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LOCATION OF CONCENTRATED VORTICES IN
PLANAR STEADY EULER FLOWS∗

GUODONG WANG† AND BIJUN ZUO‡

Abstract. In this paper, we study two-dimensional steady incompressible Euler flows in which
the vorticity is sharply concentrated in a finite number of regions of small diameter in a bounded
domain. Mathematical analysis of such flows is an interesting and physically important research topic
in fluid mechanics. The main purpose of this paper is to prove that in such flows the locations of these
concentrated blobs of vorticity must be in the vicinity of some critical point of the Kirchhoff-Routh
function, which is determined by the geometry of the domain. The vorticity is assumed to be only in
L4/3, which is the optimal regularity for weak solutions to make sense. As a by-product, we prove a
nonexistence result for concentrated multiple vortex flows in convex domains.
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1. Introduction
Let D⊂R2 be a simply-connected bounded domain with smooth boundary ∂D.

Consider in D an ideal fluid in steady state, the motion of which is described by the
following Euler equations

(v ·∇)v=−∇P x=(x1,x2)∈D,
∇·v=0 x∈D,
v ·n=g x∈∂D,

(1.1)

where v=(v1,v2) is the velocity field, P is a scalar function that represents the pressure,
n is the unit outward normal on ∂D, and g is a given function satisfying the following
compatibility condition ∫

∂D

gdS=0. (1.2)

Here we assume that the fluid is of unit density. The first two equations in (1.1)
are the momentum conservation and mass conservation respectively, and the boundary
condition in (1.1) means that the rate of mass flow across the boundary per unit area
is g. In particular, if g≡0, then there is no matter flow through the boundary.

The scalar vorticity ω, defined as the signed magnitude of curlv, that is,

ω=∂x1v2−∂x2v1,

is one of the fundamental physical quantities and plays an important role in the study
of two-dimensional flows.

Below we reformulate the Euler Equations (1.1) as a single equation of ω, which is
much easier to handle mathematically. First we show that v can be recovered from ω.
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In fact, since v is divergence-free and D is simply-connected, we can apply the Green’s
theorem to show that there is a scalar function ψ, called the stream function, such that

v=(∂x2
ψ,−∂x1

ψ). (1.3)

For convenience, throughout this paper we will use the symbol b⊥ to denote the clock-
wise rotation through π/2 of any planar vector b=(b1,b2), that is, b

⊥=(b2,−b1), and
∇⊥f to denote (∇f)⊥ for any scalar function f , that is, ∇⊥f =(∂x2f,−∂x1f). Thus
(1.3) can also be written as

v=∇⊥ψ. (1.4)

It is easy to check that ψ and ω satisfy{
−∆ψ=ω in D,

∇⊥ψ ·n=g on ∂D.
(1.5)

To deal with the boundary condition in (1.5), we consider the following elliptic problem{
−∆ψ0=0 in D,

∇⊥ψ0 ·n=g on ∂D.
(1.6)

To solve (1.6), we first solve the following Laplace equation with standard Neumann
boundary condition {

−∆ψ1=0 in D,
∂ψ1

∂n =g on ∂D,

then the harmonic conjugate of ψ1 solves (1.6). Note that by the maximum principle
the solution to (1.6) is unique up to a constant. Now it is easy to see that ψ−ψ0 satisfies{

−∆(ψ−ψ0)=ω in D,

∇⊥(ψ−ψ0) ·n=0 on ∂D.
(1.7)

The boundary condition in (1.7) implies that ψ−ψ0 is a constant on ∂D (recall that
D is simply-connected). Without loss of generality, by adding a suitable constant we
assume that ψ−ψ0=0 on ∂D, thus ψ−ψ0 can be expressed in terms of the Green’s
operator as follows

ψ−ψ0=Gω :=

∫
D

G(·,y)ω(y)dy, (1.8)

where G(·, ·) is the Green’s function for −∆ in D with zero boundary condition. Com-
bining (1.4) and (1.8), we have recovered ψ from ω in the following

v=∇⊥(Gω+ψ0), (1.9)

which is usually called the Biot-Savart law in fluid mechanics. On the other hand,
taking the curl on both sides of the momentum equation in (1.1) we get

v ·∇ω=0. (1.10)



G. WANG AND B. ZUO 519

From (1.9) and (1.10), the Euler Equations (1.1) are reduced to a single equation of ω

∇⊥(Gω+ψ0) ·∇ω=0 in D, (1.11)

which is usually called the vorticity equation.

Remark 1.1. When D is multiply-connected, the above discussion is still valid.
The only difference is that one needs to replace the usual Green’s function G by the
hydrodynamic Green’s function (see [13], Definition 15.1), which does not cause any
essential difficulty for the problem discussed in this paper.

In the rest of this paper, we will be focused on the study of (1.11). Note that once
we have obtained a solution ω to (1.11), we immediately get a solution to (1.1) with

v=∇⊥(Gω+ψ0), P (x)=

∫
Lx0,x

ω(y)v⊥(y) ·dy− 1

2
|v(x)|2,

where x0 is a fixed point in D and Lx0,x is any C1 curve joining x0 and x (one can
easily check that the above line integral is well defined by using Green’s theorem and
the fact that ω is a solution).

Since in many physical problems the vorticity is of low regularity, not even contin-
uous, it is necessary to define the notion of weak solutions to (1.11). In the rest of this
paper, we regard ψ0 as a given function.

Definition 1.1. Let ω∈L4/3(D). If for any ϕ∈C∞
c (D) it holds that∫

D

ω∇⊥(Gω+ψ0) ·∇ϕdx=0, (1.12)

then ω is called a weak solution to the vorticity Equation (1.11).

The above definition is reasonable from the fact that one can multiply any test
function ϕ on both sides of (1.11) and integrate by parts formally to get (1.12).

Remark 1.2. Since ψ0 is harmonic (thus smooth) and ϕ has compact support in D,
we see that the integral

∫
D
ω∇⊥ψ0 ·∇ϕdx in (1.12) makes sense. Note that throughout

this paper we do not impose any condition on the boundary value of ψ0.

Remark 1.3. By the Calderon-Zygmund inequality and Sobolev inequality, ω∈
L4/3(D) is the optimal regularity for the integral

∫
D
ω∇⊥Gω ·∇ϕdx in (1.12) to be

well-defined.

In the literature, there has been extensive study on the existence of weak solutions
to (1.11). See [1,2,4–7,9,10,12,15,16,24,26,28,29] for example. The solutions obtained
in these papers have one common feature, that is, the vorticity is a function of the
stream function “locally”. In this regard, Cao–Wang [8] proved a general criterion for
an L4/3 function to be a weak solution.

Theorem 1.1 (Cao–Wang, [8]). Let k be a positive integer and ψ0∈C1(D̄). Suppose
ω satisfies

ω=

k∑
i=1

ωi, ωi∈L4/3(D), i=1, · · ·,k,

min
1≤i<j≤k

{dist(suppωi,suppωj)}>0,

ωi=f
i(Gω+ψ0) a.e. in (suppωi)δ,

(1.13)
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where δ is a fixed positive number, (suppωi)δ is the δ-neighborhood of suppωi, i.e.,

(suppωi)δ={x∈D |dist(x,suppωi)<δ},

and each f i is either monotone from R to R∪{±∞} or Lipschitz from R to R. Then ω
is a weak solution to the vorticity Equation (1.11).

Some examples of such flows are as follows. When fi in Theorem 1.1 is a Heaviside
function, the solutions are called vortex patches, and related existence results can be
found in [5,7,10,26,29]. When fi is a power function, related papers are [4,6,15,16,24].
In [1,2,12], the authors obtained some steady vortex flows by maximizing or minimizing
the kinetic energy of the fluid on the rearrangement class of some given function. The
solutions obtained in [1, 2, 12] still have the form (1.13), where each fi is a monotone
function, but the precise expression of fi is unknown. Recently Cao–Wang–Zhan [9,28]
modified Turkington’s method [26] and proved the existence of a large class of solutions
of the form (1.13), where each fi is a given function with few restrictions.

Among the flows mentioned above, some are of particular interest and attract more
attention, that is, flows in which the vorticity is sharply concentrated in a finite num-
ber of small regions and vanishes elsewhere, just like a finite sum of Dirac measures.
Mathematically, the vorticity in such flows has the form

ωε=

k∑
i=1

ωε,i, suppωε,i⊂Bo(1)(x̄i),
∫
D

ωε,idx=κi+o(1), i=1, · · ·,k, (1.14)

where ε is a small positive parameter, k is a positive integer, x̄i∈D, κi is a fixed non-
zero real number, i=1,· · ·,k, and o(1)→0 as ε→0+. Papers concerning the existence
of such solutions include [4–7, 9, 10, 24, 26, 28]. Note that all the flows constructed in
these papers have bounded vorticity.

Euler flows with vorticity of the form (1.14) are closely related to a very famous
Hamiltonian system in R2, the point vortex model (see [18]), which describes the evo-
lution of a finite number of point vortices with their locations being the canonical
variables. The point vortex model is only an approximate model, and its precise con-
nection with the two-dimensional Euler equations with concentrated vorticity in the
evolutionary case is a tough and unsolved problem. For a detailed discussion, we refer
the interested readers to [19–22,27]. According to the point vortex model, the locations
of concentrated blobs of vorticity in steady Euler flows are not arbitrary, but should be
near a critical point of the following Kirchhoff-Routh function

W (x1, · · ·,xk)=−
∑

1≤i<j≤k

κiκjG(xi,xj)+
1

2

k∑
i=1

κ2iH(xi)−
k∑
i=1

κiψ0(xi), (1.15)

where

(x1, · · ·,xk)∈D×·· ·×D︸ ︷︷ ︸
k times

\{(x1, · · ·,xk) |xi∈D,xi=xj for some i ̸= j}

and H(x)=h(x,x) with h being the regular part of Green’s function, that is,

h(x,y) :=− 1

2π
ln|x−y|−G(x,y), x,y∈D.

However, to our knowledge there is no straightforward proof on this issue in the litera-
ture, although the solutions of the form (1.14) constructed in [4–7, 9, 12, 24, 26] are all
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based on the hypothesis that (x̄1, · · ·,x̄k) is a critical point of W . The aim of paper is
prove that such a hypothesis is actually necessary.

This paper is organized as follows. In Section 2, we state our main results (Theorems
2.1 and 2.2) and give some comments. In Sections 3 and 4 we provide their proofs.

2. Main results
In this section, we present our two main results. The first result is about the

necessary condition on the locations of concentrated vortices.

Theorem 2.1. Let k be a positive integer, x̄1,· · ·,x̄k ∈D be k different points and
κ1, · · ·,κk be k non-zero real numbers. Assume that there exists a sequence of weak
solutions {ωn}+∞

n=1 to the vorticity Equation (1.11), satisfying ωn=
∑k
i=1ωn,i with ωn,i∈

L4/3(D) and

suppωn,i⊂Bo(1)(x̄i),
∫
D

ωn,idx=κi+o(1), i=1, · · ·,k,

where o(1)→0 as n→+∞. Then (x̄1, · · ·,x̄k) must be a critical point of W defined by
(1.15).

Here we compare Theorem 2.1 with two related results in [3] and [11]. In [3], Cao–
Guo–Peng–Yan studied planar Euler flows with vorticity of the following patch form

ωλ=

k∑
i=1

ωλi , ωλi =λχ{x∈D|Gωλ(x)>µλ
i }∩Bδ(x̄i),

∫
D

ωλi dx=κi, i=1, · · ·,k, (2.1)

where λ is a large positive parameter, χ denotes the characteristic function, each µλi is
a real number depending on λ and each κi is a given non-zero number. They proved
that if suppωλi “shrinks” to x̄i as λ→+∞, then x̄1 · ··,x̄k must necessarily constitute a
critical point of W (see Theorem 1.1 in [3] for the precise statement). Compared with
their result, we consider more general flows and only impose very weak regularity on
the vorticity in Theorem 2.1. Moreover, as we will see in the next section, the proof
we provide is shorter and more elementary. The other relevant work is [11]. In [11],
Caprini–Marchioro studied the evolution of a finite number of blobs of vorticity in R2

and proved the finite-time localization property (see Theorem 1.2 in [11] for the precise
statement). In their result, each ωn,i is required additionally to have a definite sign and
satisfy the growth condition

∥ωn,i∥L∞ ≤M(diam(suppωn,i))
−δ, (2.2)

where M and δ are both fixed positive numbers. As a consequence of their result,
Theorem 2.1 holds true if the additional growth condition (2.2) is satisfied (although
they only considered the whole plane case, similar result for a bounded domain can
also be proved without any difficulty). In this sense, our result can be regarded as a
strengthened version of Caprini–Marchioro’s result in the steady case.

Remark 2.1. In Theorem 1.1 in [3], for vorticity of the form (2.1), x̄i∈D and x̄i ̸= x̄j
for i ̸= j are not assumptions but can be proved as conclusions. However, in the very
general setting of this paper, these two conclusions may be false. For example, we can
regard a single blob of vorticity as two artificially, thus they may concentrate on the
same point. Also, Cao–Wang–Zuo [10] constructed a pair of steady vortex patches with
opposite rotation directions in the unit disk (Theorem 5.1, [10]), and it can be checked



522 LOCATION OF CONCENTRATED VORTICES

that as the ratio of the circulations of the two patches goes to infinity, the patch with
smaller circulation will approach the boundary of the disk.

Our second result is about the nonexistence of concentrated multiple vortex flows
in convex domains, which can be seen as a by-product of Theorem 2.1.

Theorem 2.2. Let δ0>0 be fixed, D be a smooth convex domain, k≥2 be a positive
integer, κ1, · · ·,κk be k positive numbers and f1, · · ·,fk be k real functions satisfying

lim
t→0+

fi(t)=0, i=1 · ··,k.

If ψ0≡0, then there exists ε0>0, such that for any ε∈ (0,ε0), there is no weak solution
ωε to the vorticity Equation (1.11) such that

(1) ωε=
∑k
i=1ωε,i, ωε,i∈L4/3(D),i=1 · ··,k;

(2) dist(suppωε,i,suppωε,j)>δ0 ∀1≤ i<j≤k and dist(suppωε,i,∂D)>δ0 ∀1≤ i≤
k;

(3) diam(suppωε,i)<ε, i=1, · · ·,k.
(4)

∫
D
ωε,idx=κi+fi(ε), i=1, · · ·,k.

3. Proof of Theorem 2.1
First we need the following lemma.

Lemma 3.1. Suppose ω∈L4/3(R2) has compact support and

f(x) :=

∫
R2

ln|x−y|ω(y)dy.

Then f ∈W 2,4/3
loc (R2) and the distributional partial derivatives of f can be expressed as

∂xi
f(x)=

∫
R2

xi−yi
|x−y|2

ω(y)dy a.e. x∈R2, i=1,2. (3.1)

Proof. By the Calderon-Zygmund estimate we have f ∈W 2,4/3
loc (R2). The expres-

sion (3.1) follows from Theorem 6.21 on page 157, [17].

Now we are ready to prove Theorem 2.1. The key point of the proof is to use the
anti-symmetry of the singular part of the Biot-Savart kernel.

Proof. (Proof of Theorem 2.1.) Fix l∈{1,· · ·,k}. It is sufficient to show that

∇xl
W (x̄1,· · ·,x̄k)=0.

Let r0 be a small positive number such that

r0<dist(x̄i,∂D) ∀1≤ i≤k, r0<
1

2
dist(x̄i,x̄j) ∀1≤ i<j≤k.

Choose ϕ(x)=ρ(x)b ·x in Definition 1.1, where b is a constant planar vector and ρ
satisfies

ρ∈C∞
c (D), ρ≡1 in Br0(x̄l), ρ≡0 in Br0(x̄i) ∀i ̸= l.

Existence of such ρ can be easily obtained by mollifying a suitable patch function. Then
we have ∫

D

ωn∇⊥ (Gωn+ψ0) ·∇ϕdx=0.
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Denote

An=

∫
D

ωn∇⊥Gωn ·∇ϕdx, Bn=

∫
D

ωn∇⊥ψ0 ·∇ϕdx.

Then for any positive integer n it holds that

An+Bn=0. (3.2)

Below we analyze An and Bn separately. For An, we have

An=

∫
D

ωn(x)∇⊥
x

∫
D

(
− 1

2π
ln|x−y|−h(x,y)

)
ωn(y)dy ·∇ϕdx

=− 1

2π

∫
D

ωn(x)

∫
D

(x−y)⊥

|x−y|2
ωn(y)dy ·∇ϕdx

−
∫
D

ωn

∫
D

∇⊥
x h(x,y)ωn(x)(y)dy ·∇ϕdx.

Here we used Lemma 3.1 and the facts that h∈C∞(D×D) and ωn has compact support
in D. Since ωn∈L4/3(D), by the Hardy-Littlewood-Sobolev inequality (see Theorem
0.3.2, [25]) we have ∫

D

|ωn(y)|
|x−y|

dy∈L4(D).

Now we can apply Fubini’s theorem (see p. 164, [23]) to obtain

(x−y)⊥

|x−y|2
·∇ϕωn(x)ωn(y)∈L1(D×D)

and ∫
D

ωn(x)

∫
D

(x−y)⊥

|x−y|2
ωn(y)dy ·∇ϕdx=

∫
D

∫
D

(x−y)⊥ ·∇ϕ
|x−y|2

ωn(x)ωn(y)dxdy.

Thus we have obtained

An=− 1

2π

∫
D

∫
D

(x−y)⊥ ·∇ϕ
|x−y|2

ωn(x)ωn(y)dxdy

−
∫
D

∫
D

∇⊥
x h(x,y) ·∇ϕωn(x)ωn(y)dxdy.

Substituting ϕ(x)=ρ(x)b ·x in An, for sufficiently large n we have

An=− 1

2π

∫
D

∫
D

(x−y)⊥ ·b
|x−y|2

ωn,l(x)ωn(y)dxdy

−
∫
D

∫
D

∇⊥
x h(x,y) ·bωn,l(x)ωn(y)dxdy

=− 1

2π

k∑
j=1

∫
D

∫
D

(x−y)⊥ ·b
|x−y|2

ωn,l(x)ωn,j(y)dxdy

−
k∑
j=1

∫
D

∫
D

∇⊥
x h(x,y) ·bωn,l(x)ωn,j(y)dxdy
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=− 1

2π

∫
D

∫
D

(x−y)⊥ ·b
|x−y|2

ωn,l(x)ωn,l(y)dxdy

− 1

2π

k∑
j=1,j ̸=l

∫
D

∫
D

(x−y)⊥ ·b
|x−y|2

ωn,l(x)ωn,j(y)dxdy

−
k∑
j=1

∫
D

∫
D

∇⊥
x h(x,y) ·bωn,l(x)ωn,j(y)dxdy

=− 1

2π

∫
D

∫
D

(x−y)⊥ ·b
|x−y|2

ωn,l(x)ωn,l(y)dxdy

+

k∑
j=1,j ̸=l

∫
D

∫
D

∇⊥
xG(x,y) ·bωn,l(x)ωn,j(y)dxdy

−
∫
D

∫
D

∇⊥
x h(x,y) ·bωn,l(x)ωn,l(y)dxdy

:=Cn+Dn,

where

Cn=− 1

2π

∫
D

∫
D

(x−y)⊥ ·b
|x−y|2

ωn,l(x)ωn,l(y)dxdy,

Dn=

k∑
j=1,j ̸=l

∫
D

∫
D

∇⊥
xG(x,y) ·bωn,l(x)ωn,j(y)dxdy

−
∫
D

∫
D

∇⊥
x h(x,y) ·bωn,l(x)ωn,l(y)dxdy.

By the anti-symmetric property of the integrand in Cn, we see that

Cn=0 for sufficiently large n.

For Dn, it is clear that

lim
n→+∞

Dn=

 k∑
j=1,j ̸=l

κlκj∇⊥
xG(x̄l,x̄j)−κ2l∇⊥

x h(x̄l,x̄l)

 ·b.

To conclude, we have obtained

lim
n→+∞

An=

 k∑
j=1,j ̸=l

κlκj∇⊥
xG(x̄l,x̄j)−κ2l∇⊥

x h(x̄l,x̄l)

 ·b. (3.3)

For Bn, it is also clear that

lim
n→+∞

Bn=κl∇⊥ψ0(x̄l) ·b. (3.4)

Combining (3.2), (3.3) and (3.4) we immediately get k∑
j=1,j ̸=l

κlκj∇⊥
xG(x̄l,x̄j)−κ2l∇⊥

x h(x̄l,x̄l)+κl∇⊥ψ0(x̄l)

 ·b=0
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for sufficiently large n. Since b can be any constant vector, we deduce that

k∑
j=1,j ̸=l

κlκj∇⊥
xG(x̄l,x̄j)−κ2l∇⊥

x h(x̄l,x̄l)+κl∇⊥ψ0(x̄l)=0,

which is exactly

∇xl
W (x̄1,· · ·,x̄k)=0.

Remark 3.1. There is also an alternative proof of Theorem 2.1 that does not rely on
Theorem 6.21 in [17] and the Hardy-Littlewood-Sobolev inequality. In fact, in order to
prove Theorem 2.1, it suffices to show that for ωn∈L4/3(D) it holds that

An=Dn for any sufficiently large n, (3.5)

where An and Dn are defined as in the above proof. To achieve this, we first verify
(3.5) with ωn replaced by ωϵn, the standard mollification of ωn. This step is easy since
ωϵn∈C∞

c (D). Then passing to the limit ϵ→0+ leads to the desired result. The details
are left to the reader.

4. Proof of Theorem 2.2
In this section, we give the proof of Theorem 2.2. To begin with, we need an

important property of the Kirchhoff-Routh function in convex domains proved by Grossi
and Takahashi. For clarity, we only state the following simple version of their result
which is enough for our use.

Theorem 4.1 (Grossi–Takahashi, Theorem 3.2, [14]). Let D be a smooth convex do-
main, k≥2 be a positive integer and κ1, · · ·,κk be k positive numbers. If ψ0≡0, then the
Kirchhoff-Routh function W defined by (1.15) has no critical point in

D×·· ·×D︸ ︷︷ ︸
k times

\{(x1,· · ·,xk) |xi∈D,xi=xj for some i ̸= j}.

Now we are ready to prove Theorem 2.2.

Proof. (Proof of Theorem 2.2.) Suppose, by contradiction, that there exists
a sequence of positive numbers {εn}+∞

n=1, εn→0+ as n→+∞, and a sequence of weak
solutions {ωn}+∞

n=1 to the vorticity Equation (1.11) such that

(i) ωn=
∑k
i=1ωn,i, ωn,i∈L4/3(D), i=1,· · ·,k;

(ii) dist(suppωn,i,suppωn,j)>δ0 ∀1≤ i<j≤k and dist(suppωn,i,∂D)>δ0 ∀1≤ i≤
k;

(iii) diam(suppωn,i)<εn, i=1,· · ·,k.
(iv)

∫
D
ωn,idx=κi+fi(εn), i=1, · · ·,k.

Define

xn,i=

(∫
D

ωn,idx

)−1∫
D

xωn,idx, i=1, · · ·,k.

By (ii) and (iii) we see that

dist(xn,i,xn,j)≥
δ0
2

∀1≤ i<j≤k, dist(xn,i,∂D)≥ δ0
2

∀1≤ i≤k
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if n is large enough. Thus we can choose a subsequence {xnm,i}+∞
m=1 such that xnm,i→ x̄i

as m→+∞, i=1,· · ·,k, where x̄1, · · ·,x̄k satisfy

dist(x̄i,x̄j)≥
δ0
2

∀1≤ i<j≤k, dist(x̄i,∂D)≥ δ0
2

∀1≤ i≤k.

Now we can see that the sequence of solutions {ωnm}+∞
m=1 satisfies the assumptions in

Theorem 2.1. Therefore (x̄1,· · ·,x̄k) must be a critical point of W (with ψ0≡0), which
is a contradiction to Theorem 4.1.
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