\{2}
Require: 7, >0, 7, >0, MaxIteri,, €n >0, u® =gk, )\2 =0eRM, )\?U =0ecR¥

I+1_ 1
while [ <MaxlIter;, and w > €, do

1. Compute (v an {wl+1} eTr) by miny {3}, ieTk {C(ul ’U’{wi}iETka)‘vavarvvrw)}
2. Compute u!*1 by min, {£(u, 'Ul+1,{wl+1}Z€Tk AL sy )}

VYW

3. Update Abt! and Ao by AL =N +r (Au!T! —b—o!t1) and

(AL, = (AL)i 7 (G ultt =ty if 5Tk,
L )i Gl it ieJ\TF.

end while

For the (v, {w;};crx)-subproblem in Algorithm 3, v and {w;};crx are separable
variables and we can compute them in parallel. Herein, {’LU§+1}Z'€TI¢ has the explicit
form solution given by the soft-thresholding [28,29]:

wh —max{IGTu' + - Q)= (16T .0 s (GTul+ () ) e T

v!*1 can be solved by numerical algorithms from the following convex optimization
problem

1
min{w(v) + A\, Aul —b—v) + 5" HAul —b—sz}. (4.3)
If g € (1,400)\{2}, the objective function is convex and continuously differentiable, and

the problem (4.3) can be solved by differentiable convex optimization approaches, e.g.
the gradient descent algorithm. If g=1, v**! also has the explicit form solution:

J

vl‘+1max{|(Au) —b, += ()\l) |— f,()}sign((Au) —b; +o- ( i)j>,V1§j§M,
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where (Au'); is the j’th element of vector Aul. If ¢=+o0, the v-subproblem (4.3) is
equivalent to the following problem

. T
min oo + 55 10 -3

where y=Au'—b+ L. There are several methods to compute the solution to this
problem [5,63]. Here, we use the explicit form solution in [63].

For solving the u-subproblem, we augment {wﬁ“}ieTk by wﬁ“ =0, ViGJ\Tk, SO
that we can make full use of the structure of the operators {G;};cy, like [69,73]. Then
the u-subproblem can be equivalent to

. 1
rnum{zuT <pIN+rUATA+erGiGiT) U

ieJ

-
- (pxk + AT (ryb+rott = A +Z (rowi™ = (L)) Gi> up, (4.4)
i€l

whose solution can be obtained by solving the corresponding normal equation. In the
case of convolutional operators A,G with periodic boundary condition in image-deblur
like applications, pIy +7,AT A4, Dic JGiGiT is a block circulant matrix and it can
be diagonalized by the two-dimensional discrete Fourier transforms. The u-subproblem
(4.4) can then be efficiently solved by utilizing the fast Fourier transform, like [64,68].

We are then left with the special case of ($]) with ¢=2 in the fidelity, i.e., the
case of quadratic fidelity term. This is an easier case and the subproblem (£)}) can be
reformulated into

1
min 3 /(GT sl + 5 Au—bl3+ S pflu—a*|]

u’{wi}iETki Tk
c (4.5)
. Glu=0, VieJ\T*
| Glu=w;, VieTk.
The corresponding augmented Lagrangian function is
‘C(ua{wi}ieTkaAw;Tw)
B 2 p 2
=5 llAu—bll; + > GG 2 Dwil + 5 lu =25+ D {w)i Gl u—w)
€Tk €Tk
1 T 2 T 1 7,12
+§rw Z |G, u—w;| —&—- Z {(Aw)i, G, u>+§rw- Z |G, ul*, (4.6)
i€Tk ieJ\Tk ieJ\Tk

where {w;};er €RIT" is the auxiliary variable, A, € R is the Lagrangian multiplier
and 7, >0. The ADMM to solve () with ¢=2 is shown in Algorithm 4.

REMARK 4.1. The ADMM converges to the unique minimizer (with zero subgradient)
of the strongly convex ($)7). After a large enough number of iterations of ADMM
and a projection to the feasible set, one can get a point close enough to the unique
minimizer of ($3]) and check condition (3.2). However, the projection step and checking
condition (3.2) at each iteration of the subsolver are time consuming. Therefore, in
practical computation, we propose a simple stopping criterion, that is to check whether
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Algorithm 4 ADMM to solve the subproblem ($7) with ¢=2

Require: 7, >0, MaxIteri,, €, >0, u° =gk, )\g =0ecR¥
I+1_ 1
while [ <MaxlIter;, and % > €, do
2

1. Compute {w; ™" };cre by Mgy}, o, {L(u! {wi}ierr, Ayirw)};
2. Compute u!*t! by min, {£(u, {w ™} cre, A7)}
3. Update A1 by

()\l+1)‘: (A£11)1+TTIJ(G;FUI+17w§+1), if iGTk,
T L) i+ Gl it ieJ\T*.

end while

I+1_ 1
it satisfies w < €n and whether the iteration number [ exceeds the predefined
2
maximum iteration number MaxIter;,. Such an approach can save running time and
achieve fairly good restoration results.

5. Experiments

In this section, we test the performance of the proposed algorithm in image decon-
volution, and in particular, we consider three types of i.i.d. noises: (1) the salt and
pepper impulse noise, (2) the Gaussian noise and (3) the uniform noise. Therefore, we
recall here the model (2.5), (2.4) and (2.8), all of which can be solved by the Inexact
ITSS-PL given in Algorithm 2. For convenience, we rename the Inexact ITSS-PL for
model (2.5) as Inezxact iterative thresholding and support shrinking algorithm with proz-
imal linearization for £y fidelity (Inexact ITSS-PL-¢; ), the ITSS-PL for model (2.4) as
Inezact iterative thresholding and support shrinking algorithm with prozimal lineariza-
tion for ly fidelity (Inexact ITSS-PL-{3), and the ITSS-PL for model (2.8) as Inezact
iterative thresholding and support shrinking algorithm with proximal linearization for
Ly fidelity (Inexact ITSS-PL-£y).

In the experiments, we take the potential function ¢ as ¢(¢t) :=t?, Vt €[0,400), with
p€(0,1), and take the sparsifying system {G; };c; as the horizontal and vertical discrete
derivative operators. In this case, model (2.5), (2.4) and (2.8) become the anisotropic
£ TVP 05TVP and £, TV? models (namely the £1aTV?, £2aTV? and ¢,,aTV? models),
and they are respectively solved by the Inexact ITSS-PL-¢;, Inexact ITSS-PL-/5, and
Inexact ITSS-PL-{o,. The subproblems ($)7) in Inexact ITSS-PL-/; and Inexact ITSS-
PL-{, are solved by the ADMM given in Algorithm 3, and those in Inexact I'TSS-PL-/o
are solved by the ADMM given in Algorithm 4, respectively.

5.1. Test platform and parameter choices. The experiments are performed
under Windows 8 and MATLAB R2018a running on a desktop equipped with an Intel
Core i7-6700 CPU @ 3.40GHz and 8.00G RAM memory.

For the experiments of image deconvolution, the test images are first degraded
by a blur kernel and then some noise is added. Three types of blurring kernels are
used, which include (1) average blur (fspecial (‘average’,5)); (2) Gaussian blur (fspecial
(‘gaussian’, [23,23], 12)); (3) disk blur (fspecial (‘disk’,6)). Three types of i.i.d. noises
are considered: (1) salt-and-pepper impulse noise with noise level 30%; (2) Gaussian
noise with mean 0 and variance 10~%; (3) uniform noise with amount 10~*. The quality
of the restored images is measured by the peak signal-to-noise ratio (PSNR), which is
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defined as follows:

N
PSNR = 1010g10 H'IT
g

—zl|3’

where N is the number of image pixels, a1y is the restored image, and z is the ground
truth. The test images are shown in Figure 5.1.
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FiG. 5.1. Test images for restoration experiments. (a): Phantom (256 x256); (b): Twocircles
(64%x64) (c): Squares (256 x256); (d): Text (256 x 256); (e): Cameraman (256 x 256).

For the model parameters, we use p=0.5 in the £,aTV? (¢=1,2,400) model, and
the parameter 8 is tuned up to achieve the best performance of each method, which
will be specified in the subsequent experiments. For the algorithm parameters, they will
be set as follows and remain unchanged throughout the experiments, unless otherwise
specified. For the Inexact ITSS-PL-¢, (¢=1,2,400), the parameter p in the proximal
term is set as p=10"10, the parameter 7 for defining the 7-support T* is taken as
7=10"". In this experiment, the tolerance of the outer loop in the Inexact ITSS-PL-¢,
(g=1,2,+00) is set to be e=10"3, and the maximum outer iteration number is set to
be MaxlIter =25. We use 7, =3 x 10® and r,, =200 in the ADMM. The tolerance of the
inner loop is set to be €, =107°, and the maximum inner iteration number is set to be
MaxIter;, = 500.

The initial value of the Inexact ITSS-PL-¢, (¢=1,2,+00) is taken as the solution to
the £,aTV model (i.e., the anisotropic £,TV? model with p=1) solved by the ADMM
described in Algorithm 3 and Algorithm 4 with p=1 and p=0. For solving the {,aTV
model, we set 1, =3 x 103, 7, =200, €, =10"° and MaxIter;, =500 in the ADMM.

5.2. The convergence and T-support shrinkage properties. As Lemma 3.1
stated, the objective function value F(2*) of the Inexact ITSS-PL-{, is guaranteed
to be nonincreasing if k> K. However, in practice, the exact value of K is usually
unknown, and such a property can only be observed numerically. In this subsection,
we test the numerical evolution behavior of objective function values, support sizes and
relative change when applying the Inexact ITSS-PL-¢, in image restoration. We test
on three sample images corrupted by different blur kernels. To reveal the behavior,
the maximum outer iteration number is set to be MaxIter =30 in all the algorithms.
We show the evolution behavior of F(2*), the percentage #T*/4J, and the logarithm of

ko k—1
relative change 10310W in Figure 5.2, for g=1,2,+00 respectively. It is worth
mentioning that ADMM is an infeasible optimization method. If the subproblem ($7)
is not solved accurately enough, the objective function value and support size may have

minor fluctuations.
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Fic. 5.2.

The behavior of objective function value F(zF) (the first row), support ratio |T*|\|J|
(the second row), and logarithm of the relative change between succesive iterates ||zF —zF=1|/|z"||
(the third row), versus the outer iteration number k. (1a)(1b)(1c): results of Inexact ITSS-PL-{1
for the “Cameraman” degraded by the disk blur and impulse noise; (2a)(2b)(2c): results of Inezact
ITSS-PL-l> for the “Squares” degraded by the average blur and Gaussian noise; (3a)(3b)(3c): results
of Inexact ITSS-PL-lo for the “Text” degraded by the Gaussian blur and uniform noise. The blur
kernel parameters and noise levels are given in Section 5.1.

5.3. Restoration performance. In this subsection, we test the performance of
£,aTVP (¢=1,2,400) model and the Inexact ITSS-PL in image restoration. Figure 5.3
shows some restoration results by our methods. The performance of the £;aTV?, foaTV?
and f,,aTVP are then compared to the £;aTV, £2aTV and £..aTV, respectively. The
£,aTV(¢=1,2,400) model for comparison is also solved by the ADMM with the same
algorithm parameters used in the £,aTV model for initializing the £,aTV?(¢=1,2,400)
model. Note that the model parameter 3 for £,aTV is also fine tuned. The PSNR values
of the results recovered by different methods are illustrated in Table 5.1. It can be seen
that in all the cases of three types of noises, the £,aTV? (¢=1,2,400) model performs
much better (with much higher PSNR values) than the £,aTV (¢=1,2,4+00) model on

piecewise constant images, while the £,aTV model sometimes outperforms the £,aTV?
model on the natural image.
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disk blur average blur Gaussian blur
Image impulse noise Gaussian noise uniform noise
01aTV | £1aTVP | £2aTV | £2aTVP | £caTV | £oaTVP
Phantom PSNR(dB) 99.56 156.96 56.89 73.76 46.44 89.98
B/q (or B if g=o0) 100 25 7x10% | 2x10%* | 5x106 4x108
Twocircles PSNR(dB) 63.51 216.01 46.79 69.72 33.01 80.88
B/q (or B if g=o0) 160 75 2x10% | 2x10* | 8x10° 2x 106
983 PSNR(dB) 91.89 263.52 57.67 71.83 82.89 88.43
B/q (or B if g=o0) 45 60 8x10% | 7x10% | 2x106 8 x 10°
Text PSNR(dB) 40.98 188.52 49.00 70.60 29.93 88.95
B/q (or B if g=o0) 140 85 2x10% | 2x10%* | 9x106 6 x 106
Cameraman PSNR(dB) 30.04 29.11 35.48 34.80 29.93 32.13
B/q (or B if g=o0) 130 160 8x10% | 2x105 | 9x106 6 x 108
TABLE 5.1. PSNR walues of restoration results and the model parameters. The blur kernel

parameters and noise levels are given in Section 5.1.

(1a) observation (1b) £,aTV?P (1c) observation (1d) ¢,aTV?

(2a) observation (2b) £3aTV?P (2¢) observation (2d) £2aTV?P

(3a) observation (3b) £ooaTV? (3c) observation (3d) £ooaTV?

F1c. 5.3. Image restoration by the £4aTVP model solved by the Inezact ITSS-PL-£q (¢q=1,2,400).
(1a)(1c): images degraded by disk blur kernel and impulse noise; (2a)(2c): images degraded by average
blur kernel and Gaussian noise; (3a)(3c): images degraded by Gaussian blur kernel and uniform noise.
The blur kernel parameters and noise levels are given in Section 5.1. (1b), (1d), (2b), (2d), and (3b),
(3d): restoration results of different methods.
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(a) Geometry (b) Phantom

FiG. 5.4. Test images for segmentation experiments. (a): 5-phase Geometry (256 x256); (b):
6-phase Phantomn (256 X 256).

5.4. Applications in image segmentation. Our proposed algorithm can also
be applied to the two-stage image segmentation method. Given a blurry and noisy
image, the segmentation problem is to partition the image into several regions based on
the image intensity. The two-stage image segmentation method [14] includes two major
steps: the first stage is to get a piecewise constant approximation of the observation;
the second stage is a simple thresholding operation applied to the approximation to
obtain the segmentation result. We apply the £,aTV? model, and the £,aTV model as
a comparison, at the first stage of finding the approximations. At the second stage, we
use the same segmentation method in [14].

In the experiments of image segmentation, we use two piecewise constant test images
shown in Figure 5.4, whose ground truth of segmentation can be obtained by MATLAB
function tabulate, and thus convenient for the quantitive comparision defined later.
We use three different blurring kernels: (1) average blur (fspecial(‘average’,9)); (2)
Gaussian blur (fspecial(‘gaussian’,[15,15],10)); (3) disk blur (fspecial(‘disk’,6)). Three
types of noises are considered: (1) 40% salt-and-pepper impulse noise; (2) Gaussian
noise with mean 0 and variance 10~%; (3) uniform noise with amount 10=%. At the first
stage of image restoration, the £;aTV? model with p=0.5 and the ¢£;aTV model, as a
comparison, are used to obtain a piecewise constant approximation of the observation
degraded by the impulse noise; the £2aTV? model with p=0.5 and the £2aTV model are
used for the case of Gaussian noise; and the £,,aTV? model with p=0.5 and the £,,aTV
model are used for the case of uniform noise. All the algorithm parameters for solving
the £,aTV? model and the £,aTV model (¢=1,2,+00) are the same as those used in
the experiments of image deconvolution in Section 5.1. In this experiment, parameter
B in each method is tuned up to achieve an overall good segmentation result for all
the phases. The Jaccard Similarity (denoted as JS, [45]) value is used to evaluate the
segmentation results, and is defined as follows:

h h
PR | - ot ol -
GT »*~Alg ‘Sg}r}?se U Sgkllgse| )

where Sg&?se and Sglfga *¢ denote the region of one certain phase in the ground truth and

the region in the segmentation result, and |-| denotes the area of a region. Clearly, the
higher the JS value is, the better the corresponding segmentation result is obtained.

Table 5.2 illustrates the JS values of the experiments. The performance of ¢,aTV
and £,aTVP models are almost the same or comparable. Therefore, the images of
“Geometry” are not shown. For “Phantom”, our methods have a little advantage in the
case of Gaussian noise and average blur; see also Figure 5.5.
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(1a) observation (1b) ground truth

(1d) KlaTVp

(2a) observation (2b) ground truth (2¢) LTV (2d) £2aTVP

N

(3a) observation (3b) ground truth (3¢) £oaTV (3d) looaTV?

Fic. 5.5. Image segmentation based on restoration results by the LyaTV and LyaTVP models
(q=1,2,400). (1a): Phantom degraded by disk blur and impulse noise; (2a): Phantom degraded by
average blur and Gaussian noise; (3a): Phantom degraded by Gaussian blur and uniform noise. The
blur kernel parameters and noise levels are given in Section 5.4. (1b) to (1d), (2b) to (2d), and (3b)
to (3d): segmentation results of ground truth and different methods.

disk blur average blur Gaussian blur

Image impulse noise Gaussian noise uniform noise
{1aTV {1aTVP l2aTV L2 TVP looaTV LooaTVP
phase 1(43.6661%) | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000
? phase 2(18.3701%) | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000
g JS | phase 3(18.0176%) | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000
8 phase 4(10.4874%) | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000
@] phase 5( 9.4589%) | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000
B/q (or B if g=o00) 110 45 3.6 x 107 4.4x 107 6.0 x 10° 2.0 x 10°
phase 1(58.1772%) 0.999895 1.000000 | 0.998348 | 0.999948 | 1.000000 | 1.000000
g phase 2(32.9269%) 0.999444 1.000000 | 0.997730 | 0.999676 | 1.000000 | 1.000000
g 1S phase 3( 4.3427%) | 1.000000 | 1.000000 | 0.930077 | 1.000000 | 1.000000 | 1.000000
g : phase 4( 4.3350%) 0.996492 1.000000 | 0.967885 | 0.997891 | 1.000000 | 1.000000
i phase 5( 0.1389%) 0.978495 1.000000 | 0.551282 | 0.967033 | 1.000000 | 1.000000
phase 6( 0.0793%) | 1.000000 | 1.000000 | 0.000000 1.000000 | 1.000000 | 1.000000
B/q (or Bif g=00) 110 40 5.8 x 107 2.3x 107 3.0 x 10° 5.0 x 10°

TABLE 5.2.  JS values of segmentation results and the model parameters for “Geometry” and
“Phantom”. The blur kernel parameters and noise levels are given in Section 5.4. The percentages in
the brackets are the ratios of the phase areas to the whole image in the ground truth.
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6. Conclusions

In this paper, we studied a non-Lipschitz restoration model with anisotropic reg-
ularization and the ¢4,q € [1,+00] fidelity. We proved the lower bound theory for the
cases of g=1 and +o0, and for a general g€ [1,4+00], the support inclusion property
was derived. For solving such a nonconvex and non-Lipschitz model, we proposed the
inexact iterative thresholding and support shrinking algorithm with proximal lineariza-
tion, which is shown to globally converge to a stationary point of the objective function,
provided that the subgradient condition in the subproblem is reached. The proof tech-
niques used in such analysis can be applied to first order related analysis of other image
models with anisotropic regularizations. Numerical experiments on image deconvolu-
tion and two-stage image segmentation also illustrated the potential advantages of the
proposed algorithm in applications.

Acknowledgments. This work was supported by the National Natural Science
Foundation of China (Grant No. 11871035 and 11901312) and a Key Program (No.
21JCZDJC00220) of Natural Science Foundation of Tianjin, China.

Appendix.

A.1. Subdifferential.
DEFINITION A.1 ([62, Definition 8.3]). Let w:R™ —=RU{+o0} be a proper lower semi-
continuous function. The domain of w is defined by dom w:={yER™:w(y) <+oo}.

(1) For each y € dom w, the regular subdifferential of w at y is defined as:

(2) —w(y) = (y" 2 —y)
= =0}

A % noqe e oW
Ow(y):={y*eR .hggf
27y

If y¢ dom w, then 5w(y) =0.
(2) The limiting subdifferential of w at y € dom w is defined as:

dw(y):={y* eR™: Iy* = y,w(y®) »w(y),s* €dw(y*),s* = y* as k— +oo}.
(3) The horizon subdifferential of w at y € dom w is defined as:

0%w(y) == {y* €R™: Iy Sy, wy®) > w(y),s” €dw(y"),

k

vFs —y* for some sequence Vk\O as k——+oo}.

REMARK A.1. A point y is said to be a stationary point of w, if 0 € dw(y).

A.2. Kurdyka-Lojasiewicz function. The definition for a proper lower semi-
continuous function f to have the Kurdyka-Lojasiewicz (KL) property at Z € domdf
can be found in [3, Definition 3.1]. A proper lower semicontinuous function f satisfying
the KL property at all points in domdf is called a KL function. A large class of KL
functions widely used in applications are given by functions definable in an o-minimal
structure introduced in [27]. See also [69] for a summary and discussion.

DEFINITION A.2 ([3, Definition 4.1]).  Let O ={Oy}nen be such that each O, is a
collection of subsets of R™. The family O is an o-minimal structure over R, if it satisfies
the following axioms:

(1) Each O, is a Boolean algebra. Namely ) € O,, and for each A,B € O,,, AUB, AN
B, and R™\ A belong to O,
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(2) For all A€ O,,,AxR and Rx A belong to Op41.

(3) For all A€ Opy1, [[(A):={(z1,....xn) ER™ | (T1,...,Tpn,Tnt1) €A} belongs to
O,.

(4) For alli#j in {1,2,...n}, {(21,....,2n) ER™ |2, =2,} € O,,.

(5) The set {(x1,22) ER? |21 <z} belongs to O.

(6)

The elements of O1 are exactly finite unions of intervals.

We say that a set A CR"™ belongs to O if AcO,,. A map V:A—R"™ with ACR"
is said to belong to O if its graph {(z,¥(z))|r € dom¥} CR"*™ belongs to O. We say
that sets and maps are definable in O if they belong to O. Definable functions are
defined like definable maps. By [3], the o-minimal structure has the properties that
(1) the composition of definable functions is definable; (2) the finite sum of definable
functions is definable.

A class of o-minimal structure is the log-exp structure given in [27, Example 2.5],
by which the following functions are definable:

(1) semi-algebraic functions [10, Definition 5], including real polynomial functions.

(2) 2" :R—R with r €R, which is given by

a", a>0
0, a<O0.

at—

(3) The exponential function: R — R defined by x> e* and the logarithm function:
(0,00) = R defined by x> log(x).

It has been shown that any proper lower semicontinuous function that is definable
in an o-minimal structure is a KL function ([9] and [3, Theorem 4.1]). Then by the
aforementioned properties and examples of definable functions, the objective functions
F(z) in the examples of this paper are KL functions.
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