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ON THE EQUILIBRIUM OF THE
POISSON-NERNST-PLANCK-BIKERMANN MODEL EQUIPPING

WITH THE STERIC AND CORRELATION EFFECTS∗

JIAN-GUO LIU† , YIJIA TANG‡ , AND YU ZHAO§

Abstract. The Poisson-Nernst-Planck-Bikermann (PNPB) model, in which the ions and water
molecules are treated as different species with non-uniform sizes and valences with interstitial voids, can
describe the steric and correlation effects in ionic solution neglected by the Poisson-Nernst-Planck and
Poisson-Boltzmann theories with point charge assumption. In the PNPB model, the electric potential
is governed by the fourth-order Poisson-Bikermann (4PBik) equation instead of the Poisson equation
so that it can describe the correlation effect. Moreover, the steric potential is included in the ionic
and water fluxes as well as the equilibrium Fermi-like distributions which characterizes the steric effect
quantitatively.

In this work, we analyze the self-adjointness and the kernel of the fourth-order operator of the
4PBik equation. Also, we show the positivity of the void volume function and the convexity of the
free energy. Following these properties, the well-posedness of the PNPB model in equilibrium is given.
Furthermore, because the PNPB model has an energy dissipated structure, we adopt a finite volume
scheme which preserves the energy dissipated property at the semi-discrete level. Various numerical
investigations are given to show the parameter dependence of the steric effect to the steady state.

Keywords. Poisson-Nernst-Planck-Bikermann; fourth-order Poisson-Bikermann equation; free
energy; steady state; steric and correlation effects.
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1. Introduction
The transport and distribution of ions are crucial in the study of many physical and

biological problems, such as ion particles in the electrokinetic fluids, and ion channels
in cell membranes. From the perspective of mathematics, some classical models have
been proposed to portray the ion transport in solutions dating back to the 19th century
[33,34]. The Poisson-Boltzmann (PB) equation is proposed by Gouy [18] and Chapman
[9] to describe the equilibrium of the ionic fluids, while the Poisson-Nernst-Planck (PNP)
equation is to describe the dynamics [13]. The PNP and PB theories are mean-field
descriptions, where the ions are volumeless point charges, water is the dieletric medium,
and both are modelled as continuum distributions. We refer the readers to [1,10,17,31]
for the reviews of the PB equation and [11,16,32] for those of the PNP equation.

At the equilibrium state, when considering a system of K different ionic species,
the classical PB theory shows that the ith ionic concentrations Ci for i=1,·· · ,K, are
demonstrated by the Boltzmann distributions, i.e.

Ci(r)=C
B
i exp

(
− qi
kBT

ϕ(r)

)
, i=1, ·· · ,K, (1.1)

while the electric potential ϕ determined by Gauss’s law satisfies the Poisson equation,
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i.e.

−εs∆ϕ(r)=ρ(r), (1.2)

where ρ(r) :=
∑K

i=1qiCi(r) is called the total charged density. Here, εs is the dielectric
constant of the solvent, kB is the Boltzmann constant and T is the absolute temperature.
qi=zie is the charge of the ith species with valence zi, e is the proton charge. CB

i >0 is
the reference concentration often chosen as the bulk concentration.

As is well-known, the PB model can only describe the diffusion and electric ef-
fect. So many improvements have been made to demonstrate nonideal effects. On
one hand, to describe the correlation (or nonlocal screening, polarization) effect, in
2006, Santangelo [35] refined the second-order Poisson equation into a fourth-order
equation for the equilibrium profile of the pointwise counterions near a charged wall,
so that the correlation effect was modelled by introducing a parameter of correlation
length lc in the fourth-order dielectric operator L :=εs

(
l2c∆−I

)
∆. Since then, L has

been used to describe the medium permittivity and the dielectric response of correlated
ions [3, 25,26,28,30].

On the other hand, due to the limitation of the particles’ volumeless assumption, the
PB theory fails to describe the steric (or finite size) effect which has been shown to be
important in a variety of chemical and biological systems [2,15,19,29]. The PB equation
models the mean-field electrostatic potential where the ions interact through Coulomb
force, which is independent of volume of the particles. A lot of efforts have been made
to improve the Boltzmann distribution for a proper description incorporating the steric
effect. The first trial was made by Bikerman in 1942 for binary ionic species with finite
sizes [4]. Over the past decades, modified Poisson-Boltzmann (MPB) equations [2,3,6,7,
22,39] have been formulated to take the steric effect into account. In the MPB equations,
the size of ions (either equal or different) for multi-species was considered, thus giving
rise to volume excluded by the ions. Due to the presence of the excluded volume, the
Fermi-like distributions were derived in place of the Boltzmann distributions. Also,
the volume exclusion led to the space competition, which produced a steric energy.
Recently, Liu and Eisenberg [25,26] gave the microscopic interpretation of the Fermi-like
distributions using the configuration entropy model. They proposed the Poisson-Fermi
(PF) model to describe the equilibrium of aqueous electrolytes with K ionic species
of non-uniform size [25] and extended it to the case where the water molecules and
the interstitial voids were treated as the K+1 and K+2 species [26]. Later, a slight
modification was made in the Fermi-like distribution such that the steric energy varies
with species size as the electric energy varies with species valence [30]. In this work, we
focus on this novel model developed by Liu and Eisenberg, called the Poisson-Nernst-
Planck-Bikerman (PNPB) model to cover the non-equilibrium state at the same time.

In the PNPB model, all the ions and water molecules are assumed as hard spheres
with volume vi for the i

th ion species, hence the voids occupy the exclusive volume. Then
the Fermi-like distributions of concentrations Ci in equilibrium, for i=1,·· · ,K+1 are
given by [30]

Ci(r)=C
B
i exp

(
− qi
kBT

ϕ(r)+
vi
v0
S(r)

)
, (1.3)

and the electrostatic field is given by the fourth-order Poisson-Bikerman (4PBik) equa-
tion

Lϕ(r)=εs
(
l2c∆−I

)
∆ϕ(r)=ρ(r). (1.4)
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Here v0=
(∑K+1

i=1 vi

)
/(K+1) is the average volume. S in (1.3) is called the steric

potential, which keeps the ions from getting too close and leads to the charge/space
competition [5]. The steric potential S is given in the following form

S=ln
Γ(r)

ΓB
, (1.5)

where the void volume function

Γ(r)=1−
K+1∑
i=1

viCi(r) (1.6)

is the fraction left by the excluded volume of ions and water. ΓB>0 is the reference void
volume fraction given by ΓB=1−

∑K+1
i=1 viC

B
i . (1.3) indicates the void interacts with

the ions and water molecules as a repulsive force and results in the steric energy like
the Lennard-Jones in [12]. Steric effects are seen in the resulting Fermi-like distribution
of finite size ions at large potentials near electrodes and boundaries. And the electric
potential is governed by the 4PBik Equation (1.4) instead of the Poisson Equation
(1.2). Hence, they generalize the equilibrium model to the non-equilibrium case for
ion transport [26], which is the PNPB system. The non-equilibrium PNPB system is
coupled by the Nernst-Planck-Bikerman (NPB) equation with the 4PBik equation. The
former is a generalization of the classic Nernst-Planck equation in the sense that the
motion of ions and water molecules is driven by the steric force besides the electric force
and concentration gradient. In dynamical case, if the ions are crowded, the steric force
∇S would spread them out. Hence, the PNPB model is capable of describing the ionic
fluids with the steric effect and correlation effect. See [28] for a comprehensive review of
the PNPB theory. We remark that the energy variational analysis (EnVarA) proposed
by Eisenberg, Hyon, and Liu [12] is another approach to describe the finite size effect
and steric potential for ion transport, which combines Hamilton’s Least Action and
Rayleigh’s Dissipation Principles to create a variational field theory [12,20,21].

Though providing a unified framework, the PNPB theory is constructed merely
based on physical principles, and there are still many mathematical problems requiring
to be answered. The first one is the positivity of the volume function of the interstitial
voids. If Γ is not greater than zero, the steric potential S makes no sense. So, it is
vital to show the positivity of Γ in steady state problem and the positivity-preserving
property of Γ in the dynamical problem theoretically. Another issue is how to prescribe
suitable and physical boundary conditions for the PNPB model to describe various
actual physical and chemical problems. What’s more, to show the existence, uniqueness
and regularity of the solutions to both the equilibrium and non-equilibrium PNPB model
remains a major concern.

In this work, we want to give more mathematical understandings and improve the
theoretical framework of the PNPB model by some analytical approaches and numerical
investigations. On the theoretical side, we try to tackle some of the difficulties mentioned
before. We mainly focus on the equilibrium problem in this paper. First of all, we look
into the basic properties of operator L in the 4PBik Equation (1.4), such as the self-
adjointness and its kernel structure. Then we show the positivity of Γ in equilibrium.
To prove this rigorously, we first give four equivalent statements for the steady state and
then deduce the positivity by contradiction using one of them. As a consequence of this,
it is impossible for a volume to be completely filled with ions or water molecules. Thanks
to the convexity of the free energy functional, we can demonstrate the well-posedness
of the weak solution using standard calculus of variation.
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Besides, though the steric, correlation, saturation and other effects have already
been shown in the applications of PNPB model to the biological ion channels in [24,27–
29], we want to investigate these effects from the perspective of parameter dependence.
After doing nondimensionalization, the PNPB model is tuned by five dimensionless
parameters η,λ,ν,zi and vi. The parameters can be divided into three classes: the one
related to the steric effect: η, the one determining the electric field: λ,ν, and the one that
is the intrinsic properties of ions: zi,vi. We aim to gain more understandings on how
these parameters influence the concentrations of the ions at the steady state numerically.
By doing various numerical tests, we demonstrate that η dominates the steric repulsion
effect, η=0 means the steric effect vanishes, thus the concentrations of ionic species are
more peaked than the case η>0. Also, the steric effect becomes stronger as η increases.
The dimensionless parameters λ and ν play the role of correlation length and Debye
length after scaling, which contribute oppositely to the electric potential. We conclude
that the electric potential is higher with smaller correlation length and larger Debye
length. Moreover, the valence zi is reflected on the electrostatic effect while the volume
vi affects the steric effect as expected. In a word, larger |zi|,vi lead to stronger effects.

The paper is organized as follows. In Section 2, we briefly introduce the PNPB
theory, including the basic setup, the free energy functional, the 4PBik equation, the
Fermi-like distribution at equilibrium and the PNPB equation. We also do a nondimen-
sionalization step in Section 2, so that it suffices to analyze the dimensionless equations
thereafter. In Section 3, we deal with the steady state problem and discuss the well-
posedness. To be specific, we analyze the self-adjointness and the kernel of the fourth-
order operator of the 4PBik equation. Also, we show the positivity of the void volume
function and the well-posedness of the 4PBik equation in equilibrium. In Section 4, we
show the energy dissipation relation of both the PNPB equation and its semi-discrete
form. Thus, we can deduce a numerical method based on this form. Various numerical
tests are given, where we can see the parameter dependence of the model. Concluding
remarks are drawn in Section 5.

2. Preliminaries
In this section, we give a brief introduction to the PNPB theory, and an in-depth

review can be found in [28]. We review the generalized free energy functional of the
PNPB model and discuss the corresponding equilibrium and non-equilibrium problem.
At the end of this section, we do a nondimensionalization step, so that it suffices to
analyze the dimensionless equations thereafter.

2.1. Settings. Consider an aqueous electrolytic system with K ionic species
in a bounded solvent domain Ω. The ions of the ith species for i=1, ·· · ,K are treated
as hard spheres with volume vi∈R+ and valence zi∈Z. Besides, treat water as the
(K+1)th species and regard it as hard spheres with volume vK+1∈R+ as well, but it is
electroneutral with valence zK+1=0. Due to the sizes of ions and water molecules, the
void between all the hard spheres is indispensable. It is a whole treated as the (K+2)th

species. Let Ci(r) be the concentration of the ith species for i=1, ·· · ,K+1 and Γ(r)
be the void volume function. Then the void volume function Γ(r) satisfies (1.6), which
is

Γ(r)=1−
K+1∑
i=1

viCi(r).

Further assume the surface of the bounded domain Ω has a fixed shape and the ions and
water molecules can not go through. The total concentrations of all the K+2 species
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are conserved in Ω.
As mentioned in the introduction, taking the correlation effects into considera-

tion, the correlated electric potential ϕ(r) satisfies the 4PBik Equation (1.4): Lϕ(r)=∑K
i=1qiCi(r). The fourth-order operator

L=εs
(
l2c∆−I

)
∆

is used to approximate the permittivity of the bulk solvent and the linear response
of correlated ions. The basic properties of L including the self-adjointness and the
invertibility are given in Section 3.1 under a dimensionless setting. L is derived by a
convolution of the classic Poisson dielectric operator with a Yukawa potential kernel [36].
Therefore, it reduces to the classical Poisson equation if there is no correlation and
polarization effect which is modelled by the introduced correlation length lc. Namely,
when lc=0, the 4PBik Equation (1.4) reduces to the Poisson Equation (1.2).

2.2. Generalized Gibbs free energy functional and the equilibrium.
Conventionally, the Gibbs free energy functional for an aqueous electrolytic system
with K ionic species is given as

1

2

∫
Ω

ρ(r)ϕ(r)dr+kBT

∫
Ω

K∑
i=1

Ci(r)

(
ln
Ci(r)

CB
i

−1

)
dr.

The first part is the electrostatic energy where the electric field ϕ is created by the
charge on different ionic species and generally satisfies the Poisson Equation (1.2). The
second part is the entropy term, which describes the particle Brownian motion of the
K ion species.

For the PNPB model, there are two more species: water and void. So, the entropy
part of water and void should be included except for ions. And the electric potential
ϕ satisfies the 4PBik Equation (1.4) instead. Let C=(C1, ·· · ,CK+1)

′, the generalized
Gibbs free energy [30] is given in the following form

F(C)=Fel(C)+Fen(C), (2.1)

where the electric term

Fel(C)=
1

2

∫
Ω

ρ(r)ϕ(r)dr, s.t. Lϕ(r)=ρ(r), (2.2)

and the entropy term

Fen(C)=kBT

∫
Ω

{
K+1∑
i=1

Ci(r)

(
ln
Ci(r)

CB
i

−1

)
+

Γ(r)

v0

(
ln

Γ(r)

ΓB
−1

)}
dr, (2.3)

subject to the mass conservation constraints of ions and void: for the ith species, i=
1, ·· · ,K+1, ∫

Ω

Ci(r) dr=:mi
0,

and the void ∫
Ω

Γ(r) dr=V −
K+1∑
i=1

vim
0
i .
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Here m0
i >0 is the total concentration of the ith species, V is the volume of domain Ω.

If the operator L−1 is self-adjoint, the variational derivative of F(C) with respect
to Ci for i=1,·· · ,K+1, is given by

δF(C)

δCi
=kBT

[
ln
Ci(r)

CB
i

− vi
v0

ln
Γ(r)

ΓB

]
+qiϕ(r).

δF(C)
δCi

=0 yields the Fermi-like distribution (1.3). It is straightforward from (1.3) that
the concentration of each species depends on the steric potential which in turn depends
on the concentration of all species. We note that the steric potential makes sense only
when

Γ(r)>0,

which is an important issue we need to claim afterwards.
Thus, combining the field equation of the electric potential (1.4) with the Fermi-like

distribution (1.3), the equilibrium of the PNPB system is summarized as follows, for
r∈Ω, 

Ci(r)=C
B
i exp

(
− qi
kBT

ϕ(r)+
vi
v0
S(r)

)
, i=1, ·· · ,K+1,∫

Ω

Ci(r) dr=m
i
0, i=1, ·· · ,K+1,

Lϕ(r)=εs
(
l2c∆−1

)
∆ϕ(r)=ρ(r),

S(r)= ln
Γ(r)

ΓB
,

ρ(r)=

K∑
i=1

qiCi(r).

(2.4)

If we ignore the finite size of ions, i.e., vi=0, the steric effect vanishes. Hence,
the Fermi-like distribution (1.3) will reduce to the Boltzmann distribution (1.1). In
the limiting case when we ignore the steric effect and correlation effect, the equilibrium
system (2.4) will reduce to the classical PB equation with mass conservation.

2.3. Dynamics: the Poisson-Nernst-Planck-Bikerman equation. As for
the ion transport, it is natural to generalize the gradient flow structure of the classical
PNP model to the PNPB model. Assume all the densities are not degenerate, that is,

Ci(r,t)>0, for i=1,·· · ,K+1, Γ(r,t)>0 a.e. in Ω.

The chemical potential µi of the i
th ionic species is described by the variational derivative

µi=
δF(C)

δCi

and is referred to in channel biology as the ”driving force” for the current of the ith ionic
species [12]. In the PNPB theory, the chemical potential of species i for i=1,·· · ,K+1
becomes

µi=kBT

[
ln
Ci(r,t)

CB
i

− vi
v0

ln
Γ(r,t)

ΓB

]
+qiϕ(r,t). (2.5)
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Hence, the non-equilibrium system is

∂Ci(r,t)

∂t
=∇·

(
Di

kBT
Ci∇µi

)
, r∈Ω, (2.6)

with Di being the diffusion coefficient. (2.6) is the Nernst-Planck-Bikerman (NPB)
equation and can be rewritten as

∂Ci(r,t)

∂t
=−∇·Ji(r,t), r∈Ω,

where the flux density Ji for each ionic species i=1, ·· · ,K+1 is

Ji(r,t)=− Di

kBT
Ci∇µi. (2.7)

Define the dynamic steric potential

S(r,t) := ln
Γ(r,t)

ΓB
. (2.8)

Then, substituting (2.8) into (2.5) and (2.7), for i=1,·· · ,K+1, the flux Ji becomes

Ji(r,t)=−Di

(
∇Ci(r,t)+

qi
kBT

Ci(r,t)∇ϕ(r,t)−
vi
v0
Ci(r,t)∇S(r,t)

)
.

The correlated electric potential ϕ(r,t) satisfies the 4PBik equation

Lϕ(r,t)=ρ(r,t) :=

K∑
i=1

qiCi(r,t), r∈Ω. (2.9)

Hence the NPB Equation (2.6) coupled with the 4PBik Equation (2.9) is the so-called
PNPB system.

In addition, to make the problem complete, we impose the initial condition

Ci(r,0)=C
0
i (r), (2.10)

and the no-flux boundary condition

Ji ·n=0, (2.11)

where n is the outward unit normal at the boundary ∂Ω.

Remark 2.1 (Mass conservation). Let Ci(r,t),i=1, ·· · ,K+1, be non-negative solu-
tions to the PNPB model (2.6), (2.9) equipped with the initial condition (2.10) and the
boundary condition (2.11). It’s trivial that the system has the following mass conser-
vation property, ∫

Ω

Ci(r,t) dr≡
∫
Ω

C0
i (r) dr=:mi

0

for each species i=1,·· · ,K+1. Consequently,∫
Ω

Γ(r,t) dr=V −
K+1∑
i=1

vim
0
i .

Moreover, the flux Ji=0 yields the Fermi-like distribution (1.3), which implies
system (2.4) is the equilibrium of the PNPB system.
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2.4. Nondimensionalization. To get a better understanding of the steric
and correlation effects, we non-dimensionalize the PNPB model and thus it can be
dominated by certain dimensionless parameters. Denote L=V 1/d as the diameter of
the solvent region Ω, C∗ andD as the characteristic concentration and a typical diffusion
coefficient. Rescale the variables r̃= r

L , t̃=
Dt
L2 . Let Ω̃={r̃∈Rd : r̃L∈Ω} and introduce

the dimensionless quantities

ϕ̃=
eϕ

kBT
, C̃i=

Ci

C∗
, C̃B

i =
CB

i

C∗
, C̃0

i =
C0

i

C∗
, D̃i=

Di

D
, ṽi=

vi
V
, ṽ0=

v0
V
.

For notation convenience, we drop the tildes from now on.
Define the dimensionless parameter η=V C∗. Non-dimensionalizing (2.6), we obtain

∂Ci(r,t)

∂t
=∇·(DiCi∇µi) , r∈Ω, (2.12)

where the chemical potential

µi=ln
Ci(r,t)

CB
i

+ziϕ(r,t)−
vi
v0
S(r,t).

One has the steric potential

S(r,t)= ln
Γ(r,t)

ΓB

with the void volume function

Γ(r,t)=1−η
K+1∑
i=1

viCi, ΓB=1−η
K+1∑
i=1

viC
B
i , (2.13)

and the flux

Ji=−Di

(
∇Ci(r,t)+ziCi(r,t)∇ϕ(r,t)−

vi
v0
Ci(r,t)∇S(r,t)

)
, i=1, ·· · ,K+1.

(2.12) is regarded as the dimensionless NPB equation. For all species i=1,·· · ,K+1,
the no-flux boundary condition and initial condition become

Ji ·n=0, (2.14)

and

Ci(r,0)=C
0
i (r). (2.15)

Further, introduce the Debye length lD=

√
εskBT

e2C∗
. Define the dimensionless pa-

rameters

ν=
lD
L
, λ=

lc
L
,

then the dimensionless 4PBik equation reads

Lϕ(r,t)=ρ(r,t), (2.16)
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where the fourth-order operator L becomes

L=ν2
(
λ2∆−I

)
∆,

and the total charged density

ρ(r,t)=

K∑
i=1

ziCi(r,t).

Note that the fourth-order Equation (2.16) reduces to the dimensionless Poisson equa-
tion when λ=0. Similarly, the dimensionless PNPB system (2.12), (2.16) is valid under
the assumption that Ci,Γ are not degenerate.

Remark 2.2 (Mass conservation). Let Ci(r,t),i=1, ·· · ,K+1, be non-negative solu-
tions to the PNPB model (2.12), (2.16) equipped with the initial condition (2.15) and
the boundary condition (2.14). Let m0

i be m0
i /η for simplicity, then the dimensionless

PNPB system satisfies the mass conservation property,∫
Ω

Ci(r,t) dr≡
∫
Ω

C0
i (r) dr=m

i
0, i=1,·· · ,K+1,

and consequently, ∫
Ω

Γ(r,t) dr=1−η
K+1∑
i=1

vim
0
i .

Let Ji=0 for all i=1,·· · ,K+1, the equilibrium of the above dimensionless PNPB
system becomes

Ci(r)=C
B
i exp

(
−ziϕ(r)+

vi
v0
S(r)

)
, i=1, ·· · ,K+1,∫

Ω

Ci(r) dr=m
i
0, i=1, ·· · ,K+1,

Lϕ(r)=ν2
(
λ2∆−1

)
∆ϕ=ρ(r),

S(r)= ln
Γ(r)

ΓB
,

ρ(r)=

K∑
i=1

ziCi(r).

(2.17)

In the rest of the paper, we only take into consideration the dimensionless equations.

3. Steady state and its well-posedness
In this section, we focus on the theoretical side of the equilibrium problem (2.17).

First of all, we show the self-adjointness and the kernel of the fourth-order operator L
of the 4PBik Equation (2.16). The self-adjoint property is significant in the derivation
of the first-order variation of the free energy functional. As mentioned in Subsection
2.2, the positivity of the void volume function Γ is of vital importance. In order to show
this property, we give four equivalent characterizations of the steady state of the PNPB
system, from which the positivity of Γ naturally follows. The existence of the weak
solution to the equilibrium problem (2.17) can be proved by the calculus of variations.
In addition, we show that the free energy functional is strictly convex. This ensures the
uniqueness of the solution.
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3.1. Properties of the fourth-order operator L.

3.1.1. Self-adjointness of the operator L. Define the operator

L :D(L)→H
ϕ 7→ρ=Lϕ=ν2

(
λ2∆−I

)
∆ϕ.

Here we consider D(L)={u∈H4(Ω),u|∂Ω=∆u|∂Ω=0} and H=L2(Ω), then D(L)=H.

Proposition 3.1. The linear operator L is symmetric and positive definite.

Proof. Define an inner product for the Hilbert spaceH as (f ,g)Ω :=
∫
Ω
f(r) ·g(r)dr.

For all ϕ,ψ∈D(L), via integration by parts and the definition of D(L), one has

(Lϕ,ψ)Ω=(ϕ,Lψ)Ω .

Hence we can conclude that the operator L is symmetric.
Besides, for all ϕ∈D(L),

(Lϕ,ϕ)Ω=
(
ν2
(
λ2∆−I

)
∆ϕ,ϕ

)
Ω
=ν2λ2

(
∆2ϕ,ϕ

)
Ω
−ν2 (∆ϕ,ϕ)Ω

=ν2λ2 (∆ϕ,∆ϕ)Ω+ν2 (∇ϕ,∇ϕ)Ω . (3.1)

Due to Poincaré inequality, we have∫
Ω

|ϕ(r)|2dr≤C(Ω)
∫
Ω

|∇ϕ(r)|2dr. (3.2)

By (3.2), (3.1) becomes

(Lϕ,ϕ)Ω=ν2λ2 (∆ϕ,∆ϕ)Ω+ν2 (∇ϕ,∇ϕ)Ω≥C(ϕ,ϕ)Ω=C∥ϕ∥2L2(Ω) (3.3)

for some C>0, which means that L is positive definite.

Proposition 3.2. The linear operator L is self-adjoint.

Proof. Consider the whole space Ω=Rd. Combining the symmetry of the linear
operator L with Ran(L)=H, the proposition holds.

Let Ω⊂Rd be a bounded open region with smooth boundary. Let the operator
A=∆2, then A is a closed linear symmetric operator. Denote Â as the Friedrichs
extension of A. Let

a(u,v)=

∫
Ω

∇u∇vdr, u,v∈D(A)=D(L).

Due to the Poincaré inequality, there exists β>0, such that

(Au,u)=

∫
Ω

|∆u|2dr≥β
∫
Ω

|u(r)|2dr,

hence A≥β and

|||u|||=∥u∥G, G={u∈H2(Ω),u|∂Ω=∆u|∂Ω=0}.

G is the closure of D(L) under the norm ||| ·||| in D(A). Hence a can be expanded to a
closed positive definite conjugate bilinear form on G×G. Next, consider the self-adjoint
extension Â.

D(Â)=

{
u∈G

∣∣ ∃ Cu>0, such that ∀v∈G,
∣∣∣∣∫

Ω

∇u∇vdr
∣∣∣∣≤Cu∥v∥L2(Ω)

}
,



JIAN-GUO LIU, YIJIA TANG, AND YU ZHAO 495

From the Riesz theorem, there exists f ∈L2(Ω), such that∫
Ω

∇u∇vdr=
∫
Ω

fvdr,

then denote f =∆̃2u, thus Âu=∆̃2u. Following from the estimates that ∥u∥H4(Ω) can

be dominated by ∥u∥L2(Ω),∥∆u∥L2(Ω),∥∆̃2u∥L2(Ω) [14], one has

D(Â)=D(A),

which means A is self-adjoint. Furthermore, −∆ is a relatively tight operator of ∆2

and hence is bounded. Following from the Kato-Rellich theorem, we obtain that L is
self-adjoint.

Furthermore, the problem

Le(r)=ν2
(
λ2∆−I

)
∆e(r)=0,r in Ω,

e=0,r on ∂Ω,

∆e=0,r on ∂Ω,

leads to e(r)≡0 in Ω, hence L is an injection. Consider a bounded open region Ω⊂Rd

with smooth boundary. Then L is invertible, the inverse operator L−1 :H→D(L) is
also self-adjoint.

3.1.2. Kernel of the operator L. It is well-known that the fundamental
solution to the Laplace equation

−∆Ψ(r,r′)= δ(r−r′) (3.4)

is

Ψ(r,r′)=


− 1

2 |r−r′|, d=1,

− 1
2π ln|r−r′|, d=2,

1
4π|r−r′| , d=3.

And the fundamental solution to the screened Poisson equation

(I−λ2∆)W(r,r′)= δ(r−r′) (3.5)

is

W(r,r′)=


exp(−|r−r′|/λ)

2λ , d=1,

1
2πλ2K0(|r−r′|/λ), d=2,

exp(−|r−r′|/λ)
4πλ2|r−r′| , d=3,

where K0(r) is the modified Bessel function of the second kind.
Next, we have the following proposition.

Proposition 3.3. Consider the equation

LK(r,r′)= δ(r−r′), (3.6)
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then the fundamental solution to (3.6) is

K(r,r′)=
1

ν2
(Ψ−λ2W)(r,r′)=


− 1

2ν2 (|r−r′|+λexp(−|r−r′|/λ)), d=1,

− 1
2πν2 (ln|r−r′|+K0(|r−r′|/λ)), d=2,

1−exp(−|r−r′|/λ)
4πν2|r−r′| , d=3.

(3.7)

Proof. By substituting K(r,r′)= 1
ν2 (Ψ−λ2W)(r,r′) into the Equation (3.6), one

has

LK(r,r′)=ν2
(
λ2∆−I

)
∆K(r,r′)

=(I−λ2∆)(−∆)(Ψ−λ2W)(r,r′)

=(I−λ2∆)(−∆)Ψ(r,r′)−λ2(−∆)(I−λ2∆)W(r,r′)

=(I−λ2∆)δ(r−r′)−λ2(−∆)δ(r−r′)

=δ(r−r′).

The penultimate equation holds because of the Equations (3.4) and (3.5).

With the kernel in hand, the solution to the 4PBik Equation (2.16) can be given
by ϕ=K∗ρ.

3.2. The free energy functional F . The dimensionless version of the Gibbs
free energy functional F given in (2.1)-(2.3) is

F(C)=Fel(C)+Fen(C), (3.8)

with the dimensionless electric term

Fel(C)=
1

2

∫
Ω

ρϕdr=
1

2

∫
Ω

ρL−1ρdr, (3.9)

and the dimensionless entropy term

Fen(C)=

∫
Ω

{
K+1∑
i=1

Ci

(
ln
Ci

CB
i

−1

)
+

Γ(r)

ηv0

(
ln

Γ

ΓB
−1

)}
dr. (3.10)

Correspondingly, the chemical potential µi of the i
th species of (3.8) becomes

µi=
δF
δCi

=ln
Ci

CB
i

− vi
v0

ln
Γ

ΓB
+ziϕ. (3.11)

In this subsection, we aim at studying the convexity of the free energy F in order
to be prepared for the well-posedness of the equilibrium system (2.17). To start with,
the positivity of Γ is needed to make sense of the physical problem. So, we characterize
the steady state of PNPB model by four equivalent statements firstly. This allows
for a rigorous proof of Γ>0. Then the convexity of F can be concluded by simple
computation.

3.2.1. Four equivalent statements for the steady state. In this part, we
give four equivalent statements for the steady state of the PNPB system.

Proposition 3.4. Assuming that C̄i∈L1∩LlogL is bounded with
∫
Ω
C̄idr=

m0
i , C̄i∈C(Ω), C̄i>0 in Ω. Let µ̄i=ln C̄i(r)

CB
i

− vi
v0
ln Γ̄(r)

ΓB +ziϕ̄(r), where Γ̄(r)=1−
η
∑K+1

i=1 viC̄i(r), ϕ̄(r) satisfies Lϕ̄(r)= ρ̄(r), ρ̄(r)=
∑K

i=1ziC̄i(r). Further assume
n ·DiC̄i∇µ̄i=0 on ∂Ω. Then the following four statements are equivalent:
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(i) Equilibrium: µ̄i∈ Ḣ1(Ω) and ∇·(DiC̄i∇µ̄i) =0 in H−1(Ω), ∀ i=1, ·· · ,K+1.

(ii) No dissipation:
∑K+1

i=1

∫
Ω
DiC̄i|∇µ̄i|2dr=0.

(iii)
(
C̄1,·· · ,C̄K+1

)
is a critical point of F .

(iv) µ̄i is a constant, ∀ i=1,·· · ,K+1.

Proof. At first, we prove (i)⇒(ii). Since µ̄i∈H1(Ω),∇·
(
DiC̄i∇µ̄i

)
=0 in H−1 (Ω),

C∞
0 (Ω) is dense in Ḣ1(Ω) and C̄i is bounded, one has

0=

∫
Ω

µ̄i∇·
(
DiC̄i∇µ̄i

)
dr=−

∫
Ω

DiC̄i |∇µ̄i|2dr+
∫
∂Ω

µ̄in ·DiC̄i∇µ̄idσ, (3.12)

for ∀ i=1,·· · ,K+1. Hence (ii) holds.
Next we prove (iii)⇔(iv). Notice that

(
C̄1, ·· · ,C̄K+1

)
is a critical point of F if and

only if

d

dϵ

∣∣∣∣
ϵ=0

F
((
C̄i, ·· · ,C̄i+ϵVi, ·· · ,C̄K+1

)′)
=0, ∀ Vi∈C∞

0 (Ω) with

∫
Ω

Vi(r)dr=0.

(3.13)

The test function Vi should satisfy
∫
Ω
Vi(r)dr=0 so that the concentration after per-

turbation has the mass conservation
∫
Ω
Ci+ϵVidr=m

0
i . Therefore,∫

Ω

ziVi(r)ϕ̄(r)dr+

∫
Ω

{
Vi(r)ln

C̄i(r)

CB
i

− vi
v0
Vi(r)ln

Γ̄(r)

ΓB

}
dr=0.

Equivalently, ∫
Ω

µ̄iVidr=0, ∀ Vi∈C∞
0 (Ω) with

∫
Ω

Vi(r)dr=0, (3.14)

which implies µ̄i is a constant, ∀ i=1, ·· · ,K+1.

Then we prove (ii)⇒(iv). Suppose
∑K+1

i=1

∫
Ω
DiC̄i|∇µ̄i|2dr=0. It follows from C̄i>

0 at any point r0∈Ω that ∇µ̄i=0 in Ω and thus µ̄i is a constant for all i=1,·· · ,K+1.
Hence we complete the proof for (ii)⇒(iii) and (iii)⇒(iv).
Finally (i) is a direct consequence of (iv), thus (iv) ⇒ (i).

3.2.2. The positivity of the void volume function Γ(r). With the equiv-
alent characterizations of the steady state in hand, we are ready to show the positivity
of Γ at equilibrium. Note that this has already been stated formally in [28].

Proposition 3.5. If 1−η
K+1∑
i=1

vim
0
i >0, then Γ(r)=1−η

K+1∑
i=1

viCi(r)>0 at the steady

state.

Proof. Consider the set D={r : Γ∗(r)=1−η
K+1∑
i=1

viC
∗
i (r)=0}. Assume that at

the steady state, measure m(D)>0, where C∗
i and Γ∗ are the concentration and void

volume function of the steady state respectively.

First of all, consider the case where Ci(r)≡m0
i , Γ(r)≡1−η

K+1∑
i=1

vim
0
i :=Γc. The

free energy

Fc=
1

2

∫
Ω

ρcϕcdr+

∫
Ω

{
K+1∑
i=1

m0
i

(
ln
m0

i

CB
i

−1

)
+

Γc

ηv0

(
ln

Γc

ΓB
−1

)}
dr <∞, (3.15)
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where Lϕc=ρc with ρc=
K∑
i=1

zim
0
i . Since the free energy attains its minima at the steady

state, we have F∗≤Fc<∞.

According to Proposition 3.4,
(
C∗

1 ,·· · ,C∗
K+1

)
is a critical point of F , which means

that ∀ Vi∈C∞
0 (Ω) with

∫
Ω
Vi(r)dr=0,∫

Ω

ziϕ
∗(r)Vi(r)dr+

∫
Ω

{
Vi(r)ln

C∗
i (r)

CB
i

− vi
v0
Vi(r)ln

Γ∗(r)

ΓB

}
dr=0, i=1, ·· · ,K+1,

(3.16)

where Lϕ∗(r)=ρ∗(r) and ρ∗(r)=
K∑
i=1

ziC
∗
i (r).

It follows from the assumption m(D)>0 that
∫
Ω

vi
v0
Vi(r)ln

Γ∗(r)
ΓB dr tend to in-

finity. Since ϕ∗ is the solution to Lϕ∗(r)=ρ∗(r), ϕ∗ is bounded. Hence, equa-
tion (3.16) holds only if C∗

i (r)=0 in D for all i=1,·· · ,K+1. As a consequence,

Γ∗(r)=1−η
K+1∑
i=1

viC
∗
i (r)=1 in D, which leads to a contradiction. Thus m(D)=0.

Corollary 3.1. At the steady state, 0<Ci<
1

ηvi
, for each i=1,·· · ,K+1.

Proof. It follows from the positivity of Γ that η
K+1∑
i=1

viCi<1. Hence, Ci<
1

ηvi
, i=

1, ·· · ,K+1 as vi, Ci>0.

This tells us that Ci can not reach or exceed the maximum concentration 1
ηvi

. This
indicates the saturation phenomenon. We emphasize that the classical PB theory with
point charge assumption fails to describe the concentration saturation as the Boltzmann
distribution may produce an infinite concentration when the electric potential tends to
infinity [6,30]. This is a deficiency of PB theory for modeling a system with strong local
electric fields or interactions.

3.2.3. The convexity of free energy functional F . To show the well-
posedness of the equilibrium of the PNPB system, we give the convexity property of
the free energy F .

For all V =(V1, ·· · ,VK+1), denote ρϵ(r)=
K∑
i=1

zi(Ci+ϵVi)(r),

Γϵ(r)=1−η
K+1∑
i=1

vi(Ci+ϵVi)(r), then

d2

dϵ2
F(C+ϵV )=

d2

dϵ2
[Fel(C+ϵV )+Fen(C+ϵV )]

=
d2

dϵ2

[
1

2

∫
Ω

ρϵL
−1ρϵdr+

∫
Ω

{
K+1∑
i=1

(Ci+ϵVi)

(
ln

(Ci+ϵVi)

CB
i

−1

)
+

Γϵ

ηv0

(
ln

Γϵ

ΓB
−1

)}
dr

]

=
d

dϵ

[∫
Ω

(
K∑
i=1

ziVi

)
L−1 (ρϵ)dr+

∫
Ω

{
K+1∑
i=1

Vi ln
(Ci+ϵVi)

CB
i

− 1

v0

[
K+1∑
i=1

viVi

]
ln

Γϵ

ΓB

}
dr

]

=

∫
Ω

(
K∑
i=1

ziVi

)
L−1

(
K∑
i=1

ziVi

)
dr+

∫
Ω


K+1∑
i=1

V 2
i

(Ci+ϵVi)
+

[
K+1∑
i=1

viVi

]2
η

v0Γϵ

dr.
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Particular attention is paid to the limit case of zero ϵ, then one has

d2

dϵ2

∣∣∣∣
ϵ=0

F(C+ϵV )=

∫
Ω

(
K∑
i=1

ziVi

)
L−1

(
K∑
i=1

ziVi

)
+


K+1∑
i=1

V 2
i

Ci
+

[
K+1∑
i=1

viVi

]2
η

v0Γ

dr.

(3.17)

From (3.17), we can conclude that if Γ(r) and Ci(r),i=1, ·· · ,K+1, are well-defined

in Ω, then d2

dϵ2

∣∣
ϵ=0

F(C+ϵV )>0. Hence, it follows from Proposition 3.5 that the free
energy functional F is strictly convex at the equilibrium.

3.3. Well-posedness. Motivated by [23], where the well-posedness of the
solution to the PB equation is proved, we show the well-posedness of problem (2.17) by
discovering the unique minimizer of the free energy functional F using the calculus of
variations [8].

Theorem 3.1. If 1−η
K+1∑
i=1

vim
0
i >0, there exists a unique weak solution to the equi-

librium of the PNPB system (2.17).

Proof. Let St(x)=x(logx− t), x>0, t∈R, then St(x)≥−et−1, St(x) is convex.
Then

F(C)=
1

2

∫
Ω

ρL−1ρdr+

K+1∑
i=1

∫
Ω

S1+logCB
i
(Ci)dr+

∫
Ω

1

ηv0
S1+logΓB(Γ)dr

≥−

(
K+1∑
i=1

CB
i +

ΓB

ηv0

)
. (3.18)

Hence, F is bounded below.
Let m=infCF(C). Recall (3.15), m≤Fc<∞. Select a minimizing sequence

{C(k)}∞k=1, that is

lim
k→∞

F(C(k))=m.

We use the direct method for calculus of variation to show there exists C∗ such that
F(C∗)=m. It follows from (3.18) that

∫
Ω
S1+logCB

i
(C

(k)
i )dr is bounded. Next, we show

that {C(k)
i } is uniformly integrable. This is because

sup
k

∫
{|C(k)

i >M |}
|C(k)

i |dr = sup
k

∫
Ω

1{C(k)
i >M}C

(k)
i dr

≤ 1

logM−1− logCB
i

sup
k

∫
Ω

1{C(k)
i >M}C

(k)
i

(
logC

(k)
i −1− logCB

i

)
dr

≤ 1

logM−1− logCB
i

(
sup
k

∫
Ω

S1+logCB
i
(C

(k)
i )dr+CB

i

)
→ 0 as M→∞.

By Dunford-Pettis theorem (see Theorem A.1), there exists a subsequence, denoted also

as C
(k)
i , such that

C
(k)
i ⇀C∗

i in L1(Ω) i=1,·· · ,K+1. (3.19)
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By Mazur’s lemma (see Lemma A.1), there exist convex combinations v
(k)
i =∑k

j=1λjkC
(k)
i with λjk≥0,

∑k
j=1λjk=1 such that v

(k)
i →C∗

i in L1(Ω). Then, there

exists a subsequence, denoted also as v
(k)
i , such that v

(k)
i →C∗

i a.e. in Ω. Let

Ai=liminfk→∞
∫
Ω
S1+logCB

i
(C

(k)
i )dr. Then ∀ ϵ>0,∃ N,∀ k>N∫
Ω

S1+logCB
i
(C

(k)
i )dr≤Ai+ϵ.

Hence, ∫
Ω

S1+logCB
i
(C∗

i )dr=

∫
Ω

lim
k→∞

S1+logCB
i
(v

(k)
i )dr≤ liminf

k→∞

∫
Ω

S1+logCB
i
(v

(k)
i )dr

=liminf
k→∞

∫
Ω

S1+logCB
i

 k∑
j=1

λjkC
(k)
i

dr≤ liminf
k→∞

∫
Ω

k∑
j=1

λjkS1+logCB
i
(C

(k)
i )dr≤Ai+ϵ,

where Fatou’s lemma and Jensen’s inequality are applied to the first two inequalities.
Then, the arbitrariness of ϵ yields∫

Ω

S1+logCB
i
(C∗

i )dr≤ liminf
k→∞

∫
Ω

S1+logCB
i
(C

(k)
i )dr, i=1, ·· · ,K+1. (3.20)

On the other hand, it follows from (3.19) that

Γ(k)=1−η
K+1∑
i=1

viC
(k)
i ⇀1−η

K+1∑
i=1

viC
∗
i =:Γ∗ in L1(Ω),

ρ(k)=

K∑
i=1

ziC
(k)
i ⇀

K∑
i=1

ziC
∗
i =:ρ∗ in L1(Ω).

Using the same argument as Ci, one has∫
Ω

S1+logΓB(Γ∗)dr≤ liminf
k→∞

∫
Ω

S1+logΓB(Γ(k))dr. (3.21)

Since L−1 is positive definite, ∥ρ∥L=
(∫

Ω
ρL−1ρdr

)1/2
is a norm of ρ and ||ρ||H−2(Ω)

is equivalent to ∥ρ∥L. It follows from (3.18) that ||ρ(k)||H−2(Ω) is bounded. Hence, there

exists a subsequence, still labeled as ρ(k), that converges weakly to some ϱ, i.e.,

ρ(k)⇀ϱ in H−2(Ω).

Let ξ∈L∞(Ω)∩H2
0 (Ω), one has

ϱ(ξ)= lim
k→∞

ρ(k)(ξ)= lim
k→∞

∫
Ω

ρ(k)ξdr=

∫
Ω

ρ∗ξdr.

Since L∞(Ω)∩H2
0 (Ω) is dense in H2

0 (Ω), one can obtain ρ∗∈H−2(Ω) and ϱ=
ρ∗ in H−2(Ω). Hence, ρ(k)⇀ρ∗ in H−2(Ω). Therefore,

∥ρ∗∥L≤ liminf
k→∞

∥ρ(k)∥L. (3.22)
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Combining (3.20)-(3.22), one can conclude that F is weakly lower semi-continuous.
Then,

m≤F(C∗)≤ liminf
k→∞

F(C(k))=m.

This implies C∗ is a minimizer of F .

Assume C∗,D∗ are both minimizers of F . Since F is strictly convex,

m≤F
(
C∗+D∗

2

)
≤ 1

2
F(C∗)+

1

2
F(D∗)=m.

The equality holds only if C∗=D∗ a.e. This implies that the minimizer of F is unique.

Hence, ϕ∗=L−1ρ∗ is the unique solution to (2.17).

4. Numerical investigation and discussion

In this section, we investigate the parameter dependence of the steady state numer-
ically. For the complex dynamics in chemical/biochemical reactions, there have been
quite a few numeric studies in recent years, such as the discretization for irreversible
diffusion process on manifold via decomposition and via finite volume method [40–42].
Starting from the dynamic dimensionless PNPB system (2.12)-(2.16), which has an en-
ergy dissipated structure, we adopt a finite volume scheme which preserves the energy
dissipated property at the semi-discrete level. In the numerical tests, we run the dy-
namic for time large enough so that the system reaches the equilibrium. Then we can
explore the parameter dependence of the steady state.

This section is organized as follows. At first, we show the energy dissipation relation
of the dimensionless PNPB system (2.12)-(2.16) in Subsection 4.1. Then we apply a
semi-discrete finite volume scheme given in [38] and prove the energy dissipation relation
at the semi-discrete level in Subsection 4.2. At last, various numerical investigations are
given to show the parameter dependence of the steady state of the model in Subsection
4.3.

4.1. Energy dissipation relation. The free energy functional F for the
dynamic system (2.12)-(2.15) is given in the following

F(t)=
1

2

∫
Ω

ρ(r,t)ϕ(r,t) dr

+

∫
Ω

{
K+1∑
i=1

Ci(r,t)

(
ln
Ci(r,t)

CB
i

−1

)
+

Γ(r,t)

ηv0

(
ln

Γ(r,t)

ΓB
−1

)}
dr.

Then we have the following property.

Proposition 4.1. The energy functional F is dissipated along solutions of Equation
(2.12):

d

dt
F(t)+D(t)=0, (4.1)

where the dissipation D=
K+1∑
i=1

∫
Ω

DiCi

∣∣∣∣∇ δF
δCi

∣∣∣∣2 dr≥0.
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Proof.

d

dt
F(t)=

K+1∑
i=1

∫
Ω

δF
δCi

∂Ci(r,t)

∂t
dr

=

K+1∑
i=1

∫
Ω

δF
δCi

∇·
(
DiCi∇

δF
δCi

)
dr

=−
K+1∑
i=1

∫
Ω

DiCi

∣∣∣∣∇ δF
δCi

∣∣∣∣2 dr=:−D(t)≤0.

4.2. Semi-discrete energy dissipated scheme. In this subsection, taking the
one-dimensional case as an example, we adopt the semi-implicit finite volume scheme
for the multi-species model in [38] which is of second order in space, first order in time.

First, we rewrite the dimensionless Equations (2.12)-(2.13) in the following sym-
metric form:

∂Ci(x,t)

∂t
=∇·

(
Diexp{−fi}∇

Ci

exp{−fi}

)
, i=1,·· · ,K+1, x∈Ω,

fi(x,t)=ziϕ−
vi
v0
S, i=1,·· · ,K+1,

ϕ(x,t)=K∗ρ, ρ(x,t)=

K∑
i=1

ziCi,

S(x,t)= ln
Γ(x,t)

ΓB
, Γ(x,t)=1−η

K+1∑
i=1

viCi, ΓB=1−η
K+1∑
i=1

viC
B
i ,〈

n,Diexp{−fi}∇
Ci

exp{−fi}

〉
=0, i=1, ·· · ,K+1, x∈∂Ω,

Ci(x,0)=C
0
i (x), i=1,·· · ,K+1,

(4.2)

where the kernel function K is defined in (3.7). Hence we rewrite the free energy and
the chemical potential in the symmetric form respectively as

F =

∫
Ω

{
K+1∑
i=1

Ci log
Ci

exp{− 1
2ziϕ+

vi
v0
S}

−Ci+
1

v0η
(S−Γ)

}
dx, (4.3)

µi=
δF
δCi

=log
Ci

CB
i exp{−fi}

, (4.4)

and the equivalent dissipation relation (4.1) becomes

d

dt
F(t)+

K+1∑
i=1

∫
Ω

Di
exp{−2fi}

Ci

∣∣∣∣∇ Ci

exp{−fi}

∣∣∣∣2dx=0. (4.5)

Next we give a brief introduction of the semi-discrete energy dissipated scheme
proposed by [38].
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4.2.1. Introduction to the scheme. Consider a uniform mesh grid
T ={xj

∣∣ xj =−L+(j+N)∆x,j=−N,...,N,∆x=L/N} on the computational domain
[−L,L], the semi-discrete finite volume scheme reads as

dC̄i,j(t)

dt
=−

Fi,j+ 1
2
(t)−Fi,j− 1

2
(t)

∆x
, i=1,·· · ,K+1, (4.6)

where C̄i,j(t) is the average concentration of the i−th ionic species on [xj− 1
2
,xj+ 1

2
] for

j=−N+1,·· · ,N−1 and [x−N ,x−N+ 1
2
] or [xN− 1

2
,xN ] for j=−N or N . The numerical

flux Fi,j+ 1
2
(t) is defined below

Fi,j+ 1
2
(t) :=−Di

∆x
exp{−fi,j+ 1

2
(t)}

{
C̄i,j+1(t)

exp{−fi,j+1(t)}
− C̄i,j(t)

exp{−fi,j(t)}

}
, (4.7)

where exp{−fi,j+ 1
2
(t)} takes the harmonic mean of exp{−fi,j(t)} and exp{−fi,j+1(t)},

i.e.,

exp{−fi,j+ 1
2
(t)}= 2

exp{fi,j(t)}+exp{fi,j+1(t)}
, (4.8)

where fi,j(t) denotes the numerical approximation of fi(xj ,t) at time t and can be
computed as follows

fi,j(t)=

∫ L

−L

ziK(xj−x)ρh(x,t)dx−
vi
v0
Strc
j ,

=

K∑
m=1

zizm

∫ L

−L

K(xj−x)Ch
m(x,t)dx− vi

v0
Strc
j ,

=

K∑
m=1

zizm

N∑
p=−N

C̄m,p(t)

∫ L

−L

K(xj−x)ep(x)dx−
vi
v0
Strc
j . (4.9)

Here the semi-discrete steric potential and the void function become

Strc
j (t)= ln

Γj(t)

ΓB
, Γj(t)=1−η

K+1∑
i=1

viC̄i,j(t)

and the approximation of the total charged density

ρh(x,t)=

K∑
m=1

zmC
h
m(x,t), (4.10)

where Ch
m(x,t) is chosen as the piecewise linear interpolation of Cm(x,t) using C̄m,j ,

and is given explicitly

Ch
m(x,t)=

N∑
j=−N

C̄m,j(t)ej(x), ∀ x∈ [−L,L], (4.11)

with ej(x) being the piecewise linear interpolation function, i.e., the typical hat function.
Obviously, Ch

m is a second order approximation of Cm. Define the convolution tensor as

TK
j−p :=∆x

∫ 1

−1

K((j−p−x)∆x) ê0(x)dx, (4.12)
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where ê0(x)=1−|x| for x∈ [−1,1]. As a result, the convolution field is

fi,j(t)=

K∑
m=1

zizm

N∑
p=−N

C̄m,p(t)T
K
j−p−

vi
v0
Strc
j .

We remark that the convolution tensors TK
j−p can be precomputed and fi,j(t) can be

evaluated efficiently by FFT. More details related to the scheme can be found in [38].

A fully discrete finite volume scheme by applying the backward Euler method while
treating the convolution-type field fi,j+1 explicitly in numerical flux term (4.7) reads as
follows

C̄n+1
i,j − C̄n

i,j

∆t
=−

Fn+1
i,j+ 1

2

−Fn+1
i,j− 1

2

∆x
, (4.13)

Fn+1
i,j+ 1

2

=−Di

∆x
exp{−fni,j+ 1

2
}

{
C̄n+1

i,j+1

exp{−fni,j+1}
−

C̄n+1
i,j

exp{−fni,j}

}
, (4.14)

for all i=1, ·· · ,K+1 and j=−N, ·· · ,N . We emphasize that the fully discrete scheme
(4.13)-(4.14) is only linearly implicit, and thus it avoids the use of nonlinear solvers.

4.2.2. Energy dissipation relation of the semi-discrete scheme. Next,
we give the result of the energy dissipation relation of the semi-discrete scheme, where
the proof is analogous to that in [38].

Theorem 4.1 (1D semi-discrete free energy dissipation estimate). Consider the
one-dimensional semi-discrete finite volume scheme (4.6)-(4.9) of the system (4.2) with
initial data C̄0

i,j>0 and C̄i,j(t)>0, i=1,·· · ,K+1. Then, for the semi-discrete form of
the free energy F and the dissipation D, we have

d

dt
E∆(t)=−D∆(t)⩽0, ∀t⩾0. (4.15)

Here E∆(t) and D∆(t), the semi-discrete free energy and dissipation, are defined ex-
plicitly as follows

E∆(t)=∆x

K+1∑
i=1

N∑
j=−N

C̄i,j(t)

(
log

C̄i,j(t)

CB
i exp{−gi,j(t)}

−1

)
+

∆x

v0η

N∑
j=−N

(
Strc
j (t)−Γj(t)

)
,

D∆(t)=
1

∆x

K+1∑
i=1

N∑
j=−N

exp{−fi,j+ 1
2
(t)}· Di

βi,j(t)

(
C̄i,j+1(t)

exp{−fi,j+1(t)}
− C̄i,j(t)

exp{−fi,j(t)}

)2

,

where gi=
1
2ziϕ−

vi
v0
S, gi,j is defined similarly to fi,j , and βi,j(t) sits between

C̄i,j(t)
exp{−fi,j(t)} and

C̄i,j+1(t)
exp{−fi,j+1(t)} .
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Proof. We only need to prove that

d

dt
E∆(t)

=
d

dt

∆xK+1∑
i=1

N∑
j=−N

C̄i,j

(
log

C̄i,j

CB
i exp{−gi,j}

−1

)
+

∆x

v0η

N∑
j=−N

(Strc
j −Γj)


= ∆x

K+1∑
i=1

N∑
j=−N

[
log

C̄i,j

CB
i exp{−gi,j}

d

dt
C̄i,j+ C̄i,j

d

dt
gi,j

]
+

∆x

v0η

N∑
j=−N

d

dt
(Strc

j −Γj)

= ∆x

K+1∑
i=1

N∑
j=−N

log
C̄i,j

CB
i exp{−fi,j}

d

dt
C̄i,j−∆x

K+1∑
i=1

N∑
j=−N

viC̄i,j

v0Γj

d

dt
Γj

+
∆x

v0η

N∑
j=−N

d

dt
(Strc

j −Γj)

= ∆x

K+1∑
i=1

N∑
j=−N

log
C̄i,j

CB
i exp{−fi,j}

d

dt
C̄i,j .

The third equality holds because of TK
p−j =T

K
j−p.

According to (4.6), we have

d

dt
E∆(t)=−

K+1∑
i=1

N∑
j=−N

(
log

C̄i,j

CB
i exp{−fi,j}

)(
Fi,j+ 1

2
−Fi,j− 1

2

)
.

Since we take no-flux boundary conditions, the discrete boundary conditions satisfy

Fi,−N− 1
2
=Fi,N+ 1

2
=0, i=1, ·· · ,K+1.

Hence, using Abel’s summation formula, we obtain

d

dt
E∆(t)=−

K+1∑
i=1

N∑
j=−N

(
log

C̄i,j

CB
i exp{−fi,j}

− log
C̄i,j+1

CB
i exp{−fi,j+1}

)
Fi,j+ 1

2
. (4.16)

Plugging (4.7) into (4.16) and applying the mean-value theorem yield

d

dt
E∆(t)

= − 1

∆x

K+1∑
i=1

N∑
j=−N

exp{−fi,j+ 1
2
(t)}· Di

βi,j(t)

(
C̄i,j+1(t)

exp{−fi,j+1(t)}
− C̄i,j(t)

exp{−fi,j(t)}

)2

= −D∆(t)⩽0, ∀t⩾0,

where βi,j(t)>0 is a point between
C̄i,j(t)

exp{−fi,j(t)} and
C̄i,j+1(t)

exp{−fi,j+1(t)} .

Remark 4.1. The positivity preserving property of the concentrations Cm and Γ at
both continuous and discrete level remains to be done for future work.
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4.3. Results and discussion on the one-dimensional case. Before talking
about the parameter dependence, we slightly modify the dimensionless Equations (2.12),
(2.13) by adding an external electric field V0, for i=1, ·· · ,K+1, the domain Ω=[−1,1]d,

∂Ci(x,t)

∂t
=

∇·
(
Di

(
∇Ci(x,t)+ziCi(x,t)∇ϕ(x,t)−

vi
v0
Ci(x,t)∇S(x,t)+ziCi∇V0(x)

))
, x∈Ω,

S(x,t)= ln
Γ(x,t)

ΓB
, Γ(x,t)=1−η

K+1∑
i=1

viCi, ΓB=1−η
K+1∑
i=1

viC
B
i , x∈Ω,

Lϕ(x)=ν2
(
λ2∆−1

)
∆ϕ=ρ(x), ρ(x)=

K∑
i=1

ziCi(x), x∈Ω,〈
n,Di

(
∇Ci(x,t)+ziCi(x,t)∇ϕ(x,t)−

vi
v0
Ci(x,t)∇S(x,t)+zi∇V0

)〉
=0, x∈∂Ω,

Ci(x,0)=C
0
i (x), x∈Ω.

(4.17)
In this section, we take the one-dimensional case d=1 as an example and for sim-

plicity choose the number of ionic species except water K=2. Without loss of gener-
ality, the first ionic species is assumed to be positive while the second one is assumed
to be negative. Let the external field V0=10x and the constant diffusion coefficients
(D1,D2,D3)=(1,1,1). In addition, we set the initial conditions in the following form,

C0
i (x)=0.5, i=1,2,3. (4.18)

Hence, CB
i =0.5.

We recall that one of the statements of the steady state is that the chemical potential
µi is constant for i=1,·· · ,K+1, i.e.

µi=ln
Ci(x)

CB
i

− vi
v0

ln
Γ(x)

ΓB
+ziϕ(x)+ziV0(x)=constant. (4.19)

It is seen that the steady state of system (4.17) is the result of multiple effects: the
diffusion of all the ionic and water species caused by concentration gradient −∇Ci, the
electric force −zi∇ϕ, the steric force vi

v0
∇S as well as the external force −zi∇V0.

Since we aim to observe those effects, we give some further assumptions on the
electric field ϕ and the kernel function K:

(1) the correlated electric field is considered in the whole space, which means that the
4PBik equation Lϕ(x)=ρ(x) is satisfied for all x∈R;

(2) the kernel function K of the electric field is given in the form of Picard solution;

(3) the correlated electric field decays to zero at infinity.

Following the above assumptions, the 1D kernel function becomes

Kν,λ(x)=
λ

2ν2
exp

(
−|x|
λ

)
(4.20)

as an example.
It must be emphasized that the external field V0=10x would push the cations to the

left and the anions to the right. Hence the inclusion of the external field V0=10x also
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contributes to the formation of the boundary layer. Besides, the steric force represents
the force of void exerted on the ions and water molecules, the sign of steric force suggests
that the diffusion of the void is in the opposite direction to the diffusion of other particles.

The degree and manner of aggregation of steady-state concentrations are influenced
by (4.19). Combined with (4.20), the relevant parameters can be divided into three
parts: the parameter η, which is in the definition of Γ and thus related to the steric
effect S, the parameters λ,ν, which are related to the correlated electric field ϕ, and the
parameters zi, vi, which are the intrinsic properties of ions. Next, we will use numerical
tests to investigate the effect of all the parameters we mentioned before.

4.3.1. Parameter related to the steric effect: η. We can see from the
expression of the steric potential

S(x)= ln
1−η

∑K+1
i=1 viCi(x)

ΓB

that η is related to the steric potential S directly. Additionally, η=0 means the steric
effect vanishes. Combined with (4.19), larger η makes the steric repulsion stronger and
hence the concentrations of ionic species at the boundary layers are less peaked for all
the species. Next we illustrate how η has impact on the equilibrium of the PNPB model
through two tests.

At first, we pay attention to different η. Fix the parameters λ=1,ν=1,(z1,z2,z3)=
(1,−1,0),(v1,v2,v3)=(0.01,0.01,0.01), and hence v0=0.01. Let η=0,1,3,5, Figure 4.1
shows the results of concentrations, total charged density ρ=z1C1+z2C2, total volume
density v1C1+v2C2+v3C3 and voids at time t=1 with different η. Note that the
system is near equilibrium at t=1 since the distributions are not changing any more.
We observe that the inclusion of the steric potential makes the concentrations of ions
C1 and C2 not overly peaked. Larger η leads to larger steric repulsion effects and
thus the cations are less gathered around the left boundary while the anions are less
gathered on the right. As for water, since the water molecules are neutral, they are
not subjected to the electric field and the external field. Hence, when η=0, there
is no steric effect, the distribution of water C3 remains unchanged. When η>0, the
steric force squeezes water from the boundaries to the middle. Moreover, larger η
makes the water molecules much gathered in the middle part. In the second test, we
want to observe the critical value of η that makes Γ positive. The parameters are set
to be λ=1,ν=1,(z1,z2,z3)=(1,−1,0),(v1,v2,v3)=(0.01,0.01,0.01). Let η=8,8.1,8.21,
Figure 4.2 shows the results of concentrations, total charged and volume densities and
voids at time t=1. We can observe that when considering the initial condition (4.18),
taking η=8.21 with the mesh size ∆t=0.005,∆x=0.01 leads to Γ(x0,1)≤0 for some
x0 in the domain [−1,1], while smaller η can preserve the positivity of Γ. This indicates
that η can not be too large, otherwise, it will lead to a meaningless Γ. To get a better
understanding of η and the positivity preserving property of Γ in a dynamic PNPB
model with a certain mesh size, a more detailed discussion will be considered in the
future.

4.3.2. Parameters related to the correlated electric field: ν,λ. Recall
that the correlated electric potential ϕ=Kν,λ ∗ρ, where we take the kernel Kν,λ(x)=
λ

2ν2 exp(−|x|/λ). The dimensionless parameters λ,ν play the role of correlation length
and Debye length after scaling and thus have an effect on the correlated electric potential
ϕ, whose gradient influences the dynamic of the concentrations Ci, for all i.

In the third numerical test, the parameters are η=1,λ=1,(z1,z2,z3)=(1,−1,0),
(v1,v2,v3)=(0.01,0.01,0.01), and hence v0=0.01. Figure 4.3 illustrates the results of
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Fig. 4.1. Ci(x,1) for i=1,2,3, ρ(x,1),θ(x,1) and Γ(x,1) with the ∆t=0.005,∆x=0.01 and η=
0,1,3,5.
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Fig. 4.3. Ci(x,1) for i=1,2,3, ρ(x,1),ϕ(x,1) and ϕ(x,1)+V0(x) with ∆t=0.005,∆x=0.01 and
ν=1/3,1,3.
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concentrations, total charged/volume densities and the electric potential at time t=1
with respect to ν=1/3,1,3. The larger the parameter ν is, the weaker internal correlated
electric potential ϕ is, hence the stronger the aggregation is on the boundary layer.
Clearly, we can see from Figure 4.3 that for larger ν, the peaks of concentrations C1

and C2 are higher on the boundary layers.

In the fourth numerical test, the parameters are η=1,ν=1,(z1,z2,z3)=(1,−1,0),
(v1,v2,v3) =(0.01,0.01,0.01). Figure 4.4 shows the corresponding distributions at time
t=1 when λ=1/10,1,10. We can see from Figure 4.4 that the equilibrium is more in-
sensitive to the parameter λ than ν. And larger λ leads to a stronger internal correlated
electric potential ϕ.

4.3.3. Parameters related to the intrinsic properties of ions: zi,vi. In
this part, we consider the valence zi of the i

th species at first. Due to the Kohlrausch’s
law, the flux related to the electric part F el

i is given via the electrostatic potential
gradient, i.e. F el

i =−DiziCi∇ϕ, which we can see from the system (4.17). Consequently,
assuming all other parameters are fixed, the electric force felt by the ith species would
be stronger for larger |zi|.

To do numerical investigations, we set the other parameters η=2,λ=1,ν=1,
(v1,v2,v3)=(0.01,0.01,0.01) and the valence of anions z2=−1. The parameter z1 to
be considered is set to be z1=1,2,4. Then Figure 4.5 depicts the concentrations of the
PNPB system and the PNP system (we set η=0) at time t=1. We observe that, the
larger the valence of cations z1 is, more cations are concentrated on the left boundary.
The reason is that larger z1 makes the electrostatic effect become larger on the cations,
combined with the external field V0=10x, C1 will peak more on left, while it makes little
difference to the anions. Besides, when z1=1, the electrolyte is symmetric, the distri-
butions are symmetric, which is also the case in the former four tests. However, when
z1 ̸=1, i.e., asymmetric electrolyte, no symmetry is guaranteed. Similar behaviours can
be observed in the PNP system as z1 varies. However, the peaks of C1 in the PNP
system are higher compared to those in PNPB and the profiles of C3 remain flat, as
there is no steric effect. All the results are consistent with the theoretical discussion.

On the other hand, as for the volume vi, the flux related to the steric part F trc
i is

given via the steric potential gradient, i.e. F trc
i =Di

vi
v0
Ci(x,t)∇S. Assuming all other

parameters are constant, larger vi will lead directly to a larger steric effect on the ith

species, hence the larger steric force makes a stronger repulsion, which will smooth the
peak of the concentrations.

In this numerical test, let the other parameters η=1,λ=1,ν=1,(z1,z2,z3)=
(1,−1,0), the volumes of the anions and water molecules stays v2=v3=0.01. Test
the cases where the volume of cations are v1=0.01,0.03,0.05, and hence v0=0.01,1/60,
7/300 respectively. Figure 4.6 gives the results of the concentrations of the PNPB sys-
tem and the PNP system (we set η=0) at time t=1. We observe that, the larger v1 is,
the less C1 peaks on the left boundary. This is because larger v1 makes the steric effect
become larger on the cations but has little difference on the anions. The steric force is
a kind of repulsion force to prevent the particles from getting close to each other, and
hence larger v1 makes the concentration C1 become less on the left boundary. Also, in
the case where v1,v2,v3 are not the same, the distributions are no longer symmetric.
And the change in volume vi has no effect on the PNP model as expected.

4.4. Two-dimensional case. It is seen that in 1D, parameters η,ν,λ,zi,vi have
influenced the steady state of the dimensionless PNPB system (2.12)-(2.16). In sum-
mary, large η results in larger steric repulsion effect, if η=0, the steric effect vanishes,
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∫
ΩCi(x,y)dy for i=1,2 with ∆t=0.001,∆x=∆y=0.04 and η=0,1,3.

if η is bigger than some critical value, the positivity of Γ can no longer be maintained.
λ and ν have opposite effects on the correlated electric field ϕ, to be specific, smaller ν
and larger λ give rise to stronger electric field ϕ. As for the intrinsic properties of ions,
larger |zi| and vi would enhance the electrostatic effect and the steric effect of the ith

species respectively. The same results can be found in the two-dimensional case. Here
we focus only on the effect of the parameter η on the steady state.

Consider the two-dimensional model, where the electrostatic potential ϕ=Kν ∗ρ,
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with Kν(x,y)=− 1
2πν2 log(

√
x2+y2). We choose K=2, V0(x,y)=10x, and the initial

conditions in the following form,

C0
1 (x,y)=

40

π
exp

(
−10

((
x− 1

5

)2

+

(
y− 1

5

)2
))

,

C0
2 (x,y)=

40

π
exp

(
−10

((
x+

1

5

)2

+

(
y+

1

5

)2
))

,

C0
3 (x,y)=

40

π
exp

(
−10

(
x2+y2

))
.

Furthermore, take the parameters ν=1,(D1,D2,D3)=(1,1,1),(z1,z2,z3)=(1,−1,0),
(v1,v2,v3)=(0.01,0.01,0.01), and hence v0=0.01. Let η=1, Figure 4.7 shows the results
of the concentrations Ci and the chemical potential µi at sufficiently large time t=3.
It’s seen that the chemical potential becomes constant at the steady state and the
boundary layers exist on the left and right boundaries due to the external field V0 in
the x-direction.

Next, consider the parameter η=0,1,3, the concentrations in the x-direction∫
Ω
C1(x,y)dy and

∫
Ω
C2(x,y)dy are shown in Figure 4.8. Larger η leads to larger steric

repulsion effect and thus the the cations are less gathered on the corresponding left
boundary while the anions are less gathered on the right. All the conclusions are the
same as the one-dimensional case.

5. Conclusions
The PNPB model for ionic solution differs from the classical PNP and PB theories

in many aspects. In the model setup, it treats all the ions with sizes and valences rather
than volumeless. And it considers water molecules as another species with volume
together with voids. In the sense of electric potential, the governing equation is the
4PBik equation instead of the Poisson equation so that it can describe the correlation
effect. What’s more, the steric potential is included which characterizes the steric effect
quantitatively.

In this work, we clarify some theoretical aspects of the steady state problem, i.e.,
the 4PBik equation with Fermi-like distribution. We give the self-adjointness and kernel
of the fourth-order operator in the 4PBik equation. We also provide four equivalent
statements for the steady state. Besides, we prove the positivity of the void volume
function in the steady state, otherwise, the steric potential is meaningless. Finally,
we can obtain the well-posedness of the steady state owing to the convexity of the
free energy functional. Furthermore, we give some 1D and 2D tests to get intuitive
impressions on the steric (finite size) effect.

The understanding of the dynamical problem on the PNPB model is limited. The
well-posedness and other analytical issues such as the positivity preserving property of
the dynamical problem are left for our future work.
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Appendix.
Theorem A.1 (Dunford-Pettis Theorem [8]). Assume that Ω is bounded. Let F be a
bounded set in L1(Ω). Then F has compact closure in the weak topology if and only if
F is uniformly integrable: ∀ ϵ>0, ∃ δ>0 such that∫

A

|f |<ϵ, ∀A⊂Ω, measurable with |A|<δ, ∀f ∈F .

Lemma A.1 (Mazur lemma [37]). Let (X,∥·∥) be a Banach space and {uk} a sequence
in X that converges weakly to u0∈X. Then there exist convex combinations vk of
uN+1,...,uN+k for all k≥1 such that ∥vk−u0∥X →0.
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