
COMMUN. MATH. SCI. © 2023 International Press

Vol. 21, No. 2, pp. 405–435

ROBUST ESTIMATION OF
EFFECTIVE DIFFUSIONS FROM MULTISCALE DATA∗

GIACOMO GAREGNANI† AND ANDREA ZANONI‡

Abstract. We present a novel methodology based on filtered data and moving averages for es-
timating effective dynamics from observations of multiscale systems. We show in a semi-parametric
framework of the Langevin type that our approach is asymptotically unbiased with respect to the theory
of homogenization. Moreover, we demonstrate on a range of challenging numerical experiments that
our method is accurate in extracting coarse-grained dynamics from multiscale data. In particular, the
estimators we propose are more robust and require less knowledge of the full model than the standard
technique of subsampling, which is widely employed in practice in this setting.
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1. Introduction
Inferring simple effective models from observations of complex phenomena charac-

terized by multiple scales is a problem of interest in several fields. Examples range
from chemical models of molecular dynamics [28,29,36,39], where reactions may occur
at widely separated time scales, to the modelling of financial markets characterized by
market-microstructure noise [6, 7, 34, 45]. Extracting from data a simple surrogate of
multiscale models is of the utmost relevance also in oceanography, meteorology, and
marine biology [15,26].

In this paper, we are interested in inferring coarse-grained equations from observa-
tions of diffusion processes evolving on multiple time scales. Given a positive integer d,
a drift function bε : Rd×Rd→Rd periodic with respect to its second argument, a mul-
tiscale parameter ε>0, and a diffusion coefficient σ>0, we consider the d-dimensional
multiscale SDE

dXε(t)= bε
(
Xε(t),

Xε(t)

ε

)
dt+

√
2σdW (t), (1.1)

whereW := (W (t),t≥0) is a standard d-dimensional Brownian motion, and whereXε(0)
is a given initial condition. Assuming that continuous-time data Xε := (Xε(t),0≤ t≤T )
are provided, with T a finite time horizon, our goal is then inferring a coarse-grained
equation, independent of the fastest scale O(ε−1), which reads

dX0(t)= b0
(
X0(t)

)
dt+

√
2ΣdW (t), (1.2)

where b0 : Rd→Rd and Σ∈Rd×d are the effective drift function and diffusion matrix,
respectively. Knowledge of the full model (1.1) yields, in specific instances, a single-scale
model (1.2) which is effective in the sense of the theory of homogenization. In particular,
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one can prove in these cases that Xε→X0 for ε→0 in a weak sense (see [40, Chapter
18] or [12, Chapter 3]). In this work, we consider bε and σ to be unknown and wish
to infer the parameters b0 and Σ of (1.2) from multiscale data. Hence, the problem we
consider here could be framed into the setting of data-driven homogenization.

1.1. Setup: multiscale overdamped Langevin dynamics. The class of
multiscale SDEs which can be written as (1.1) is vast, and can be employed for modeling
a wide range of physical and social phenomena. In this work, we narrow the scope by
considering a semi-parametric framework and a gradient structure, inspired by simple
models of molecular dynamics. Let N be a positive integer, consider smooth functions
{Vi : Rd→R}Ni=1, and a periodic function p : Rd→R with period Li in the i-th direction
in Rd for i=1,. ..,d. We then let the drift function in the multiscale dynamics (1.1) be
given by

bε (x,y)=−
N∑
i=1

αi∇Vi(x)−
1

ε
∇p(y),

where {αi}Ni=1 are scalar drift coefficients. With this choice, Equation (1.1) reads

dXε(t)=−
N∑
i=1

αi∇Vi(Xε(t))dt− 1

ε
∇p
(
Xε(t)

ε

)
dt+

√
2σdW (t), (1.3)

and the stochastic model we consider is of the overdamped Langevin type. There exists
for Equation (1.3) a model of the form (1.2) which is effective in the homogenization limit
ε→0. LetXε := (Xε(t),0≤ t≤T ) denote the solution of (1.3) for a finite time horizon T .
Then, it holds Xε→X0 in law in C0([0,T ];Rd) for ε→0, where X0 := (X0(t),0≤ t≤T )
is the solution of the overdamped Langevin equation

dX0(t)=−
N∑
i=1

Ai∇Vi(X0(t))dt+
√
2ΣdW (t).

Here, the matrices Ai :=αiK and Σ :=σK, where K∈Rd×d is the symmetric positive
semidefinite matrix defined by

K=

∫
L
(I+DΦ(y))(I+DΦ(y))⊤dν(y), L :=

d⊗
i=1

[0,Li], (1.4)

where DΦ is the Jacobian of the solution Φ: Rd→Rd of the vector-valued PDE, or cell
problem

L0Φ=∇p, in L, + periodic b.c. on ∂L,∫
L
Φ(y)dν(y)=0,

(1.5)

and where the differential operator L0, applied component-wise to Φ, is defined as

L0=−∇p ·∇+σ∆.

The measure ν introduced in (1.4) is the probability measure on L given by

ν(dy)=
1

Cν
exp

(
−p(y)

σ

)
dy, Cν =

∫
L
exp

(
−p(y)

σ

)
dy,

which accounts for the fluctuations at infinity of the fast-scales of the solution of (1.3).
We refer the reader to [40, Chapters 11 and 18] for a complete derivation and proof of
this homogenization result.
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1.2. Failure of standard estimators. We consider from now on for clarity
the case d=1, for which Equation (1.3) reads

dXε(t)=−α ·V ′(Xε(t))dt− 1

ε
p′
(
Xε(t)

ε

)
dt+

√
2σdW (t), (1.6)

where V : R→RN is defined as V (x)=(V1(x),V2(x),. ..,VN (x))⊤, the derivative V ′ is
computed component-wise, and α=(α1,α2,. ..,αN )⊤. Let us assume that we are ex-
posed to a continuous-time stream of data Xε solution of (1.3) for a finite time horizon
T . Moreover, let us assume that the periodic function p, as well as the scale-separation
parameter ε, the drift coefficients {αi}Ni=1, and the diffusion coefficient σ are unknown.
Conversely, we assume that the functions {Vi}Ni=1 are known. In the semi-parametric
framework, indeed, these functions often coincide with the firstN elements of the basis of
some appropriate function space. Our goal is then to infer the effective drift coefficient
A=(A1,A2,. ..,AN )⊤∈RN and diffusion coefficient Σ>0 that define the single-scale
dynamics

dX0(t)=−A ·V ′(X0(t))dt+
√
2ΣdW (t). (1.7)

We consider the inferred coefficients to be asymptotically unbiased if they converge to
the true effective coefficients in the homogenization limit ε→0 and for infinite data,
i.e., for T→∞. Since the coarse-grained dynamics are inferred from data instead of
being computed using the homogenization formulas, we are in the setting of data-driven
homogenization.

Let us first consider the drift coefficient. Applying Girsanov change of measure
formula to the effective dynamics (see e.g. [30, 31,37,42]) yields the likelihood function

LT (X |A)=exp

(
−IT (X |A)

2Σ

)
,

where X=(X(t),0≤ t≤T ) is a continuous-time stream of data and where

IT (X |A)=
∫ T

0

A ·V ′(X(t))dX(t)+
1

2

∫ T

0

(A ·V ′(X(t)))2dt.

Minimizing the function IT with respect to A yields the maximum likelihood estimator
(MLE) Â(X,T ), which is defined as the solution of the linear system

−M(X,T )ÂMLE(X,T )=v(X,T ), (1.8)

where

M(X,T ) :=
1

T

∫ T

0

V ′(X(t))⊗V ′(X(t))dt, v(X,T ) :=
1

T

∫ T

0

V ′(X(t))dX(t).

The standard estimator of the diffusion coefficient Σ, given the stream of data X, is
obtained by computing the quadratic variation ⟨X⟩T of the path X and by defining

Σ̂(X,T )=
⟨X⟩T
2T

.

We remark that in case the data X would originate from the model (1.7), we would

have by definition Σ̂(X,T )=Σ.
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Let us now consider the stream of data X=Xε, i.e., the framework of data-driven
homogenization. In this case, both the estimators Â(Xε,T ) and Σ̂(Xε,T ) for the ef-
fective drift and diffusion coefficients are not asymptotically unbiased. In particular, it
holds by [39, Theorem 3.4]

lim
ε→0

lim
T→∞

ÂMLE(X
ε,T )=α, a.s.,

Σ̂(Xε,T )=σ,
(1.9)

where α and σ are the coefficients of the multiscale dynamics (1.6). In this setting,
the standard estimators fail and it is necessary to employ homogenization-informed
techniques to infer the effective equation.

Remark 1.1. In case ε is known and due to (1.9), it would be possible to infer directly
the full multiscale model (1.7) employing a periodic parametrisation of the function p.
We argue that this would be less useful, at least for predictive purposes, than estimating
directly the effective model. Indeed, numerical integration of (1.6) is possible only by
choosing critically small time step for most numerical schemes, which in turn yields
dramatically high computational cost.

1.3. Literature review. The literature on statistical inference of stochastic
models modelled by SDEs is vast. Introductory references on the topic are [11, 13, 27,
43]. The articles [41, 42] give a complete overview on recent frequentist and Bayesian
perspectives on the topic. A series of methods have been proposed in recent years for
multiscale models, in different settings and with different purposes. We refer the reader
to [38] for a recent survey, and summarize the approaches which are related to the one
presented in this article in the following.

The focus of the early papers [36, 39] are simple multiscale models of molecular
dynamics. In these works, the authors show that multiscale continuous-time data should
be subsampled in order to infer single-scale equations which are effective in the sense of
the theory of homogenization. In particular, let δ>0 be the subsampling rate, chosen
for simplicity such that T =nδ for a positive integer n. The subsampled drift estimator
is computed with a Euler–Maruyama-type discretisation of the MLE with spacing δ,
i.e.,

−Mδ
sub(X

ε,T )Âδ
sub(X

ε,T )=vδsub(X
ε,T ), (1.10)

where

Mδ
sub(X

ε,T ) :=
δ

T

n−1∑
i=0

V ′(Xε(iδ))⊗V ′(Xε(iδ)),

vδsub(X
ε,T ) :=

1

T

n−1∑
i=0

V ′(Xε(iδ))(Xε((i+1)δ)−Xε(iδ)).

For the diffusion coefficient, the same subsampling and discretization procedure yields
the estimator

Σ̂δ
sub=

1

2T

n−1∑
i=0

(Xε((i+1)δ)−Xε(iδ))
2
.

The subsampling rate, which guarantees asymptotically unbiased estimators, lies be-
tween the time scales of the multiscale and the effective models, i.e., for δ=εζ , with
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ζ ∈ (0,1) [39, Theorems 3.5 and 3.6]. The optimal subsampling rate is conjectured
in [39] to be δ=ε2/3. The necessity of subsampling the data have been further observed
in [8–10] for unobservable multiscale processes. In econometrics, the works [6, 7, 34, 45]
show that subsampling the data is indispensable in order to infer integrated volatility
in the presence of market-microstructure noise. The disadvantages of subsampling are
mainly two. First, it has been demonstrated numerically [3, 39] that inference results
based on subsampling highly depend on δ for ε>0 and finite T . Second, knowledge of
the scale-separation parameter ε is necessary to build asymptotically unbiased estima-
tors, which in practice could be a severe limitation.

The methodologies proposed in [23,25] and further applied in [26] for model selection
with paleoclimatic and biological data bypass subsampling by exploiting a martingale
property of the likelihood function, and by computing appropriate estimators for con-
ditional expectations. The estimators proposed in [25] are not well posed on a single
trajectory, which is overcome by averaging over a set of short trajectories. For [23],
estimators are obtained through a computationally expensive procedure employed to
approximate conditional expectations via Nadarya–Watson techniques. Let us remark
that, to our knowledge, unbiasedness for these estimators of the effective dynamics is
not theoretically justified and is just conjectured in [25]. In [23], theoretical analy-
sis is restricted to the one-dimensional case and when the effective dynamics is of the
Ornstein–Uhlenbeck type.

Another alternative to subsampling has been proposed in [3]. In this work, max-
imum likelihood and Bayesian estimators for the effective dynamics are modified by
smoothening the continuous-time data with a low-pass exponential filter. Under the
assumptions of clear separation between the fast and the slow time scales, and of pe-
riodicity for the fast-scale drift function, asymptotic unbiasedness of the estimators is
shown. An enhanced robustness with respect to subsampling is demonstrated via nu-
merical experiments. The setting presented in our current paper closely relates to the
work [3], which we simplify here without any loss of accuracy.

In their series of works [20,21,44], the authors propose estimators for the parameters
of a multiscale SDE. The setting is similar to the one studied in this paper, with the
difference that the stochastic dynamics are driven by a small noise, which vanishes in
the homogenization limit. Hence, the effective equation is in this case a deterministic
dynamical system. Theoretical difficulties in this framework are due to the likelihood
function induced by the effective dynamics, which is singular. Closely related work
is [35], where estimation of multiscale stochastic dynamics is obtained by dimensionality
reduction of an appropriate posterior distribution.

In the case of discrete-time data, it is possible to employ information based on the
eigenpairs of the generator of the dynamics to obtain asymptotically unbiased estima-
tors. In [24] and in the series of works [16,17], the authors develop the theory of this class
of spectral estimators for single-scale SDEs, which is further applied to the multiscale
case in [18]. Recently, the technique based on filtered data of [3] has been combined
with eigenfuction martingale estimating functions for inferring effective dynamics from
discrete-time data from the full model in [5].

The recent work [14] deals with inference of a similar multiscale equation with
Kalman filtering methodologies. In this work, though, the authors focus on retrieving
the coefficients of the multiscale dynamics given misspecified data from the reduced
model, while we are interested in the opposite direction.

In the related field of multiscale partial differential equations (PDEs), the issue of
model misspecification due to the mismatch of multiscale data and homogenized models
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has been studied in [33] and in the series of works [1, 2, 4].

1.4. Our contributions. In this paper, we build on the techniques introduced
in our previous work [3] and design a new class of estimators for effective diffusions based
on moving averages. The methodologies we introduce here are easy to implement, com-
putationally cheap, robust, and unbiased with respect to the theory of homogenization.
Furthermore, we complete the numerical analysis of [3] by testing our method against
a complex instance of multi-dimensional Langevin equations.

The basic idea underlying both our previous work [3] and our manuscript is similar:
in both works we propose to smoothen the data through some filtering kernel, and to
compute modified estimators which employ – in some appropriate fashion – the filtered
data. Nevertheless, the theoretical and numerical analysis presented in this paper extend
relevantly our previous work and have their own originality. In particular:

(i) Numerical experiments show that the straightforward application of a moving av-
erage to the data yields extremely robust inference of effective dynamics when
presented with multiscale data. The accuracy of the inference procedure is re-
markably higher than previously existing techniques.

(ii) We propose a novel straightforward estimator for the effective diffusion coefficient,
which was not previously analysed in our previous work, or elsewhere in the liter-
ature.

(iii) Implementing our methodology does not require prior knowledge of the scale-
separation parameter, and is simple and efficient even for data and parameters in
multiple dimensions.

(iv) We present an original analysis of asymptotic unbiasedness based on the ergodic
properties of an appropriate system of stochastic delay differential equations (SD-
DEs). To our knowledge, this analysis is a novel theoretical contribution to the
literature of statistical inference for SDEs.

1.5. Outline. The remainder of this paper is organized as follows. In Section 2
we present our methodology and introduce the main results of unbiasedness for the
estimators based on filtered data. We then present numerical experiments in Section 3
corroborating our theoretical findings and showing how to apply our methodology to a
complex multi-dimensional scenario. Section 4 is dedicated to the proof of unbiasedness
for our estimators, and in Section 5 we draw our conclusions and present some possible
future directions of research.

2. The filtered data approach

In this work, we propose an alternative to subsampling for preprocessing the data
and infer effective dynamics. In particular, we smoothen the data with a continuous
moving average, identified by the kernel

kδma(r)=
1

δ
χ[0,δ](r),

where χ[a,b] denotes the indicator function of the interval [a,b] for real numbers a<b, and
where δ>0 is the size of the moving average window. We then take a time convolution
of the kernel and the data and obtain the filtered trajectory

Zδ,ε
ma(t)=

∫ t

0

kδma(t−s)Xε(s)ds=
1

δ

∫ t

t−δ

Xε(s)ds, t≥ δ. (2.1)
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The process Zδ,ε
ma is fully defined on the interval t∈ [0,T ] by defining for small times t≤ δ

Zδ,ε
ma(t)=

1

t

∫ t

0

Xε(s)ds, 0≤ t<δ.

We remark that with this choice the process Zδ,ε
ma is continuous on [0,T ], and can be seen

as a smoothed version of the original trajectory where the fast oscillations are damped.
The idea of smoothening the data with a low-pass filter has already been introduced

in our previous work [3]. Instead of a moving average, we consider in [3] an exponential
filtering kernel of the form

kδ,βexp(r)=
Cβ

δ1/β
exp

(
−r

β

δ

)
, Cβ =

β

Γ(1/β)
, (2.2)

where the constant Cβ normalizes the kernel in the sense∫ ∞

0

kδ,βexp(r)dr=1.

Filtered data Zδ,β,ε
exp (t) are then obtained similarly to (2.1) by taking a time convolution.

We remark that the parameters δ and β in (2.2) have two different roles. In particular,
we have that β is a shape parameter, and δ is the filtering width. The approaches
presented here and in our previous work are closely related. In fact, it is simple to
deduce that for almost every r≥0

lim
β→∞

kδ,βexp(r)=χ[0,1](r), (2.3)

independently of δ. We remark that the theoretical analysis in [3] is restricted to the
case where the shape parameter β=1, despite numerical experiments suggesting that
choosing β>1 yields better estimators. Studying the moving average kernel and (2.3)
therefore partially fills the theoretical gap of our previous work.

2.1. Estimating the drift coefficient. We now present how in practice
one employs filtered data to obtain asymptotically unbiased estimators of the effective
drift coefficient. The main idea is modifying the classical MLE (1.8) by replacing one
occurrence of the original process Xε with the filtered process Zδ,ε

ma both inM and v. In

particular, the drift estimator Âδ
ma(X

ε,T ) is defined as the solution of the linear system

−Mδ
ma(X

ε,T )Âδ
ma(X

ε,T )=vδma(X
ε,T ), (2.4)

where

M δ
ma(X

ε,T ) :=
1

T

∫ T

0

V ′(Zδ,ε
ma(t))⊗V ′(Xε(t))dt,

vδma(X
ε,T ) :=

1

T

∫ T

0

V ′(Zδ,ε
ma(t))dX

ε(t).

An asymptotically unbiased estimator Âδ,β
exp(X

ε,T ) of the drift coefficient based on ex-

ponential filtering kernels is obtained in the same way, by replacing Zδ,ε
ma with Zδ,β,ε

exp ,
as shown in [3]. We remark that it is fundamental to keep Xε(t) in the differential of
the right-hand side v(Xε,T ), as discussed in [3, Remark 3.7]. For the well-posedness of

the estimator Âδ
ma(X

ε,T ) the matrix Mδ
ma(X

ε,T ) needs to be invertible. We take this
property as an assumption in the theoretical analysis but we observe that it holds in
practice in all the numerical experiments.
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2.2. Estimating the diffusion coefficient. We now focus on inferring the
effective diffusion coefficient and we propose two different estimators. The first one is
given by

Σ̂δ
ma(X

ε,T )=
1

δT

∫ T

δ

(
Xε(t)−Zδ,ε

ma(t)
)
(Xε(t)−Xε(t−δ)) dt, (2.5)

which is analogous to the diffusion estimator presented in [3, Section 3].
A different methodology for estimating the diffusion coefficient of the homogenized

equation can be derived from the particular form of (1.7). We know that Σ=σK and
therefore an estimation of Σ can be obtained by first estimating σ and K. The former
can be computed exactly due to (1.9), indeed we have

σ=
⟨Xε⟩T
2T

,

while for the latter we use the fact that A=αK. Given an estimator Â for the effective
drift coefficient and since by (1.9) we know that α̂= ÂMLE(X

ε,T ) approximates α, we
write

α̂K̂= Â, (2.6)

which is an overdetermined linear system with N equations and one unknown, and
where K̂ denotes the estimator of the coefficient K which we aim to infer. The least
squares solution to (2.6) is given by

K̂=
α̂⊤Â

α̂⊤α̂
.

Assuming that an estimator Â(Xε,T ) of the effective drift coefficient has already been
computed, the effective diffusion coefficient can then be estimated as

Σ̃(Xε,T )=
⟨Xε⟩T (ÂMLE(X

ε,T )⊤Â(Xε,T ))

2T (ÂMLE(Xε,T )⊤ÂMLE(Xε,T ))
. (2.7)

Remark 2.1. In practice, the stream Xε consists of high-frequency discrete data,
and not of a continuous process. Hence, the filtered data and all our estimators are
computed in practice with the usual appropriate discretizations. We notice that if Xε

consists of n data points, the time complexity needed to compute the filtered trajectory
Zδ,ε
ma is of order O(n).

2.3. Statement of asymptotic unbiasedness results. In this section we
present the main theoretical results of this work, i.e., the asymptotic unbiasedness of
the proposed estimators. We first introduce the assumptions which will be employed in
the analysis. In particular, we restrict the analysis to the same dissipative framework
as [3, 39].

Assumption 2.1. The functions p and V satisfy:

(i) p∈C∞(R) and is L-periodic for some L>0,

(ii) Vi∈C∞(R) for all i=1,. ..,N and are polynomially bounded from above and
bounded from below. Moreover, the potential is dissipative, i.e., there exist a,b>0
such that

−α ·V ′(x)x≤a−bx2,
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(iii) V ′ and V ′′ are Lipschitz continuous, i.e., there exists a constant C>0 such that

∥V ′(x)−V ′(y)∥≤C |x−y|, and ∥V ′′(x)−V ′′(y)∥≤C |x−y| ,

where ∥·∥ denotes the Euclidean norm, and the components V ′
i and V ′′

i are poly-
nomially bounded for all i=1,. ..,N .

Remark 2.2. Assumption 2.1 has the following consequences:

(i) Assumption 2.1 (i) allows to employ the theory of periodic homogenization to
conclude that (1.7) is effective for Equation (1.6).

(ii) Assumption 2.1 (ii) implies that the solutions of (1.6) and (1.7) are geometrically
ergodic, and thus the existence of unique invariant measures (see [39, Propositions
5.1 and 5.2]).

(iii) Assumption 2.1 (iii) is technical, and guarantees sufficient regularity for our main
results to hold.

We first consider the drift estimator Âδ
ma(X

ε,T ), which is asymptotically unbiased
due to the following result.

Theorem 2.1. Let Âδ
ma(X

ε,T ) be defined in (2.4) with δ independent of ε or δ=εζ

where ζ ∈ (0,2). Under Assumption 2.1 and if Mδ
ma(X

ε,T ) is invertible, it holds

lim
ε→0

lim
T→∞

Âδ
ma(X

ε,T )=A, a.s.,

where A is the drift coefficient of the homogenized Equation (1.7).

The following result of asymptotic unbiasedness holds for the estimator Σ̂δ
ma(X

ε,T )
of the effective diffusion.

Theorem 2.2. Let Σ̂δ
ma(X

ε,T ) be defined in (2.5) with δ=εζ where ζ ∈ (0,2). Under
Assumption 2.1, it holds

lim
ε→0

lim
T→∞

Σ̂δ
ma(X

ε,T )=Σ, a.s.,

where Σ is the diffusion coefficient of the homogenized Equation (1.7).

We notice from the statement of Theorem 2.2 that the main limitation of Σ̂δ
ma is that

knowledge of the scale-separation parameter ε is necessary for unbiasedness. Conversely,
the estimator Σ̃(Xε,T ) of the effective diffusion can be asymptotically unbiased even if

δ is independent of ε. Indeed, unbiasedness of Σ̃(Xε,T ) solely relies on the accuracy of
the corresponding drift estimator, as shown by the following result.

Theorem 2.3. Let Â be an asymptotically unbiased estimator of the effective drift
coefficient, i.e.,

lim
ε→0

lim
T→∞

Â(Xε,T )=A, a.s., (2.8)

where A is the drift coefficient of the homogenized Equation (1.7), and let Σ̃(Xε,T ) be
defined in (2.7). Under Assumption 2.1, it holds

lim
ε→0

lim
T→∞

Σ̃(Xε,T )=Σ, a.s.,

where Σ is the diffusion coefficient of the homogenized Equation (1.7).
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The following corollary is a direct consequence of Theorem 2.3.

Corollary 2.1. Let Σ̃δ
ma(X

ε,T ), Σ̃δ,β
exp(X

ε,T ), Σ̃δ
sub(X

ε,T ) be defined by (2.7) with

Â(Xε,T ) replaced by Âδ
ma(X

ε,T ), Âδ,β
exp(X

ε,T ), and Âδ
sub(X

ε,T ), respectively. If δ is

independent of ε or δ=εζ with ζ ∈ (0,2), then

lim
ε→0

lim
T→∞

Σ̃δ
ma=Σ, a.s., lim

ε→0
lim

T→∞
Σ̃δ,β

exp=Σ, a.s.,

and if δ=εζ with ζ ∈ (0,1)

lim
ε→0

lim
T→∞

Σ̃δ
sub=Σ, a.s.,

where Σ is the diffusion coefficient of the homogenized Equation (1.7).

Two remarks are due.

Remark 2.3. In our approach, the scale-separation parameter ε need not be known.
In particular, Theorem 2.1 and Corollary 2.1 show that our estimators are asymptoti-
cally unbiased if δ is independent of ε, i.e., the filtering width equals the speed of the
homogenized process. Since ε is in general unknown in practice, this constitutes an
advantage with respect to, e.g., subsampling, for which knowledge of ε is necessary.
Moreover, as we demonstrate numerically in Section 3, modifying the filtering width
has a weak impact on the inference results as long as δ∈ [ε,1] when T <∞ and ε>0.

Remark 2.4. Despite being more accurate in practice, as demonstrated by our numer-
ical experiments, and not requiring knowledge of ε, the estimator Σ̃δ

ma is computationally

more expensive to obtain than Σ̂δ
ma. Indeed, computing Σ̃δ

ma requires estimators for the
parameters α and σ of the multiscale Equation (1.6), as well as the drift coefficient A of
the homogenized model (1.7). Hence, if a very accurate estimate for the whole effective

equation is needed, we recommend to employ Σ̃δ
ma, while Σ̂δ

ma can be used in case only
the diffusion coefficient is required.

The proof of Theorems 2.1 to 2.3 is obtained by applying techniques similar to the
ones employed in [3, 5, 39], and is presented in detail in Section 4.

2.4. The Multi-dimensional case. In this section we report the expression
of the estimators for higher dimensions. Indeed, the choice d=1 in the remainder of
the paper is made only for economy of notation, and for clarity. Moreover, the proofs
of Theorems 2.1 to 2.3 would be conceptually unchanged by considering d>1, up to
tedious technical details. Let ∇V : Rd→RdN be the vector obtained by stacking the
gradients of the components Vi, i=1,. ..,N , of the slow-scale potential, i.e.,

∇V (x)=
(
∇V1(x)⊤ ·· · ∇VN (x)⊤

)⊤
.

Then, the drift estimator for the block matrix A∈RdN×d given by

A=
(
A⊤

1 ·· · A⊤
N

)⊤
,

is the solution of the linear system

−M δ
ma(X

ε,T )Âδ
ma(X

ε,T )=vδma(X
ε,T ),
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where the matrices M δ
ma(X

ε,T )∈RdN×dN and vδma(X
ε,T )∈RdN×d are defined as

M δ
ma(X

ε,T ) :=
1

T

∫ T

0

∇V (Zδ,ε
ma(t))⊗∇V (Xε(t))dt,

vδma(X
ε,T ) :=

1

T

∫ T

0

∇V (Zδ,ε
ma(t))⊗ dXε(t).

Concerning the diffusion coefficient, it is natural to impose that it is symmetric and
positive definite, so that the square root

√
2Σ is well defined. For this reason, we define

the estimator Σ̂δ
ma(X

ε,T ) for the effective diffusion coefficient Σ∈Rd×d as

Σ̂δ
ma(X

ε,T )=S

(
1

δT

∫ T

δ

(
Xε(t)−Zδ,ε

ma(t)
)
⊗(Xε(t)−Xε(t−δ)) dt

)
,

where S(B) denotes the symmetric part of a matrix B∈Rd×d, i.e., S(B)=(B+B⊤)/2.

Remark that positive definiteness is not guaranteed for Σ̂δ
ma(X

ε,T ), but due to asymp-
totic unbiasedness it is natural to expect that for T large enough and ε small enough
the estimator Σ̂δ

ma(X
ε,T ) is positive definite as its limit. For the estimators of the form

Σ̃(Xε,T ), we first estimate the homogenization matrix as

K̂=argmin
K∈Sym+

d

∥∥∥ÂMLE(X
ε,T )K−Â(Xε,T )

∥∥∥
F
,

where Sym+
d is the space of symmetric positive definite matrices of size d×d, ∥·∥F

is the Frobenius norm, and Â(Xε,T ) is any estimator of the effective drift coefficient
A∈RdN×d. It is simple to compute the minimum in practice by imposing K=LL⊤,
and then minimizing directly over L∈Rd×d. Then, we define

Σ̃(Xε,T )=
⟨Xε⟩T
2T

K̂.

In this case, the estimator is symmetric and positive definite by construction.
As we present in the numerical experiment of Section 3.3, our methodology based on

moving average can be naturally and successfully applied to higher-dimensional SDEs.

3. Numerical experiments
In this section, we present a series of numerical experiments which have the twofold

goal of validating our theoretical analysis, and of showcasing the effectiveness of our
technique on challenging academic examples.

3.1. Sensitivity analysis with a Ornstein–Uhlenbeck model. We first
consider the one-dimensional Equation (1.6) with N =1, with the slow scale potential
V (x)=x2/2, and with the fluctuating potential p(y)=sin(y). In this case, the effective
model is an Ornstein–Uhlenbeck equation, and it is simple to verify that the homoge-
nization coefficient K>0 is given by

K=
L2

C+
η C

−
η
, C±

η =

∫ L

0

exp

(
±p(y)

σ

)
dy, (3.1)

where L=2π is the period of p. In this scenario, we can compute exact values for the
effective drift and diffusion coefficients to assess the accuracy of our inference method.
We then compare numerically the accuracy of the estimators
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(i) Âδ
ma, Â

δ,1
exp, and Â

δ
sub of the effective drift coefficient obtained by employing data

preprocessed with the moving average filter of width δ, the exponential filter with
δ and shape parameter β=1, and subsampling with period δ,

(ii) Σ̂δ
ma, Σ̂

δ,1
exp, and Σ̂δ

sub of the effective diffusion coefficient obtained with the same
methods, respectively,

(iii) Σ̃δ
ma, Σ̃

δ,1
exp, and Σ̃δ

sub of the effective diffusion coefficient based on the corresponding
drift estimators given in (i).

We consider T =104 and generate dataXε=(Xε(t),0≤ t≤T ) from the multiscale model
with drift coefficient α=1 and for a variable diffusion coefficient σ=0.5,0.75,1, so that
the homogenization coefficient K≈0.19,0.45,0.62 respectively. Moreover, we consider
scale-separation parameters ε=0.2,0.1,0.05 to observe convergence with respect to the
homogenization limit. Data is generated with the Euler–Maruyama method with fixed
time step ∆t=ε

3
min, where εmin=0.05 is the smallest value we employ for the scale-

separation parameter. With this choice, we have the twofold advantage of introducing
negligible numerical errors which do not compromise the validity of our results, and of
capturing well the fast-scale oscillations. The filtering/subsampling widths are set to
δ=εζ for ζ= i/10 for i=0,1,. ..,20 to observe robustness with respect to preprocessing.
Let us remark that subsampling-based estimators are asymptotically unbiased only for
ζ ∈ (0,1), and that the theory for both filtering kernels is different in case ζ=0, i.e.,
when the filtering width is independent of ε.

Numerical results, given in Figures 3.1 to 3.3, demonstrate that

(a) Figure 3.1: The two filtering techniques yield estimators of the drift coefficient of
comparable accuracy across all parameters σ, ε and δ, and they are both more
robust than subsampling when varying the parameters σ and δ. We observe that
robustness with respect to δ is particularly improved for higher values of σ. For the
two filtering methodologies asymptotic unbiasedness with respect to ε seems to hold
in practice. Finally, convergence with respect to t∈ [0,T ], verified with σ=1, δ=1
for the filtering methods and δ=ε2/3 (conjectured optimal in [39]) for subsampling
is similar for the three methods.

(b) Figure 3.2: The estimators Σ̂δ
ma, Σ̂

δ,1
exp, and Σ̂δ

sub of Σ have similar accuracy across
all values of ε, δ, and σ. Again, convergence with respect to ε seems to be in
practice respected. Let us remark that for these estimators δ=1 is not a viable
choice (for neither the two filtering methods, nor subsampling). Convergence in
time is therefore demonstrated for σ=1, for δ=ε for the two filtering methods,
and with δ=ε2/3 for subsampling. With these choices, the moving average filter
introduced in this paper seems to slightly outperform the concurrent methods.

(c) Figure 3.3: The estimators Σ̃δ
ma and Σ̃δ,1

exp show enhanced accuracy with respect to
the corresponding estimators of Item b across all values of ε, σ, and δ. Convergence
with respect to ε seems to be respected for all methods. Convergence in time is
demonstrated for σ=1, for δ=1 for the two filtering methods, and with δ=ε2/3 for
subsampling. With these choices, the moving average filter introduced here seems
to show a faster time transient towards the effective diffusion coefficient with respect
to the concurrent methods. We remark that the diffusion estimators identified by
the “hat” seem to converge faster with respect to t than the ones identified with
the “tilde”.



GIACOMO GAREGNANI AND ANDREA ZANONI 417

σ=1

σ=0.75

σ=0.5

Fig. 3.1: Estimation of the drift coefficient of an effective Ornstein–Uhlenbeck equation. Top: Nu-
merical results at final time T =104 for variable σ=1,0.75,0.5 (per row), for ε=0.2,0.1,0.05 (blue,
red, and yellow lines respectively), and for variable filtering/subsampling width δ (horizontal axis in all
figures). Comparison between filtering with moving average and exponential filters (first two columns)
and subsampling (last column). Bottom: Convergence with respect to t∈ [0,104] of the two estimators
based on filtered data with δ=1, and of the subsampling estimator with δ= ε2/3, for fixed σ=1 and
ε=0.05. Remark: The legend on top is valid for all plots, except the last row.
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σ=1

σ=0.75

σ=0.5

Fig. 3.2: Estimation of the diffusion coefficient of an effective Ornstein–Uhlenbeck equation. Top:
Numerical results at final time T =104 for variable σ=1,0.75,0.5 (per row), for ε=0.2,0.1,0.05 (blue,
red, and yellow lines respectively), and for variable filtering/subsampling width δ (horizontal axis in

all figures). Results for the estimators Σ̂: Comparison between filtering with moving average and
exponential filters (first two columns) and subsampling (last column). Bottom: Convergence with
respect to t∈ [0,104] of the two estimators based on filtered data with δ= ε, and of the subsampling
estimator with δ= ε2/3, for fixed σ=1 and ε=0.05. Remark: The legend on top is valid for all plots,
except the last row.
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σ=1

σ=0.75

σ=0.5

Fig. 3.3: Estimation of the diffusion coefficient of an effective Ornstein–Uhlenbeck equation. Top:
Numerical results at final time T =104 for variable σ=1,0.75,0.5 (per row), for ε=0.2,0.1,0.05 (blue,
red, and yellow lines respectively), and for variable filtering/subsampling width δ (horizontal axis in

all figures). Results for the estimators Σ̃: Comparison between filtering with moving average and
exponential filters (first two columns) and subsampling (last column). Bottom: Convergence with
respect to t∈ [0,104] of the two estimators based on filtered data with δ=1, and of the subsampling
estimator with δ= ε2/3, for fixed σ=1 and ε=0.05. Remark: The legend on top is valid for all plots,
except the last row.
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3.2. The Semi-parametric setting. We now consider the semi-parametric
setting for a one-dimensional multiscale Langevin equation of the form (1.6). In partic-
ular, we consider the number of parameters N =6 and define V : R→RN as

V (x)=

(
x6

6

x5

5

x4

4

x3

3

x2

2
x

)⊤

.

The slow-scale potential is premultiplied by the six-dimensional drift coefficient α∈R6

α=
(
1 −1 −5.25 4.75 5 −3

)⊤
.

With this choice, the slow-scale potential α ·V has three stable points. Moreover, we
choose the fast-scale potential as p=sin(y), the diffusion coefficient σ=1, and the mul-
tiscale parameter ε=0.05. We then wish to infer the effective drift and diffusion co-
efficients A∈R6 and Σ>0 from synthetic data Xε=(Xε(t),0≤ t≤T ) with T =5 ·104,
generated with the Euler–Maruyama method with time step ∆t=ε

3. In this case, the
homogenization coefficient K≈0.62. We then infer the effective drift and diffusion co-
efficients A∈R6 and Σ>0 which define the homogenized Equation (1.7). Similarly to
Section 3.1, we compare the two filtering methodologies (moving average and exponen-
tial kernels), and subsampling. Moreover, we compute for all strategies the effective

drift estimator Â, and the effective diffusion estimators Σ̂ and Σ̃.

Numerical results, given in Figures 3.4 and 3.5, demonstrate that

(a) Figure 3.4: The six-dimensional effective drift coefficient is estimated accurately by
both filtering-based methodologies, which yield comparable results both in terms of
time convergence and of robustness with respect to the filtering width δ. At final
time, both estimators have relative errors of magnitude 10−2, and all six components
of the drift coefficient are accurately retrieved. We note that for δ=1, i.e., the go-
to implementation when ε is unknown, the moving average estimator appears to
be slightly better than the one obtained with the exponential filter. Subsampling,
conversely, does not enable to retrieve the drift coefficient accurately and strongly
depends on the subsampling width δ. We remark that that the optimal value for δ
appears to be δ≈ε3/2, which is surprising in view of the convergence result of [39].
Finally, we notice that for all values of δ the estimated drift function is visually
almost identical to the effective drift, and is clearly differentiated from the slow
component of the multiscale drift.

(b) Figure 3.5: The diffusion coefficient is estimated more accurately by the estimator Σ̃

than Σ̂ when employing filtered data. Indeed, for both filtering kernels the estimator
Σ̃ is very robust with respect to the filtering width δ, and results are very accurate
in case δ=1, the go-to implementation when the scale-separation parameter ε is un-
known. Conversely, the estimator Σ̂ strongly depends on the filtering/subsampling

width. We note that choosing δ=ε the moving average estimator Σ̂ε
ma outperforms

the corresponding estimator Σ̂ε,1
exp based on exponential filtering. For subsampling,

the two estimators are equivalent in terms of accuracy, and are extremely dependent
on the subsampling width δ. Equivalently to the drift estimator, the best inference
results seem to be given by δ≈ε3/2, and not at the conjectured optimal value ε2/3.
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Fig. 3.4: Estimation of the drift coefficient in the one-dimensional semi-parametric setting. First
row: on the left, we show the evolution of the relative error with respect to t∈ [0,5 ·104], and on the
right the dependence of the relative error on the filtering/subsampling width δ∈ [ε2,1]. Second and
third rows: Dependence on δ of the estimators for the components Ai, i=1, .. .,6 of the effective drift
coefficient obtained with filtered data with both kernels, and with subsampling. Fourth row: Dependence
on the filtering/subsampling width δ of the estimated drift function with the same three methodologies.
Remark: The legend on top is valid for all plots, except the last row.
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Fig. 3.5: Estimation of the diffusion coefficient in the one-dimensional semi-parametric setting. First

(Σ̂) and second (Σ̃) row: on the left, we show the evolution of the relative error with respect to t∈
[0,5 ·104], and on the right the dependence of the relative error with respect to the filtering/subsampling

width δ∈ [ε2,1]. Third row: Dependence on δ of the estimators Σ̂ and Σ̃ of the effective diffusion
coefficient obtained with filtered data with both kernels, and with subsampling.

Fig. 3.6: Slow-, fast-, and multiscale potentials for the two-dimensional example of Section 3.3,
depicted here in the square (−2.5,2.5)2.
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Fig. 3.7: Estimation of the effective drift coefficient for the two-dimensional example of Sec-
tion 3.3. First row: Dependence of the relative error with respect to t∈ [0,T ] (left) and to the sub-
sampling/filtering width δ (right) for both filtering methods and subsampling. Second and third row:
Graphical representation in the square (−2.5,2.5)2 of the estimated effective drift function at final time
for the same three methods.
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Fig. 3.8: Estimation of the effective diffusion coefficient for the two-dimensional example of Sec-

tion 3.3. First and second row: Dependence of the relative error of the estimators Σ̂ (first row) and

Σ̃ (second row) with respect to t∈ [0,T ] (left) and to the subsampling/filtering width δ (right) for both
filtering methods and subsampling. Third and fourth row: Sensitivity of the estimators of the entries
of the diffusion matrix Σ with respect to δ, with both “hat” (third row) and “tilde” (fourth row) esti-
mators, and for the same three methodologies as above.
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3.3. A Two-dimensional example. As a last numerical example, we consider
a two-dimensional SDE (d=2) of the form (1.3). In particular, we let N =4 and define

V1(x)=exp
(
−∥x−x1∥2

)
, V2(x)=exp

(
−∥x−x2∥2

)
,

V3(x)=exp
(
−∥x∥2

)
, V4(x)=

1

4
∥x∥4 ,

where x1=(2,2)⊤, x2=(−2,−2)⊤. The exact drift coefficient in the multiscale dynamics
is defined by α1=α2=−15, α3=10 and α4=1. We choose the fast-scale periodic
potential p : R2→R as

p(y)=sin(y1)+sin2 (y2) ,

and let the diffusion coefficient σ=1 and the scale-separation parameter ε=0.1. Since
the fast-scale potential can be decomposed as p(y)=p1(y1)+p2(y2), the homogenization
coefficient K is diagonal and its diagonal components can be computed employing the
one-dimensional formula (3.1). In particular, we have

K≈

(
0.62 0

0 0.88

)
.

We remark that choosing larger values for the diffusion coefficient σ makes the diagonal
elements of the matrix K close to 1. Hence, in this case the homogenized potential
and the slow-scale component of the multiscale potential would be close, which in turn
may lead to a misinterpretation of the numerical results in case δ=εζ with ζ >1. The
slow, fast, and multiscale potential functions are represented in Figure 3.6. The slow-
scale potential presents two wells around the points x1 and x2, a local maximum in
the origin, and diverges outside any ball large enough and centered in the origin. The
superposition of the slow and fast-scale potentials (evaluated in y=x/ε) perturbs the
slow-scale potential and is responsible for an infinity of non-negligible local minima.
We note that due to the local minima, the local maximum in the origin, and the two-
dimensional setup, transitions between the potential wells are rare. This compromises
the accuracy of the inference results, especially for the drift coefficient, unless final time
is taken large enough.

We set T =2 ·105 and generate synthetic observations Xε=(Xε(t),0≤ t≤T ) by in-
tegrating (1.3) with the Euler–Maruyama method with time step ∆t=ε

3. The necessity
to perform experiments over long time horizons is due to the bistable nature of our set-
ting, and to the low probability of transitioning between the potential wells due to the
components V1 and V2 of the potential. It would have been also possible to increase
the probability of such transitions by increasing the value of the diffusion coefficient
σ, which however would have been problematic, as explained above. We then estimate
the effective drift coefficients {Ai∈R2×2}4i=1 and the effective diffusion matrix Σ∈R2×2

employing data filtered with the moving average and exponential kernels, and with sub-
sampling for a comparison. For the drift coefficient, we measure accuracy by computing
the relative error on the 16-dimensional vector obtained by stacking all coefficients of
the four 2×2 effective drift matrices. Numerical results, given in Figures 3.7 and 3.8,
demonstrate that

(a) Figure 3.7: The drift estimator obtained with both filtering methodologies is ex-
tremely accurate, given the complexity of the setting and the high-dimensionality
of the coefficient. In particular, for all values of δ∈ [ε,1] we obtain relative errors
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below 10%. Moreover, implementing both filtering methodologies with δ=1, i.e.,
when the scale-separation parameter is unknown, yields quasi-optimal results. We
remark that the estimator Â1

ma obtained with the moving average kernel and δ=1
appears to converge sensibly faster with respect to t∈ [0,T ] than the corresponding

estimator Â1,1
exp obtained with the exponential kernel. Conversely, the relative error

for subsampling is dramatically higher, and subsampling should not in our opinion
be employed in this high-dimensional setting. Always commenting on Figure 3.7,
we note that the drift function estimated with both filtering methods at final time
is visually almost indistinguishable from the exact effective drift function.

(b) Figure 3.8: Likewise the numerical experiments of the previous sections, the diffu-

sion estimators Σ̂ obtained with both filtering kernels and subsampling is not robust
with respect to the filtering width, with the moving average kernel that seems to
perform slightly better than the exponential kernel for δ=ε, and than subsampling
when δ=ε3/2. The estimators Σ̃ obtained with the two filtering methods are in-
stead extremely accurate at identifying both the diagonal components – especially
Σ22, and the zero off-diagonal elements. The subsampling-based estimator Σ̃sub,
instead, suffers from the lack of accuracy of the drift estimator Âδ

sub, and is not re-
liable. Always commenting on Figure 3.8, we remark that convergence with respect
to t∈ [0,T ] of the estimators Σ̃1

ma and Σ̃1,1
exp is similar, with the moving average filter

seemingly less prone to instabilities for small t.

4. Asymptotic unbiasedness of the estimators
In this section we present the proof of Theorems 2.1 to 2.3 and Corollary 2.1, i.e.,

the results of asymptotic unbiasedness for our filtering-based estimators. In [3] the
proofs of convergence are obtained with the kernel kδ,1exp by noticing that the original

trajectory Xε and its filtered version Zδ,β,ε
exp are solution of an hypoelliptic system of Itô

SDEs. For higher values of β>1, the system describing the evolution of Xε and Zδ,β,ε
exp

is not an Itô system due to the presence of a memory term. In case we consider the
moving average kernel kδma which we study in this paper, the memory term simplifies to
a constant delay. Hence, the evolution of the filtered trajectory Zδ,ε

ma can be coupled with
the original trajectory Xε through the system of stochastic delay differential equations
(SDDEs)

dXε(t)=−α ·V ′(Xε(t))dt− 1

ε
p′
(
Xε(t)

ε

)
dt+

√
2σdW (t),

dZδ,ε
ma(t)=−1

δ
(Xε(t−δ)−Xε(t))dt.

(4.1)

To be precise, the system above is a combination of an Itô SDE and a delay ordinary
differential equation driven by a stochastic signal. Due to the theory of homogenization
(see [12, Chapter 3], or [40, Chapter 18], or the proof of [3, Lemma 3.9]), if δ is indepen-
dent of ε, the solution (Xε,Zδ,ε

ma) converges in law as random variables in C0([0,T ],R2)
to the solution (X0,Zδ,0

ma) of the system

dX0(t)=−A ·V ′(X0(t))dt+
√
2ΣdW (t),

dZδ,0
ma(t)=−1

δ
(X0(t−δ)−X0(t))dt.

(4.2)

In the following, we first focus on ergodic properties of the couples (Xε,Zδ,ε
ma) and

(X0,Zδ,0
ma) evolving according to (4.1) and (4.2), respectively. Then, we employ the
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invariant measures and the Fokker–Planck equations derived through the ergodicity
theory to prove asymptotic unbiasedness. We remark that the strategy we adopt is
similar to the one of [3]. Still, different techniques need to be employed due to the delay
in the second equation of the systems (4.1) and (4.2).

4.1. Ergodic properties. It is well-known (see, e.g., [3, 39]) that Xε is
geometrically ergodic with invariant measure µε on R, whose density ρε satisfying
µε(dx)=ρε(x)dx takes the Gibbs form

ρε(x)=
1

Cε
µ

exp

(
−Vε(x)

σ

)
, Cε

µ=

∫
R
exp

(
−Vε(x)

σ

)
dx,

where

Vε(x) :=α ·V (x)+p
(x
ε

)
.

Moreover, an analogous result holds true for the homogenized process X0, which is
geometrically ergodic with invariant measure µ0 on R, whose density ρ0 satisfying
µ0(dx)=ρ0(x)dx is given by

ρ0(x)=
1

C0
µ

exp

(
−A ·V (x)

Σ

)
, C0

µ=

∫
R
exp

(
−A ·V (x)

Σ

)
dx.

We now introduce a similar result of ergodicity for the couples (Xε,Zδ,ε
ma) and

(X0,Zδ,0
ma) satisfying (4.1) and (4.2), respectively, i.e., for the multiscale process and

its filtered version.

Proposition 4.1. Under Assumption 2.1, the solution (Xε,Zδ,ε
ma) of (4.1) is er-

godic, and the density ρ̃ε of its invariant measure µ̃ε on R2, such that µ̃ε(dx,dz)=
ρ̃ε(x,z)dxdz, satisfies

σ∂2xxρ̃
ε(x,z)+∂x (V

′
ε (x)ρ̃

ε(x,z))+
1

δ
∂z

((∫
R
yψε(y |x,z)dy−x

)
ρ̃ε(x,z)

)
=0,∫

R

∫
R
ρ̃ε(x,z)dxdz=1,

(4.3)

where, if Xε(0)∼µε, it holds∫
R
yψε(y |x,z)dy=E

[
Xε(0) |Xε(δ)=x,Zδ,ε

ma(δ)=z
]
,

i.e., ψε(· |x,z) is the conditional density of Xε(0) given Xε(δ)=x and Zδ,ε
ma(δ)=z.

Moreover, if δ is independent of ε, the solution (X0,Zδ,0
ma) of (4.2) is ergodic, and the

density ρ̃0 of its invariant measure µ̃0 on R2, such that µ̃0(dx,dz)= ρ̃0(x,z)dxdz, sat-
isfies

Σ∂2xxρ̃
0(x,z)+∂x

(
A ·V ′(x)ρ̃0(x,z)

)
+

1

δ
∂z

((∫
R
yψ0(y |x,z)dy−x

)
ρ̃0(x,z)

)
=0,∫

R

∫
R
ρ̃0(x,z)dxdz=1, (4.4)

where, if X0(0)∼µ0, it holds∫
R
yψ0(y |x,z)dy=E

[
X0(0) |X0(δ)=x,Zδ,0

ma(δ)=z
]
,
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i.e., ψ0(· |x,z) is the conditional density of X0(0) given X0(δ)=x and Zδ,0
ma(δ)=z.

Proof. In order to prove that the joint process (Xε,Zδ,ε
ma) is ergodic, we show that

it admits a unique invariant measure. If Xε(0) is distributed accordingly to its invariant
measure µε, which exists due to Assumption 2.1, then the processes (Xε(s),0≤s≤ δ)
and (Xε(s),t−δ≤s≤ t) are equally distributed for all t≥ δ. Hence, the two-dimensional

random variables
(
Xε(δ), 1δ

∫ δ

0
Xε(s)ds

)
and

(
Xε(t), 1δ

∫ t

t−δ
Xε(s)ds

)
are equal in law

for all t≥ δ. Recalling that the joint process
(
Xε(t), 1δ

∫ t

t−δ
Xε(s)ds

)
is the solution

(Xε(t),Zδ,ε
ma(t)) of the system (4.1), it follows that the invariant measure µ̃ε on R2 is

the law of the random variable
(
Xε(δ), 1δ

∫ δ

0
Xε(s)ds

)
. The uniqueness of the invariant

measure µ̃ε is then a direct consequence of the uniqueness of the invariant measure µε

for the process Xε since the joint measure µ̃ε is uniquely determined by its marginal µε.
Moreover, the Fokker–Planck equation for the one-time PDF related to an SDDE with
a single fixed delay is well-known (see, e.g., [19, 22, 32]) and the stationary Equation
(4.3) for the density ρ̃ε of µ̃ε is then obtained due to the particular form of the system
(4.1). Finally, the results corresponding to the homogenized system (4.2) can be proved
analogously.

The following formulas, which will be employed in the proof of the main results, are
then direct consequences of the Fokker–Planck equations obtained above.

Lemma 4.1. Let ρ̃ε(x,z)=ρε(x)φε(z |x), where ρε and ρ̃ε are the densities of the
invariant measures µε and µ̃ε of Xε and (Xε,Zδ,ε

ma), respectively, and where φε is the
conditional density of Zδ,ε

ma given Xε. Then, if Xε(0)∼µε, it holds

σ

∫
R

∫
R
V ′(z)ρε(x)∂xφ

ε(z |x)dxdz

=
1

δ
Eµ̃ε [(

Xε(δ)−Zδ,ε
ma(δ)

)
(Xε(δ)−Xε(0))V ′′(Zδ,ε

ma(δ))
]
. (4.5)

Moreover, if δ is independent of ε and writing ρ̃0(x,z)=ρ0(x)φ0(z |x) for the density of
the homogenized invariant measure µ̃0 of (X0,Zδ,0

ma), it holds

Σ

∫
R

∫
R
V ′(z)ρ0(x)∂xφ

0(z |x)dxdz

=
1

δ
Eµ̃0 [(

X0(δ)−Zδ,0
ma(δ)

)(
X0(δ)−X0(0)

)
V ′′(Zδ,0

ma(δ))
]
. (4.6)

Proof. We proceed similarly to the proof of [3, Lemma 3.5]. Replacing the
decomposition ρ̃ε(x,z)=ρε(x)φε(z |x) into the Fokker–Planck Equation (4.3) gives

∂x (σρ
ε(x)∂xφ

ε(z |x))+∂z
(
1

δ

(∫
R
yψε(y |x,z)dy−x

)
ρε(x)φε(z |x)

)
=0.

We then multiply the equation above by a smooth function f : R2→RN , f =f(x,z),
and integrate first with respect to x and z and then by parts, obtaining

σ

∫
R

∫
R
∂xf(x,z)ρ

ε(x)∂xφ
ε(z |x)dxdz= 1

δ
Eµ̃ε [

∂zf(X
ε(δ),Zδ,ε

ma(δ))(X
ε(δ)−Xε(0))

]
.

The choice f(x,z)=(x−z)V ′(z)+V (z) gives Equation (4.5). Finally, Equation (4.6) is
obtained analogously employing the Fokker–Planck equation of the homogenized SDE
(4.4).
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4.2. Preliminary results. Let us first introduce the notation

M̃ε :=Eµ̃ε [
V ′(Zδ,ε

ma)⊗V ′(Xε)
]
, M̃0 :=Eµ̃0 [

V ′(Zδ,0
ma)⊗V ′(X0)

]
,

Mε :=Eµε

[V ′(Xε)⊗V ′(Xε)], M0 :=Eµ0 [
V ′(X0)⊗V ′(X0)

]
,

which is repeatedly employed below. Before presenting the main proofs, we introduce
two auxiliary lemmas.

Lemma 4.2. Under Assumption 2.1, it holds

Xε(δ)−Zδ,ε
ma(δ)=

√
2σ

δ

∫ δ

0

t(1+Φ′(Y ε(t)))dW (t)+R(ε,δ), (4.7)

where Φ is the solution of the cell problem (1.5) and where the remainder R(ε,δ) satisfies
for all p≥1 and a constant C>0 independent of ε and δ

Eµ̃ε

[|R(ε,δ)|p]1/p≤C (ε+δ). (4.8)

Moreover, if Xε(0) is stationary, i.e. Xε(0)∼µε, it holds

Eµ̃ε
[∣∣Xε−Zδ,ε

ma

∣∣p]1/p≤C(δ1/2+ε) , (4.9)

Eµ̃ε
[∣∣Zδ,ε

ma

∣∣p]1/p≤C. (4.10)

Proof. Employing the decomposition (5.8) in [39] and due to [39, Lemma 5.5,
Propsition 5.8] we have for all t∈ [0,δ]

Xε(δ)=Xε(t)+
√
2σ

∫ δ

t

(1+Φ′(Y ε(s)))dW (s)+R(ε,δ), (4.11)

where the remainder satisfies for all p≥1 and for a constant C>0 independent of ε and
δ

Eµ̃ε

[|R(ε,δ)|p]1/p≤C (ε+δ).

Therefore, we obtain

Xε(δ)−Zδ,ε
ma(δ)

=
1

δ

∫ δ

0

(Xε(δ)−Xε(t))dt=

√
2σ

δ

∫ δ

0

∫ δ

t

(1+Φ′(Y ε(s)))dW (s)dt+R(ε,δ),

which by Fubini’s theorem yields

Xε(δ)−Zδ,ε
ma(δ)=

√
2σ

δ

∫ δ

0

t(1+Φ′(Y ε(t)))dW (t)+R(ε,δ),

and proves (4.7) and (4.8). By the Itô isometry, it holds

Eµ̃ε

[∣∣∣∣∣
∫ δ

0

t(1+Φ′(Y ε(t)))dW (t)

∣∣∣∣∣
p]1/p

≤Cδ3/2, (4.12)
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which, together with (4.7), (4.8) and the proof of Proposition 4.1, gives (4.9). Finally,
(4.10) is proved by applying the triangle inequality and due to (4.9) and [39, Corollary
5.4].

Lemma 4.3. Under Assumption 2.1 and if δ=εζ with ζ ∈ (0,2), then it holds

lim
ε→0

M̃ε=M0.

Proof. By the triangle inequality, we have∥∥∥M̃ε−M0

∥∥∥≤∥∥∥M̃ε−Mε

∥∥∥+∥Mε−M0∥ .

The first term vanishes as ε→0 due to Lemma 4.2, [39, Corollary 5.4] and since V ′

is Lipschitz under Assumption 2.1. The second term vanishes due to the theory of
homogenization as ε→0.

4.3. Proof of the main results. We can now prove our main results, i.e.,
Theorems 2.1 to 2.3 and Corollary 2.1.

Proof. (Proof of Theorem 2.1.) Following the proof of [3, Theorem 3.12], we
have

Âδ
ma(X

ε,T )=α+I1−I2,

where

I1=
1

T
Mδ

ma(X
ε,T )−1

∫ T

0

1

ε
p′
(
Xε(t)

ε

)
V ′(Zδ,ε

ma(t))dt,

I2=

√
2σ

T
Mδ

ma(X
ε,T )−1

∫ T

0

V ′(Zδ,ε
ma(t))dW (t),

and where

lim
T→∞

I2=0,

uniformly in ε by Lemma 4.2 and the strong law of large numbers for martingales.
Considering I1, due to Assumption 2.1 the ergodic theorem and an integration by parts
yield

lim
T→∞

I1=−α+M̃−1
ε σ

∫
R

∫
R
V ′(z)ρε(x)∂xφ

ε(z |x)dxdz,

where φε(z |x) is defined in Lemma 4.1, which also implies

lim
T→∞

I1=−α+Aε(δ),

where

Aε(δ)=
1

δ
M̃−1

ε Eµ̃ε [
(Xε(δ)−Zδ,ε

ma(δ))(X
ε(δ)−Xε(0))V ′′(Zδ,ε

ma(δ))
]
. (4.13)

It remains to show that

lim
ε→0

Aε(δ)=A,



GIACOMO GAREGNANI AND ANDREA ZANONI 431

for which we consider two cases, corresponding to δ independent of ε and δ=εζ with
ζ ∈ (0,2), respectively.

Case 1: δ independent of ε. In this case, the theory of homogenization yields

lim
ε→0

Aε(δ)=
1

δ
M̃−1

0 Eµ̃0 [
(X0(δ)−Zδ,0

ma(δ))(X
0(δ)−X0(0))V ′′(Zδ,0

ma(δ))
]
,

so that applying Lemma 4.1 for the homogenized equation backwards we have

lim
ε→0

Aε(δ)=M̃−1
0 Σ

∫
R

∫
R
V ′(z)ρ0(x)∂xφ

0(z |x)dxdz.

An integration by parts then gives

lim
ε→0

Aε(δ)=M̃−1
0 M̃0A=A,

which concludes Case 1.

Case 2: δ=εζ with ζ ∈ (0,2). Replacing formulas (4.11) with t=0 and (4.7) into
(4.13) gives

Aε(δ)

=
2σ

δ2
M̃−1

ε Eµ̃ε

[(∫ δ

0

t(1+Φ′(Y ε(t)))dW (t)

)(∫ δ

0

(1+Φ′(Y ε(t)))dW (t)

)
V ′′(Zδ,ε

ma(δ))

]
+R̃1(ε,δ),

where, due to Lemma 4.2, estimate (4.12) and the fact that by the Itô isometry

Eµ̃ε

[∣∣∣∣∣
∫ δ

t

(1+Φ′(Y ε(s)))dW (s)

∣∣∣∣∣
p]1/p

≤Cδ1/2, (4.14)

it follows that the remainder satisfies∥∥∥R̃1(ε,δ)
∥∥∥≤C(δ1/2+εδ−1/2+ε2δ−1

)
. (4.15)

Moreover, since V ′′ is Lipschitz under Assumption 2.1 and due to the triangle inequality,
Equation (4.11), estimates (4.8), (4.14) and Lemma 4.2, it holds for all t∈ [0,δ]

Eµ̃ε
[∥∥V ′′(Zδ,ε

ma(δ))−V ′′(Xε(t))
∥∥p]1/p≤C(ε+δ1/2) , (4.16)

which for ε and δ sufficiently small is at most of order O
(∥∥∥R̃1(ε,δ)

∥∥∥). Hence, by the

Itô isometry

Aε(δ)

=
2σ

δ2
M̃−1

ε Eµ̃ε

[(∫ δ

0

t(1+Φ′(Y ε(t)))dW (t)

)(∫ δ

0

(1+Φ′(Y ε(t)))V ′′(Xε(t))dW (t)

)]
+R̃2(ε,δ)

=
2σ

δ2
M̃−1

ε

∫ δ

0

tEµ̃ε [
(1+Φ′(Y ε(t)))2V ′′(Xε(t))

]
dt+R̃2(ε,δ),
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where due to (4.15) and (4.16) the remainder satisfies∥∥∥R̃2(ε,δ)
∥∥∥≤C(δ1/2+εδ−1/2+ε2δ−1

)
.

Repeating the last part of the proof of [3, Lemma 3.17], we then obtain

Aε(δ)=
2σK
δ2

M̃−1
ε Eµ0

[V ′′(X0)]

∫ δ

0

tdt+R̃2(ε,δ)

=ΣM̃−1
ε Eµ0

[V ′′(X0)]+R̃2(ε,δ).

Finally, since δ=εζ with ζ ∈ (0,2), by (4.15) and due to Lemma 4.3 we obtain

lim
ε→0

Aε(δ)=ΣM−1
0 Eµ0

[V ′′(X0)],

and an integration by parts gives

lim
ε→0

Aε(δ)=ΣM−1
0

1

Σ
M0A=A,

which proves Case 2 and therefore concludes the proof.

Proof. (Proof of Theorem 2.2.) Due to Assumption 2.1 the ergodic theorem
gives

lim
T→∞

Σ̂δ
ma(X

ε,T )=
1

δ
Eµ̃ε [(

Xε(δ)−Zδ,ε
ma(δ)

)
(Xε(δ)−Xε(0))

]
. (4.17)

Following step-by-step Case 2 of the proof of Theorem 2.1 with the value 1 instead of
V ′′(Zδ,ε

ma(δ)), and without the pre-multiplication by M̃−1
ε , we obtain the desired result.

Remark 4.1. It is clear from the proof of Theorem 2.2 that it is theoretically not
possible to choose δ independent of ε in the computation of Σ̂δ

ma(X
ε,T ). Let N =1 and

V (x)=x2/2, so that X0 is an Ornstein-Uhlenbeck process. In this case, the process X0

is a Gaussian process such that at stationarity X0∼GP(0,C(t,s)) where

C(t,s)= Σ

A
e−A|t−s|. (4.18)

By (4.17) and (4.18) we can therefore explicitly compute

lim
ε→0

lim
T→∞

Σ̂δ
ma(X

ε,T )=
1

δ
Eµ̃0 [(

X0(δ)−Zδ,0
ma(δ)

)(
X0(δ)−X0(0)

)]
=

1−e−δA

δA
Σ,

so that Σ̂δ
ma(X

ε,T ) is asymptotically unbiased only if δ→0.

Proof. (Proof of Theorem 2.3.) Notice that due to (1.9) we have

⟨Xε⟩T
2T

=σ,

which together with (2.8) and by (1.9) implies

lim
ε→0

lim
T→∞

Σ̃(Xε,T )=
α⊤A

(α⊤α)
σ.
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Finally, since A=Kα and Σ=Kσ we obtain

lim
ε→0

lim
T→∞

Σ̃(Xε,T )=Kσ=Σ,

which is the desired result.

Proof. (Proof of Corollary 2.1.) The desired results follow directly from Theo-
rem 2.1, [3, Theorems 3.12 and 3.18], [39, Theorem 3.5] and Theorem 2.3. We remark
that the limit in [3, Theorem 3.18] holds true also a.s. and the proof of [39, Theorem
3.5] can be modified (see Remark 4.2) such that hypothesis (2.8) is satisfied.

Remark 4.2. The proof of [39, Theorem 3.5] can be modified in order to show that

the estimator Âsub(X
ε,T ) given in (1.10) satisfies

lim
ε→0

lim
T→∞

Âsub(X
ε,T )=A, a.s. (4.19)

Due to Assumption 2.1 Item ii and by the ergodic theorem we have

lim
T→∞

Âsub(X
ε,T )=−Eµε

[V ′(Xε(0))(Xε(δ)−Xε(0))]

Eµε

[V ′(Xε(0))2]
.

We then employ [5, Lemma 5.2] with f the identity function and ∆= δ and we notice
that the martingale

Mε(t) :=
√
2σ

∫ t

0

(1+Φ′(Y ε(s)))dW (s),

where Φ is defined in (1.5) and Y ε(s)=Xε(s), is such that Mε(0)=0. Therefore, we
obtain

lim
T→∞

Âsub(X
ε,T )=A+R̃(ε,δ),

where the remainder satisfies for a constant C>0 independent of ε and δ∣∣∣R̃(ε,δ)∣∣∣≤C(εδ−1+δ1/2
)
.

Finally, since δ=εζ with ζ ∈ (0,1) we deduce the desired result (4.19).

5. Conclusion
In this work, we introduced a novel methodology for inferring effective diffusions

from observations of multiscale dynamics based on filtering the data with moving av-
erages. Asymptotic unbiasedness is rigorously proved by originally exploiting an er-
godicity result for SDDEs. Our method is robust, easy to implement, computationally
uninvolved, and outperforms the standard technique of subsampling on a range of test
cases. Moreover, the performances are comparable to a similar class of estimators that
we introduced in our previous work [3]. The accuracy of our methodology in the mul-
tiscale, multi-dimensional, and highly-parametrised case is surprisingly high in view of
its simplicity and low computational involvement.

We believe that future developments could go in the direction of:

(i) Deriving asymptotically unbiased estimators for the diffusion coefficient which are
robust in practice and do not rely on the drift estimator,

(ii) Extending the filtered data methodology to multiscale SDEs with non-constant
diffusion terms, or for drift functions which do not depend linearly on the param-
eters,

(iii) Extending the analysis to the non-parametric case.
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